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Abstract. A convergence theorem of Rhoades regarding the approximation of fixed points
of some quasi-contractive operators in uniformly convex Banach spaces using the Mann
iterative procedure, is extended to arbitrary Banach spaces. The conditions on the param-
eters {αn} that define the Mann iteration are also weakened. Our result extends many
other fixed point theorems in literature.
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1. Introduction

In the last four decades, numerous papers were published on the iterative
approximation of fixed points of self and nonself contractive type operators
in metric spaces, Hilbert spaces or several classes of Banach spaces, see for
example the recent monograph [1] and the references therein. While for
strict contractive type operators, the Picard iteration is usually used to ap-
proximate the (unique) fixed point, see e.g. [1], [15], [23], [24], for operators
satisfying slightly weaker contractive type conditions, instead of Picard iter-
ation, which does not generally converge, it was necessary to consider other
fixed point iteration procedures. The Krasnoselskij iteration [16], [6], [13],
[14], the Mann iteration [17], [9], [18] and the Ishikawa iteration [11] are
certainly the most studied of these fixed point iteration procedures, see [1].

Let E be a normed linear space and T : E → E a given operator. Let
x0 ∈ E be arbitrary and {αn} ⊂ [0, 1] a sequence or real numbers.
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The sequence {xn}
∞

n=0 ⊂ E defined by

xn+1 = (1 − αn)xn + αnTxn , n = 0, 1, 2, . . . (1)

is called the Mann iteration or Mann iterative procedure, in light of [17].
The sequence {xn}

∞

n=0 ⊂ E defined by

{

xn+1 = (1 − αn)xn + αnTyn , n = 0, 1, 2, . . .

yn = (1 − βn)xn + βnTxn , n = 0, 1, 2, . . . ,
(2)

where {αn} and {βn} are sequences of positive numbers in [0, 1], and x0 ∈ E
arbitrary, is called the Ishikawa iteration or Ishikawa iterative procedure, due
to [11].

Remark 1. For αn = λ (constant), the iteration (1) reduces to the so
called Krasnoselskij iteration, while for αn ≡ 1 we obtain the Picard iteration

or method of successive approximations, as it is commonly known, see [1].
Obviously, for βn ≡ 0 the Ishikawa iteration (2) reduces to (1).

The classical Banach’s contraction principle is one of the most useful
results in fixed point theory. In a metric space setting it can be briefly stated
as follows.

Theorem 1.1. Let (X, d) be a complete metric space and T : X −→ X a

strict contraction, i.e., a map satisfying

d(Tx, Ty) ≤ a d(x, y) , (3)

for all x, y ∈ X, where 0 ≤ a < 1 is constant. Then:

(p1) T has a unique fixed point p in X;

(p2) The Picard iteration {xn}
∞

n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (4)

converges to p, for any x0 ∈ X.

Note. A map satisfying (p1) and (p2) is said to be a Picard operator, see
Rus [22].

Theorem 1.1, together with its direct generalizations have many appli-
cations in solving nonlinear equations, but suffer from one drawback - the
contractive condition (3) forces T be continuous on X.
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It is then natural to ask if there exist contractive conditions which do not
imply the continuity of T . This was answered in the affirmative by R. Kannan
[12] in 1968, who proved a fixed point theorem which extends Theorem B
to mappings that need not be continuous, by considering instead of (3) the
next condition: there exists b ∈

(

0, 1

2

)

such that

d(Tx, Ty) ≤ b [d(x, Tx) + d(y, Ty)] , for all x, y ∈ X. (5)

Example 1.1. Let X = R, the set of real numbers with the usual norm,
and T : R → R, given by Tx = 0, if x ∈ (−∞, 2] and Tx = −1

2
, if x > 2.

Then T is not continuous on R and satisfies condition (5) with b = 1

5
.

Following Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point theorems for various classes of contractive type conditions that
do not require the continuity of T , see for example, Rus [22], and references
therein. One of them, actually a sort of dual of Kannan fixed point theorem,
due to Chatterjea [7], is based on a condition similar to (5): there exists
c ∈

(

0, 1

2

)

such that

d(Tx, Ty) ≤ c
[

d(x, Ty) + d(y, Tx)
]

, for all x, y ∈ X. (6)

It is known, see [20], that (3) and (5), (3) and (6), respectively, are
independent contractive conditions.

In 1972, Zamfirescu [25] obtained a very interesting fixed point theorem,
by combining (3), (5) and (6).

Theorem 1.2. Let (X, d) be a complete metric space and T : X −→ X a

map for which there exist the real numbers a, b and c satisfying 0 ≤ a < 1,
0 ≤ b, c < 1/2 such that for each pair x, y in X, at least one of the following

is true:
(z1) d(Tx, Ty) ≤ a d(x, y);

(z2) d(Tx, Ty) ≤ b
[

d(x, Tx) + d(y, Ty)
]

;

(z3) d(Tx, Ty) ≤ c
[

d(x, Ty) + d(y, Tx)
]

.
Then T is a Picard operator.

One of the most general contraction condition for which the map satisfy-
ing it is still a Picard operator, has been obtained by Ciric [8] in 1974: there
exists 0 ≤ h < 1 such that for all x, y ∈ X,

d(Tx, Ty) ≤ h · max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

. (7)
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Remarks. A mapping satisfying (7) is commonly called quasi-contraction.
It is obvious that each of the conditions (5), (6) and (z1)-(z3) implies (7);
There exist many other fixed point theorems based on contractive con-

ditions of this type, see for example Rhoades [20], [21] and the monographs
Berinde [1], Rus [24].

An operator T which satisfies the contractive conditions in Theorem 1.3
will be called a Zamfirescu operator (alternatively, we shall say that T sat-
isfies condition Z, see Rhoades [18]). Obviously, a Zamfirescu operator is
generally not continuous, see Example 1.1.

The class of Zamfirescu operators T is one of the most studied class of
quasi-contractive type operators, for which all important fixed point itera-
tion procedures, i.e., Picard [25], Mann [18] and Ishikawa [19] iterations, are
known to converge to the unique fixed point of T . Zamfirescu showed in [25]
that an operator satisfying condition Z has a unique fixed point that can be
approximated using the Picard iteration. Later, Rhoades [18], [19] proved
that the Mann and Ishikawa iterations can also be used to approximate fixed
points of Zamfirescu operators.

The class of operators satisfying condition Z is independent of the class of
strictly (strongly) pseudocontractive operators, extensively studied by several
authors in the last years, see Rhoades [18]. For the case of pseudocontractive
type operators, the pioneering convergence theorems, due to Browder [5] and
Browder and Petryshyn [6], established in Hilbert spaces, were successively
extended to more general Banach spaces and to weaker conditions on the
parameters that define the fixed point iteration procedures, as well as to
several classes of weaker contractive type operators.

For a recent survey and a comprehensive bibliography, we refer to the
author’s monograph [1].

The following result was obtained by Rhoades ([18], Theorem 4).

Theorem 1.3. Let E be a uniformly convex Banach space, K a closed convex

subset of E and T : K → K a Zamfirescu operator. Let {xn}
∞

n=0 be defined

by (1) and x0 ∈ K, with {αn} satisfying

(i) α0 = 1; (ii) 0 < αn < 1 for n ≥ 1; (iii)
∞
∑

n=1

αn(1 − αn) = ∞.

Then {xn}
∞

n=0 converges strongly to the fixed point of T .

The proof of Theorem 1.3 in [18] is based on a Lemma in Groetsch [9].
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The main aim of this paper is to extend Theorem 1.3 from uniformly
convex Banach spaces to arbitrary Banach spaces and also to Mann iterations
defined by weaker assumptions on the sequence {αn}.

2. Main result

Theorem 2.1. Let E be an arbitrary Banach space, K a closed convex subset

of E, and T : K → K an operator satisfying condition Z. Let {xn}
∞

n=0 be

defined by (1) and x0 ∈ K, with {αn} ⊂ [0, 1] satisfying

(iv)
∞

∑

n=0

αn = ∞ .

Then {xn}
∞

n=0 converges strongly to the fixed point of T .

Proof. By Theorem 1.2, we known that T has a unique fixed point in K.
Call it p and consider x, y ∈ K.

At least one of (z1), (z2) and (z3) is satisfied. If (z2) holds, then

‖Tx − Ty‖ ≤ b
[

‖x − Tx‖ + ‖y − Ty‖
]

≤

≤ b
{

‖x − Tx‖ +
[

‖y − x‖ + ‖x − Tx‖ + ‖Tx − Ty‖
]

}

.

So

(1 − b)‖Tx − Ty‖ ≤ b‖x − y‖ + 2b‖x − Tx‖ ,

which yields (since 0 ≤ b < 1)

‖Tx − Ty‖ ≤
b

1 − b
‖x − y‖ +

2b

1 − b
‖x − Tx‖ . (8)

If (z3) holds, then similarly we get

‖Tx − Ty‖ ≤
c

1 − c
‖x − y‖ +

2c

1 − c
‖x − Tx‖ . (9)

If we denote

δ = max

{

a,
b

1 − b
,

c

1 − c

}

, (10)



38 Vasile Berinde

then we have 0 ≤ δ < 1 and, in view of (z1), (8) and (9) it follows that the
inequality

‖Tx − Ty‖ ≤ δ‖x − y‖ + 2δ‖x − Tx‖ (11)

holds, for all x, y ∈ K.
Let {xn}

∞

n=0 be the Mann iteration (1), with x0 ∈ K arbitrary. Then

‖xn+1 − p‖ =
∥

∥(1 − αn)xn + αnTxn − (1 − αn + αn)p
∥

∥ =

=
∥

∥(1 − αn)(xn − p) + αn(Txn − p)
∥

∥ ≤

≤ (1 − αn)‖xn − p‖ + αn‖Txn − p‖ . (12)

Take x := p and y := xn in (11) to obtain

‖Txn − p‖ ≤ δ · ‖xn − p‖,

which together with (12) yields

‖xn+1 − p‖ ≤
[

1 − (1 − δ)αn

]

‖xn − p‖ , n = 0, 1, 2, . . . . (13)

Inductively we get

‖xn+1 − p‖ ≤
n

∏

k=0

[

1 − (1 − δ)αk

]

· ‖x0 − p‖ , n = 0, 1, 2, . . . . (14)

As δ < 1, αk ∈ [0, 1] and
∞
∑

k=0

αk = ∞, it results that

lim
n→∞

n
∏

k=0

[

1 − (1 − δ)αk

]

= 0 ,

which by (14) implies
lim

n→∞

‖xn+1 − p‖ = 0 ,

i.e., {xn}
∞

n=0 converges strongly to p. �

Remarks.

1) Condition (iv) in our Theorem 2.1 is more relaxed than conditions (i)
- (iii) in Theorem 1.3. Indeed, in view of

0 < αk(1 − αk) < αk,



A convergence theorem for Mann iteration 39

valid for all αk satisfying (i) - (ii), condition (iii) implies (iv).
There also exist values of {αn}, e.g., αn ≡ 1, such that (iv) is satisfied but
(iii) is not;

2) Since the contractive condition of Kannan (5) is a special case of that of
Zamfirescu, Theorems 2 and 3 of Kannan [13] are special cases of Theorem 2.1
or Theorem 1.3 in this paper, with αn = 1/2. Theorem 3 of Kannan [14] is the
special case of Theorem 2.1 or Theorem 1.3 with αn = λ, 0 < λ < 1. However,
note that all the results of Kannan [13], [14] are obtained in uniformly Banach
spaces, like Theorem 1.3;

3) Because of the more restrictive assumptions (i) - (ii), the convergence
of Picard iteration cannot be obtained as a particular case of Theorem 1.3,
but it can be obtained by our theorem Theorem 2.1, taking αn = 1, due to
the more natural assumption (iv);

4) By Theorem 2.1 we can obtain, as a particular case, a convergence
theorem for Mann iteration in the class of operators that satisfy a contractive
condition of the form (6);

5) The stability of the Mann iteration for Zamfirescu operators was stud-
ied in [10].

Conclusions. Our Theorem 2.1 improves Theorem 4 in Rhoades [18] by
extending it from uniformly convex Banach spaces to arbitrary Banach spaces
and simultaneously by weakening the assumptions on the sequence {αn} that
defines the Mann iteration. Moreover, many other results in literature are
also extended in this way, e.g.:

1) The convergence theorems of two mean value fixed point iteration
procedures for Kannan operators [13], [14] are extended to the larger class
of Zamfirescu operators and simultaneously from uniformly convex Banach
spaces to arbitrary Banach spaces;

2) The fixed point theorem of Chatterjea is extended from the Picard
iteration to the Mann iteration, which also contains, as a particular case, the
corresponding convergence theorem for Krasnoselskij iteration;

3) While the convergence of Picard iteration in the class of Zamfirescu
operators cannot be deduced by Rhoades’ Theorem 1.3, our main result also
include, as a particular case, the convergence of both Picard and Krasnosel-
skij iterations.
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