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Abstract. It is shown that some Newton type iterative methods
converge to the unique solution of the scalar nonlinear equation
f(x) = 0, under weak smoothness conditions, involving only the
function f and its first derivative f ′.

1. Preliminaries

When modelling a certain physical phenomenon, we are often led
to solve a certain nonlinear equation for which we do not have exact
methods. So, we need to apply an appropriate iterative method. New-
ton’s method or Newton-Raphson method, as it is generally called in
the case of scalar equations f(x) = 0, is one of the most used iterative
procedures for solving such nonlinear equations. It is defined by the
iterative sequence

xn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0, (1)

under appropriate assumptions on f and its first derivatives. Notice
that there is a close connection between Newton type iterative methods
and fixed point theory, in the sense that (1) can be also viewed as the
sequence of successive approximations of the Newton iteration function

G(x) = x−
f(x)

f ′(x)
,

and moreover, under appropriate conditions, α is a solution of the
equation f(x) = 0 if and only if α is a fixed point of the iteration
function G.

There exist several convergence theorems in literature for the New-
ton’s method, see for example [13], [14], [16], which, in order to ensure a
quadratic convergence for the iterative process (1), are requiring strong
smoothness assumptions, that involve f, f ′ and f ′′. These theorems
usually also provide appropriate error estimates.

Theorem 1. ([13]) Let f : [a, b] → R, a < b, be a function such that
the following conditions are satisfied
1) f(a) f(b) < 0; 2) f ∈ C2[a, b] and f ′(x) f ′′(x) ≠ 0, x ∈ [a, b];
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Then the sequence {xn}, defined by (1) and x0 ∈ [a, b], converges to
α, the unique solution of f(x) = 0 in [a, b], and the following estimation

|xn − α| ≤
M2

2m1
|xn − xn−1| , n ≥ 1, (2)

holds, where

m1 = min
x∈[a,b]

|f ′(x)| and M2 = max
x∈[a,b]

|f ′′(x)| .

For concrete applications, Theorem 1 is widely used but there exist
more general results, based on weaker smoothness conditions. We state
here such a result, due to Ostrowski ([15], Theorem 7.2, pp. 60), based
on weaker conditions on f but still involving the second derivative f ′′.

Theorem 2. ([15]) Let f(x) be a real function of the real variable x,
f(x0)f ′(x0) ≠ 0, and put h0 = −f(x0)/f ′(x0), x1 = x0 + h0.

Consider the interval I0 = [x0, x0 + 2h0] and assume that f ′′(x)
exists in I0, that max

x∈I0
|f ′′(x)| = M2 and

2 |h0|M2 ≤ |f ′(x0)| .

Then the sequence {xn} given by (1) lie in I0 and xn → α (n → ∞),
where α is the unique zero of f in I0.

The smoothness assumptions in Theorem 2 are still very sharp, as
shown by the next Example.

Example 1. ([2]) Let f : [−1, 1] → R be given by f(x) = −x2 +2x, if
x ∈ [−1, 0), and f(x) = x2+2x, if x ∈ [0, 1]. The Newton iteration (1)
converges to the unique solution of f(x) = 0 in [−1, 1] but Theorem 2
cannot be applied, because f ′′ does not exist in 0 ∈ I0 = [−1, 1].

In a series of papers [1] - [11], the last author obtained more general
convergence theorems for what was called there the extended Newton’s
method, for both scalar equations ([1] - [8], [10] - [11]) and n-dimensional
equations [9], theorems that can be applied to weakly smooth functions,
including the function in the previous example. The term extended
Newton method was adopted in view of the fact that the iterative pro-
cess (1) has been extended from [a, b] to the whole real axis R, in order
to cover possible overflowing of [a, b] at a certain step. A sample scalar
variant of these results is contained in the following theorem.

Theorem 3. ([4]-[5]) Let f : [a, b] → R, a < b, be a function such that
the following conditions are satisfied
(f1) f(a) f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) ≠ 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

|f ′(x)| and M = max
x∈[a,b]

|f ′(x)| . (3)
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Then the Newton iteration {xn}, defined by (1) and x0 ∈ [a, b], con-
verges to α, the unique solution of f(x) = 0 in [a, b], and the following
estimation

|xn − α| ≤
M

m
|xn − xn+1| , n ≥ 0, (4)

holds.

A slightly more general variant of Theorem 3 has been obtained in
([4], Theorem 5), by replacing condition (f3) by the next one

(f ′

3) 2m ≥ M.

All proofs in [2], [4] - [7] are based on a rather classical technique,
which focuses on the behavior of the Newton sequence (1). In an other
paper [3], without large circulation, the last author succeeded to prove
Theorem 3 using an elegant fixed point argument.

Very recently, Sen at all [17] have extended Theorem 3 to the case
of a Newton-like iteration of the form

xn+1 = xn −
2f(xn)

f ′(xn) +M1f(x)
, n ≥ 0, (5)

where M1f(x) = sgn f ′(x) ·M , with M defined by (3).
This result was then extended by Sen et all [18] to the n-dimensional

case. In both cases an extended Newton-like algorithm was used.
In a very recent paper [12], we obtained a convergence theorem for

the process (5), by means of a fixed point argument, under the same
general assumptions like those in Theorem 3, that involve only f and
its first derivative f ′.

It is the main aim of this paper to obtain, by using a similar
technique of proof, a unitary convergence theorem for several iterative
Newton type methods like regula falsi method, the modified Newton’s
method or Steffensen’s method.

2. The convergence theorem

Theorem 4. Let f : [a, b] → R (a, b ∈ R, a < b), be a function such
that the following conditions are satisfied
(f1) f(a) f(b) < 0; (f2) f ∈ C1[a, b] and f ′(x) ≠ 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

|f ′(x)| and M = max
x∈[a,b]

|f ′(x)| .

Assume g : [a, b] → R satisfies the following conditions

(g1) g ∈ C[a, b], g(x) > 0, x ∈ [a, b]; (g2) max
x∈[a,b]

g(x) ≤
2m

M
;

(g3) The sequence {xn} given by

xn+1 = xn −
f(xn)

f ′(xn)
g(xn), n ≥ 0, (6)

remains in [a, b], for all x0 ∈ [a, b].
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Then the Newton type iteration {xn} converges to α, the unique
solution of f(x) = 0 in [a, b], and the following stopping inequality

|xn − α| ≤
M

km
|xn − xn+1| , n ≥ 0, (7)

holds, where k = min
x∈[a,b]

g(x).

Proof. By (f1) and (f2) it follows that the equation f(x) = 0 has a
unique solution α in (a, b). Since f(α) = 0, we get

xn+1 − α = xn − α−
f(xn)− f(α)

f ′(xn)
g(xn), n ≥ 0,

which by the mean value theorem yields

xn+1 − α =

[

1−
f ′(cn)

f ′(xn)
g(xn)

]

(xn − α), n ≥ 0, (8)

where cn = α + θ(xn − α), 0 < θ < 1.
In a similar way we obtain

xn+1 − xn =
f ′(cn)

f ′(xn)
g(xn)(xn − α), n ≥ 0. (9)

Using (f2), it results that f ′ preserves sign on [a, b]. By (g1) and (g2)
we then get

1−
f ′(cn)

f ′(xn)
g(xn) < 1, n ≥ 0 (10)

and
f ′(cn)

f ′(xn)
g(xn) ≤ Mg(xn), n ≥ 0

which leads to the conclusion that

1−
f ′(cn)

f ′(xn)
g(xn) > −1, n ≥ 0. (11)

If we denote

c2 = min
x∈[a,b]

[

1−
M

m
g(x)

]

,

then we have that c2 > −1. Therefore, if we denote

A = max

{

|c2| ,

∣

∣

∣

∣

1−
mk

M

∣

∣

∣

∣

}

then it follows that 0 ≤ A < 1. Now, by combining (8), (10) and (11),
we obtain

|xn+1 − α| ≤ A |xn − α| , n ≥ 0,

which by induction yields

|xn+1 − α| ≤ An |x0 − α| , n ≥ 0,

an inequality which shows that {xn} converges to α.
We now use (9) and immediately get the desired estimation (7). !
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Note that, we did not use explicitly any fixed point argument in
proving Theorem 4. However, from the above proof it follows that the
Newton type iteration function is a quasi-contraction, see [12].

3. Particular cases

1) If g ≡ 1, then by Theorem 4 we obtain a convergence theorem
for the classical Newton-Raphson method, under weak differentiability
conditions. Note that, under such weak differentiability assumptions,
it is no guarantee that the Newton type sequence {xn} given by (6)
lies in [a, b] at any step n. For this reason we had to consider the
assumption g3 in Theorem 4.

However, in the papers [1], [2], [4], [5], [7]-[10], all dealing with
Newton’s method, it was not necessarily to assume explicitly that the
Newton iteration lies in the interval [a, b] at each step, even if we worked
under the same weak smoothness conditions.

The explanation comes from the fact that we actually used the so
called extended Newton method, which is actually the usual Newton’s
method extended to the whole real axis, and which was able, each time
a certain iteration went out from [a, b], to send it back in [a, b] at the
very next step.

2) If

g(x) =
f ′(x)

f(x)− f(b)
(x− b),

then by Theorem 4 we obtain a convergence theorem under weak
smoothness conditions for the regula falsi method.

3) If

g(x) =
f ′(x0)

f(x)
,

where x0 is the first approximation, then by Theorem 4 we obtain a
convergence theorem under weak smoothness conditions for the modi-
fied Newton method.

4) If

g(x) =
f(x)f ′(x)

f(x+ f(x))− f(x)
,

then by Theorem 4 we obtain a convergence theorem under weak
smoothness conditions for the Steffensen’s method.
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[12] Berinde, V., Mădălina Păcurar, A fixed point proof of the convergence of a
Newton-type method, Fixed Point Theory, 7 (2006), No. 2, 235-244

[13] Demidovich, B. P., Maron, A. I., Computational Mathematics, MIR Publishers,
Moscow, 1987

[14] Ortega, J., Rheinboldt, W.C., Iterative solution of nonlinear equations in sev-
eral variables, Academic Press, New York, 1970

[15] Ostrowski, A., Solution of equations and systems of equations, Academic Press,
New York, 1966

[16] Kantorovich, L. V.; Akilov, G. P., Functional analysis, Second edition, Perga-
mon Press, Oxford-Elmsford, New York, 1982

[17] Sen, R.N., Biswas, A., Patra, R., Mukherjee, S., An extension on Berinde’s
criterion for the convergence of a Newton-like method, Bull. Calcutta Math.
Soc. (to appear)

[18] Sen, R.N., Mukherjee, S., Patra, R., On the convergence of a Newton-like
method in R and the use of Berinde’s exit criterion, Intern. J. Math. Math. Sc.
Vol. 2006 (2006), Article ID 36482, 9 pages; doi:10.1155/IJMMS/2006/36482

Department of Statistics, Forecast and Mathematics
Faculty of Economics and Bussiness Administration
”Babes-Bolyai” University of Cluj-Napoca
58-60 T. Mihali St., 400591 Cluj-Napoca ROMANIA
E-mail: madalina pacurar@yahoo.com;

Department of Mathematics and Computer Science
North University of Baia Mare
Victoriei 76, 430072 Baia Mare ROMANIA
E-mail: vberinde@ubm.ro; vasile berinde@yahoo.com;


