A QUALITATIVE ANALYSIS OF A SECOND-ORDER ANISOTROPIC PHASE-FIELD TRANSITION SYSTEM ENDOWED WITH A GENERAL CLASS OF NONLINEAR DYNAMIC BOUNDARY CONDITIONS

Vasile Berinde ${ }^{\boxtimes 1}$, Alain Miranville ${ }^{\boxtimes 2}$ and Costică Moroşanu ${ }^{\boxtimes 3}$
${ }^{1}$ Department of Mathematics and Computer Science, North University Center at Baia Mare Technical University of Cluj-Napoca, Victoriei 76, 430122 Baia Mare, Romania
${ }^{2}$ Université de Poitiers, Laboratoire de Mathématiques et Applications
UMR CNRS 7348, SP2MI, 86962 Chasseneuil Futuroscope Cedex, France
${ }^{3}$ University "Al. I. Cuza" of Iaşi, 700506 Iaşi, Romania

Abstract

The paper is concerned with the study of a nonlinear second-order anisotropic phase-field transition system of Caginalp type, subject to nonlinear and in-homogeneous dynamic boundary conditions (in both unknown functions). Under certain hypothesis on the input data: $f_{1}(t, x), f_{2}(t, x), w_{1}(t, x)$, $w_{2}(t, x), u_{0}(x), \alpha_{0}(x), \varphi_{0}(x)$ and $\xi_{0}(x)$, we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma), W_{\nu}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$. Here we extend the previous results concerned with nonlinearity of cubic type, allowing to the present mathematical model to be more capable for describing the complexity of a wide class of real physical phenomena (moving interface problems, image processing, the phase changes at the boundary $\partial \Omega$, etc.).

1. Introduction. In a compact domain $\Omega \subset \mathbb{R}^{n}, n \leq 3$, with a C^{2} boudary $\partial \Omega=\Gamma$ and $[0, T]$ a generic time interval, we consider the following nonlinear second-order system of coupled PDEs with respect to the unknown functions $u(t, x)$ and $\varphi(t, x)$ (hereafter $u, \varphi)$:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u-\operatorname{div}(K(t, x, u, \nabla u) \nabla u(t, x))=-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)+f_{1}(t, x) \quad \text { in } Q \tag{1}\\
\frac{\partial}{\partial t} \varphi-\operatorname{div}(\Psi(t, x, \varphi, \nabla \varphi) \nabla \varphi(t, x))=p_{1}\left[\varphi-\varphi^{3}\right]+p_{2} u+f_{2}(t, x) \quad \text { in } Q
\end{array}\right.
$$

subject to the general class of nonlinear and in-homogeneous dynamic boundary conditions in both unknown functions $u(t, x)$ and $\varphi(t, x)$, i.e.

$$
\begin{cases}\frac{\partial}{\partial \mathbf{n}} u+\frac{\partial}{\partial t} u-\Delta_{\Gamma} u+h u+g_{1}(t, x, u)=w_{1}(t, x) & \text { on } \Sigma \tag{2}\\ \frac{\partial}{\partial \mathbf{n}} \varphi+\frac{\partial}{\partial t} \varphi-\Delta_{\Gamma} \varphi+c_{0} \varphi+g_{2}(t, x, \varphi)=w_{2}(t, x) & \text { on } \Sigma,\end{cases}
$$

[^0]and with the initial conditions
\[

$$
\begin{equation*}
u(0, x)=u_{0}(x), \quad \varphi(0, x)=\varphi_{0}(x) \text { in } \Omega \tag{3}
\end{equation*}
$$

\]

where $Q=(0, T] \times \Omega, \Sigma=(0, T] \times \partial \Omega$ and:

- $t \in(0, T], x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega$;
- ℓ, p_{1}, p_{2}, h and c_{0} are positive parameters;
- $\frac{\partial}{\partial t} v(t, x)$ is the partial derivative of $v(t, x)$ with respect to t;
- $u(t, x)$ represents the reduced temperature distribution in Q and denote by $\nabla u(t, x)=u_{x}(t, x)\left(\nabla u=u_{x}\right.$ in short) the gradient of $u(t, x)$ in x, that is

$$
\nabla u(t, x)=\left(\frac{\partial}{\partial x_{1}} u(t, x), \frac{\partial}{\partial x_{2}} u(t, x), \ldots, \frac{\partial}{\partial x_{n}} u(t, x)\right)
$$

We set $\frac{\partial}{\partial x_{i}} u=u_{x_{i}}, i=1,2, \ldots, n$, and thus $u_{x}=\left(u_{x_{1}}, u_{x_{2}}, \ldots, u_{x_{n}}\right)$;

- $\varphi(t, x)$ is the phase function (the order parameter), used to distinguish between the states (phases) of material which occupies the region Ω at every time $t \in[0, T]$; similarly as above, we denote by $\nabla \varphi(t, x)=\varphi_{x}(t, x)\left(\nabla \varphi=\varphi_{x}\right.$ in short) the gradient of $\varphi(t, x)$ in x, that is

$$
\nabla \varphi(t, x)=\left(\frac{\partial}{\partial x_{1}} \varphi(t, x), \frac{\partial}{\partial x_{2}} \varphi(t, x), \ldots, \frac{\partial}{\partial x_{n}} \varphi(t, x)\right)
$$

We set $\frac{\partial}{\partial x_{i}} \varphi=\varphi_{x_{i}}, i=1,2, \ldots, n$, and so $\varphi_{x}=\left(\varphi_{x_{1}}, \varphi_{x_{2}}, \ldots, \varphi_{x_{n}}\right)$;

- $K\left(t, x, u, u_{x}\right)$ - is a positive and bounded nonlinear real function with bounded derivatives, having the role of controlling the speed of the diffusion process in $(1)_{1}$;
- $\Psi\left(t, x, \varphi, \varphi_{x}\right)$ - is a positive and bounded nonlinear real function with bounded derivatives, having the role of controlling the speed of the diffusion process in $(1)_{2}$;
- $f_{1}(t, x) \in L^{p}(Q), f_{2}(t, x) \in L^{q}(Q)$ are given functions (see Remark 2 below), where p and q satisfy

$$
\begin{equation*}
q \geq p \geq 2 \tag{4}
\end{equation*}
$$

- $w_{1}(t, x), w_{2}(t, x) \in W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)$ are given functions (see Remark 2 below);
- $u_{0} \in W_{\infty}^{2-\frac{2}{p}}(\Omega)$, with

$$
\frac{\partial}{\partial \mathbf{n}} u_{0}-\Delta_{\Gamma} u_{0}+h u_{0}+g_{1}\left(0, x, u_{0}\right)=w_{1}(0, x)
$$

and $\varphi_{0} \in W_{\infty}^{2-\frac{2}{q}}(\Omega)$, with

$$
\frac{\partial}{\partial \mathbf{n}} \varphi_{0}-\Delta_{\Gamma} \varphi_{0}+c_{0} \varphi_{0}+g_{2}\left(0, x, \varphi_{0}\right)=w_{2}(0, x)
$$

- $\mathbf{n}=\mathbf{n}(\mathrm{x})$ is the outward unit normal vector to Ω at a point $x \in \partial \Omega$. $\frac{\partial}{\partial \mathbf{n}}$ denotes differentiation along \mathbf{n};
- Δ_{Γ} is the Laplace-Beltrami operator;
- Regarding the nonlinearities $g_{k}: \Sigma \times \mathbb{R} \rightarrow \mathbb{R}, k=1$, 2 , we will assume the following hypotheses:
- are Carathéodory functions, i.e., $g_{k}(\cdot, \cdot, z): \Sigma \rightarrow \mathbb{R}$ is measurable, $\forall z \in$ \boldsymbol{R};
$-g_{k}(t, x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $\forall(t, x) \in \Sigma$, with $g_{k}(\cdot, \cdot, 0) \in L^{\infty}(\Sigma)$ (see [7, Definition 2.106, p. 42]);
$-\left(\mathrm{G}_{1}\right):\left(g_{k}\left(t, x, z_{1}\right)-g_{k}\left(t, x, z_{2}\right)\right)\left(z_{1}-z_{2}\right) \geq b_{3}\left(z_{1}-z_{2}\right)^{2}, \quad \forall(t, x) \in \Sigma$, $z_{1}, z_{2} \in \mathbb{R}$, for a constant $b_{3}>0$;
$-\left(\mathrm{G}_{2}\right)$: there is a function $\bar{G}: \Sigma \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ verifying the relations

$$
\begin{aligned}
& \left(g_{k}\left(t, x, z_{1}\right)-g_{k}\left(t, x, z_{2}\right)\right)^{2} \leq \bar{G}\left(t, x, z_{1}, z_{2}\right)\left(z_{1}-z_{2}\right)^{2} \\
& \bar{G}\left(t, x, z_{1}, z_{2}\right) \leq b_{4}\left(1+\left|z_{1}\right|^{2\left(r^{\prime}-1\right)}+\left|z_{2}\right|^{2\left(r^{\prime}-1\right)}\right), \forall(t, x) \in \Sigma, z_{1}, z_{2} \in \mathbb{R}
\end{aligned}
$$ for a constant $b_{4}>0$ and $r^{\prime} \geq 1$ such that (see (26) below)

$$
\begin{gather*}
r^{\prime} \leq \frac{n+2}{n+2-2 p} \quad \text { if } \frac{1}{p}-\frac{2}{n+2}>0 \tag{5}\\
-\left(\mathrm{G}_{3}\right): g_{k}(t, x, z) z \geq b_{5} z^{2}, \quad \forall(t, x) \in \Sigma, \quad z \in \mathbb{R}, \text { with } b_{5}>0
\end{gather*}
$$

Lemma 1.1. Assumption $\left(\mathrm{G}_{2}\right)$ implies that $g_{k}, k=1,2$, fulfils the polynomial growth condition

$$
\begin{equation*}
\left|g_{k}(t, x, z)\right| \leq b_{6}\left(1+|z|^{r^{\prime}}\right), \quad \forall(t, x) \in \Sigma, \quad z \in \mathbb{R} \tag{6}
\end{equation*}
$$

where b_{6} is a positive constant.
Proof. Indeed, setting $z_{1}=z$ and $z_{2}=0$ in $\left(\mathrm{G}_{2}\right)$, we get $(k=1,2)$

$$
\begin{gathered}
\left|g_{k}(t, x, z)\right| \leq\left|g_{k}(t, x, 0)\right|+\bar{G}(t, x, z, 0)^{\frac{1}{2}}|z| \\
\leq\left|g_{k}(t, x, 0)\right|+b_{4}^{\frac{1}{2}}\left(1+|z|^{2\left(r^{\prime}-1\right)}\right)^{\frac{1}{2}}|z|, \quad \forall z \in \mathbb{R} .
\end{gathered}
$$

Since $g_{k}(t, x, 0) \in L^{\infty}(\Sigma), k=1,2$, estimate (6) follows.

Remark 1. For the sake of simplicity, in what follows we will take $g_{k}, k=1,2$, independent of time and space variables, i.e. $g_{k}(t, x, z)=g_{k}(z), k=1,2$, since the major difficulty in the study of the nonlinear second-order problem (1)-(3) consists, among other, in treating the nonlinearity $g_{k}, k=1,2$, with respect to z.

Remark 2. Besides classical meanings, like the density of heat sources or sinks of heat, the pairs of given functions $\left\{f_{1}, f_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$ in (1)-(2), can be also interpreted as distributed and boundary control, respectively, which opens a wide field of applicability for the nonlinear parabolic system (1)-(3), such as optimal control.

For reader's convenience, we will write problem (1) in the equivalent form

$$
\left\{\begin{array}{ll}
\frac{\partial}{\partial t} & u(t, x)-\frac{\partial}{\partial u_{x_{j}}}\left[K\left(t, x, u, u_{x}\right) u_{x_{i}}\right] u_{x_{j} x_{i}} \tag{7}\\
& =A_{1}\left(t, x, u, u_{x}\right)-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)+f_{1}(t, x) \\
\frac{\partial}{\partial t} & \varphi(t, x)-\frac{\partial}{\partial \varphi_{x_{j}}}\left[\Psi\left(t, x, \varphi, \varphi_{x}\right] \varphi_{x_{i}}\right] \varphi_{x_{j} x_{i}} \\
& =A_{2}\left(t, x, \varphi, \varphi_{x}\right)+p_{1}\left[\varphi(t, x)-\varphi^{3}(t, x)\right]+p_{2} u(t, x)+f_{2}(t, x)
\end{array} \quad \text { in } Q, ~ \$\right.
$$

with

$$
\begin{align*}
A_{1}\left(t, x, u, u_{x}\right) & =\frac{\partial}{\partial u}\left[K\left(t, x, u, u_{x}\right) u_{x_{i}}\right] u_{x_{i}}+\frac{\partial}{\partial x_{i}}\left[K\left(t, x, u, u_{x}\right) u_{x_{i}}\right] \tag{8}\\
A_{2}\left(t, x, \varphi, \varphi_{x}\right) & =\frac{\partial}{\partial \varphi}\left[\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right] \varphi_{x_{i}}+\frac{\partial}{\partial x_{i}}\left[\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right] \tag{9}
\end{align*}
$$

and $(v=u$ or $v=\varphi)$

$$
v_{x_{i}}=\frac{\partial}{\partial x_{i}} v(t, x), \quad v_{x_{j} x_{i}}=\frac{\partial^{2}}{\partial x_{j} \partial x_{i}} v(t, x), \quad i, j=1, \ldots, n .
$$

It is easy to recognize $(7)_{1}$ and $(2)_{1}$ as being a quasi-linear one of type (2.4) in [14, p. 3 and p. 11] (see also [18, p. 229], [9, (1.7), p. 97]), with

$$
\begin{align*}
& a_{i j}^{1}\left(t, x, u, u_{x}\right)=\frac{\partial}{\partial u_{x_{j}}}\left[K\left(t, x, u, u_{x}\right) u_{x_{i}}\right], \quad i=1, \ldots, n, \tag{10}\\
& a^{1}\left(t, x, u, u_{x}, \varphi\right)=-A_{1}\left(t, x, u, u_{x}\right)+\frac{\ell}{2} \frac{\partial}{\partial t} \varphi-f_{1}(t, x)
\end{align*}
$$

Similarly, for $(7)_{2}$ and $(2)_{2}$ we have

$$
\begin{align*}
& a_{i j}^{2}\left(t, x, \varphi, \varphi_{x}\right)=\frac{\partial}{\partial \varphi_{x_{j}}}\left[\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right], \quad i=1, \ldots, n \tag{11}\\
& a^{2}\left(t, x, u, \varphi, \varphi_{x}\right)=-A_{2}\left(t, x, \varphi, \varphi_{x}\right)-p_{1}\left[\varphi-\varphi^{3}\right]-p_{2} u(t, x)-f_{2}(t, x)
\end{align*}
$$

In addition, unless otherwise stated, we assume that equations (1) [or (7)] are uniformly parabolic, which means fulfilment of the conditions

$$
\begin{align*}
& \nu_{1}(|u|) \zeta^{2} \leq \frac{\partial}{\partial z_{j}} K(t, x, u, z) \zeta_{i} \zeta_{j} \leq \nu_{2}(|u|) \zeta^{2} \\
& \nu_{1}(|\varphi|) \zeta^{2} \leq \frac{\partial}{\partial z_{j}} \Psi(t, x, \varphi, z) \zeta_{i} \zeta_{j} \leq \nu_{2}(|\varphi|) \zeta^{2}, \tag{12}
\end{align*}
$$

for arbitrary u, φ, z and $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ an arbitrary real vector, where $\nu_{1}(s)$ and $\nu_{2}(s)$ are positive (nonincreasing and nondecreasing, respectively) continuous functions of $s \geq 0$.

In the present paper we study the solvability of the nonlinear second-order boundary value problems of the form (1)-(3) (or (7) plus (2)-(3)) in the class
$W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma), W_{\nu}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$. The new mathematical formulation expressed by (1)-(3) is characterized by the presence of some new physical parameters: $\left.p_{1}, p_{2}, K\left(t, x, u(t, x), u_{x}(t, x)\right), \Psi\left(t, x, \varphi(t, x), \varphi_{x}(t, x)\right)\right)$, the principal part being in divergence form and by considering the classical regular potential (reaction term) (see [3], [4], [6], [11], [14], [15]-[20], [25]-[27]). The most important novelty in our paper concerns the inhomogeneous dynamic boundary conditions of nonlinear type, not treated until now (in this new context, that is: the principal is in divergence form in both unknown functions $u(t, x)$ and $\varphi(t, x))$ in the mathematical literature. Thus, significant aspects of the delicate physical features are expected to be reflected more accurately. In this regard, as applications of problem (1)-(3), we indicate the moving interface problems, e.g. phase separation and transition (see [2]-[6], [8]-[11], [15]-[26], [28], [29]), anisotropy effects (see [2], [9], [10], [13], [18], [26]), image denoising and segmentation (see [1], [11], [26] and references therein) etc. In addition, the general hypotheses formulated on $g_{k}, k=1,2$, also allows to take in the dynamic boundary conditions a nonlinearity with a larger growth exponent $r^{\prime} \leq(n+2) /(n+2-2 p)$ if $n+2>2 p$ (see (5)), for each unknown functions u and φ. It extends the already studied types of boundary conditions and therefore makes the new formulation of model (1)-(3) to be more able to describe a wide variety of industrial applications of two-phase systems, in particular, the interactions with the walls in confined systems (i.e. the phase changes at the boundary of Ω).

Different formulations of the nonlinear phase-field transition system (1)-(3) with different nonlinearities, as well as different physical parameters and boundary conditions, can be found in the works: Benincasa, Favini and Moroşanu [3], Boldrini, Caretta and Fernández-Cara [4], Cârjă, Miranville and Moroşanu [6], Cavaterra, Gal, Grasselli and Miranville [8], Conti, Gatti and Miranville [10], Gatti and Miranville [13], Miranville and Moroşanu [15]-[18], Moroşanu [19]-[22], Moroşanu and Croitoru [23], Moroşanu and Motreanu [24], Moroşanu and Pavăl [25], [26], Vaz and all [29]. In the present work we have limited the nonlinear reaction therm in $(1)_{2}$ to depend only of φ because, as we already have mentioned, the major difficulty in treating the parabolic nonlinear problem (1) lies just in such sort of nonlinearities. Examples of nonlinearities depending on t, x and φ can be found in Moroşanu and Motreanu [24].

The rest of the paper is organized as follows. In Section 2, we first present the technical method involved in treating the boundary conditions of dynamic type. Next, we recall the notations and the methods to be used in the proof of the main result, Theorem 2.2, formulated at the end of the section. The well-posedness of solutions to a nonlinear reaction-diffusion equation, supplied with a general class of nonlinear and non-homogeneous dynamic boundary conditions, is discussed in Section 3 (Theorem 3.2). The Section 4 provides the proof of the main result Theorem 2.2.
2. Preliminaries and main result. In order to approach the parabolic nonlinear system (1)-(3), we will use the same idea as in Cârjă, Miranville and Moroşanu [6], Choban and Moroşanu [9], Miranville and Moroşanu [15], Moroşanu [20]. In this regards, let $\alpha=u$ and $\xi=\varphi$ be a further variables such that $\alpha(0, x)=u_{0}$, $\xi(0, x)=\varphi_{0}$ on Γ, while for the remaining data in (1)-(3) we will keep the same meanings formulated at the beginning. Corresponding, the boundary conditions in
(2) will be approached in the sequel by

$$
\begin{cases}u=\alpha, \quad \varphi=\xi & \text { on } \Sigma \tag{13}\\ \frac{\partial}{\partial \mathbf{n}} u+\frac{\partial}{\partial t} \alpha-\Delta_{\Gamma} \alpha+h \alpha+g_{1}(\alpha)=w_{1}(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n}} \varphi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+g_{2}(\xi)=w_{2}(t, x) & \text { on } \Sigma \\ \alpha(0, x)=\alpha_{0}(x), \quad \psi(0, x)=\psi_{0}(x) & x \in \Gamma\end{cases}
$$

where $\alpha_{0}, \xi_{0} \in W_{\infty}^{2-\frac{2}{p}}(\Gamma)$.
Accordingly, the problem (7), (2)-(3) can be rewritten suitably as follows

$$
\begin{align*}
& \begin{cases}\frac{\partial}{\partial t} u(t, x)-\frac{\partial}{\partial u_{x_{j}}}\left(K\left(t, x, u, u_{x}\right) u_{x_{i}}\right) u_{x_{j} x_{i}} & \\
=A_{1}\left(t, x, u, u_{x_{i}}\right)-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi+f_{1}(t, x) & \text { in } Q \\
u(t, x)=\alpha(t, x) & \text { on } \Sigma \\
\frac{\partial}{\partial \mathbf{n}} u+\frac{\partial}{\partial t} \alpha-\Delta_{\Gamma} \alpha+h \alpha+g_{1}(\alpha)=w_{1}(t, x) & \text { on } \Sigma \\
u(0, x)=u_{0}(x) & \text { on } \Omega \\
\alpha(0, x)=\alpha_{0}(x) & x \in \Gamma,\end{cases} \tag{14}\\
& \begin{cases}\frac{\partial}{\partial t} \varphi(t, x)-\frac{\partial}{\partial \varphi_{x_{j}}}\left(\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right) \varphi_{x_{j} x_{i}} & \\
=A_{2}\left(t, x, \varphi, \varphi_{x_{i}}\right)+p_{1}\left[\varphi-\varphi^{3}\right]+p_{2} u(t, x)+f_{2}(t, x) & \text { in } Q \\
\varphi(t, x)=\xi(t, x) & \text { on } \Sigma \\
\frac{\partial}{\partial \mathbf{n}} \varphi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+g_{2}(\xi)=w_{2}(t, x) & \text { on } \Sigma \\
\varphi(0, x)=\varphi_{0}(x) & \text { on } \Omega \\
\xi(0, x)=\xi_{0}(x) & x \in \Gamma .\end{cases} \tag{15}
\end{align*}
$$

Definition 2.1. Any solution $(u, \alpha, \varphi, \xi)$ of the nonlinear second-order boundary value problem (14)-(15) is called the classical solution if it is continuous in Q, have continuous derivatives $u_{t}, u_{x}, u_{x x}, \varphi_{t}, \varphi_{x}, \varphi_{x x}$ in Q and $\alpha_{t}, \alpha_{x}, \alpha_{x x}, \xi_{t}$, $\xi_{x}, \xi_{x x}$ on Σ, satisfy the equation $(14)_{1-}-(15)_{1}$ at all points $(t, x) \in Q$ as well as the conditions $(14)_{2-3}-(15)_{2-3}$ and $(14)_{4-5}-(15)_{4-5}$ for $(t, x) \in \Sigma$ and for $t=0$, respectively.

Our main results regarding the existence, uniqueness and regularity of solutions to problem (14)-(15) (practically, well-posedness of the solutions to the nonlinear second-order boundary value problem (1)-(3) or (7), (2)-(3)) is the following

Theorem 2.2. Suppose $\{(u, \alpha),(\varphi, \xi)\} \in\left[C^{1,2}(Q) \times C^{1,2}(\Sigma)\right]^{2}$ is a classical solution of problem (14)-(15) and for positive numbers:

$$
M, M_{0}, M_{1}, M_{2}, M_{3}, M_{4}, \quad \text { and } \quad N, N_{0}, N_{1}, N_{2}, N_{3}, N_{4}
$$

one has
$\mathbf{I}_{1} .|u(t, x)|<M$ for any $(t, x) \in Q$ and for any t, x, z, the map $K(t, x, u, z)$ is continuous, differentiable with respect to x, u, z, its x-derivatives, u-derivatives and z-derivatives are measurable bounded, satisfies $(12)_{1}$, and

$$
\begin{align*}
& 0<K_{m} \leq K\left(t, x, u, u_{x}\right)<K_{M}, \quad \text { for }(t, x) \in Q \\
& \sum_{i=1}^{n}\left[\left|K(t, x, u, z) u_{x_{i}}\right|+\left|\frac{\partial}{\partial u}\left(K(t, x, u, z) u_{x_{i}}\right)\right|\right](1+|z|) \tag{16}\\
& +\sum_{i, j=1}^{n}\left|\frac{\partial}{\partial x_{j}}\left(K(t, x, u, z) u_{x_{i}}\right)\right| \leq M_{0}(1+|z|)^{2} .
\end{align*}
$$

\mathbf{I}_{2}. For every $\varepsilon>0$, the functions $u(t, x)$ and $K\left(t, x, u, u_{x}\right)$ satisfy the relations

$$
\|u\|_{L^{s}(Q)} \leq M_{1}, \quad\left\|K\left(t, x, u, u_{x}\right) u_{x_{i}}\right\|_{L^{r}(Q)}<M_{2}, \quad i=1, \ldots, n
$$

where

$$
r=\left\{\begin{array}{ll}
\max \{p, 4\} & p \neq 4 \\
4+\varepsilon & p=4,
\end{array} \quad s= \begin{cases}\max \{p, 2\} & p \neq 2 \\
2+\varepsilon & p=2\end{cases}\right.
$$

\mathbf{I}_{3}. The hypotheses $\left(\mathrm{G}_{1}\right)-\left(\mathrm{G}_{3}\right)(k=1)$ are fulfilled.
$\mathbf{J}_{1} .|\varphi(t, x)|<N$ for any $(t, x) \in Q$ and for any t, x, z, the $\operatorname{map} \Psi(t, x, \varphi, z)$ is continuous, differentiable with respect to x, φ, z, its x-derivatives, φ-derivatives and z-derivatives are measurable bounded, satisfies $(12)_{2}$, and

$$
\begin{align*}
& 0<\Psi_{m} \leq \Psi\left(t, x, \varphi, \varphi_{x}\right)<\Psi_{M}, \quad \text { for } \quad(t, x) \in Q \\
& \sum_{i=1}^{n}\left[\left|\Psi(t, x, \varphi, z) \varphi_{x_{i}}\right|+\left|\frac{\partial}{\partial \varphi}\left(\Psi(t, x, \varphi, z) \varphi_{x_{i}}\right)\right|\right](1+|z|) \tag{17}\\
& +\sum_{i, j=1}^{n}\left|\frac{\partial}{\partial x_{j}}\left(\Psi(t, x, \varphi, z) \varphi_{x_{i}}\right)\right| \leq N_{0}(1+|z|)^{2} .
\end{align*}
$$

\mathbf{J}_{2}. For every $\varepsilon>0$, the functions $\varphi(t, x)$ and $\Psi\left(t, x, \varphi, \varphi_{x}\right)$ satisfy the relations

$$
\|\varphi\|_{L^{s}(Q)} \leq N_{1}, \quad\left\|\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right\|_{L^{r}(Q)}<N_{2}, \quad i=1, \ldots, n
$$

where the quantities r and s were defined in \mathbf{I}_{2}.
\mathbf{J}_{3}. The hypotheses $\left(\mathrm{G}_{1}\right)-\left(\mathrm{G}_{3}\right)(k=2)$ are fulfilled.
Then, there exists a unique solution $u \in W_{p}^{1,2}(Q), \varphi \in W_{\nu}^{1,2}(Q)(\nu=\min \{q, \mu\})$,

$$
\begin{align*}
& \alpha, \xi \in W_{p}^{1,2}(\Sigma) \text { to (14)-(15), } p, q \neq \frac{3}{2} \text {, and satisfies } \\
& \|u\|_{W_{p}^{1,2}(Q)}+\|\varphi\|_{W_{\nu}^{1,2}(Q)}+\|\alpha\|_{W_{p}^{1,2}(\Sigma)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C\left[1+\left\|u_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\alpha_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}+\left\|\xi_{0}\right\|_{W_{\infty}}^{\frac{3 p-2}{p}}{ }_{\substack{2-\frac{2}{p}}}\right. \tag{18}\\
& \left.+\left\|f_{1}\right\|_{L^{p^{\prime}}(Q)}+\left\|f_{2}\right\|_{L^{q}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right],
\end{align*}
$$

where the constant $C>0$ depends on $|\Omega|$ (the measure of Ω), $T, n, p, q, b_{3}, b_{4}, b_{5}$, b_{6} and physical parameters, but is independent of $u, \varphi, \alpha, \xi, f_{1}, f_{2}, w_{1}$ and w_{2}.

If $\left(u^{1}, \alpha^{1}, \varphi^{1}, \xi^{1}\right),\left(u^{2}, \alpha^{2}, \varphi^{2}, \xi^{2}\right)$ are two solutions to (14)-(15) corresponding to $\left(u_{0}^{1}, \alpha_{0}^{1}, \varphi_{0}^{1}, \xi_{0}^{1}\right),\left(u_{0}^{2}, \alpha_{0}^{2}, \varphi_{0}^{2}, \xi_{0}^{2}\right) \in W_{\infty}^{2-\frac{2}{p}}(\Omega) \times W_{\infty}^{2-\frac{2}{p}}(\Gamma) \times W_{\infty}^{2-\frac{2}{q}}(\Omega) \times W_{\infty}^{2-\frac{2}{p}}(\Gamma)$, $\left(f_{1}^{a}, f_{2}^{a}\right),\left(f_{1}^{b}, f_{2}^{b}\right) \in L^{p}(Q) \times L^{q}(Q), w_{1}^{a}, w_{2}^{a}, w_{1}^{b}, w_{2}^{b} \in W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)$, respectively, such that

$$
\begin{cases}\left\|u^{1}\right\|_{W_{p}^{1,2}(Q)},\left\|u^{2}\right\|_{W_{p}^{1,2}(Q)} \leq M_{3}, & \left\|\alpha^{1}\right\|_{W_{p}^{1,2}(\Sigma)},\left\|\alpha^{2}\right\|_{W_{p}^{1,2}(\Sigma)} \leq M_{4} \tag{19}\\ \left\|\varphi^{1}\right\|_{W_{p}^{1,2}(Q)},\left\|\varphi^{2}\right\|_{W_{\nu}^{1,2}(Q)} \leq N_{3}, & \left\|\xi^{1}\right\|_{W_{p}^{1,2}(\Sigma)},\left\|\xi^{2}\right\|_{W_{p}^{1,2}(\Sigma)} \leq N_{4}\end{cases}
$$

then the following estimate holds

$$
\begin{align*}
\max _{(t, x) \in Q}\left|u^{1}-u^{2}\right|+ & \max _{(t, x) \in \Sigma}\left|\alpha^{1}-\alpha^{2}\right|+\underset{(t, x) \in Q}{ }\left|\varphi^{1}-\varphi^{2}\right|+\max _{(t, x) \in \Sigma}\left|\xi^{1}-\xi^{2}\right| \\
\leq C_{1} e^{C T} \max \{ & \max _{(t, x) \in \Omega}\left|u_{0}^{1}-u_{0}^{2}\right|, \max _{(t, x) \in \Gamma}\left|\alpha_{0}^{1}-\alpha_{0}^{2}\right| \\
& \max _{(t, x) \in \Omega}\left|\varphi_{0}^{1}-\varphi_{0}^{2}\right|, \max _{(t, x) \in \Gamma}\left|\xi_{0}^{1}-\xi_{0}^{2}\right|, \tag{20}\\
& \max _{(t, x) \in Q}\left|f_{1}^{a}-f_{1}^{b}\right|, \max _{(t, x) \in Q}\left|f_{2}^{a}-f_{2}^{b}\right|, \\
& \left.\max _{(t, x) \in \Sigma}\left|w_{1}^{a}-w_{1}^{b}\right|, \max _{(t, x) \in \Sigma}\left|w_{2}^{a}-w_{2}^{b}\right|\right\}
\end{align*}
$$

where the positive constants $C_{1}>0, C>0$, are independent of $\left\{u^{1}, \alpha^{1}, \varphi^{1}, \xi^{1}, f_{1}^{a}\right.$, $\left.w_{1}^{a}, u_{0}^{1}, \alpha_{0}^{1}, \varphi_{0}^{1}, \xi_{0}^{1}\right\}$ and $\left\{u^{2}, \alpha^{2}, \varphi^{2}, \xi^{2}, f_{2}^{a}, w_{2}^{a}, u_{0}^{2}, \alpha_{0}^{2}, \varphi_{0}^{2}, \xi_{0}^{2}\right\}$. In particular, the uniqueness of solution to problem (14)-(15) holds.

Basic tools in our approach are:

- the Leray-Schauder degree theory (see [17, p. 221] and references therein);
- Green's first identity

$$
\left\{\begin{array}{l}
-\int_{\Omega} y \operatorname{div} z d x=\int_{\Omega} \nabla y \cdot z d x-\int_{\partial \Omega} y \frac{\partial}{\partial \mathbf{n}} z d \gamma \tag{21}\\
-\int_{\Omega} y \Delta z d x=\int_{\Omega} \nabla y \cdot \nabla z d x-\int_{\partial \Omega} y \frac{\partial}{\partial \mathbf{n}} z d \gamma
\end{array}\right.
$$

for any scalar-valued function y and z - a continuously differentiable vector field in n dimensional space;

- the Lions and Peetre embedding Theorem (see [17, p. 14]) to ensure the existence of a continuous embedding $W_{p}^{1,2}(Q) \subset L^{\mu_{1}}(Q)$, where the real μ_{1} is given by (see (4)):

$$
\mu_{1}= \begin{cases}\text { any positive number } \geq 3 p & \text { if } \frac{1}{p}-\frac{2}{n+2} \leq 0 \tag{22}\\ \frac{p(n+2)}{n+2-2 p} & \text { if } \frac{1}{p}-\frac{2}{n+2}>0\end{cases}
$$

and, for $m \in\{1,2, \cdots\}$ and $1 \leq p \leq \infty, W_{p}^{m, 2 m}(Q)$ denotes the Sobolev space on Q :

$$
\begin{equation*}
W_{p}^{m, 2 m}(Q)=\left\{y \in L^{p}(Q): \frac{\partial^{r}}{\partial t^{r}} \frac{\partial^{q}}{\partial x^{q}} y \in L^{p}(Q), \text { for } 2 r+q \leq 2 m\right\} \tag{23}
\end{equation*}
$$

i.e., the spaces of functions whose t-derivatives and x-derivatives up to the order m and $2 m$, respectively, belong to $L^{p}(Q)$ (see [17, p. 13-14]).

- Also, we shall use the set $C^{1,2}(\bar{Q})\left(C^{1,2}(Q)\right)$ of all continuous functions in \bar{Q} (in Q) having continuous derivatives $u_{t}, u_{x}, u_{x x}$ in \bar{Q} (in Q), as well as the Sobolev spaces $W_{p}^{\ell}(\Omega), W_{p}^{\ell, \ell / 2}(\Sigma)$ with non integral ℓ for the initial and boundary conditions, respectively (see [17, p. 14]).
- As far as the techniques used in the paper are concerned, it should be noted that we derive the a priori estimates in $L^{p}(Q)$ and $L^{p}(\Sigma)$.
In the following we will denote by C several positive constants, being understood that the extra dependencies will be set out on occurrence.

3. Well-posedness of solutions to the nonlinear second-order reactiondiffusion equation (15) in the class $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$. We consider the following nonlinear second-order reaction-diffusion problem:

$$
\begin{cases}\frac{\partial}{\partial t} \Phi(t, x)-\frac{\partial}{\partial \Phi_{x_{j}}}\left(\Psi\left(t, x, \Phi, \Phi_{x}\right) \Phi_{x_{i}}\right) \Phi_{x_{j} x_{i}} & \tag{24}\\ \quad=A_{2}\left(t, x, \Phi, \Phi_{x_{i}}\right)+p_{1}\left[\Phi(t, x)-\Phi^{3}(t, x)\right]+\hat{f}_{2}(t, x) & \text { in } Q \\ \Phi(t, x)=\xi(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n}} \Phi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+g_{2}(\xi)=w_{2}(t, x) & \text { on } \Sigma \\ \Phi(0, x)=\varphi_{0}(x) & \text { on } \Omega \\ \xi(0, x)=\xi_{0}(x) & x \in \Gamma\end{cases}
$$

where $A_{2}\left(t, x, \Phi, \Phi_{x_{i}}\right)=\frac{\partial}{\partial \Phi}\left[\Psi\left(t, x, \Phi, \Phi_{x}\right) \Phi_{x_{i}}\right] \Phi_{x_{i}}+\frac{\partial}{\partial x_{i}}\left[\Psi\left(t, x, \Phi, \Phi_{x}\right) \Phi_{x_{i}}\right], \hat{f}_{2} \in$ $L^{p}(Q), \varphi_{0} \in W_{\infty}^{2-\frac{2}{q}}(\Omega)$ and $\varphi_{0}=\xi_{0}$ on Γ.

The equation (24) was introduced by Allen-Cahn (see [17] and reference therein) to describe the motion of anti-phase boundaries in crystalline solids. Recently, the Allen-Cahn equation has been widely applied to many complex moving interface
problems, like: the mixture of two incompressible fluids, the nucleation of solids, vesicle membranes, etc (see Calatroni and Colli [5], Vaz and Boldrini [29] and references therein). For additional details relative to a extensive class of problems of type (24) (transport phenomena, reaction-diffusion equation, for instance), as well as different types for the nonlinear term $F(\Phi)$ and boundary conditions, we direct the reader to the books by Miranville and Moroşanu [17], Moroşanu [19].

Definition 3.1. Any solution (Φ, ξ) of the nonlinear second-order boundary value problem (24) is called the classical solution if it is continuous in Q, have continuous derivatives $\Phi_{t}, \Phi_{x}, \Phi_{x x}$ in Q and $\xi_{t}, \xi_{x}, \xi_{x x}$ on Σ, satisfy the equation $(24)_{1}$ at all points $(t, x) \in Q$ as well as the conditions $(24)_{2-3}$ and $(24)_{4-5}$ for $(t, x) \in \Sigma$ and for $t=0$, respectively.

The main result of this section establishes the solvability of the problem (24), characterized by

- the presence of some new physical parameters $\left(p_{1}, c_{0}, \Psi\left(t, x, \Phi, \Phi_{x}\right)\right)$;
- the principal part in divergence form;
- considering the cubic nonlinearity $\Phi-\Phi^{3}$ (a classical regular potential), satisfying the condition H_{0} in [24]:

$$
H_{0}: \quad\left[\Phi(t, x)-\Phi^{3}(t, x)\right]|\Phi(t, x)|^{3 p-4} \Phi(t, x) \leq 1+|\Phi(t, x)|^{3 p-1}-|\Phi(t, x)|^{3 p}
$$

- the nonlinear in-homogeneous dynamic boundary conditions.

Precisely, in Theorem 3.2 below we prove the existence, a priori estimates and regularity for the solution of problem (24) in the class $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$ (see (23) for $m=1$).

Theorem 3.2. For any classic solution $(\Phi(t, x), \xi(t, x)) \in C^{1,2}(Q) \times C^{1,2}(\Sigma)$ of (24), suppose there are $N, N_{0}, N_{1}, N_{2} \in(0, \infty)$ such that the hypotheses $\mathbf{J}_{1}-\mathbf{J}_{3}$ are satisfied.

Then, $\forall \hat{f}_{2} \in L^{p}(Q), \varphi_{0}(x) \in W_{\infty}^{2-\frac{2}{q}}(\Omega), \xi_{0}(x) \in W_{\infty}^{2-\frac{2}{p}}(\Gamma), w_{2} \in W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)$, $q \neq \frac{3}{2}$, there exists a solution $\Phi \in W_{p}^{1,2}(Q), \xi \in W_{p}^{1,2}(\Sigma)$ to (24) and satisfies

$$
\begin{align*}
\|\Phi\|_{W_{p}^{1,2}(Q)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \leq & C\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \tag{25}\\
& \left.+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{align*}
$$

where the constant $C>0$ depends on physical parameters but is independent of φ, ξ, \hat{f}_{2} and w_{2}.

In the particular case of the linear reaction term, the results like those established by Theorem 3.2 has been proved in Choban and Moroşanu [9].

Proof. In order to prove the Theorem 3.2, we use the Leray-Schauder principle (see [17, p. 221] and references therein). In this respect, let p^{\prime} chosen as follows

$$
\mu_{1} \geq p^{\prime}= \begin{cases}\text { any positive number } \geq p r^{\prime} & \text { if } \frac{1}{p}-\frac{2}{n+2} \leq 0 \tag{26}\\ \text { any number in }\left[p r^{\prime}, \frac{p(n+2)}{n+2-2 p}\right] & \text { if } \frac{1}{p}-\frac{2}{n+2}>0\end{cases}
$$

Notice that (26) makes sense due to (5).
Consider the Banach space

$$
B^{H}=W_{p}^{0,1}(Q) \cap L^{3 p}(Q) \times L^{p^{\prime}}(\Sigma)
$$

endowed with the norm $\|\cdot\|_{B^{H}}$, expresed by

$$
\|(v, \bar{v})\|_{B^{H}}=\|v\|_{L^{p}(Q)}+\left\|v_{x}\right\|_{L^{p}(Q)}+\|\bar{v}\|_{L^{p^{\prime}}(\Sigma)}
$$

and a nonlinear operator $H: B^{H} \times[0,1] \rightarrow B^{H}$ defined by

$$
\begin{equation*}
(\Phi, \xi)=(\Phi(v, \bar{v}, \lambda), \xi(v, \bar{v}, \lambda))=H(v, \bar{v}, \lambda) \quad \forall(v, \bar{v}) \in B^{H}, \forall \lambda \in[0,1] \tag{27}
\end{equation*}
$$

where $(\Phi(v, \bar{v}, \lambda), \xi(v, \bar{v}, \lambda))$ is the unique solution to the following linear secondorder boundary value problem

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} \Phi(t, x)-\left[\lambda \frac{\partial}{\partial v_{x_{j}}}\left(\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right)-(1-\lambda) \delta_{i}^{j}\right] \Phi_{x_{i} x_{j}} & \tag{28}\\
& =\lambda\left[A_{2}\left(t, x, v, v_{x_{i}}\right)+p_{1}\left[v(t, x)-v^{3}(t, x)\right]+\hat{f}_{2}(t, x)\right] \\
\Phi(t, x)=\xi(t, x) & \text { in } Q \\
\Phi(0, x)=\lambda \varphi_{0}(x) & \text { on } \Sigma \\
\frac{\partial}{\partial \mathbf{n}} \Phi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi=\lambda\left[-g_{2}(\bar{v})+w_{2}(t, x)\right] & \text { on } \Omega \\
\xi(0, x)=\lambda \xi_{0}(x) & \\
& x \in \Gamma
\end{align*}\right.
$$

For beginning, we shall prove the following technical lemma
Lemma 3.3. We assume hypotheses \mathbf{J}_{1} and \mathbf{J}_{2} to be valid, $\forall v \in W_{p}^{1,2}(Q) \subset$ $W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$. Then

$$
\begin{equation*}
A_{2}\left(t, x, v, v_{x_{i}}\right)+p_{1}\left[v-v^{3}\right]+\hat{f}_{2}(t, x) \in L^{p}(Q) \tag{29}
\end{equation*}
$$

Proof. Indeed, since $v \in W_{p}^{1,2}(Q) \subset L^{\mu_{1}}(Q) \subset L^{3 p}(Q)$ (see (22)), then $\|v\|_{L^{3 p}(Q)} \leq$

$$
\begin{aligned}
& \text { Konst and thus } \\
& \left\|v^{3}\right\|_{L^{p}(Q)}=\left(\int_{Q}\left|v^{3}\right|^{p} d x d t\right)^{\frac{1}{p}}=\left[\left(\int_{Q}|v|^{3 p} d x d t\right)^{\frac{1}{3 p}}\right]^{3 p \frac{1}{p}}=\|v\|_{L^{3 p}(Q)}^{3} \leq(\text { Konst })^{3}
\end{aligned}
$$

i.e., the nonlinear term in (29) belongs to $L^{p}(Q), \forall v \in W_{p}^{1,2}(Q) \subset W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$ (see also Miranville and Moroşanu [18]).

Next, we prove that $\left.A_{2}\left(t, x, v, v_{x_{i}}\right)\right) \in L^{p}(Q), \forall v \in W_{p}^{1,2}(Q) \subset W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$. Making use of (9), we get $\left(v_{x_{i}}=\frac{\partial}{\partial x_{i}} v(t, x)\right)$

$$
\begin{aligned}
& A_{2}\left(t, x, v, v_{x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left[\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right]+\frac{\partial}{\partial v}\left[\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right] v_{x_{i}} \\
& =\frac{\partial}{\partial x_{i}}\left[\Psi\left(t, x, v, v_{x}\right)\right] v_{x_{i}}+\Psi\left(t, x, v, v_{x}\right) \frac{\partial}{\partial x_{i}}\left(\frac{\partial}{\partial x_{i}} v(t, x)\right)+\frac{\partial}{\partial v}\left[\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right] v_{x_{i}} \\
& =\left\{\frac{\partial}{\partial x_{i}} \Psi\left(t, x, v, v_{x}\right)+\frac{\partial}{\partial \varphi}\left[\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right]+\sum_{j=1}^{n} \frac{\partial}{\partial v_{x_{j}}} \Psi\left(t, x, v, v_{x}\right) v_{x_{j} x_{i}}^{2}\right\} v_{x_{i}} \\
& +\Psi\left(t, x, v, v_{x}\right) v_{x_{i} x_{i}}^{2}+\frac{\partial}{\partial v}\left[\Psi\left(t, x, v, v_{x}\right)\right]\left(v_{x_{i}}\right)^{2} .
\end{aligned}
$$

Denote

$$
\begin{aligned}
& T_{1}=\frac{\partial}{\partial x_{i}}\left[\Psi\left(t, x, v, v_{x}\right)\right] v_{x_{i}} \\
& T_{2}=\frac{\partial}{\partial v}\left[\Psi\left(t, x, v, v_{x}\right)\right]\left(v_{x_{i}}\right)^{2} \\
& T_{3}=\Psi\left(t, x, v, v_{x}\right) v_{x_{i} x_{i}}^{2} \\
& G_{j}=v_{x_{i}} \frac{\partial}{\partial v_{x_{j}}} \Psi\left(t, x, v, v_{x}\right) v_{x_{j} x_{i}}^{2}, j=1,2, \cdots, n
\end{aligned}
$$

According to the hypothesis, we have:
i. $\frac{\partial}{\partial x_{i}} \Psi\left(t, x, v, v_{x}\right)$ is measurable bounded and $v_{x_{i}} \in L^{p}(Q)$;
ii. $\frac{\partial}{\partial v} \Psi\left(t, x, v, v_{x}\right)$ is measurable bounded and $\left(v_{x_{i}}\right)^{2} \in L^{p}(Q)$;
iii. $\Psi\left(t, x, v, v_{x}\right)$ is measurable bounded (see (17) $)_{1}$) and $v_{x_{i} x_{i}}^{2}$ is continuous;
iv. $\frac{\partial}{\partial v_{x_{j}}} \Psi\left(t, x, v, v_{x}\right)$ is measurable bounded, $v_{x_{i}}$ and $v_{x_{j} x_{i}}^{2}$ are continuous.

Using classical measure theory, from i.-iv. it results that $T_{1}, T_{2}, T_{3}, G_{j}, j=$ $1,2, \cdots, n$ are in $L^{p}(Q)$ and thus $A_{2}\left(t, x, v, v_{x_{i}}\right) \in L^{p}(Q)$.

Finally, we recall that $\hat{f}_{2}(t, x) \in L^{p}(Q)$ and, owing to the above, we easy derive that the statement expressed by (29) is true.
3.1. The proof of Theorem 3.2 (continued). Let us show that the nonlinear operator H defined by (27) satisfies the following two properties P1 and P2, that is:
P1. H is well-defined.
P2. H is continuous and compact.
P1. H is well-defined if the problem (28) has a unique solution. Making use of Lemma 3.3, from the right-hand side of (28) it follows that $\forall v \in W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$, then $A_{2}\left(t, x, v, v_{x}\right)+p_{1}\left[v-v^{3}\right]+\hat{f}_{2}(t, x) \in L^{p}(Q)$. On the other hand, according to (6), we have that $g_{2}(t, x, \bar{v}) \in L^{\frac{p^{\prime}}{r^{\prime}}}(\Sigma)$ whenever $\bar{v} \in L^{p^{\prime}}(\Sigma)$. Moreover, (5) implies $g_{2}(t, x, \bar{v}) \in L^{p}(\Sigma)$. Applying Lemma 7.4 in Choban and Moroşanu [9, p. 114] with

$$
\begin{aligned}
& f_{3}=\lambda\left[A_{2}\left(t, x, v, v_{x_{i}}\right)-p_{1}\left[v(t, x)-v^{3}(t, x)\right]+\hat{f}_{2}(t, x)\right] \in L^{p}(Q) \text { and } \\
& g_{3}=\lambda\left[-g_{2}(\bar{v})+w_{2}(t, x)\right] \in L^{p}(\Sigma)
\end{aligned}
$$

the solution (Φ, ξ) to problem (28) exists and is unique. Furthermore, $\forall(v, \bar{v}) \in B^{H}$, $\forall \lambda \in[0,1]$,

$$
\begin{equation*}
(\Phi, \xi)=(\Phi(v, \bar{v}, \lambda), \xi(v, \bar{v}, \lambda)) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \tag{30}
\end{equation*}
$$

Since $\mu_{1}=\frac{p(n+2)}{n+2-2 p} \geq p$ if $\frac{1}{p}-\frac{2}{n+2}>0$ (see (22)), we can take $\mu_{1}>p$ in all cases required by (22) and (26). Consequently, we have the continuous embeddings (see [17, p. 14])

$$
\left\{\begin{array}{l}
W_{p}^{1,2}(Q) \subset W_{p}^{0,1}(Q) \cap L^{3 p}(Q) \subset L^{p}(Q) \tag{31}\\
W_{p}^{1,2}(\Sigma) \subset L^{p^{\prime}}(\Sigma) \subset L^{p}(\Sigma)
\end{array}\right.
$$

which means that $H(v, \bar{v}, \lambda)=(\Phi, \xi) \in B^{H}$ for all $(v, \bar{v}) \in B^{H}$ and $\forall \lambda \in[0,1]$.

P2. Let us now show that H is continuous and compact. In this respect, we consider $v^{n} \rightarrow v$ in $W_{p}^{0,1}(Q) \cap L^{3 p}(Q), \bar{v}^{n} \rightarrow \bar{v}$ in $L^{p^{\prime}}(\Sigma)$ and $\lambda^{n} \rightarrow \lambda$ in [0, 1]. Using the notation

$$
\left(\Phi^{n, \lambda_{n}}, \xi^{n, \lambda_{n}}\right)=H\left(v^{n}, \bar{v}^{n}, \lambda^{n}\right),\left(\Phi^{n, \lambda}, \xi^{n, \lambda}\right)=H\left(v^{n}, \bar{v}^{n}, \lambda\right),\left(\Phi^{\lambda}, \xi^{\lambda}\right)=H(v, \bar{v}, \lambda)
$$

and considering the difference $H\left(v^{n}, \bar{v}^{n}, \lambda^{n}\right)-H\left(v^{n}, \bar{v}^{n}, \lambda\right)$, we obtain from (27) and (28)

$$
\begin{cases}\frac{\partial}{\partial t}\left(\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right) & \tag{32}\\ -\left[\lambda \frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)+(1-\lambda) \delta_{i}^{j}\right]\left(\Phi_{x_{i} x_{j}}^{n, \lambda_{n}}-\Phi_{x_{i} x_{j}}^{n, \lambda}\right) & \\ =\left(\lambda_{n}-\lambda\right)\left\{\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\delta_{i}^{j}\right] \Phi_{x_{i} x_{j}}^{n, \lambda_{n}}\right. & \\ \left.\quad+A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)+p_{1}\left[v^{n}-\left(v^{n}\right)^{3}\right]+\hat{f}_{2}(t, x)\right\} & \text { in } Q \\ \left(\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right)(t, x)=\left(\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right)(t, x) & \text { on } \Sigma \\ \left(\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right)(0, x)=\left(\lambda_{n}-\lambda\right) \varphi_{0}(x) & \text { in } \Omega \\ \frac{\partial}{\partial \mathbf{n}}\left(\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right)+\frac{\partial}{\partial t}\left(\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right)-\Delta_{\Gamma}\left(\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right) & \\ \quad+c_{0}\left(\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right)=\left(\lambda_{n}-\lambda\right)\left[-g_{2}\left(\bar{v}^{n}\right)+w_{2}(t, x)\right] & \text { on } \Sigma \\ \left(\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right)(0, x)=\left(\lambda_{n}-\lambda\right) \xi_{0}(x) & \text { in } \Gamma .\end{cases}
$$

Knowing that $\Phi^{n, \lambda_{n}} \in W_{p}^{1,2}(Q)$ and combining Lemma 3.3 with relation (12) ${ }_{2}$, we may conclude that the right-hand side in $(32)_{1}$ belongs to $L^{p}(Q)$. The embeddings $W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset W_{p}^{2-\frac{2}{p}}(\Omega)$ and $W_{\infty}^{2-\frac{2}{p}}(\Sigma) \subset W_{p}^{2-\frac{2}{p}}(\Sigma)$ allow us to apply Lemma 7.4 in Choban and Moroşanu [9, p. 114] with:

$$
\begin{aligned}
& f_{3}=\left(\lambda_{n}-\lambda\right)\left\{\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\delta_{i}^{j}\right] \Phi_{x_{i} x_{j}}^{n, \lambda_{n}}\right. \\
&\left.+\left[A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)+p_{1}\left[v^{n}-\left(v^{n}\right)^{3}\right]+\hat{f}_{2}(t, x)\right]\right\} \in L^{p}(Q), \\
& g_{3}=\left(\lambda_{n}-\lambda\right)\left[-g_{2}\left(\bar{v}^{n}\right)+w_{2}(t, x)\right] \in L^{p}(\Sigma)
\end{aligned}
$$

and so we get

$$
\begin{aligned}
&\left\|\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C\left|\lambda_{n}-\lambda\right|\left\{\left\|\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\delta_{i}^{j}\right] \Phi_{x_{i} x_{j}}^{n, \lambda_{n}}\right\|_{L^{p}(Q)}\right. \\
&+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)} \\
&+\left\|A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)\right\|_{L^{p}(Q)}+p_{1}\left\|v^{n}-\left(v^{n}\right)^{3}\right\|_{L^{p}(\Omega)} \\
&\left.+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\left\|g_{2}\left(\bar{v}^{n}\right)\right\|_{L^{p}(\Sigma)}+\left\|w_{2}\right\|_{L^{p}(\Sigma)}\right\}
\end{aligned}
$$

for a positive constant C.
Owing to Lemma 3.3, we can conclude that $\left(v^{n}\right)^{3}$ is bounded in $L^{p}(Q), \forall v^{n} \in$ $W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$. Moreover, making use of inequality $(17)_{2}$ and knowing that $\Phi_{x_{i} x_{j}}^{n, \lambda_{n}} \in L^{p}(Q)$, we derive the boundedness in $L^{p}(Q)$ of

$$
A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right) \text { and }\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\delta_{i}^{j}\right] \Phi_{x_{i} x_{j}}^{n, \lambda_{n}} .
$$

Since $W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset L^{p}(\Omega)$, it results that the remaining terms on the right-hand side from the above inequality are also bounded in $L^{p}(Q)$. Also, the sequence \bar{v}^{n} is bounded in $L^{p^{\prime}}(\Sigma)$, so that by (5) and (6) we derive the boundedness of $g_{2}\left(t, x, \bar{v}^{n}\right)$ in $L^{p}(\Sigma)$. Therefore, since $\lambda_{n} \rightarrow \lambda$, we obtain from the previous inequality

$$
\begin{equation*}
\left\|\Phi^{n, \lambda_{n}}-\Phi^{n, \lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\xi^{n, \lambda_{n}}-\xi^{n, \lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \rightarrow 0 \quad \text { for } n \rightarrow \infty \tag{33}
\end{equation*}
$$

In order to evaluate the difference $H\left(v^{n}, \bar{v}^{n}, \lambda\right)-H(v, \bar{v}, \lambda)$, we will use again (27) and (28), so that

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(\Phi^{n, \lambda}-\Phi^{\lambda}\right) \tag{34}\\
-\left[\lambda \frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)+(1-\lambda) \delta_{i}^{j}\right]\left(\Phi_{x_{i} x_{j}}^{n, \lambda}-\Phi_{x_{i} x_{j}}^{\lambda}\right) \\
=\lambda\left\{\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\frac{\partial}{\partial v_{x_{j}}}\left(\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right)\right] \Phi_{x_{i} x_{j}}^{\lambda}\right. \\
\left.+\left[A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)-A_{2}\left(t, x, v, v_{x_{i}}\right)\right]+p_{1}\left[\left(v^{n}-v\right)-\left(\left(v^{n}\right)^{3}-v^{3}\right)\right]\right\} \quad \text { in } Q
\end{array}\right.
$$

subject to the dynamic boundary conditions

$$
\left\{\begin{array}{l}
\left(\Phi^{n, \lambda}-\Phi^{\lambda}\right)(t, x)=\left(\xi^{n, \lambda}-\xi^{\lambda}\right)(t, x) \\
\frac{\partial}{\partial \mathbf{n}}\left(\Phi^{n, \lambda}-\Phi^{\lambda}\right)+\frac{\partial}{\partial t}\left(\xi^{n, \lambda}-\xi^{\lambda}\right)-\Delta_{\Gamma}\left(\xi^{n, \lambda}-\xi^{\lambda}\right) \\
\quad+c_{0}\left(\xi^{n, \lambda}-\xi^{\lambda}\right)=\lambda\left[-g_{2}\left(\bar{v}^{n}\right)+g_{2}(\bar{v})\right] \quad \text { on } \Sigma
\end{array}\right.
$$

and the initial conditions

$$
\begin{cases}\left(\Phi^{n, \lambda}-\Phi^{\lambda}\right)(0, x)=0 & \text { in } \Omega \\ \left(\xi^{n, \lambda}-\xi^{\lambda}\right)(0, x)=0 & \text { in } \Gamma\end{cases}
$$

Appling Lemma 7.4 in Choban and Moroşanu [9, p. 114] to the linear in-homogeneous problem (34) with

$$
\begin{aligned}
f_{3}= & \lambda\left\{\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\frac{\partial}{\partial v_{x_{j}}}\left(\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right)\right] \Phi_{x_{i} x_{j}}^{\lambda}\right. \\
& \left.+A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)-A_{2}\left(t, x, v, v_{x_{i}}\right)+p_{1}\left[\left(v^{n}-v\right)-\left(\left(v^{n}\right)^{3}-v^{3}\right)\right]\right\} \in L^{p}(Q), \\
g_{3}= & \lambda\left[-g_{2}\left(\bar{v}^{n}\right)+g_{2}(\bar{v})\right] \in L^{p}(\Sigma)
\end{aligned}
$$

and $\varphi_{0}=\xi_{0}=0, \lambda \in[0,1]$, we obtain

$$
\begin{aligned}
\| \Phi^{n, \lambda}- & \Phi^{\lambda}\left\|_{W_{p}^{1,2}(Q)}+\right\| \xi^{n, \lambda}-\xi^{\lambda} \|_{W_{p}^{1,2}(\Sigma)} \\
\leq C & \left\{\left\|\left[\frac{\partial}{\partial v_{x_{j}}^{n}}\left(\Psi\left(t, x, v^{n}, v_{x}^{n}\right) v_{x_{i}}^{n}\right)-\frac{\partial}{\partial v_{x_{j}}}\left(\Psi\left(t, x, v, v_{x}\right) v_{x_{i}}\right)\right] \Phi_{x_{i} x_{j}}^{\lambda}\right\|_{L^{p}(Q)}\right. \\
& +\left\|A_{2}\left(t, x, v^{n}, v_{x_{i}}^{n}\right)-A_{2}\left(t, x, v, v_{x_{i}}\right)\right\|_{L^{p}(Q)} \\
& \left.+p_{1}\left\|\left(v^{n}-v\right)-\left(\left(v^{n}\right)^{3}-v^{3}\right)\right\|_{L^{p}(\Omega)}+\left\|g_{2}\left(\bar{v}^{n}\right)-g_{2}(\bar{v})\right\|_{L^{p}(\Sigma)}\right\},
\end{aligned}
$$

for a positive constant C. Then, the convergences: $v^{n} \rightarrow v$ in $W_{p}^{0,1}(Q) \cap L^{3 p}(Q)$, $\bar{v}^{n} \rightarrow \bar{v}$ in $L^{p^{\prime}}(\Sigma)$, the continuity of the Nemytskij operator (see Moroşanu and Motreanu [24] and references therein) and the boundedness of the terms in righthand side of above inequality helps us to conclude that

$$
\begin{equation*}
\left\|\Phi^{n, \lambda}-\Phi^{\lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\xi^{n, \lambda}-\xi^{\lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \rightarrow 0 \quad \text { for } n \rightarrow \infty \tag{35}
\end{equation*}
$$

Making use of the relations (33) and (35), we derive the continuity of the nonlinear operator H defined by (27). Moreover, the mapping H is compact, what can easily be seen by writting it as the composition

$$
B^{H} \times[0,1] \rightarrow W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \hookrightarrow B^{H}=W_{p}^{0,1}(Q) \cap L^{3 p}(Q) \times L^{p^{\prime}}(\Sigma)
$$

where the second map is an compact inclusion due to Lions-Peeter embedding theorem (see Miranville and Moroşanu [17, p. 14] and references therein).
3.2. The regularity of the solution $(\Phi(t, x), \xi(t, x))$. Now we establish the existence of a number $\delta>0$ such that (see (27))

$$
\begin{equation*}
(\Phi, \xi, \lambda) \in B^{H} \times[0,1] \quad \text { with } \quad(\Phi, \xi)=H(\Phi, \xi, \lambda) \quad \Longrightarrow \quad\|(\Phi, \xi)\|_{B^{H}}<\delta \tag{36}
\end{equation*}
$$

The equality $(\Phi, \xi)=H(\Phi, \xi, \lambda)$ in (36) is equivalent to (see (24) and (28))

$$
\begin{cases}\frac{\partial}{\partial t} \Phi-\lambda \operatorname{div}\left(\Psi\left(t, x, \Phi, \Phi_{x}\right) \nabla \Phi\right)-(1-\lambda) \Delta \Phi & \tag{37}\\ =\lambda\left[p_{1}\left[\Phi(t, x)-\Phi^{3}(t, x)\right]+\hat{f}_{2}(t, x)\right] & \text { in } Q \\ \Phi(t, x)=\xi(t, x) & \text { on } \Sigma \\ \Phi(0, x)=\lambda \varphi_{0}(x) & \text { on } \Omega \\ \frac{\partial}{\partial \mathbf{n}} \Phi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi=\lambda\left[-g_{2}(\xi)+w_{2}(t, x)\right] & \text { on } \Sigma \\ \xi(0, x)=\lambda \xi_{0}(x) & x \in \Gamma\end{cases}
$$

Multiplying (37) by $|\Phi(\tau, x)|^{3 p-4} \Phi(\tau, x)$, integrating over $Q_{t}:=(0, t) \times \Omega, t \in$ $(0, T]$, we get

$$
\begin{align*}
& \int_{Q_{t}} \frac{\partial}{\partial t}|\Phi(\tau, x)|^{3 p-2} d \tau d x-\lambda \int_{Q_{t}} \operatorname{div}\left(\Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \Phi\right)|\Phi|^{3 p-4} \Phi d \tau d x \\
& -(1-\lambda) \int_{Q_{t}} \Delta \Phi|\Phi|^{3 p-4} \Phi d \tau d x \\
& =\lambda p_{1} \int_{Q_{t}}\left[\Phi(\tau, x)-\Phi^{3}(\tau, x)\right]|\Phi(\tau, x)|^{3 p-4} \Phi(\tau, x) d \tau d x \tag{38}\\
& \quad+\lambda \int_{Q_{t}} \hat{f}_{2}(\tau, x)|\Phi(\tau, x)|^{3 p-4} \Phi(\tau, x) d \tau d x
\end{align*}
$$

In order to process the terms

$$
\int_{Q_{t}} \operatorname{div}\left(\Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \Phi\right)|\Phi|^{3 p-4} \Phi d \tau d x \text { and } \int_{Q_{t}} \Delta \Phi|\Phi|^{3 p-4} \Phi d \tau d x
$$

we use Green's first identity and so we obtain

$$
\begin{align*}
& -\lambda \int_{Q_{t}} \operatorname{div}\left(\Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \Phi\right)|\Phi|^{3 p-4} \Phi d \tau d x \\
& =\lambda \int_{Q_{t}} \Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \Phi \cdot \nabla\left(|\Phi|^{3 p-4} \Phi\right) d \tau d x+\lambda \int_{\Sigma_{t}}|\Phi|^{3 p-4} \Phi\left(-\frac{\partial}{\partial \mathbf{n}} \Phi\right) d \tau d \gamma \tag{39}\\
& -(1-\lambda) \int_{Q_{t}} \Delta \Phi|\Phi|^{3 p-4} \Phi d \tau d x \\
& =(1-\lambda)(p-1) \int_{Q_{t}}|\nabla \Phi|^{2}|\Phi|^{3 p-4} d \tau d x+(1-\lambda) \int_{\Sigma_{t}}|\Phi|^{3 p-4} \Phi\left(-\frac{\partial}{\partial \mathbf{n}} \Phi\right) d \tau d \gamma \tag{40}
\end{align*}
$$

where $\Sigma_{t}=(0, t) \times \partial \Omega, t \in(0, T]$ and

$$
-\frac{\partial}{\partial \mathbf{n}} \Phi=\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+\lambda g_{2}(\xi)-\lambda w_{2}(t, x)
$$

(see $\left.(37)_{4}\right)$.
Combining the above equality with the boundary condition $(37)_{2}$ and, making use of the hypothesis $\mathbf{I}_{2}, \mathbf{g}_{3}$, as well as the relations (39), (40), then (38) leads us to the following inequality

$$
\begin{align*}
& \frac{1}{3 p-2} \int_{\Omega}|\Phi(t, x)|^{3 p-2} d x \\
& +\lambda \frac{1}{3 p-2} \int_{\Gamma}|\xi(t, x)|^{3 p-2} d \gamma+(1-\lambda) \frac{1}{3 p-2} \int_{\Gamma}|\xi(t, x)|^{3 p-2} d \gamma \\
& +\lambda \int_{Q_{t}} \Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \varphi \cdot \nabla\left(|\Phi|^{3 p-4} \Phi\right) d \tau d x \\
& +(1-\lambda) 3(p-1) \int_{Q_{t}}|\nabla \Phi|^{2}|\Phi|^{3 p-4} d \tau d x \\
& +\lambda c_{0} \int_{\Sigma_{t}}|\xi|^{3 p-2} d \tau d \gamma+(1-\lambda) c_{0} \int_{\Sigma_{t}}|\xi|^{3 p-2} d \tau d \gamma \\
& +\lambda \int_{\Sigma_{t}} \nabla_{\Gamma}\left(|\xi|^{3 p-3}\right) \cdot \nabla_{\Gamma} \xi d \tau d \gamma \tag{41}\\
& +(1-\lambda) \int_{\Sigma_{t}} \nabla_{\Gamma}\left(|\xi|^{3 p-3}\right) \cdot \nabla_{\Gamma} \xi d \tau d \gamma+\lambda b_{5} \int_{\Sigma_{t}}|\xi|^{3 p-2} d \tau d \gamma \\
& \leq \lambda \frac{1}{3 p-2} \int_{\Omega}\left|\varphi_{0}(x)\right|^{3 p-2} d x+\lambda \frac{1}{3 p-2} \int_{\Gamma}\left|\xi_{0}(x)\right|^{3 p-2} d \gamma \\
& +(1-\lambda) \frac{1}{3 p-2} \int_{\Gamma}\left|\xi_{0}(x)\right|^{3 p-2} d \gamma+\lambda p_{1} \int_{Q_{t}}\left[\Phi-\Phi^{3}\right]|\Phi|^{3 p-4} \Phi d \tau d x \\
& +\lambda \int_{Q_{t}} \hat{f}_{2}|\Phi|^{3 p-4} \Phi d \tau d x+\lambda \int_{\Sigma_{t}} w_{2}|\Phi|^{3 p-4} \Phi d \tau d \gamma
\end{align*}
$$

for all $t \in(0, T]$. The Hölder and Cauchy inequalities, applied to the last terms in (41), give us
$\left.\mathbf{i}_{1}\right) \quad \int_{Q_{t}} \hat{f}_{2}|\Phi|^{3 p-4} \Phi d \tau d x \leq \frac{p-1}{p} \varepsilon^{\frac{p}{p-1}} \int_{Q_{t}}|\Phi|^{3 p} d \tau d x+\lambda \frac{1}{p} \varepsilon^{-p}\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}^{p}$,
í2) $\lambda \int_{\Sigma_{t}} w_{2}|\Phi|^{3 p-4} \Phi d \tau d \gamma \leq \frac{p-1}{p} \varepsilon^{\frac{p}{p-1}} \int_{\Sigma_{t}}|\Phi|^{3 p} d \tau d \gamma+\lambda \frac{1}{p} \varepsilon^{-p} \int_{\Sigma_{t}}\left|w_{2}\right|^{p} d \tau d \gamma$.

By H_{0} in [24, p. 189], relation (4) and Young's inequality, we obtain

$$
\begin{aligned}
& \lambda p_{1} \int_{Q_{t}}\left[\Phi(\tau, x)-\Phi^{3}(\tau, x)\right]|\Phi(\tau, x)|^{3 p-4} \Phi(\tau, x) d \tau d x \\
& \quad \leq \lambda p_{1}|\Omega| T+\lambda p_{1}|\Omega| T \frac{1}{3 p} \varepsilon^{-3 p} \\
& \quad+\frac{3 p-1}{3 p} \varepsilon^{\frac{3 p}{3 p-1}} \int_{Q_{t}}|\Phi(\tau, x)|^{3 p} d \tau d x-\lambda p_{1} \int_{Q_{t}}|\Phi(\tau, x)|^{3 p} d \tau d x .
\end{aligned}
$$

Owing to the last three inequalities, from (41) we derive the following estimate

$$
\begin{align*}
& \frac{1}{3 p-2}\left[\int_{\Omega}|\Phi(t, x)|^{3 p-2} d x+\int_{\Gamma}|\xi(t, x)|^{3 p-2} d \gamma\right] \\
& +\lambda \int_{Q_{t}} \Psi\left(\tau, x, \Phi, \Phi_{x}\right) \nabla \varphi \cdot \nabla\left(|\Phi|^{3 p-4} \Phi\right) d \tau d x \\
& +3(1-\lambda)(p-1) \int_{Q_{t}}|\nabla \Phi|^{2}|\Phi|^{3 p-4} d \tau d x \\
& \quad+\lambda p_{1} \int_{Q_{t}}|\Phi(\tau, x)|^{3 p} d \tau d x \tag{42}\\
& \quad+\left[c_{0}+\lambda b_{5}\right] \int_{\Sigma_{t}}|\xi|^{3 p-2} d \tau d \gamma+\int_{\Sigma_{t}} \nabla_{\Gamma}\left(|\xi|^{3 p-3}\right) \cdot \nabla_{\Gamma} \xi d \tau d \gamma \\
& \leq \frac{1}{3 p-2}\left[\int_{\Omega}\left|\Phi_{0}(x)\right|^{3 p-2} d x+\int_{\Gamma}\left|\xi_{0}(x)\right|^{3 p-2} d \gamma\right] \\
& \quad+\left[\frac{3 p-1}{3 p} \varepsilon^{\frac{3 p}{3 p-1}}+2 \frac{p-1}{p} \varepsilon^{\frac{p}{p-1}}\right] \int_{Q_{t}}|\Phi(\tau, x)|^{3 p} d \tau d x \\
& \quad+\lambda p_{1}|\Omega| T\left[1+\frac{1}{3 p} \varepsilon^{-3 p}\right]+\frac{1}{p} \varepsilon^{-p}\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}^{p}+\frac{1}{p} \varepsilon^{-p}\left\|w_{2}\right\|_{L^{3 p-2}\left(\Sigma_{t}\right)}^{3 p-2}
\end{align*}
$$

for all $t \in(0, T]$.
Taking ε small enough, inequality (42) yields

$$
\begin{align*}
& \lambda\left\||\Phi|^{3}\right\|_{L^{p}(Q)}^{p} \\
& \quad \leq C_{1}\left(1+\left\|\varphi_{0}\right\|_{L^{3 p-2}(\Omega)}^{3 p-2}+\left\|\xi_{0}\right\|_{L^{3 p-2}(\Gamma)}^{3 p-2}+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}^{p}+\left\|w_{2}\right\|_{L^{3 p-2}\left(\Sigma_{t}\right)}^{3 p-2}\right) \tag{43}
\end{align*}
$$

for a positive constant $C_{1}=C\left(|\Omega|, T, n, p, p_{1}\right)$.

Further on, due to (43) and making use of the embedding $L^{3 p-2}(\Sigma) \subset L^{p}(\Sigma)$ (see (4)), we deduce from (42) that

$$
\begin{align*}
& \|\xi\|_{L^{p}(\Sigma)}^{p} \leq C_{2}\|\xi\|_{L^{3 p-2}(\Sigma)}^{3 p-2} \\
& \quad \leq C_{2}\left(1+\left\|\varphi_{0}\right\|_{L^{3 p-2}(\Omega)}^{3 p-2}+\left\|\xi_{0}\right\|_{L^{3 p-2}(\Gamma)}^{3 p-2}+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}^{p}+\left\|w_{2}\right\|_{L^{3 p-2}\left(\Sigma_{t}\right)}^{3 p-2}\right) \tag{44}
\end{align*}
$$

where $C_{2}=C\left(|\Omega|,|\Gamma|, T, n, p, p_{1}, c_{0}, b_{5}\right)>0$ denotes a new positive constant.
Moreover, using (43) and Lemma 1.1 in Moroşanu and Motreanu [24], we get $\left\|\Phi-\Phi^{3}\right\|_{L^{p}(Q)}$

$$
\begin{equation*}
\leq C_{1}\left(1+\left\|\varphi_{0}\right\|_{L^{3 p-2}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{L^{3 p-2}(\Gamma)}^{\frac{3 p-2}{p}}+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{L^{3 p-2}(\Sigma)}^{\frac{3 p-2}{p}}\right) \tag{45}
\end{equation*}
$$

Appling Lemma 7.4 in Choban and Moroşanu [9, p. 114] to the linear inhomogeneous problem (37) with $K\left(t, x, v_{x}\right)=1$,

$$
\begin{aligned}
& f_{3}=\lambda\left\{p_{1}\left[\Phi-\Phi^{3}\right]+\hat{f}_{2}(t, x)\right\} \in L^{p}(Q) \\
& g_{3}=\lambda\left[-g_{2}(\xi)+w_{2}(t, x)\right] \in L^{p}(\Sigma)
\end{aligned}
$$

in conjunction with the embeddings $W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset W_{p}^{2-\frac{2}{p}}(\Omega), W_{\infty}^{2-\frac{2}{p}}(\Gamma) \subset W_{p}^{2-\frac{2}{p}}(\Gamma)$, we obtain

$$
\begin{align*}
&\|\Phi\|_{W_{p}^{1,2}(Q)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C_{3}\left\{\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}+\lambda p_{1}\left\|\Phi-\Phi^{3}\right\|_{L^{p}(\Omega)}\right. \tag{46}\\
&\left.+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\lambda\left\|g_{2}(\xi)\right\|_{L^{p}(\Sigma)}+\left\|w_{2}\right\|_{L^{p}}(\Sigma)\right\},
\end{align*}
$$

for a constant $C_{3}=C\left(|\Omega|,|\Gamma|, T, n, p, p_{1}\right)>0$.
Using now (6) $(k=2)$ and (45), then (46) becomes

$$
\begin{align*}
& \|\Phi\|_{W_{p}^{1,2}(Q)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq \tag{47}\\
& \quad C_{4}\left\{1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}+\left\|\varphi_{0}\right\|_{L^{\frac{3 p-2}{p}}}^{\frac{3 p-2}{}(\Omega)}+\left\|\xi_{0}\right\|_{L^{\frac{3 p-2}{p}-2}(\Gamma)}^{\frac{3 p}{p}}\right. \\
& \left.\quad+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\|\xi\|_{L^{p^{\prime}}(\Sigma)}+\left\|w_{2}\right\|_{L^{p}(\Sigma)}\right\},
\end{align*}
$$

for a constant $C_{4}=C\left(|\Omega|,|\Gamma|, T, n, p, p_{1}, b_{6}\right)>0$.
Owing to the embeddings (see and $(31)_{2}$)

$$
W_{p}^{1,2}(\Sigma) \subset L^{p^{\prime}}(\Sigma) \subset L^{p}(\Sigma)
$$

a standard interpolation inequality (see [17, p. 14, (1.31)]) yields that $\forall \epsilon>0$, $\exists C(\epsilon)>0$ such that

$$
\|\xi\|_{L^{p^{\prime}}(\Sigma)} \leq \epsilon\|\xi\|_{W_{p}^{1,2}(\Sigma)}+C(\epsilon)\|\xi\|_{L^{p}(\Sigma)}
$$

and thus from (47), we get

$$
\begin{align*}
& \|\Phi\|_{W_{p}^{1,2}(Q)}+\left(1-\varepsilon C_{4}\right)\|\xi\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq \tag{48}\\
& \quad C_{5}\left\{1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}+\left\|\varphi_{0}\right\|_{L^{3 p-2}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{L^{3 p-2}(\Gamma)}^{\frac{3 p-2}{p}}\right. \\
& \left.\quad+\left\|\hat{f}_{2}\right\|_{L^{p}(Q)}+\|\xi\|_{L^{p}(\Sigma)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right\}
\end{align*}
$$

for a new constant $C_{5}=C(\epsilon) C_{4}>0$. We specify that, in writing (48), we have used the embedding $W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma) \subset L^{p}(\Sigma)$.

The continuous embedding in (31) ensures that

$$
\|\Phi\|_{L^{p}(Q)}+\|\xi\|_{L^{p}(\Sigma)} \leq C\left(\|\Phi\|_{W_{p}^{1,2}(Q)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)}\right)
$$

wherefrom, for $\epsilon>0$ with $1-\varepsilon C_{4}>0$, and thanks to (44) and (48), we may conclude that a constant $\delta>0$ can be found such that the property expressed in (36) is true.

Denoting $B_{\delta}^{H}:=\left\{(\Phi, \xi) \in B^{H}:\|(\Phi, \xi)\|_{B^{H}}<\delta\right\}$, relation (27) implies that

$$
(\Phi, \xi, \lambda) \neq(\Phi, \xi) \quad \forall(\Phi, \xi) \in \partial B_{\delta}^{H}, \forall \lambda \in[0,1]
$$

provided that $\delta>0$ is sufficiently large. Furthermore, following the same reasoning as in [6], we conclude that problem (15) has a solution $(\Phi, \xi) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$ (for more details, see [20, p. 195]). Estimate (25) follows from (48) combined with (44). This completes the proof of the Theorem 3.2.

Remark 3. The nonlinear operator H in (27) depends on $\lambda \in[0,1]$ and its fixed point for $\lambda=1$ are solutions of problem (28).
4. The validity of the nonlinear second-order reaction-diffusion problem (14)-(15) in the class $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma), W_{\nu}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$.

Proof. In this section we will apply the Leray-Schauder principle in order to prove the first part of the result about problems (14)-(15) established by Theorem 2.2. On this line, taking positive integers p, p^{\prime} as in (4) and (26), we consider the Banach space

$$
B^{S}=W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)
$$

endowed with the norm $\|\cdot\|_{B^{s}}$, expresed by

$$
\|(y, \bar{y})\|_{B^{S}}=\|y\|_{L^{p}(Q)}+\left\|y_{x}\right\|_{L^{p}(Q)}+\|\bar{y}\|_{L^{p^{\prime}}(\Sigma)}
$$

and a nonlinear operator $S: B^{S} \times[0,1] \rightarrow B^{S}$ defined by

$$
\begin{equation*}
(u, \alpha)=S(y, \bar{y}, \lambda)=(u(y, \bar{y}, \lambda), \alpha(y, \bar{y}, \lambda)), \quad \forall(y, \bar{y}) \in B^{S}, \forall \lambda \in[0,1] \tag{49}
\end{equation*}
$$

where (u, α) is the unique solution to the following linear boundary value problem (see (14))

$$
\begin{cases}\frac{\partial}{\partial t} u(t, x)-\left[\lambda \frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)-(1-\lambda) \delta_{i}^{j}\right] u_{x_{i} x_{j}} & \tag{50}\\ \quad=\lambda\left[A_{1}\left(t, x, y, y_{x_{i}}\right)-\frac{\ell}{2} \frac{\partial}{\partial t} \Phi(t, x)+f_{1}(t, x)\right] & \text { in } Q \\ u(t, x)=\alpha(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n}} u+\frac{\partial}{\partial t} \alpha-\Delta_{\Gamma} \alpha+h \alpha=\lambda\left[-g_{1}(\bar{y})+w_{1}(t, x)\right] & \text { on } \Sigma \\ u(0, x)=\lambda u_{0}(x) & \text { on } \Omega \\ \alpha(0, x)=\lambda \alpha_{0}(x) & x \in \Gamma\end{cases}
$$

and Φ represents the unique solution to the nonlinear parabolic boundary value problem (24) corresponding to $\hat{f}_{2}(t, x)=p_{2} y(t, x)+f_{2}(t, x)$, i.e.

$$
\begin{cases}\frac{\partial}{\partial t} \Phi(t, x)-\frac{\partial}{\partial \Phi_{x_{j}}}\left(\Psi\left(t, x, \Phi, \Phi_{x}\right) \Phi_{x_{i}}\right) \Phi_{x_{j} x_{i}} & \tag{51}\\ \quad=A_{2}\left(t, x, \Phi, \Phi_{x_{i}}\right)+p_{1}\left[\Phi-\Phi^{3}\right]+p_{2} y(t, x)+f_{2}(t, x) & \text { in } Q \\ \Phi(t, x)=\xi(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n}} \Phi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+g_{2}(\xi)=w_{2}(t, x) & \text { on } \Sigma \\ \Phi(0, x)=\varphi_{0}(x) & \text { on } \Omega \\ \xi(0, x)=\xi_{0}(x) & x \in \Gamma\end{cases}
$$

Let us recall that

$$
f_{1}(t, x) \in L^{p}(Q), f_{2}(t, x) \in L^{q}(Q) \text { and } w_{1}(t, x), w_{2}(t, x) \in W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)
$$

are given functions, while p and q satisfy the relation (4).
4.1. The properties of the homotopy S in (49). S is well-defined. Making use of (49), i.e. $y \in W_{p}^{0,1}(Q) \subset L^{p}(Q)$, and owing to the embedding $L^{q}(Q) \subset L^{p}(Q)$ (see (4)), we have that $p_{2} y+f_{2} \in L^{p}(Q)$. Applying Theorem 3.2 to the nonlinear parabolic problem (51), we deduce that there exists a unique solution $(\Phi, \xi) \in$ $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$, which entitles us to conclude that $-\frac{\ell}{2} \frac{\partial}{\partial t} \Phi+f_{1}(t, x) \in L^{p}(Q)$. Now, using the assumptions $\mathbf{I}_{1}, \mathbf{I}_{2}$ and (8) (see Lemma 3.3), from the right-hand side of (50) it follows that $\forall y \in W_{p}^{0,1}(Q)$, then

$$
\lambda\left[A_{1}\left(t, x, y, y_{x_{i}}\right)-\frac{\ell}{2} \frac{\partial}{\partial t} \Phi(t, x)+f_{1}(t, x)\right] \in L^{p}(Q)
$$

Next, according to $(6)(k=1)$ we have that $g_{1}(\bar{y}) \in L^{\frac{p^{\prime}}{r^{\prime}}}(\Sigma)$ whenever $\bar{y} \in L^{p^{\prime}}(\Sigma)$, i.e. $g_{1}(\bar{y}) \in L^{p}(\Sigma)($ see $(5))$. Hence $\lambda\left[-g_{1}(\bar{y})+w_{1}(t, x)\right] \in L^{p}(\Sigma), \forall \bar{y} \in L^{p^{\prime}}(\Sigma)$ (we have used the embedding $W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma) \subset L^{p}(\Sigma)$). Applying Theorem 2.1
in Choban and Moroşanu [9, p. 98], we can conclude that the solution (u, α) to the second-order boundary value problem (50) exists and is unique. Furthermore, $\forall(y, \bar{y}) \in W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)$ and $\forall \lambda \in[0,1]$,

$$
\begin{equation*}
(u, \alpha)=(u(y, \bar{y}, \lambda), \alpha(y, \bar{y}, \lambda))=S(y, \bar{y}, \lambda) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \tag{52}
\end{equation*}
$$

Owing to the continuous inclusions (see [17, p. 14])

$$
\begin{equation*}
W_{p}^{1,2}(Q) \subset W_{p}^{0,1}(Q) \subset L^{p}(Q) \tag{53}
\end{equation*}
$$

and making use of $(31)_{2}$, we derive that $S(y, \bar{y}, \lambda)=(u, \alpha) \in W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)$ for all $(y, \bar{y}) \in W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)$ and $\forall \lambda \in[0,1]$, which express that the mapping introduced in (49) is well defined.

The following lemmas highlight continuity and compactness properties of the nonlinear operator Φ in (49).

Lemma 4.1. The mapping S in (49) has the following properties:
i. $S(\cdot, \lambda): B^{S} \rightarrow B^{S}$ is compact for every $\lambda \in[0,1]$, i.e., it is continuous and maps bounded sets into relatively compact sets;
ii. for every $\varepsilon>0$ and every bounded set $A \subset W_{p}^{0,1}(Q), \bar{A} \subset L^{p^{\prime}}(\Sigma)$, there exists $\delta>0$ such that

$$
\left\|S\left(y, \bar{y}, \lambda_{n}\right)-S(y, \bar{y}, \lambda)\right\|_{B^{S}}<\varepsilon
$$

whenever $y \in A, \bar{y} \in \bar{A}$ and $\left|\lambda_{n}-\lambda\right|<\delta$.
Proof. i. Let us check the continuity of $S(\cdot, \lambda), \forall \lambda \in[0,1]$, at the point $(y, \bar{y}) \in B^{S}$. Let $y^{n} \rightarrow y$ in $W_{p}^{0,1}(Q), \bar{y}^{n} \rightarrow \bar{y}$ in $L^{p^{\prime}}(\Sigma)$ and we set $\left(u^{n, \lambda}, \alpha^{n, \lambda}\right)=S\left(y^{n}, \bar{y}^{n}, \lambda\right)$, $\left(u^{\lambda}, \alpha^{\lambda}\right)=S(y, \bar{y}, \lambda)$, for any $\left(y^{n}, \bar{y}^{n}\right),(y, \bar{y}) \in B^{S}$. Relation (49) and problem (50) enables us to write the difference $S\left(y^{n}, \bar{y}^{n}, \lambda\right)-S(y, \bar{y}, \lambda)$ as follows

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t}\left(u^{n, \lambda}-u^{\lambda}\right) \tag{54}\\
-\left[\lambda \frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)+(1-\lambda) \delta_{i}^{j}\right]\left(u_{x_{i} x_{j}}^{n, \lambda}-u_{x_{i} x_{j}}^{\lambda}\right) \\
= \\
\lambda\left\{\left[\frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)-\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)\right] u_{x_{i} x_{j}}^{\lambda}\right. \\
\left.\quad+A_{1}\left(t, x, y^{n}, y_{x_{i}}^{n}\right)-A_{1}\left(t, x, y, y_{x_{i}}\right)-\frac{\ell}{2} \frac{\partial}{\partial t}\left(\Phi^{n}-\Phi\right)\right\}
\end{array}\right.
$$

subject to the dynamic boundary conditions

$$
\begin{cases}\left(u^{n, \lambda}-u^{\lambda}\right)(t, x)=\left(\alpha^{n, \lambda}-\alpha^{\lambda}\right)(t, x) \\ \frac{\partial}{\partial \mathbf{n}}\left(u^{n, \lambda}-u^{\lambda}\right)+\frac{\partial}{\partial t}\left(\alpha^{n, \lambda}-\alpha^{\lambda}\right)-\Delta_{\Gamma}\left(\alpha^{n, \lambda}-\alpha^{\lambda}\right)+h\left(\alpha^{n, \lambda}-\alpha^{\lambda}\right) \\ \quad=\lambda\left[-g_{1}\left(\bar{y}^{n}\right)+g_{1}(\bar{y})\right] & \text { on } \Sigma\end{cases}
$$

and the initial conditions

$$
\begin{cases}\left(u^{n, \lambda}-u^{\lambda}\right)(0, x)=0 & \text { in } \Omega \\ \left(\alpha^{n, \lambda}-\alpha^{\lambda}\right)(0, x)=0 & \text { in } \Gamma\end{cases}
$$

The right-hand side in $(54)_{1}$ belongs to $L^{p}(Q)$, since $u_{x_{i} x_{j}}^{\lambda} \in W_{p}^{1,2}(Q) \subset L^{p}(Q)$. The embeddings $W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset W_{p}^{2-\frac{2}{p}}(\Omega)$ and $W_{\infty}^{2-\frac{2}{p}}(\Sigma) \subset W_{p}^{2-\frac{2}{p}}(\Sigma)$ allow us to apply Lemma 7.4 in Choban and Moroşanu [9, p. 114] with:

$$
\begin{aligned}
f_{3}= & \lambda\left\{\left[\frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)-\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)\right] u_{x_{i} x_{j}}^{\lambda}\right. \\
& \left.+A_{1}\left(t, x, y^{n}, y_{x_{i}}^{n}\right)-A_{1}\left(t, x, y, y_{x_{i}}\right)-\frac{\ell}{2} \frac{\partial}{\partial t}\left(\Phi^{n}-\Phi\right)\right\} \in L^{p}(Q), \\
g_{3}= & \lambda\left[-g_{1}\left(\bar{y}^{n}\right)+g_{1}(\bar{y})\right] \in L^{p}(\Sigma),
\end{aligned}
$$

and so we get

$$
\begin{align*}
& \left\|u^{n, \lambda}-u^{\lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\alpha^{n, \lambda}-\alpha^{\lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C\left\{\left\|\left[\frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)-\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)\right] u_{x_{i} x_{j}}^{\lambda}\right\|_{L^{p}(Q)}\right. \\
& \quad+\left\|A_{1}\left(t, x, y^{n}, y_{x_{i}}^{n}\right)-A_{1}\left(t, x, y, y_{x_{i}}\right)\right\|_{L^{p}(Q)}+\frac{\ell}{2}\left\|\frac{\partial}{\partial t}\left(\Phi^{n}-\Phi\right)\right\|_{L^{p}(Q)} \tag{55}\\
& \left.\quad+\left\|g_{1}\left(\bar{y}^{n}\right)-g_{1}(\bar{y})\right\|_{L^{p}(\Sigma)}\right\}
\end{align*}
$$

for a positive constant $C(|\Omega|,|\Gamma|, T, n, p)$.
Applying now Theorem 3.2 to problem (51) with ($\Phi^{n}-\Phi, \xi^{n}-\xi$) in place of (Φ, ξ) and $\varphi_{0}^{n}-\varphi_{0}=0, \xi_{0}^{n}-\xi_{0}=0, w_{2}^{n}-w_{2}=0, \hat{f}_{2}(t, x)=p_{2}\left[y^{n}(t, x)-y(t, x)\right]$, we get (see (49))

$$
\begin{equation*}
\left\|\Phi^{n}-\Phi\right\|_{W_{p}^{1,2}(Q)}+\left\|\xi^{n}-\xi\right\|_{W_{p}^{1,2}(\Sigma)} \leq C_{1}\left\|y^{n}-y\right\|_{L^{p}(Q)} \tag{56}
\end{equation*}
$$

for a constant $C_{1}=C\left(|\Omega|, T, \ell, p_{2}\right)>0$. Combining relations (55) and (56) we obtain the estimate

$$
\begin{align*}
\| u^{n, \lambda}- & u^{\lambda}\left\|_{W_{p}^{1,2}(Q)}+\right\| \alpha^{n, \lambda}-\alpha^{\lambda} \|_{W_{p}^{1,2}(\Sigma)} \\
\leq C & \left\{\left\|\left[\frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)-\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)\right] u_{x_{i} x_{j}}^{\lambda}\right\|_{L^{p}(Q)}\right. \\
& +\left\|A_{1}\left(t, x, y^{n}, y_{x_{i}}^{n}\right)-A_{1}\left(t, x, y, y_{x_{i}}\right)\right\|_{L^{p}(Q)}+C_{1}\left\|y^{n}-y\right\|_{L^{p}(Q)} \tag{57}\\
& \left.+\left\|g_{1}\left(\bar{y}^{n}\right)-g_{1}(\bar{y})\right\|_{L^{p}(\Sigma)}\right\},
\end{align*}
$$

Then, the convergence $y^{n} \rightarrow y$ in $W_{p}^{0,1}(Q)$, the continuity of $A_{1}\left(t, x, y^{n}, y_{x_{i}}^{n}\right)$ and $\frac{\partial}{\partial y_{x_{j}}^{n}}\left(K\left(t, x, y^{n}, y_{x}^{n}\right) y_{x_{i}}^{n}\right)$, as well as the continuity of the Nemytskii operator, combined with the inequality (57), permit us to conclude that

$$
\begin{equation*}
\left\|u^{n, \lambda}-u^{\lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\alpha^{n, \lambda}-\alpha^{\lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \rightarrow 0 \quad \text { for } n \rightarrow \infty \tag{58}
\end{equation*}
$$

Making use of the continuous embedding $W_{p}^{1,2}(Q) \subset W_{p}^{0,1}(Q)$ and relations (56), (58), we derive the continuity of the map $S(\cdot, \lambda)$ at $(y, \bar{y}) \in B^{S}$, for each $\lambda \in[0,1]$. Furthermore, Φ is compact. Indeed, since $\mu_{1}>p$ (see (22)), the inclusion $W_{p}^{1,2}(Q) \hookrightarrow W_{p}^{0,1}(Q)$ is compact (see [17, p. 14]). Owing that $S(\cdot, \lambda)$ is expressed as the composition (see (53))
$B^{S}=W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma) \rightarrow W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \hookrightarrow W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)=B^{S}$,
where $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \hookrightarrow W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)$ is a compact inclusion due to the Lions-Peetre embedding Theorem (see [17, p. 14]), the compactness of $S(\cdot, \lambda)$ follows.
ii. Let us fix $\varepsilon>0, A \subset W_{p}^{0,1}(Q)$ and $\bar{A} \subset L^{p^{\prime}}(\Sigma)$. Consider $\left(u^{n}, \alpha^{n}, \lambda_{n}\right)$ and (u, α, λ) solving (50), corresponding to any $y \in A$ and any $\bar{y} \in \bar{A}$. We have

Applying now Theorem 3.2 to problem (51) with $\left(\Phi^{n}-\Phi, \xi^{n}-\xi\right)$ in place of (Φ, ξ) and $\varphi_{0}^{n}-\varphi_{0}=0, \xi_{0}^{n}-\xi_{0}=0, w_{2}^{n}-w_{2}=0, \hat{f}_{2}(t, x)=\left(\lambda_{n}-\lambda\right)\left[p_{2} y(t, x)+f_{2}(t, x)\right]$, give us the estimate (see (49))

$$
\begin{equation*}
\left\|\Phi^{n}-\Phi\right\|_{W_{p}^{1,2}(Q)}+\left\|\xi^{n}-\xi\right\|_{W_{p}^{1,2}(\Sigma)} \leq C_{1}\left|\lambda_{n}-\lambda\right|\left\|p_{2} y+f_{2}\right\|_{L^{p}(Q)} \leq C_{2}\left|\lambda_{n}-\lambda\right| \tag{61}
\end{equation*}
$$

where $C_{2}=C\left(A, p_{2}, C_{1}\right)>0$.
The right-hand side in $(60)_{1}$ belongs to $L^{p}(Q)$, since $u_{x_{i} x_{j}}^{n, \lambda_{n}} \in W_{p}^{1,2}(Q) \subset L^{p}(Q)$. Again, the embeddings $W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset W_{p}^{2-\frac{2}{p}}(\Omega)$ and $W_{\infty}^{2-\frac{2}{p}}(\Sigma) \subset W_{p}^{2-\frac{2}{p}}(\Sigma)$ allow us to apply Lemma 7.4 in Choban and Moroşanu [9, p. 114] with:

$$
\begin{aligned}
f_{3}= & \left(\lambda_{n}-\lambda\right)\left\{\left[\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)-\delta_{i}^{j}\right] u_{x_{i} x_{j}}^{n, \lambda_{n}}\right. \\
& \left.A_{1}\left(t, x, y, y_{x_{i}}\right)+f_{1}(t, x)\right\}-\frac{\ell}{2} \frac{\partial}{\partial t}\left(\lambda_{n} \Phi^{n}-\lambda \Phi\right) \in L^{p}(Q)
\end{aligned}
$$

$$
g_{3}=\left(\lambda_{n}-\lambda\right)\left[-g_{1}(\bar{y})+w_{1}(t, x)\right] \in L^{p}(\Sigma)
$$

and so we get

$$
\begin{align*}
\| u^{n, \lambda_{n}}- & u^{\lambda}\left\|_{W_{p}^{1,2}(Q)}+\right\| \alpha^{n, \lambda_{n}}-\alpha^{\lambda} \|_{W_{p}^{1,2}(\Sigma)} \\
\leq & C\left\{\left\|\frac{\partial}{\partial t}\left(\lambda_{n} \Phi^{n}-\lambda \Phi\right)\right\|_{L^{p}(Q)}\right. \\
& \left|\lambda_{n}-\lambda\right|\left\|\left[\frac{\partial}{\partial y_{x_{j}}}\left(K\left(t, x, y, y_{x}\right) y_{x_{i}}\right)-\delta_{i}^{j}\right] u_{x_{i} x_{j}}^{n, \lambda_{n}}\right\|_{L^{p}(Q)} \tag{62}\\
& +\left|\lambda_{n}-\lambda\right|\left[\left\|A_{1}\left(t, x, y, y_{x_{i}}\right)\right\|_{L^{p}(Q)}+\left\|f_{1}\right\|_{L^{p}(Q)}\right. \\
& \left.+\left\|g_{1}(\bar{y})\right\|_{L^{p}(\Sigma)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right\}
\end{align*}
$$

for a positive constant $C(|\Omega|,|\Gamma|, T, n, p, \ell)$.
We note that

$$
\begin{align*}
\| \frac{\partial}{\partial t}\left(\lambda_{n} \Phi^{n}\right. & -\lambda \Phi) \|_{L^{p}(Q)} \\
& =\left\|\frac{\partial}{\partial t}\left(\lambda_{n} \Phi^{n}-\lambda \Phi^{n}+\lambda \Phi^{n}-\lambda \Phi\right)\right\|_{L^{p}(Q)} \tag{63}\\
& =\left|\lambda_{n}-\lambda\right|\left\|\frac{\partial}{\partial t} \Phi^{n}\right\|_{L^{p}(Q)}+\lambda\left\|\frac{\partial}{\partial t}\left(\Phi^{n}-\Phi\right)\right\|_{L^{p}(Q)} .
\end{align*}
$$

Estimate (25) in Theorem 3.2 ensures that $\left\|\frac{\partial}{\partial t} \Phi^{n}\right\|_{L^{p}(Q)}$ is uniformly bounded with respect to $y \in A$, because A is bounded. Also, $g_{1}(\bar{y})$ is bounded in $L^{p}(\Sigma)$ because $\bar{y} \in \bar{A}$ and \bar{A} is bounded in $L^{p^{\prime}}(\Sigma) \subset L^{p}(\Sigma)$ (see relation (31)). Then, making use of (61) and (63), from (62) we conclude that there is a constant $C_{3}\left(|\Omega|,|\Gamma|, T, n, p, \ell, A, \bar{A}, C_{2}\right)>0$ such that

$$
\left\|u^{n, \lambda_{n}}-u^{\lambda}\right\|_{W_{p}^{1,2}(Q)}+\left\|\alpha^{n, \lambda_{n}}-\alpha^{\lambda}\right\|_{W_{p}^{1,2}(\Sigma)} \leq C_{3}\left|\lambda_{n}-\lambda\right|
$$

which allows us to derive that the assertion ii is verified.
4.2. The regularity of the solution $\{(u, \alpha),(\varphi, \xi)\}$ in Theorem 2.2. Now we establish the existence of a number $\delta_{2}>0$ such that (see (49))

$$
\begin{equation*}
(u, \alpha, \lambda) \in B^{S} \times[0,1] \quad \text { with }(u, \alpha)=S(u, \alpha, \lambda) \quad \Longrightarrow \quad\|(u, \alpha)\|_{B^{s}}<\delta_{2} \tag{64}
\end{equation*}
$$

The equality $(u, \alpha)=S(u, \alpha, \lambda)$ in (64) is equivalent to (see (7), (14) and (50))

$$
\begin{cases}\frac{\partial}{\partial t} u(t, x)-\lambda \operatorname{div}\left[K\left(t, x, u, u_{x}\right) \nabla u(t, x)\right]-(1-\lambda) \Delta u(t, x) & \tag{65}\\ =\lambda\left[-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)+f_{1}(t, x)\right] & \text { in } Q \\ u(t, x)=\alpha(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n}} u+\frac{\partial}{\partial t} \alpha-\Delta_{\Gamma} \alpha+h \alpha=\lambda\left[-g_{1}(\alpha)+w_{1}(t, x)\right] & \text { on } \Sigma \\ u(0, x)=\lambda u_{0}(x) & \text { on } \Omega \\ \alpha(0, x)=\lambda \alpha_{0}(x) & x \in \Gamma\end{cases}
$$

where $\varphi(t, x)=\Phi(t, x)$ is the unique solution to the nonlinear parabolic boundary value problem (51) with $\hat{f}_{2}(t, x)=p_{2} u(t, x)+f_{2}(t, x)$, i.e.

$$
\begin{cases}\frac{\partial}{\partial t} \varphi(t, x)-\frac{\partial}{\partial \varphi_{x_{j}}}\left[\Psi\left(t, x, \varphi, \varphi_{x}\right) \varphi_{x_{i}}\right] \varphi_{x_{j} x_{i}} & \tag{66}\\ \quad=A_{2}\left(t, x, \varphi, \varphi_{x_{i}}\right)+p_{1}\left[\varphi-\varphi^{3}\right]+p_{2} u(t, x)+f_{2}(t, x) & \text { in } Q \\ \varphi(t, x)=\xi(t, x) & \text { on } \Sigma \\ \frac{\partial}{\partial \mathbf{n} \varphi+\frac{\partial}{\partial t} \xi-\Delta_{\Gamma} \xi+c_{0} \xi+g_{2}(\xi)=w_{2}(t, x)} & \text { on } \Sigma \\ \varphi(0, x)=\varphi_{0}(x) & \text { on } \Omega \\ \xi(0, x)=\xi_{0}(x) & x \in \Gamma\end{cases}
$$

Theorem 3.2 guarantees that a unique solution $(\varphi, \xi) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$ exists for problem (66). In addition, the continuous inclusion $W_{p}^{1,2}(Q) \subset L^{\mu_{1}}(Q) \subset L^{p}(Q)$ (see (22)), as well as the estimate (25), imply that

$$
\begin{align*}
\left\|\frac{\partial}{\partial t} \varphi\right\|_{L^{p}(Q)} \leq & C\|\varphi\|_{W_{p}^{1,2}(Q)} \\
\leq \tilde{C} & {\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right.} \tag{67}\\
& \left.\quad+\|u\|_{L^{p}(Q)}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{align*}
$$

for a constant $\tilde{C}=C\left(|\Omega|, T, n, p, q, p_{1}, p_{2}, c_{0}, b_{3}, b_{4}, b_{5}, b_{6}\right)>0$.

Multiplying (65) $)_{1}$ by $|u|^{p-2} u$ and integrating over $Q_{t}:=(0, t) \times \Omega, t \in(0, T]$, we get

$$
\begin{align*}
& \frac{1}{p} \int_{O_{t}} \frac{\partial}{\partial t}|u(t, x)|^{p} d \tau d x \\
& \quad-\lambda \int_{Q_{t}} \operatorname{div}\left(K\left(t, x, u, u_{x}\right) \nabla u\right)|u|^{p-2} u d \tau d x-(1-\lambda) \int_{Q_{t}} \Delta u|u|^{p-2} u d \tau d x \tag{68}\\
& \quad=\lambda \int_{Q_{t}}-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)|u|^{p-2} u d \tau d x+\lambda \int_{Q_{t}} f_{1}|u|^{p-2} u d \tau d x
\end{align*}
$$

In order to process the terms

$$
\int_{Q_{t}} \operatorname{div}\left(K\left(t, x, u, u_{x}\right) \nabla u\right)|u|^{p-2} u d \tau d x \text { and } \int_{Q_{t}} \Delta u|u|^{p-2} u d \tau d x
$$

we use Green's first identity $(21)_{1}$ and $(21)_{2}$, respectively, to obtain

$$
\begin{align*}
& -\lambda \int_{Q_{t}} \operatorname{div}\left(K\left(t, x, u, u_{x}\right) \nabla u\right)|u|^{p-2} u d \tau d x \\
& \quad=\lambda \int_{Q_{t}} K\left(t, x, u, u_{x}\right) \nabla u \cdot \nabla\left(|u|^{p-2} u\right) d \tau d x+\lambda \int_{\Sigma_{t}}|u|^{p-2} u\left(-\frac{\partial}{\partial \mathbf{n}} u\right) d \tau d \gamma \tag{69}\\
& -(1-\lambda) \int_{Q_{t}} \Delta u|u|^{p-2} u d \tau d x \\
& \quad=(1-\lambda)(p-1) \int_{Q_{t}}|\nabla u|^{2}|u|^{p-2} d \tau d x+(1-\lambda) \int_{\Sigma_{t}}|u|^{p-2} u\left(-\frac{\partial}{\partial \mathbf{n}} u\right) d \tau d \gamma \tag{70}
\end{align*}
$$

where $\Sigma_{t}=(0, t) \times \partial \Omega, t \in(0, T]$ and $\left(\right.$ see $\left.(65)_{3}\right)$

$$
-\frac{\partial}{\partial \mathbf{n}} u=\frac{\partial}{\partial t} \alpha-\Delta_{\Gamma} \alpha+h \alpha+\lambda g_{1}(\alpha)-\lambda w_{1}(t, x)
$$

Combining the above equality with the boundary condition $(65)_{2}$ and making use of the left inequality in $(16)_{1}$, the hypothesis $\mathbf{I}_{2},(\mathbf{G})_{3}(k=1)$, as well as the relations (69), (70), then (68) leads us to the following inequality

$$
\begin{align*}
& \frac{1}{p} \int_{\Omega}|u(t, x)|^{p} d x+\lambda \frac{1}{p} \int_{\Gamma}|\alpha(t, x)|^{p} d \gamma+(1-\lambda) \frac{1}{p} \int_{\Gamma}|\alpha(t, x)|^{p} d \gamma \\
& \quad+\lambda \int_{Q_{t}} K\left(t, x, u, u_{x}\right) \nabla u \cdot \nabla\left(|u|^{p-2} u\right) d \tau d x+(1-\lambda)(p-1) \int_{Q_{t}}|\nabla u|^{2}|u|^{p-2} d \tau d x \tag{71}\\
& \quad+\lambda h \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma+(1-\lambda) h \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma+\lambda b_{5} \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma
\end{align*}
$$

$$
\begin{aligned}
& +\lambda \int_{\Sigma_{t}} \nabla_{\Gamma}\left(|u|^{p-1}\right) \cdot \nabla_{\Gamma} u d \tau d \gamma+(1-\lambda) \int_{\Sigma_{t}} \nabla_{\Gamma}\left(|u|^{p-1}\right) \cdot \nabla_{\Gamma} u d \tau d \gamma \\
\leq & \lambda \frac{1}{p} \int_{\Omega}\left|u_{0}(x)\right|^{p} d x+\lambda \frac{1}{p} \int_{\Gamma}\left|\alpha_{0}(x)\right|^{p} d \gamma+(1-\lambda) \frac{1}{p} \int_{\Gamma}\left|\alpha_{0}(x)\right|^{p} d \gamma \\
& +\lambda \int_{Q_{t}}-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)|u|^{p-2} u d \tau d x+\lambda \int_{Q_{t}} f_{1}|u|^{p-2} u d \tau d x+\lambda \int_{\Sigma_{t}} w_{1}|\alpha|^{p-2} \alpha d \tau d \gamma
\end{aligned}
$$

for all $t \in(0, T]$. Hölder's and Cauchy's inequality, applied to the last terms in above inequality, give us

$$
\mathbf{j}_{1} . \lambda \int_{Q_{t}}-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)|u|^{p-2} u d \tau d x \leq \frac{p-1}{p} \int_{Q_{t}}|u|^{p} d \tau d x+\lambda \frac{\ell}{2 p} \int_{Q_{t}}\left|\frac{\partial}{\partial t} \varphi(t, x)\right|^{p} d \tau d x
$$

j2. $\lambda \int_{Q_{t}} f_{1}|u|^{p-2} u d \tau d x \leq \frac{p-1}{p} \int_{Q_{t}}|u|^{p} d \tau d x+\lambda \frac{1}{p} \int_{Q_{t}}\left|f_{1}\right|^{p} d \tau d x$,
$\mathbf{j}_{3} . \lambda \int_{\Sigma_{t}} w_{1}|\alpha|^{p-2} \alpha d \tau d \gamma \leq \frac{p-1}{p} \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma+\lambda \frac{1}{p} \int_{\Sigma_{t}}\left|w_{1}\right|^{p} d \tau d \gamma$.
Combining $\mathbf{j}_{1}-\mathbf{j}_{3}$ and (67), after some simple computations in the left-hand side of (71), we get to the following estimate

$$
\begin{align*}
& \int_{\Omega}|u(t, x)|^{p} d x+\int_{\Gamma}|\alpha(t, x)|^{p} d \gamma \\
& +p \lambda \int_{Q_{t}} K\left(t, x, u, u_{x}\right) \nabla u \cdot \nabla\left(|u|^{p-2} u\right) d \tau d x+p(1-\lambda)(p-1) \int_{Q_{t}}|\nabla u|^{2}|u|^{p-2} d \tau d x \\
& +p h \int_{\Sigma_{t}}|u|^{p} d \tau d \gamma+p \lambda b_{5} \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma+p \int_{\Sigma_{t}} \nabla_{\Gamma}\left(|u|^{p-1}\right) \cdot \nabla_{\Gamma} u d \tau d \gamma \\
& \leq \int_{\Omega}\left|u_{0}(x)\right|^{p} d x+\int_{\Gamma}\left|\alpha_{0}(x)\right|^{p} d \gamma \tag{72}\\
& +\frac{\ell}{2} \tilde{C}\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right] \\
& +\left[\frac{\ell}{2} \tilde{C}+3(p-1)\right] \int_{Q_{t}}|u|^{p} d \tau d x+(p-1) \int_{\Sigma_{t}}|\alpha|^{p} d \tau d \gamma+\int_{Q_{t}}\left|f_{1}\right|^{p} d \tau d x+\int_{\Sigma_{t}}\left|w_{1}\right|^{p} d \tau d \gamma
\end{align*}
$$

for all $t \in(0, T]$.

In particular, it follows from (72) that

$$
\begin{align*}
& \int_{\Omega}|u(t, x)|^{p} d x+\int_{\Gamma}|\alpha(t, x)|^{p} d \gamma \\
& \leq C_{4}\left[1+\left\|u_{0}\right\|_{L^{p}(\Omega)}^{p}+\left\|\alpha_{0}\right\|_{L^{p}(\Gamma)}^{p}+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right] \tag{73}\\
& +C_{4} \int_{0}^{t}\left[\int_{\Omega}|u|^{p} d x+\int_{\Gamma}|\alpha|^{p} d \gamma\right] d \tau
\end{align*}
$$

By Gronwall's lemma, from (73) we get

$$
\begin{align*}
& \|u\|_{L^{p}(Q)}+\|\alpha\|_{L^{p}(\Sigma)} \\
& \leq C\left(T, C_{4}\right)\left[1+\left\|u_{0}\right\|_{L^{p}(\Omega)}^{p}+\left\|\alpha_{0}\right\|_{L^{p}(\Gamma)}^{p}+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \tag{74}\\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{align*}
$$

Appling now Lemma 7.4 in Choban and Moroşanu [9, p. 114] to the linear inhomogeneous problem (65) with

$$
\begin{align*}
& f_{3}=\lambda\left[-\frac{\ell}{2} \frac{\partial}{\partial t} \varphi(t, x)+f_{1}(t, x)\right] \in L^{p}(Q) \tag{75}\\
& g_{3}=\lambda\left[-g_{1}(\alpha)+w_{1}(t, x)\right] \in L^{p}(\Sigma)
\end{align*}
$$

we obtain

$$
\begin{aligned}
& \|u\|_{W_{p}^{1,2}(Q)}+\|\alpha\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C_{3}\left\{\left\|u_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
& \quad+\lambda\left\|\frac{\partial}{\partial t} \varphi\right\|_{L^{p}(Q)}+\lambda\left\|g_{1}(\alpha)\right\|_{L^{p}(\Sigma)} \\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right\}
\end{aligned}
$$

for a constant $C_{3}=C(|\Omega|,|\Gamma|, T, n, p, \ell)>0$. Using now $(6)(k=1),(67)$ and the standard interpolation inequality (see [17, p. 14, (1.31)]) $\|\alpha\|_{L^{p^{\prime}}(\Sigma)} \leq \epsilon\|\alpha\|_{W_{p}^{1,2}(\Sigma)}+$
$C(\epsilon)\|\alpha\|_{L^{p}(\Sigma)}$, then the above inequality becomes

$$
\begin{align*}
& \|u\|_{W_{p}^{1,2}(Q)}+\left(1-\epsilon C_{3}\right)\|\alpha\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C_{4}\left\{\left\|u_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
& \quad+\tilde{C}\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{\frac{3 p-2}{p}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}}^{\frac{3 p-2}{p}}\right. \\
& \quad+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{p}}(\Gamma)} \tag{76}\\
& \quad+\lambda\|u\|_{L^{p}(Q)}+\lambda\|\alpha\|_{L^{p}(\Sigma)} \\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2}}(\Sigma)}\right] \\
&
\end{align*}
$$

for a new constant $C_{5}=C(\epsilon) C_{4}>0$.
The continuous embedding $W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \subset B^{\Phi}=W_{p}^{0,1}(Q) \times L^{p^{\prime}}(\Sigma)$ ensures that

$$
\|(u, \alpha)\|_{B^{\Phi}} \leq C\left(\|u\|_{W_{p}^{1,2}(Q)}+\|\alpha\|_{W_{p}^{1,2}(\Sigma)}\right)
$$

which, for $\epsilon>0$ with $1-\epsilon C_{4}>0$, and thanks to (74) and (76), ensures that a constant $\delta_{2}>0$ can be found such that the property expressed in (64) is true.

Denoting $B_{\delta_{2}}^{\Phi}:=\left\{(u, \alpha) \in B^{\Phi}:\|(u, \alpha)\|_{B^{\Phi}}<\delta_{2}\right\}$, Lemma 4.1, relation (64) and the homotopy invariance of the Leray-Schauder degree, enable us to conclude that problem (50) has a solution

$$
(u, \alpha) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)
$$

which is determined by the unique solution $(\varphi, \xi) \in W_{p}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)$ to (66).
4.3. The maximum regularity of the solution $\varphi(t, x)$ in Theorem 2.2. Thanks to the embedding $W_{p}^{1,2}(Q) \subset L^{\mu_{1}}(Q)$ (see (22)), we can apply Theorem 3.2 for

$$
\hat{f}(t, x)=p_{2} u(t, x)+f_{2}(t, x) \in L^{\nu}(Q), \text { where } \nu=\min \left\{q, \mu_{1}\right\}
$$

This ensures the existence of a solution

$$
(\varphi, \xi) \in W_{\nu}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma)
$$

to problem (15). Corresponding, estimate (25) in Theorem 3.2 yields

$$
\begin{align*}
\|\varphi\|_{W_{\nu}^{1,2}(Q)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \leq & C\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \\
& \left.+\|u\|_{L^{\nu}(Q)}+\left\|f_{2}\right\|_{L^{q}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right] \tag{77}
\end{align*}
$$

where the embedding $L^{q}(Q) \subset L^{\nu}(Q)$ has been used too.

Lemma 7.4 in Choban and Moroşanu [9, p. 114] applied to the linear inhomogeneous problem (65) (see (75)), combined with the estimate (25) (expressed by (67)) and (74), implies the estimate

$$
\begin{align*}
& \|u\|_{W_{p}^{1,2}(Q)}+\|\alpha\|_{W_{p}^{1,2}(\Sigma)} \leq C_{3}\left\{\left\|u_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
& \left.\quad+\left\|\frac{\partial}{\partial t} \varphi\right\|_{L^{p}(Q)}+\left\|g_{1}(t, x, \alpha)\right\|_{L^{p}(\Sigma)}+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right\} \\
& \leq C_{3}\left\{\left\|u_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
& \quad+\tilde{C}\left[1+\left\|\varphi_{0}\right\|_{W_{\infty}^{\frac{3 p-2}{p}}}^{W_{\infty}^{2-\frac{2}{q}}(\Omega)}+\left\|\xi_{0}\right\|_{W_{\infty}^{\frac{3 p-2}{p}}}^{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \tag{78}\\
& \left.\quad+\|u\|_{L^{p}(Q)}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right] \\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right\}
\end{align*}
$$

for a new positive constant $C_{5}=C\left(C_{3}, \ell, b_{5}, b_{7}\right)$.
On the basis of the interpolation inequality, written for the embeddings $W_{p}^{1,2}(Q)$ $\subset L^{\nu}(Q) \subset L^{p}(Q)$, we have the following relation $(\varepsilon, C(\varepsilon)>0)$

$$
\begin{equation*}
\|u\|_{L^{\nu}(Q)} \leq \varepsilon\|u\|_{W_{p}^{1,2}(Q)}+C(\varepsilon)\|u\|_{L^{p}(Q)} \tag{79}
\end{equation*}
$$

Adding (77)-(78) and making use of (76) and (79), we find that

$$
\begin{align*}
& \left(1-\varepsilon C_{3}\right)\|u\|_{W_{p}^{1,2}(Q)}+\|\varphi\|_{W_{\nu}^{1,2}(Q)}+\left(1-\varepsilon C_{3}\right)\|\alpha\|_{W_{p}^{1,2}(\Sigma)}+\|\xi\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C_{5}\left[1+\left\|u_{0}\right\|_{W_{p}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}\right\|_{W_{p}^{2-\frac{2}{p}}(\Gamma)}+\left\|\varphi_{0}\right\|_{W_{q}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}\right\|_{W_{p}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \tag{80}\\
& \quad+\left[C_{3} C(\varepsilon)+C_{5}\right]\|u\|_{L^{p}(Q)} \\
& \left.\quad+\left\|f_{1}\right\|_{L^{p}(Q)}+\left\|f_{2}\right\|_{L^{p}(Q)}+\left\|w_{1}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}(\Sigma)}}+\left\|w_{2}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{align*}
$$

Let us fix an $\varepsilon>0$ such that $1-\varepsilon C_{3}>0$. Then $C(\varepsilon)$ becomes a constant independent of ε and thus relation (80), combined with (74), implies estimate (18). This completes the proof of the first part in Theorem 2.2.
4.4. Proof of Theorem 2.2 continued. In this subsection we prove the second part of Theorem 2.2 which comes down to checking the estimate (20) and the uniqueness of the solution to problem (1)-(3) (or (14)-(15)). For this goal we consider the solutions

$$
u^{1}, u^{2} \in W_{p}^{1,2}(Q), \quad \varphi^{1}, \varphi^{2} \in W_{\nu}^{1,2}(Q), \alpha^{1}, \alpha^{2}, \xi^{1}, \xi^{2} \in W_{p}^{1,2}(\Sigma)
$$

as in the statement of Theorem 2.2. Thus

$$
U=u^{1}-u^{2} \in W_{p}^{1,2}(Q), \quad \Phi=\varphi^{1}-\varphi^{2} \in W_{\nu}^{1,2}(Q)
$$

$$
A=\alpha^{1}-\alpha^{2} \in W_{p}^{1,2}(\Sigma), \quad X=\xi^{1}-\xi^{2} \in W_{p}^{1,2}(\Sigma)
$$

Subtracting the equations in $(15)_{1}$ corresponding to $\left(\varphi^{1}, \xi^{1}\right),\left(\varphi^{2}, \xi^{2}\right)$ and then using the relation (25) in Theorem 3.2 corresponding to the settings

$$
\hat{f}_{2}^{a}=p_{2} u^{1}+f_{2}^{a}, \hat{f}_{2}^{b}=p_{2} u^{2}+f_{2}^{b} \in L^{\nu}(Q), \varphi_{0}^{1}, \varphi_{0}^{2}, \xi_{0}^{1}, \xi_{0}^{2}
$$

as well as the embeddings $W_{\nu}^{1,2}(Q) \subset L^{p}(Q), W_{p}^{1,2}(\Sigma) \subset L^{p}(\Sigma)$, we find that

$$
\begin{align*}
& \left\|\frac{\partial}{\partial t} \Phi\right\|_{L^{p}(Q)}+\left\|\frac{\partial}{\partial t} X\right\|_{L^{p}(\Sigma)} \\
& \leq C\left[\|\Phi\|_{W_{\nu}^{1,2}(Q)}+\|X\|_{W_{p}^{1,2}(\Sigma)}\right] \\
& \leq C\left[1+\left\|\varphi_{0}^{1}-\varphi_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}^{1}-\xi_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}}\right. \tag{81}\\
& \quad+\|U\|_{L^{\nu}(Q)} \\
& \left.\quad+\left\|f_{2}^{a}-f_{2}^{b}\right\|_{L^{\nu}(Q)}+\left\|w_{2}^{a}-w_{2}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{align*}
$$

for a new positive constant C.
Let us recall that

$$
\begin{aligned}
& a_{i j}^{1}\left(t, x, u^{1}, u_{x}^{1}\right)=\frac{\partial}{\partial u_{x_{j}}} a_{i}^{1}\left(t, x, u^{1}, u_{x}^{1}\right)=\frac{\partial}{\partial u_{x_{j}}} K\left(t, x, u^{1}, u_{x}^{1}\right) u_{x_{i}}^{1}, i=1, \ldots, n \\
& a_{i j}^{1}\left(t, x, u^{2}, u_{x}^{2}\right)=\frac{\partial}{\partial u_{x_{j}}} a_{i}^{1}\left(t, x, u^{2}, u_{x}^{2}\right)=\frac{\partial}{\partial u_{x_{j}}} K\left(t, x, u^{2}, u_{x}^{2}\right) u_{x_{i}}^{2}, i=1, \ldots, n
\end{aligned}
$$

Following [2, p. 176], [9, p. 107], [11, p. 2268], [14, p. 137], [18, p. 241] and [26, 11] we write the increments of $a_{i j}^{1}$ and A_{1} in the form

$$
\begin{aligned}
& a_{i j}^{1}\left(t, x, u^{1}, u_{x}^{1}\right)-a_{i j}^{1}\left(t, x, u^{2}, u_{x}^{2}\right)=\int_{0}^{1} \frac{d}{d \lambda} a_{i, j}^{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda \\
& A_{1}\left(t, x, u^{1}, u_{x}^{1}\right)-A_{1}\left(t, x, u^{2}, u_{x}^{2}\right)=\int_{0}^{1} \frac{d}{d \lambda} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda
\end{aligned}
$$

where

$$
\begin{aligned}
& u^{\lambda}(t, x)=\lambda u^{1}(t, x)+(1-\lambda) u^{2}(t, x) \\
& u_{x}^{\lambda}(t, x)=\lambda u_{x}^{1}(t, x)+(1-\lambda) u_{x}^{2}(t, x) \\
& A_{1}\left(t, x, u, u_{x_{i}}\right)=\frac{\partial}{\partial u} K\left(t, x, u, u_{x}\right) u_{x_{i}}+\frac{\partial}{\partial x_{i}} K\left(t, x, u, u_{x}\right) u_{x_{i}}
\end{aligned}
$$

Then

$$
\begin{align*}
& a_{i j}^{1}\left(t, x, u^{1}, u_{x}^{1}\right) u_{x_{i} x_{j}}^{1}-a_{i j}^{1}\left(t, x, u^{2}, u_{x}^{2}\right) u_{x_{i} x_{j}}^{2} \\
& =a_{i j}^{1}\left(t, x, u^{1}, u_{x}^{1}\right) U_{x_{i} x_{j}} \\
& \quad+u_{x_{i} x_{j}}^{2}\left[U_{x_{i}} \int_{0}^{1} \frac{\partial}{\partial u_{x_{j}}^{\lambda}} a_{i, j}^{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda+U \int_{0}^{1} \frac{\partial}{\partial u^{\lambda}} a_{i, j}^{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda\right] \tag{82}\\
& A_{1}\left(t, x, u^{1}, u_{x}^{1}\right)-A_{1}\left(t, x, u^{2}, u_{x}^{2}\right) \\
& \quad=\int_{0}^{1} \frac{d}{d \lambda} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda \tag{83}\\
& \quad=U_{x_{i}} \int_{0}^{1} \frac{\partial}{\partial u_{x_{j}}^{\lambda}} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda+U \int_{0}^{\frac{\partial}{\partial u^{\lambda}}} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda
\end{align*}
$$

We subtract the equation (14) for $u^{2}(t, x)$ from the equations (14) for $u^{1}(t, x)$ and, owing to (82) and (83), we obtain the following linear problem endowed with nonlinear dynamic boundary conditions, that is

$$
\begin{cases}\frac{\partial}{\partial t} U-\hat{a}_{i j}^{1}(t, x) U_{x_{i} x_{j}}=-\hat{a}_{i}^{1}(t, x) U_{x_{i}}-\hat{a}^{1}(t, x) U-\frac{\ell}{2} \frac{\partial}{\partial t} \Phi+f_{1}^{a}-f_{1}^{b} & \text { in } Q \tag{84}\\ U(t, x)=A(t, x) & \text { on } \Sigma \\ U(0, x)=\left(u_{0}^{1}-u_{0}^{2}\right)(x) & \text { in } \Omega \\ \frac{\partial}{\partial \mathbf{n}} U+\frac{\partial}{\partial t} A-\Delta_{\Gamma} A+h A & \\ \quad=-\left[g_{1}\left(\alpha^{1}\right)-g_{1}\left(\alpha^{2}\right)\right]+\left(w_{1}^{a}-w_{1}^{b}\right) & \text { on } \Sigma \\ A(0, x)=\left(\alpha_{0}^{1}-\alpha_{0}^{2}\right)(x) & \text { on } \Gamma\end{cases}
$$

where

$$
\begin{aligned}
& \hat{a}_{i j}^{1}(t, x)=a_{i j}^{1}\left(t, x, u^{1}, u_{x}^{1}\right), \\
& \hat{a}_{i}^{1}(t, x)=-u_{x_{i} x_{j}}^{2} \int_{0}^{1} \frac{\partial}{\partial u_{x_{j}}^{\lambda}} a_{i, j}^{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda+\int_{0}^{1} \frac{\partial}{\partial u_{x_{j}}^{\lambda}} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda, \\
& \hat{a}^{1}(t, x)=-u_{x_{i} x_{j}}^{2} \int_{0}^{1} \frac{\partial}{\partial u^{\lambda}} a_{i, j}^{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda+\int_{0}^{1} \frac{\partial}{\partial u^{\lambda}} A_{1}\left(t, x, u^{\lambda}, u_{x}^{\lambda}\right) d \lambda .
\end{aligned}
$$

By hypothesis we have $\left(u_{0}^{1}-u_{0}^{2}\right) \in W_{\infty}^{2-\frac{2}{p}}(\Omega) \subset W_{p}^{2-\frac{2}{p}}(\Omega),\left(\alpha_{0}^{1}-\alpha_{0}^{2}\right) \in W_{\infty}^{2-\frac{2}{p}}(\Gamma) \subset$ $W_{p}^{2-\frac{2}{p}}(\Gamma),-\hat{a}_{i}^{1}(t, x) U_{x_{i}}-\hat{a}^{1}(t, x) U-\frac{\ell}{2} \frac{\partial}{\partial t} \Phi+\left(f_{1}^{a}-f_{1}^{b}\right) \in L^{p}(Q)$ (recall that $\left.U(t, x) \in W_{p}^{1,2}(Q), \Phi(t, x) \in W_{\nu}^{1,2}(Q)\right)$ and $-\left[g_{1}\left(t, x, \alpha^{1}\right)-g_{1}\left(t, x, \alpha^{2}\right)\right] \in L^{p}(\Sigma)$.

So, Theorem 2.1 in [6, relation (2.7)] applied to problem (84) for the unknown functions $U(t, x)=\left(u^{1}-u^{2}\right)(t, x)$ and $A(t, x)=\left(\alpha^{1}-\alpha^{2}\right)(t, x)$, gives the estimate

$$
\begin{align*}
\|U\|_{W_{p}^{1,2}(Q)}^{p}+\|A\|_{W_{p}^{1,2}(\Sigma)}^{p} \leq & C\left[\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{p}\right. \\
& +\|\nabla U\|_{L^{p}(Q)}^{p}+\|U\|_{L^{p}(Q)}^{p}+\left\|\frac{\partial}{\partial t} \Phi\right\|_{L^{p}(Q)}^{p} \tag{85}\\
& +\left\|g_{1}\left(\alpha^{1}\right)-g_{1}\left(\alpha^{2}\right)\right\|_{L^{p}(\Sigma)}^{p} \\
& \left.+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{L^{p}(\Sigma)}^{p}\right]
\end{align*}
$$

where $C=C\left(|\Omega|,|\Gamma|, T, n, p, p_{1}, p_{2}, p_{3}\right)>0$. Appling again Theorem 2.1 in $[6$, relation (2.4)] and making use of the embedding $W_{p}^{1,2}(Q) \subset L^{p}(Q)$, we have

$$
\begin{align*}
\|\nabla U\|_{L^{p}(Q)}^{p}+\|U\|_{L^{p}(Q)}^{p} \leq & \tilde{C}\left[1+\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{p}\right. \\
& \left.+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}^{p}\right] . \tag{86}
\end{align*}
$$

Let us now focus our attention on the term $\left\|g_{1}\left(t, x, \alpha^{1}\right)-g_{1}\left(t, x, \alpha^{2}\right)\right\|_{L^{p}(\Sigma)}^{p}$ from the right-hand side of (84). Firstly, we recall that is true the following sequence of embeddings (see [17, p. 103, relation (2.198)]):

$$
\begin{equation*}
W_{p}^{1,2}(\Sigma) \subset L^{p^{\prime}}(\Sigma) \subset L^{\ell_{1}}(\Sigma) \subset L^{p}(\Sigma) \subset L^{2}(\Sigma) \tag{87}
\end{equation*}
$$

From (\mathbf{G}_{2}), Hölder's inequality, relations (19) and (87), we derive that

$$
\begin{equation*}
\left\|g_{1}\left(t, x, \alpha^{1}\right)-g_{1}\left(t, x, \alpha^{2}\right)\right\|_{L^{p}(\Sigma)} \leq C_{7}\left\|\alpha^{1}-\alpha^{2}\right\|_{L^{\ell_{1}}(\Sigma)} \tag{88}
\end{equation*}
$$

where $C_{7}=C\left(|\Omega|, T, p, b_{2}\right)\left(1+2 M_{4}^{2}\right)$. Using the embedding in (87), the standard interpolation inequalities (see [17, p. 14, (1.31)]) yield that $\forall \varepsilon>0, \exists C(\varepsilon)>0$ such that

$$
\begin{equation*}
\|y\|_{L^{\ell_{1}}(\Sigma)} \leq \varepsilon\|y\|_{W_{p}^{1,2}(\Sigma)}+C(\varepsilon)\|y\|_{L^{p}(\Sigma)}, \quad \forall y \in W_{p}^{1,2}(\Sigma) \tag{89}
\end{equation*}
$$

Combining (86), (88) and (89), estimate (85) leads to

$$
\begin{align*}
& \|U\|_{W_{p}^{1,2}(Q)}^{p}+\left(1-\epsilon C_{7}\right)\|A\|_{W_{p}^{1,2}(\Sigma)}^{p} \\
& \leq C\left[\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{p}\right. \\
& \quad C_{6} \tilde{C}\left[1+\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{p}\right. \tag{90}\\
& \left.\quad+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}^{p}\right] \\
& \left.\quad+C_{8}\left\|\alpha^{1}-\alpha^{2}\right\|_{L^{p}(\Sigma)}+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{L^{p}(\Sigma)}^{p}\right]
\end{align*}
$$

where $C_{8}=C(\varepsilon) C_{7}>0$.

In order to handle the term $\left\|\alpha^{1}-\alpha^{2}\right\|_{L^{p}(\Sigma)}$, we rely on a priori estimates in $L^{p}(\Sigma)$. In this respect, we multiply $(84)_{1}$ by $|U|^{p-2} U=\left|u^{1}-u^{2}\right|^{p-2}\left(u^{1}-u^{2}\right)$. Integrating over $Q_{t}, t \in(0, T]$ and using Green's first identity as well as the Cauchy-Schwarz inequality, we get

$$
\begin{align*}
& \frac{1}{p} \int_{O_{t}} \frac{\partial}{\partial t}|U(t, x)|^{p} d \tau d x \\
& \quad+(p-1) \int_{Q_{t}}|\nabla U|^{2} \cdot \nabla\left(\hat{a}_{i j}^{1}(t, x)|U|^{p-2}\right) d \tau d x \\
& \quad+\int_{\Sigma_{t}}|U|^{p-1}\left(-\frac{\partial}{\partial \mathbf{n}} U\right) d \tau d \gamma \tag{91}\\
& \leq \\
& \quad \int_{Q_{t}}\left|\hat{a}_{i}^{1}(t, x)\right||\nabla U||U|^{p-1} d \tau d x \\
& \quad+p_{2} \int_{Q_{t}}|U|^{p} d \tau d x+\lambda \int_{Q_{t}}\left|f_{1}^{a}-f_{1}^{b}\right||U|^{p-1} d \tau d x .
\end{align*}
$$

Using the boundary conditions $(84)_{2},(84)_{4}$ and Hölder's inequality, then (91) becomes

$$
\begin{align*}
& \frac{1}{p} \int_{O_{t}} \frac{\partial}{\partial t}|U(t, x)|^{p} d \tau d x+\frac{1}{p} \int_{\Sigma_{t}} \frac{\partial}{\partial t}|Z(t, x)|^{p} d \tau d \gamma \\
& \quad+(p-1) \int_{Q_{t}}|\nabla U|^{2} \cdot \nabla\left(\hat{a}_{i j}(t, x)|U|^{p-2}\right) d \tau d x \tag{92}\\
& \quad+p_{3} \int_{\Sigma_{t}}|Z(t, x)|^{p} d \tau d \gamma+(p-1) \int_{\Sigma_{t}}\left|\nabla_{\Gamma} Z\right|^{2}|Z|^{p-2} d \tau d \gamma \\
& \quad+\int_{\Sigma_{t}}\left[g_{1}\left(t, x, \alpha^{1}\right)-g_{1}\left(t, x, \alpha^{2}\right)\right]|Z|^{p-2} Z d \tau d \gamma \\
& \leq \tilde{C}\left[\left\|\nabla\left(u^{1}-u^{2}\right)\right\|_{L^{p}(Q)}^{p}+\left\|u^{1}-u^{2}\right\|_{L^{p}(Q)}^{p}\right. \\
& \quad+\left\|u^{1}-u^{2}\right\|_{L^{p}(Q)}^{p}+\left\|\alpha^{1}-\alpha^{2}\right\|_{L^{p}(\Sigma)}^{p} \\
& \left.\quad+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{L^{p}(\Sigma)}^{p}\right]
\end{align*}
$$

where $\tilde{C}=C\left(|\Omega|,|\Gamma|, p, p_{2}, M_{1}, M_{4}\right)>0$.
In particular, owing to hypothesis $\left(\mathbf{G}_{1}\right)$ and (86), it follows from (92) that

$$
\begin{align*}
& \int_{\Omega}\left|u^{1}-u^{2}\right|^{p} d x+\int_{\Gamma}\left|\alpha^{1}-\alpha^{2}\right|^{p} d \gamma \tag{93}\\
& \quad \leq C_{9}\left[\left\|u_{0}^{1}-u_{0}^{2}\right\|_{L^{p}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{L^{p}(\Gamma)}^{p}\right.
\end{align*}
$$

$$
\begin{aligned}
& +\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{L^{p}(\Sigma)}^{p} \\
& \left.+\int_{0}^{t}\left[\int_{\Omega}\left|u^{1}-u^{2}\right|^{p} d x+\int_{\Gamma}\left|\alpha^{1}-\alpha^{2}\right|^{p} d \gamma\right] d \tau\right]
\end{aligned}
$$

where $C_{9}=C\left(\tilde{C}, p_{3}, b_{1}\right)>0$.
Making uses of Gronwall's inequality, we can deduce from (93) that

$$
\begin{align*}
\|U\|_{L^{p}(Q)}^{p} & +\|A\|_{L^{p}(\Sigma)}^{p} \\
& \leq \exp ^{C_{9} T}\left[\left\|u_{0}^{1}-u_{0}^{2}\right\|_{L^{p}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{L^{p}(\Gamma)}^{p}\right. \tag{94}\\
& \left.+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}^{p}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{L^{p}(\Sigma)}^{p}\right]
\end{align*}
$$

Making use of relations (94), from (90) we finally derive that

$$
\begin{align*}
& \|U\|_{W_{p}^{1,2}(Q)}+\left(1-\epsilon C_{7}\right)\|A\|_{W_{p}^{1,2}(\Sigma)} \\
& \leq C_{10}\left[1+\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
& \left.\quad+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right] \tag{95}\\
& +C_{8} \exp ^{C_{9} T}\left[\left\|u_{0}^{1}-u_{0}^{2}\right\|_{L^{p}(\Omega)}^{p}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{L^{p}(\Gamma)}^{p}\right. \\
& +
\end{align*}
$$

Adding (81) with (95) and making use of the standard interpolation inequalities (written for $\left.W_{p}^{1,2}(Q) \subset L^{\nu}(Q) \subset L^{p}(Q)\right)$ combined with (94), we find that

$$
\begin{gather*}
\left(1-\epsilon C_{7}\right)\|U\|_{W_{p}^{1,2}(Q)}+\left(1-\epsilon C_{7}\right)\|A\|_{W_{p}^{1,2}(\Sigma)}+\|\Phi\|_{W_{\nu}^{1,2}(Q)}+\|X\|_{W_{p}^{1,2}(\Sigma)} \\
\leq C_{10}\left[1+\left\|u_{0}^{1}-u_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Omega)}+\left\|\alpha_{0}^{1}-\alpha_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}\right. \\
+\left\|\varphi_{0}^{1}-\varphi_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{q}}(\Omega)}^{\frac{3 p-2}{p}}+\left\|\xi_{0}^{1}-\xi_{0}^{2}\right\|_{W_{\infty}^{2-\frac{2}{p}}(\Gamma)}^{\frac{3 p-2}{p}} \tag{96}\\
+\left\|f_{1}^{a}-f_{1}^{b}\right\|_{L^{p}(Q)}+\left\|w_{1}^{a}-w_{1}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)} \\
\left.+\left\|f_{2}^{a}-f_{2}^{b}\right\|_{L^{q}(Q)}+\left\|w_{2}^{a}-w_{2}^{b}\right\|_{W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma)}\right]
\end{gather*}
$$

where the embedding $L^{q}(Q) \subset L^{\nu}(Q)$ has been used too.
For $\varepsilon>0$ with $1-\varepsilon C_{7}>0$, the embedding $W_{p}^{1-\frac{1}{2 p}, 2-\frac{1}{p}}(\Sigma) \subset L^{p}(\Sigma)$ and estimate (96) implies the estimate (20), which finishes the proof of Theorem 2.2.

As a consequence, the uniqueness of solution to problem (1)-(3) (or (14)-(15)) is valid.

Corollary 1. For the same initial conditions, the problem (14)-(15) possesses a unique classical solution.

Proof. Let $f_{1}^{a}=f_{1}^{b}, f_{2}^{a}=f_{2}^{b}, w_{1}^{a}=w_{1}^{b}$ and $w_{2}^{a}=w_{2}^{b}$ in the Theorem 2.2. Then (20) demonstrates the corollary (see also [9, Corollary 5.1, p. 111]).
5. Conclusions. The main problem addressed in this paper is a nonlinear secondorder anisotropic phase-field transition system with principal part in divergence form, endowed with inhomogeneous dynamic boundary conditions (in both unknown $u(t, x)$ and $\varphi(t, x))$ and non-constant mobility $K\left(t, x, u(t, x), u_{x}(t, x)\right)$, $\Psi\left(t, x, \varphi(t, x), \varphi_{x}(t, x)\right)$. Under general assumptions on the boundary nonlinearities $g_{k}, k=1,2$, and provided that the initial and boundary data meet appropriate regularity as well as compatibility conditions, it is proven the well-posedness (existence, estimate, uniqueness and regularity) of a classical solution to the phase-field transition system in this new formulation (Theorem 2.2). Precisely, the Leray-Schauder principle as well as the L^{p} theory of linear and quasi-linear parabolic equations, via Lemma 7.4 (see [9]), are applied to prove the qualitative properties of solution $(u, \varphi, \alpha, \xi)$. In other words, we can not directly apply the L^{p} theory to the problem (1)-(3). Thus, it makes the result in Lemma 7.4 in Choban and Moroşanu [9, p. 114] himself very important.

Moreover, the a priori estimates are made in $L^{p}(Q)$ and $L^{p^{\prime}}(\Sigma)$ which permit to derive regularity properties of higher order for unknown functions, that is $(u, \varphi, \alpha, \xi) \in W_{p}^{1,2}(Q) \times W_{\nu}^{1,2}(Q) \times W_{p}^{1,2}(\Sigma) \times W_{p}^{1,2}(\Sigma)$. Thus, classical methods such as bootstrap (see Moroşanu and Motreanu [24]), can be avoided. This approach could be applied in future to study other kind of the first and second boundary value problems.

From the perspective of applicability, it is natural to find the suitable type of nonlinearities on the $\partial \Omega$, able to describe the complexity of many important physical phenomena, among which we mention effect of surface tension, separating zone of solid and liquid states etc. So, one of the most important characteristics of our improved mathematical model (1)-(3) is the nonlinear term $g_{k}, k=1,2$, in the dynamic boundary conditions which allows to consider a nonlinearity with a larger growth exponent $r^{\prime} \leq(n+2) /(n+2-2 p)$ if $n+2>2 p$ (see (5). It extends the already studied types of boundary conditions (see [6], [9], [11], [13], [14], [15]-[18], [20], [26]) and therefore makes the new formulation of model (1)-(3) to be more able to describe a wide variety of industrial applications, in particular, the interactions with the walls in confined systems (i.e. the phase changes at the boundary of Ω).

Let's also remark that, due to the presence of the terms $K\left(t, x, u(t, x), u_{x}(t, x)\right)$, $\Psi\left(t, x, \varphi(t, x), \varphi_{x}(t, x)\right)$, the nonlinear operator in (1) does not represent the gradient of the energy functional. Therefore, the new proposed second-order nonlinear problem can not be obtained from the minimisation of any energy cost functional, i.e. (1) is not a variational PDE model.

The qualitative results obtained here can be involved later in the quantitative approaches of the mathematical model (1)-(3) as well as in the study of distributed and/or boundary nonlinear optimal control problems governed by such a nonlinear problem. Amongst other things, we wish to be exploited all this in our future works.

At the end we want to underline the solutions dependence in Theorem 2.2 on physical parameters, which can be useful in future investigations regarding the error analysis and numerical simulations.

REFERENCES

[1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, in: Mathematical Surveys and Monographs, 165. American Mathematical Society, 2010.
[2] T. Barbu, A. Miranville and C. Moroşanu, A qualitative analysis and numerical simulations of a nonlinear second-order anisotropic diffusion problem with non-homogeneous CauchyNeumann boundary conditions, Applied Mathematics and Computation, 350 (2019), 170-180.
[3] T. Benincasa, A. Favini and C. Moroşanu, A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: A phase-field model, Journal of Optimization Theory and Applications, 148 (2011), 14-30.
[4] J. L. Boldrini, B. M. C. Caretta and E. Fernández-Cara, Analysis of a two-phase field model for the solidification of an alloy, J. Math. Anal. Appl., 357 (2009), 25-44.
[5] L. Calatroni and P. Colli, Global solution to the Allen-Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Analysis. TMA, 79 (2013), 12-27.
[6] O. Cârjă, A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions, Nonlinear Analysis. TMA, 113 (2015), 190-208.
[7] S. Carl, V. K. Le and D. Motreanu, Nonsmooth Variational Problems and their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics, Springer Science+Business Media, LLC:New York, 2007.
[8] C. Cavaterra, C. G. Gal, M. Grasselli and A. Miranville, Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Analysis. TMA, 72 (2010), 2375-2399.
[9] M. M. Choban and C. N. Moroşanu, Well-posedness of a nonlinear second-order anisotropic reaction-diffusion problem with nonlinear and inhomogeneous dynamic boundary conditions, Carpathian J. Math., 38 (2022), 95-116.
[10] M. Conti, S. Gatti and A. Miranville, Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Continuous Dynamical Systems - Series $S, 5$ (2012), 485-505.
[11] A. Croitoru, C. Moroşanu and G. Tănase, Well-posedness and numerical simulations of an anisotropic reaction-diffusion model in case 2D, Journal of Applied Analysis and Computation (JAAC), 11 (2021), 2258-2278.
[12] I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Clarendon: Oxford, 1995.
[13] S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, Differential Equations: Inverse and Direct Problems, Lecture Notes Pure Applied Mathematics, Chapman 8 Hall/CRC, Boca Raton, FL, 251 (2006), 149-170.
[14] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasi-Linear Equations of Parabolic Type, Vol. 23, Translations of Mathematical Monographs, American Mathematical Society, 1968.
[15] A. Miranville and C. Moroşanu, On the existence, uniqueness and regularity of solutions to the phase-field transition system with non-homogeneous Cauchy-Neumann and nonlinear dynamic boundary conditions, Applied Mathematical Modelling, 40 (2016), 192-207.
[16] A. Miranville and C. Moroşanu, Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions, Discrete and Continuous Dynamical Systems - Series S, 9 (2016), 537-556.
[17] A. Miranville and C. Moroşanu, Qualitative and quantitative analysis for the mathematical models of phase separation and transition. Aplications, AIMS - American Institute of Mathematical Sciences, Differential Equations \& Dynamical Systems, 7 (2020). www.aimsciences.org/fileAIMS/cms/news/info/28df2b3d-ffac-4598-a89b-9494392d1394.pdf,
[18] A. Miranville and C. Moroşanu, A qualitative analysis of a nonlinear second-order anisotropic diffusion problem with non-homogeneous Cauchy-Stefan-Boltzmann boundary conditions, Appl. Math. Optim., 84 (2021), 227-244.
[19] C. Moroşanu, Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods, Bentham Science Publishers, 2012.
[20] C. Moroşanu, Well-posedness for a phase-field transition system endowed with a polynomial nonlinearity and a general class of nonlinear dynamic boundary conditions, Journal of Fixed Point Theory and Applications, 18 (2016), 225-250.
[21] C. Moroşanu, Modeling of the continuous casting process of steel via phase-field transition system. Fractional steps method, AIMS Mathematics, 4 (2019), 648-662.
[22] C. Moroşanu, Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation, Discrete and Continuous Dynamical Systems - Series S, 13 (2020), 1567-1587.
[23] C. Moroşanu and A. Croitoru, Analysis of an iterative scheme of fractional steps type associated to the phase-field equation endowed with a general nonlinearity and Cauchy-Neumann boundary conditions, Journal of Mathematical Analysis and Applications, 425 (2015), 12251239.
[24] C. Moroşanu and D. Motreanu, The phase field system with a general nonlinearity, International Journal of Differential Equations and Applications, 1 (2000), 187-204.
[25] C. Moroşanu and S. Pavăl, On the numerical approximation of a nonlinear reaction-diffusion equation with non-homogeneous Neumann boundary conditions. Case 1D, ROMAI J., 15 (2019), 43-60. https://rj.romai.ro/arhiva/2019/2/Morosanu-Paval.pdf
[26] C. Moroşanu and S. Pavăl, Rigorous mathematical investigation of a nonlocal and nonlinear second-order anisotropic reaction-diffusion model: Applications on image segmentation, Mathematics, 9 (2021), 91.
[27] C. Moroşanu, S. Pavăl and C. Trenchea, Analysis of stability and errors of three methods associated to the nonlinear reaction-diffusion equation supplied with homogeneous Neumann boundary conditions, Journal of Applied Analysis and Computation, 7 (2017), 1-19.
[28] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, (2nd Edn), Applied Mathematical Sciences, Springer. New York, 1997.
[29] C. L. D. Vaz and J. L. Boldrini, A mathematical analysis of a nonisothermal Allen-Cahn type system, Mathematical Methods in the Applied Sciences, 35 (2012), 1392-1405.

Received April 2022; revised September 2022; early access December 2022.

[^0]: 2020 Mathematics Subject Classification. Primary: 35Bxx; Secondary: 35K55, 35K60, 35Qxx.
 Key words and phrases. Nonlinear anisotropic diffusion, qualitative properties of solutions, dynamic boundary conditions, Leray-Schauder principle.

