
2004. május 23. –23:02

ANNALES UNIV. SCI. BUDAPEST., 46 (2003), 81–90

A COMMON FIXED POINT THEOREM FOR QUASI

CONTRACTIVE TYPE MAPPINGS

By

VASILE BERINDE

(Received February 16, 2004)

1. Introduction

The well known Banach’s fixed point theorem (also named contraction
mapping principle) is one of the most useful results in fixed point theory. In
a metric space setting it can be briefly stated as follows.

Theorem B. Let (X; d) be a complete metric space and T : X �! X a

strict contraction, i.e., a map satisfying

(1:1) d(Tx ; Ty) � a d(x ; y) ; for all x ; y 2 X;

where 0<a <1 is constant. Then T has a unique �xed point in X .

Theorem B, together with its direct generalizations and local variants, has
many applications in solving nonlinear functional equations, but suffers from
one drawback - the contractive condition (1.1) forces that T be continuous
throughout X . In order to remove this drawback, in 1968 Kannan [9] obtained
a fixed point theorem for mappings T that need not be continuous.

Theorem K. Let (X; d) be a complete metric space and T : X �! X a

mapping for which there exists a 2
�
0; 12

�
such that

(1:2) d(Tx ; Ty) � a
�
d(x ; Tx ) + d(y; Ty)

�
; for all x ; y 2 X:

Then T has a unique �xed point in X .

Example 1. Let X = R be the set of real numbers with the usual metric
and T : R �! R, given by Tx = 0, if x 2 (�1; 2] and Tx = �

1
2 , if

x 2 (2;1).
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Then T satisfies (1.2) with a = 1
5 , T is not continuous and FT = f0g.

Following Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point theorems for various classes of contractive type conditions that
do not require the continuity of T , see for example Rus [13]. In this con-
text, a very interesting theorem which extends both Banach’s and Kannan’s
fixed point theorems, alongside many other similar results of this kind, was
obtained in 1972 by Zamfirescu [14].

Theorem Z. Let (X; d) be a complete metric space and T : X �! X

a mapping for which there exist the real numbers �; � and 
 satisfying 0 <
<� <1, 0<� <1=2 and 0<
 <1=2 such that, for each x ; y 2 X , at least

one of the following is true:�
z1
�

d(Tx ; Ty) � � d(x ; y);
�
z2
�

d(Tx ; Ty) � �
�
d(x ; Tx ) + d(y; Ty)

�
;

�
z3
�

d(Tx ; Ty) � 

�
d(x ; Ty) + d(y; Tx )

�
:

Then T has a unique �xed point in X .

One of the most general contraction conditions obtained in this way, for
which the Picard iteration still converge to the unique fixed point, was given
by Ciric [7] in 1974.

Theorem C. Let (X; d) be a complete metric space and T : X �! X a

mapping that satis�es

(1:3)
d(Tx ; Ty) � h �maxfd(x ; y); d(x ; Tx ); d(y; Ty); d(x ; Ty); d(y; Tx )g ;

for all x ; y 2 X and some constant 0<h <1.
Then T has a unique �xed point in X .

Remark. It is easy to see that if T is an operator that satisfies the
assumptions in any of the Theorems B, K and Z, then T also satisfies the
assumptions of Theorem C.

The set 0T (x ) = fx ; Tx ; T
2x ; : : :g is called the orbit of T relative to x .

It is shown in [15] that condition (1.3) does in fact assure that the orbits of T
are bounded.

There exist many extensions and generalizations of these results. One
of them was given in [1], for the class of the so called generalized '-
contractions, as a unifying fixed point theorem of many results of the same
kind.
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A mapping T : X �! X is said to be a generalized '-contraction

if there exists a function ' : R5+ �! R+ (called comparison function and
satisfying certain appropriate conditions) such that for all x ; y 2 X

(1:4) d(Tx ; Ty) � '
�
d(x ; y); d(x ; Tx ); d(y; Ty); d(x ; Ty); d(y; Tx )

�
:

Example 2. The functions

1) '1(t) = �t1, for all t =
�
t1; t2; t3; t4; t5

�
2 R

5
+ (0 � � <1);

2) '2(t) = a(t2 + t3), for all t =
�
t1; t2; t3; t4; t5

�
2 R

5
+ ; 0 � a <1

2 ;

3) '3(t) 2 f�t1; �(t2 + t3); 
(t4 + t5)g, for all t =
�
t1; t2; t3; t4; t5

�
2

2 R
5
+ , 0 � � <1; 0 � � <1

2 ; 0 � 
 <1
2 ;

4) '4(t) = h �maxft1; t2; t3; t4; t5g, for all t =
�
t1; t2; t3; t4; t5

�
2

2 R
5
+ , 0<h <1

are all comparison functions. (Recall that a map satisfying (1.4) with
' � '4 is usually called quasi contraction).

In a slightly corriged version, see Berinde [2], the main result in [1] can
be briefly restated as follows.

Theorem G. Let (X; d) be a complete metric space and T : X �! X a

generalized '-contraction with ' such that  (t) = '(t ; t ; t ; t ; t) is a continuous

comparison function and h(t) = t �  (t) is an increasing bijection. Then

(i) T has a unique �xed point p in X ;

(ii) The Picard iteration fxng
1

n=0, given by xn+1 = Txn , n � 0 and

x0 2 X , converges to p;

(iii) d(xn ; p) �  n
�
h�1(d(x0; x1))

�
; n � 1 .

It is the main purpose of the present paper to extend Theorem G, and
hence all fixed point theorems contained by it as particular cases, to a common
fixed point theorem.

2. A common �xed point theorem

The important result given by Theorem C has been also extended in many
directions: to nonself mappings, Ciric ([8], Theorem 2.1) by using Rothe’s
boundary condition, to generalized orbitally complete metric spaces with
the metric satisfying a quadrilateral inequality instead of the usual triangle
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inequality, see Lahiri and Das [10], as well as to a common fixed point for
nonself mappings, see Rakocevic [11] and Berinde [4], and also to orbitally
complete metric spaces, see Ciric [6].

In this section we state and prove a general common fixed point theorem
for self operators satisfying a generalized condition of quasi-contractive type.

To this end we need some appropriate notions and results related to
mappings with contracting orbital diameters.

Remarks.

1) A mapping satisfying a contractive condition of the form (1.4) is
generally not continuous throughout X . However, as shown by Rhoades
([12], Theorem 2), a contractive mapping satisfying (1.3) is continuous at the
�xed point. The argument is easily extendable to mappings satisfying (1.4)
with ' an appropriate comparison function.

2) One of the first authors who considered conditions of the form (1.4)
with '(t) � '(t1), t = (t1; t2; t3; t4; t5) 2 R

5
+ , was Browder [5].

A scalar function ' : R+ �! R+ involved in such a fixed point theorem
is also called comparison function and is supposed to satisfy at least the
following two conditions:

(i') ' is monotonically increasing, i.e., t1 <t2 ) '(t1) � '(t2);

(i i') The sequence f'n(t)g1n=0 converges to zero for each t 2 R+ , where

'n stands for the n th iterate of ' .

A prototype for the scalar comparison functions is '(t) = a � t , t 2 R+,
with 0 � a <1.
Considering '1(t) = t

1+t , t 2 R+ and '2(t) = 1
2 t , if 0 � t <1 and

'2(t) = t �
1
3 , if t � 1, it is easy to check that comparison functions need not

be neither linear, nor continuous.

To prove our main result we shall use the following Lemma.

Lemma 1. Let ' : R+ �! R+ satisfy (i') and (i i') and suppose

(2:1) t � '(t) ;

for a certain t 2 R+ . Then t = 0.

Proof. Assume the contrary, i.e., there exists t >0 such that (2.1) is
satisfied. Then, by (i') we inductively get

t � 'n(t) ; n � 1
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and so, in view of (i i'), this implies

0 � t � lim
n!1

'n(t) = 0 ;

a contradiction.

The main result of this paper is given by the next theorem.

Theorem 1. Let (X; d) be a complete metric space and S , T : X �! X

two mappings with bounded orbits. Suppose T is continuous and

(2:2) d(Sx ; Sy) � '
�
M (x ; y)

�
; for all x ; y 2 X;

where

(2:3)
M (x ; y) = max fd(Tx ; Ty); d(Tx ; Sx ); d(Ty; Sy); d(Tx ; Sy); d(Ty; Sx )g ;

with ' : R+ �! R+ a continuous scalar comparison function. Suppose

(2:4) S (X ) � T (X )

and also suppose T and S are weakly commutative, i.e.,

(2:5) d(TSx ; STx ) � d(Tx ; Sx ) ; for every x 2 X :

Then T and S have a unique common �xed point.

Proof. Let x0 2 X be arbitrary. Then by (2.4) Sx0 2 T (X ), which
shows that there exists x1 2 X such that

Tx1 = Sx0 :

Consider now Sx1. Since Sx1 2 T (X ), there exists x2 2 X such that

Tx2 = Sx1 :

By induction, we construct a sequence fxng1n=0 of points in X such that

Txn+1 = Sxn ; n = 0; 1; 2; : : : :

We shall prove that fTxng1n=1 is a Cauchy sequence.

To this end, consider

B(n; k ) = fTxj ; Sxj : n � j � n + kg ; b(n; k ) = diam
�
B(n; k )

�
;

B(n) = fTxj ; Sxj : n � jg ; b(n) = diam
�
B(n)

�
:

It easy to see that b(n; k ) " b(n) as k !1 and that fb(n)g1n=0 is a decreasing
sequence of positive terms, hence

b = lim
n!1

b(n)
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does exist.

To prove that fTxng1n=0 is a Cauchy sequence we must show that b = 0.

We claim that

(2:6) b(n; k ) � '
�
b(n � 2; k � 2)

�
; n; k � 2 ;

and discuss the following three cases.

Case 1. b(n; k ) = d(Txi ; Sxj ) with n � i , j � n + k :
Then Txi = Sxi�1 and, by (2.2), we get

b(n; k ) = d(Sxi�1; Sxj ) � '
�
M (xi�1; xj )

�
� '

�
b(n � 2; k + 2)

�
;

since ' is monotonically increasing. The remaining cases:

Case 2. b(n; k ) = d(Sxi ; Sxj ) with n � i , j � n + k
and

Case 3. b(n; k ) = d(Txi ; Txj ) with n � i , j � n + k
can be easily reduced to Case 1.

Therefore (2.6) is true. Now, if we let k ! 1 in (2.6) and use the
continuity of ' we obtain

(2:7) b(n) � '
�
b(n � 2)

�
; n � 1 :

By (i i') and continuity of ' , letting n !1 in (2.7) we get

b � '(b)

which by Lemma 1 implies b = 0.

This shows that both fTxng1n=1 and fSxng1n=0 are Cauchy sequences.
Since (X; d) is a complete metric space, we conclude that

lim
n!1

Txn = p 2 X ;

and hence lim
n!1

Sxn = p, too.

Since T is continuous, we obtain

lim
n!1

T (Sxn) = T
�

lim
n!1

Sxn
�
= Tp

which, in view of the weak commutativity condition (2.4), yields

d(STxn ; Tp) � d(STxn ; TSxn) + d(TSxn ; Tp) �

� d(Txn ; Sxn) + d(TSxn ; Tp) �! 0, as n !1 :(2:8)

This shows that

(2:9) lim
n!1

(ST )(xn) = Tp ;
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and therefore, by (2.8) and (2.9), we have

M (Txn ; p) = max fd(TTxn ; Tp); d(TTxn ; Sp); d(Tp; Sp); d(TTxn ; Sp);

d(Tp; Sxn)g �! max fd(Tp; Tp); d(Tp; Sp); d(Tp; Sp); d(Tp; Sp);

d(Tp; Sp)g = d(Tp; Sp); as n !1 :

So by (2.3)

d(STxn ; Sp) � '
�
M (Txn ; p)

�
;

which by letting n !1 , yields

d(Tp; Sp) � '
�
d(Tp; Sp)

�

and which by Lemma 1 implies d(Tp; Sp) = 0, i.e.,

(2:10) Tp = Sp :

To show that Sp is a common fixed point of S and T it suffices to show that
Sp is a fixed point of S . Indeed, by (2.10) and (2.5) it results that

(2:11) TSp = STp = SSp:

Now, by (2.2), (2.10) and (2.11), we have

d(SSp; Sp) � '
�
M (Sp; p)

�
= '

�
d(SSp; Sp)

�
;

which again by Lemma 1 implies SSp = Sp. From (2.11) it results that Sp
is a fixed point of T , too. The uniqueness follows by (2.2).

Remarks.

1) For T = 1X , the identity map, by Theorem 1 we obtain a fixed point
theorem similar to Theorem G;

2) For '(t) = h � t , t 2 R+ , 0 <h <1, from Theorem 1 we obtain a
common fixed point theorem that contains Ciric’s fixed point theorem as a
particular case;

3) Note that if we denote for all x ; y 2 X ,

D(x ; y) =
�
d(x ; y); d(x ; Sx ); d(y; Sy); d(x ; Sy); d(y; Sx )

�
;

then

'i
�
D(x ; y)

�
� '

�
M (x ; y)

�
;

for all functions '1; '2 and '3 in Example 2.

This shows that, in the particular case T = 1X , Theorem 1 provides
extensions of Banach’s, Kannan’s, Zamfirescu’s and Ciric’s fixed point theo-
rems.
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Theorem 2. Let (X; d) be a complete metric space and T : X �! X a

generalized '-contraction, i.e., a mapping satisfying

d(Tx ; Ty) � '
�
C (x ; y)

�
; for all x ; y 2 X ;

where ' : R+ �! R+ is a continuous comparison function and

C (x ; y) = maxfd(x ; y); d(x ; Tx ); d(y; Ty); d(x ; Ty); d(y; Tx )g:

If T has bounded orbits, then it has a unique �xed point.

Proof. Take T = 1X and S := T in Theorem 1.

The continuity of T in Theorem 1 can be weakened to obtain a more
general result, similar to Theorem 3 in Rakocevic [11] and Berinde [4]. Ac-
tually all the results given in Rakocevic [11] can be similarly adapted for self
mappings, but we restrict to the result corresponding to Theorem 3 in [11].

Theorem 3. Let (X; d) be a complete metric space and S; T : X ! X

two mappings with bounded orbits. Suppose that Tm is continuous for some

�xed positive integer m , that S and T satisfy (2:2), (2:4) and are commutative,

that is,

TSx = STx ; for each x 2 K :

Then S and T have a unique common �xed point in K .

Proof. Let fxng be constructed as in the proof of Theorem 1.
Hence

lim
n!1

Sxn = lim
n!1

Txn = p 2 X:

For each n � 1;

d
�
TmSxn ; ST

m�1p
�
= d

�
STmxn ; ST

m�1p
�
�

� '
�
M

�
Tmxn ; T

m�1p
��

=

= '
�
max

n
d
�
TmTxn ; T

mp
�
; d

�
TmTxn ; T

mSxn
�
; d

�
Tmp; STm�1p

�
;

�
TmTxn ; ST

m�1p
�
; d

�
Tmp; TmSxn

�o�
:

Then by the continuity of Tm and letting n !1 we get

d
�
Tmp; STm�1p

�
� '

�
d
�
Tmp; STm�1p

��
;

which by Lemma 1 shows that Tmp = STm�1p.
In order to prove that Tmp is a fixed point of S , i.e.,

STmp = Tmp;
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in view of Tmp = STm�1p, it suffices to show that

(2:12) STmp = STm�1p:

Since

M
�
Tmp; Tm�1p

�
= max

n
d
�
Tm+1p; Tmp

�
; d
�
Tm+1p; STmp

�
;

d
�
Tmp; STm�1p

�
; d
�
Tm+1p; STm�1p

�
; d
�
Tmp; STmp

�o
;

in view of Tmp = STm�1p and Tm+1p = T
�
STm�1p

�
= STmp,

we obtain
M (Tmp; Tm�1p) =

max
n
d
�
STmp; STm�1p

�
; 0; 0; d

�
STmp; STm�1p

�
; d
�
STmp; STm�1p

�o
:

Now by (2.3) we have

d
�
STmp; STm�1p

�
� '

�
d
�
Tmp; Tm�1p

��
= '

�
d
�
STmp; STm�1p

��

which by Lemma 1 gives

d
�
STmp; STm�1p

�
= 0:

This proves (2.12) and hence Tmp is a fixed point of S . Now

TTmp = Tm+1p = STmp = Tmp;

which shows that Tmp is a fixed point of T as well.

The uniqueness follows similarly, by the contraction condition (2.2).

Remarks.

1) Note that the results for nonself mappings in Rakocevic [11] and
Berinde [4] are proven in a Banach space setting, while the results in this
paper are obtained in the general setting of a complete metric space.

If we impose additional conditions on the comparison function ' , it is
possible to obtain an error estimate for the method of successive approxima-
tions, like in Theorem G.

2) It is known, see Lemma 4.3.1 in [13] that if T is a generalized strict
'-contraction, i.e., T satisfies (1.4), with

t � '(t ; t ; t ; t ; t)!1; as t !1;

then T has bounded orbits.

It is however an open question whether or not two mappings S and T sat-
isfying (2.2) or the mapping T in Theorem 2, with ' an arbitrary comparison
function, have bounded orbits.



2004. május 23. –23:02

90 V. BERINDE: A COMMON FIXED POINT THEOREM FOR QUASI CONTRACTIVE TYPE MAPPINGS

References

[1] V. Berinde: A fixed point theorem for mappings with contracting orbital di-
ameters, Bul. Stiint. Univ. Baia Mare 10 (1994), 29–38.

[2] V. Berinde: Generalized Contractions and Applications (Romanian), Editura
Cub Press 22, Baia Mare, 1997.

[3] V. Berinde: Iterative Approximation of Fixed Points, Editura Efemeride, Baia
Mare, 2002.

[4] V. Berinde: A common fixed point theorem for discontinuous nonself map-
pings, Miskolc Math. Notes (to appear).

[5] F. E. Browder: On the convergence of successive approximations for nonlinear
functional equations, Indagat. Math. 30 (1968), 27–35.

[6] Lj. B. Ciric: On contraction type mappings, Math. Balkanika 1 (1971), 52–57.
[7] Lj. B. Ciric: A generalization of Banach’s contraction principle, Proc. Am.

Math. Soc. 45 (1974), 267–273.
[8] Lj. B. Ciric: Quasi contraction nonself mappings on Banach spaces, Bull. Acad.

Serbe Sci. Arts, Cl. Sci. Math. Natur. Sci. Math. 23 (1998), 25–31.
[9] R. Kannan: Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968),

71–76.
[10] B. K. Lahiri and P. Das: Fixed point of a Ljubomir Ciric’s quasi-contraction

mapping in a generalized metric space, Publ. Math. Debrecen 61(3{4)

(2002), 589–594.
[11] V. Rakocevic: Quasi contraction nonself mappings on Banach spaces and

common fixed point theorems, Publ. Math. Debrecen 58(3) (2001), 451–
460.

[12] B. E. Rhoades: Contractive definitions and continuity, Contemporay Math. 72

(1988), 233–245.
[13] I. A. Rus: Generalized Contractions and Applications, Cluj University Press,

Cluj-Napoca, 2001.
[14] T. Zamfirescu: Fix point theorems in metric spaces, Arch. Math. (Basel) 23

(1972), 292–298.
[15] W. Walter: Remarks on a paper by F. Browder about contraction, Nonlinear

Anal. TMA 5 (1981), 21–25.

Vasile Berinde

Department of Mathematics and Computer Science
North University of Baia Mare
Victorie1 76
430072 Baia Mare
Romania
vasile_berinde@yahoo.com


