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Abstract

Let X be a Banach space, K a nonempty closed subset of X and let T, S : K → X
be two nonself almost contractions. In this paper, we prove the existence of coincidence
points and common fixed points of almost contractions T and S. The main result shows
that if S(K) is closed, the pair (T, S) has property (M ′) and T and S satisfy some
suitable conditions, then T and S have a unique common fixed point in K. This
theorem generalizes several fixed point theorems for nonself mappings and also extend
many great results in the fixed point theory of self mappings to the case on nonself
mappings. Also, we give an example to support the validity of our results.
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1 Introduction

A great number of the most important nonlinear problems of applied mathematics
reduce to finding a solution of a given equation which in turn may be reduced to searching
for the fixed points of a certain mapping or the common fixed points of two mappings. This
explains why the study of fixed points and common fixed points of mappings satisfying
some certain contractive conditions attracted many mathematicians and encouraged an
impressive output in the last four decades.

Most of the research in metric fixed point theory deals with single-valued self mappings
T : X → X and multi-valued self mappings T : X → P (X) satisfying a certain contraction
type condition, where X is a set endowed with a certain metric structure (metric space,
convex metric space, Banach space etc.). These results are mainly generalizations of the
Banach contraction principle [9], which can be shortly stated as follows.

Theorem 1. Let (X, d) be a complete metric space and T : X → X a contraction, i.e., a
map satisfying

d(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X, (1.1)

where 0 < α < 1 is a constant. Then T has a unique fixed point in X, say x∗, and the
Picard iteration {Tnx0} converges to x∗ for all x0 ∈ X (that is, T is a Picard operator).
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The Banach fixed point theorem is one of the most useful research works in nonlinear
analysis, and has many applications in solving nonlinear functional equations, optimiza-
tion problems, variational inequalities etc., by transforming them in the form of fixed point
problem. However, under the present form it has at least two drawbacks: first, the con-
traction condition (1.1) forces T to be continuous and, secondly, the condition T (X) ⊂ X
makes it not applicable to most of the nonlinear problems where the associated operator T
is actually a nonself operator.

This is the explanation why, in continuation and fulfillment to the plentiful fixed point
theory for self mappings, produced in the last 50 years, it was also a great and challenging
research topic to obtain fixed point theorems for nonself mappings.

In 1972, Assad and Kirk [8] extended Banach contraction mapping principle to nonself
multi-valued contraction mappings T : K → P (X) in the case (X, d) is a convex metric
space in the sense of Menger and K is a nonempty closed subset of X such that T maps ∂K
(the boundary of K) into K. Next, in 1976, by using an alternative and weaker condition, by
if T is metrically inward, Caristi [20] has shown that any nonself single-valued contraction
has a fixed point. Later, in 1978, Rhoades [35] proved a fixed point result in Banach spaces
for single-valued nonself mapping satisfying the following contraction condition:

d(Tx, Ty) ≤ λ max
{
d(x, y)

2
, d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

1 + 2λ

}
, (1.2)

for all x, y ∈ K, where 0 < λ < 1.
Notice that although the class of mappings satisfying (1.2) is large enough to include

some discontinuous mappings, it however does not include contraction mappings satisfying
(1.1) for 1

2 ≤ λ < 1.
A more general result, which also solved a very hard problem that was open for more

than 20 years, has been obtained by Ćirić [24], who considered instead of (1.2) the quasi-
contraction condition previously introduced and studied by himself in [23]:

d(Tx, Ty) ≤ λ max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} , (1.3)

for all x, y ∈ K, where 0 < λ < 1. More recently, Ćirić et al. [25] have considered the
following contraction condition which is more general than (1.2) and (1.3):

d(Tx, Ty) ≤ max {ϕ(d(x, y)), ϕ(d(x, Tx)), ϕ(d(y, Ty)), ϕ(d(x, Ty)), ϕ(d(y, Tx))} , (1.4)

for all x, y ∈ K, where ϕ : R+ → R+ is a certain comparison function.
For some other fixed point results for nonself mappings, see [4–7], [15], [32] and Problem

5 in [36].
Furthermore, the first author [10], introduced a new class of self mappings (usually

called weak contractions, almost contractions or Berinde operators) that satisfy a simple
but more general contraction condition that includes most of the conditions in Rhoades
classification [34]. The corresponding fixed point theorems, established mainly in [10], have
two important features that differentiate them from similar results in literature: 1) the
fixed points set of almost contractions is not a singleton, in general; and 2) the fixed points
of almost contractions can be obtained by means of Picard iteration, like in the case of
Banach contractions and, moreover, the error estimate is of the same form as in the case of
contraction mapping principle (this motivated the term of “almost contractions”).
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In 2010, V. Berinde [12] proved the existence of coincidence points and common fixed
points of noncommuting self almost contractions in metric spaces. Moreover, a method
for approximating the coincidence points or the common fixed points was also constructed.
These results generalized, extended and unified several clasical and very recent related
results in literature.

Next, in 2013, V. Berinde and M. Păcurar [17] obtained fixed point theorems for nonself
almost contractions. This result generalized several fixed point theorems for nonself map-
pings and also extended several important results in the fixed point theory of self mappings
to the case on nonself mappings.

Motivated by these works, by using the idea given by [12] and [17], the purpose of this
paper is to prove the existence of coincidence points and common fixed points of nonself
almost contractions in a nonempty closed subset of a Banach space. Our results extend
the results in [17] and several associated research works. In addition, we also illustrate an
example to support our theorems.

2 Preliminaries

We can see that any contraction mapping satisfying (1.1) is continuous. In 1968,
Kannan [30] proved a fixed point theorem which extends Theorem 1 to mappings that need
not be continuous on X (but are continuous at their fixed point).

From Kannan’s theorem, a lot of research works were devoted to getting fixed point or
common fixed point theorems for various classes of contractive type conditions that do not
require the continuity of T .

For Chatterjea [21] is based on a condition similar to Kannan fixed point theorem.
On the other hand, Zamfirescu [41], in 1972, obtained a very interesting fixed point

theorem which gather together all three contractive conditions mentioned above, that is,
condition (1.1) of Banach, condition of Kannan and condition of Chatterjea, in a rather
unexpected way: if T is such that, for any pair x, y ∈ X, at least one of the conditions
(1.1), Kannan’s condition and Chatterjea’s condition holds, then T is a Picard operator.
Notice that considering conditions (1.1), Kannan’s condition and Chatterjea’s condition all
together is not trivial since, as shown later by Rhoades [34], the contractive conditions (1.1),
Kannan’s condition and Chatterjea’s condition are independent of each other.

These fixed point results were then complemented by coresponding results about the
existence of common fixed points. Then in 1976, Jungck [28] proved a common fixed point
theorem for commuting maps, so extending Theorem 1. In the same spirit, recently M. Ab-
bas and G. Jungck [1] obtained coincidence and common fixed point theorems for the class
of Banach contractions, Kannan contractions and Chatterjea contractions, respectively, in
cone metric spaces, without making use of the commutative property, but based on the so
called concept of weakly compatible mappings, introduced by Jungck [29].

In 2009, V. Berinde [11] proved a common fixed point version of Zamfirescu’s fixed point
theorem in metric spaces, including also the error and rate of convergence estimates.

However, Zamfirescu’s fixed point theorem [41] is a particular case of the next fixed
point theorem [10].

Theorem 2. ([10, Theorem 2.1]) Let (X, d) be a complete metric space and T : X → X an
almost contraction, that is, a mapping for which there exist a constant δ ∈ [0, 1) and some
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L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx), for all x, y ∈ X. (2.1)

Then

1) Fix(T ) = {x ∈ X : Tx = x} 6= ∅ ;

2) For any x0 ∈ X, Picard iteration {xn}∞n=0, xn = Tnx0, converges to x∗ ∈ Fix(T ) ;

3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1), n = 0, 1, 2, ...; i = 1, 2, ... (2.2)

Let us recall that a mapping T having properties 1) and 2) above is said to be a weakly
Picard operator.

In 2010, the main results of paper [12] generalized Theorem 2 to coincidence points and
common fixed points of two noncommuting self almost contractions in metric spaces.

In the same year, V. Berinde [13] extended paper [11] by studying a common fixed point
version of Zamfirescu’s fixed point theorem in cone metric spaces.

Later, the same author [14] investigated the existence of coincidence points and common
fixed points of two noncommuting self almost contractions in cone metric spaces.

For some other fixed point, coincidence point and common fixed point theorems, see
also [2], [3], [16], [18], [19], [26], [27], [31], [33], [37], [38], [39] and [40].

Moreover, recently V. Berinde and M. Păcurar [17] extended Theorem 2 to the case of
nonself almost contractions. This result extended several important fixed point theorems
of Banach [9], Kannan [30], Chatterjea [21], Zamfirescu [41] and Ćirić [22].

Therefore the aim of this paper is to extend and unify all the results in [17, Theorem
3.3 and Theorem 3.6] and several other related results in literature, by proving general
results dealing with the existence and the uniqueness of coincidence points and common
fixed points of two nonself almost contractions.

By using a concept of [1] and [29] we give two definitions and a result that will be used
in our main results.

Definition 1. Let X be a metric space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings. If there exists x ∈ K such that Tx = Sx, then x is called
a coincidence point of T and S, and y = Tx = Sx is called a point of coincidence of T and
S. If Tx = Sx = x, then x is called a common fixed point of T and S.

Definition 2. Let X be a metric space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings. The pair of mappings T and S is said to be weakly
compatible if they commute at their coincidence points.

Proposition 1. Let X be a metric space, K a nonempty closed subset of X and let T and
S : K → X be weakly compatible nonself mappings. If T and S have a unique point of
coincidence y ∈ K, then y is the unique common fixed point of T and S.

Proof. Similarly to Proposition 1.4 in [1].
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3 Main Results

In this section, we prove the existence of coincidence points and common fixed point
of nonself almost contractions T and S.

Let X be a Banach space, K a nonempty closed subset of X and T, S : K → X two
nonself mappings. Let S(K) be a closed subset of X. Let XST = {x ∈ K | Tx /∈ S(K)}.
For x ∈ XST , we can always choose y ∈ ∂(S(K)) such that

y = (1− λ)Sx+ λTx, (0 < λ < 1) (3.1)

and denote by Yx the set of all points y ∈ ∂(S(K)) satisfying (3.1). We see that

d(Sx, Tx) = d(Sx, y) + d(y, Tx).

where we denoted d(x, y) =‖ x− y ‖.
In general, the set Yx of points satisfying condition (3.1) may contain more than one

element. In this circumstance we will need the following concept.

Definition 3. Let X be a Banach space, K a nonempty closed subset of X and T, S : K →
X two nonself mappings. Let S(K) be a closed subset of X. Let XST = {x ∈ K | Tx /∈
S(K)}. For x ∈ XST , let y ∈ ∂(S(K)) be the corresponding elements given by (3.1). If, for
any x ∈ XST , the inequality

d(Sy′, T y′) ≤ d(Sx, Tx) (3.2)

is satisfied for at least one point y ∈ Yx where y = Sy′, with y′ ∈ K, then we say that the
pair (T, S) has property (M ′).

Theorem 3. Let X be a Banach space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings for which there exist two constants δ ∈ (0, 1) and L ≥ 0
such that

d(Tx, Ty) ≤ δ · d(Sx, Sy) + Ld(Sy, Tx), for all x, y ∈ K. (3.3)

If S(K) is closed, the pair (T, S) has property (M ′) and satisfies the condition: for any
x ∈ K,

if Sx ∈ ∂(S(K)), then Tx ∈ S(K), (3.4)

then T and S have a point of coincidence in X.

Proof. Let y ∈ ∂(S(K)). Then there is x0 ∈ K such that y = Sx0. By (3.4) we have
Tx0 ∈ S(K). Then there is x1 ∈ K such that Sx1 = Tx0. Next, if Tx1 ∈ S(K), then
there exists x2 ∈ K such that Sx2 = Tx1. If Tx1 /∈ S(K), by property (M ′) we can choose
y1 ∈ Yx1 such that y1 ∈ ∂(S(K)), y1 = Sx2 for some x2 ∈ K which

d(Sx2, Tx2) ≤ d(Sx1, Tx1)

and

y1 = Sx2 = (1− λ1)Sx1 + λ1Tx1, for some λ1 ∈ (0, 1).

Note that Sx2 6= Tx1. Continuing in this manner, we get a sequence {Sxn} such that



56 Coincidence point theorem and common fixed point theorem...

(i) Sxn = Txn−1, if Txn−1 ∈ S(K);

(ii) Sxn = (1− λn−1)Sxn−1 + λn−1Txn−1 ∈ ∂(S(K)) (0 < λn−1 < 1), if Txn−1 /∈ S(K).

Let us denote

P = {Sxk ∈ {Sxn} | Sxk = Txk−1}

and

Q = {Sxk ∈ {Sxn} | Sxk 6= Txk−1}.

We see that {Sxn} ⊂ S(K) and that, if Sxk ∈ Q, then both Sxk−1 and Sxk+1 belong to
the set P . Furthermore, by virtue of (3.4), we cannot have two consecutive terms of {Sxn}
in the set Q (but we can have two consecutive terms of {Sxn} in the set P ).

We claim that {Sxn} is a Cauchy sequence. To prove this, we have to discuss the
following three distinct cases: Case I. Sxn, Sxn+1 ∈ P ; Case II. Sxn ∈ P, Sxn+1 ∈ Q;
Case III. Sxn ∈ Q, Sxn+1 ∈ P ;

Case I. Sxn, Sxn+1 ∈ P .
In this case we get Sxn = Txn−1, Sxn+1 = Txn and by (3.3) we have

d(Sxn, Sxn+1) = d(Txn−1, Txn) ≤ δ · d(Sxn−1, Sxn) + Ld(Sxn, Txn−1)

that is,

d(Sxn+1, Sxn) ≤ δ · d(Sxn, Sxn−1). (3.5)

Case II. Sxn ∈ P, Sxn+1 ∈ Q.
In this case we get Sxn = Txn−1 but Sxn+1 6= Txn and

d(Sxn, Sxn+1) + d(Sxn+1, Txn) = d(Sxn, Txn).

Therefore

d(Sxn, Sxn+1) ≤ d(Sxn, Txn) = d(Txn−1, Txn)

and then by using (3.3) we obtain

d(Sxn, Sxn+1) ≤ d(Txn−1, Txn) ≤ δ · d(Sxn−1, Sxn) + Ld(Sxn, Txn−1)

= δ · d(Sxn, Sxn−1),

which satisfies again inequality (3.5).
Case III. Sxn ∈ Q, Sxn+1 ∈ P .
In this situation, we get Sxn−1 ∈ P . Since the pair (T, S) has property (M ′), it follows

that

d(Sxn, Sxn+1) = d(Sxn, Txn) ≤ d(Sxn−1, Txn−1).

Since Sxn−1 ∈ P , we get Sxn−1 = Txn−2 and by (3.3) we have

d(Txn−2, Txn−1) ≤ δ · d(Sxn−2, Sxn−1) + Ld(Sxn−1, Txn−2)

= δ · d(Sxn−2, Sxn−1),
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which yields that

d(Sxn, Sxn+1) ≤ δ · d(Sxn−2, Sxn−1). (3.6)

From above three cases, and (3.5) and (3.6), we obtain a sequence {Sxn} satisfying the
inequality

d(Sxn, Sxn+1) ≤ δ max{d(Sxn−2, Sxn−1), d(Sxn−1, Sxn)}, (3.7)

for all n ≥ 2. From (3.7), by induction, we can show that

d(Sxn, Sxn+1) ≤ δ[n/2] max{d(Sx0, Sx1), d(Sx1, Sx2)},

for all n ≥ 2, where [n/2] denotes the greatest integer not exceeding n/2.
Moreover, for m > n > N ,

d(Sxn, Sxm) ≤
∞∑

i=N

d(Sxi, Sxi−1) ≤ 2
δ[N/2]

1− δ
max{d(Sx0, Sx1), d(Sx1, Sx2)},

which yields that {Sxn} is a Cauchy sequence.
Since {Sxn} ⊂ S(K) and S(K) is closed, {Sxn} converges to some point x∗ in S(K).
Let {Sxnk

} ⊂ P be an infinite subsequence of {Sxn} (such a subsequence always exists).
Since x∗ ∈ S(K), there is p ∈ K such that Sp = x∗. We note that

d(Sp, Tp) ≤ d(Sp, Sxnk+1) + d(Sxnk+1, Tp) = d(Sp, Sxnk+1) + d(Txnk
, Tp)

and

d(Txnk
, Tp) ≤ δ · d(Sxnk

, Sp) + Ld(Sp, Txnk
),

hence, we have

d(Sp, Tp) ≤ (1 + L)d(Sp, Sxnk+1) + δ · d(Sxnk
, Sp), (3.8)

for all k ≥ 0. Taking k →∞ in (3.8), we obtain

d(Sp, Tp) = 0,

which shows that Sp = Tp, that is p is a coincidence point of T and S and x∗ is a point of
coincidence of T and S.

Theorem 4. Let X be a Banach space, K a nonempty closed subset of X and let T, S :
K → X be two nonself mappings satisfying (3.3) for which there exist a constant θ ∈ (0, 1)
and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θd(Sx, Sy) + L1d(Sx, Tx), for all x, y ∈ K. (3.9)

If S(K) is closed, the pair (T, S) has property (M ′) and satisfies the condition (3.4), then T
and S have a unique point of coincidence in X. Moreover, if T and S are weakly compatible
and a unique point of coincidence of T and S is in K, then T and S have a unique common
fixed point in K.
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Proof. By Theorem 3, T and S have a point of coincidence, say x∗ = Tp = Sp for some
p ∈ K. Now, let us show that T and S really have a unique point of coincidence. Suppose
there exists q ∈ K such that Tq = Sq. Then by (3.9) we have

d(Sq, Sp) = d(Tq, Tp) ≤ θd(Sq, Sp) + L1d(Sq, Tq) = θd(Sq, Sp),

So (1− θ)d(Sq, Sp) ≤ 0, which implies d(Sq, Sp) = 0, that is Sq = Sp = x∗. Hence T and
S have a unique point of coincidence, x∗.

Next, suppose that T and S are weakly compatible and x∗ ∈ K. By Proposition 1, it
follows that x∗ is a unique common fixed point of T and S.

Example 1. Let X be the set of real numbers with the usual norm, K = [0, 1] be the unit
interval and let T, S : [0, 1]→ R be given by

T (x) =


1
2x if x ∈ [0, 12 ),

− 1
2 if x = 1

2 ,
1
2x+ 1

6 if x ∈ ( 1
2 , 1]

and S(x) = 2
3x for all x ∈ [0, 1].

We see that S(K) = S([0, 1]) = [0, 23 ] ⊂ [0, 1] = K and S(K) is closed. Moreover,
T (K) = [0, 14 ) ∪ ( 5

12 ,
2
3 ] ∪ {− 1

2} and observe that x = 1
2 is only one point in XST and

T ( 1
2 ) = − 1

2 /∈ S(K) and S( 1
2 ) = 1

3 . We note that y = 0 ∈ ∂(S(K)) such that 0 =
(1− λ)S( 1

2 ) + λT ( 1
2 ), for some λ ∈ (0, 1). Furthermore, y = S(0) and |S(0)− T (0)| = 0 ≤∣∣S( 1

2 )− T ( 1
2 )
∣∣. Therefore the pair (T, S) has property (M ′).

We also note that S(0) = 0 and S(1) = 2
3 are only two points in ∂(S(K)) and we see

that T (0) = 0, T (1) = 2
3 ∈ S(K). Thus the pair (T, S) satisfies the condition (3.4).

Next, we show that T and S satisfy the condition (3.3). We will discuss the following
possible 8 cases.

Case 1) x, y ∈ [0, 12 ). Then Tx = 1
2x, Ty = 1

2y, Sx = 2
3x and Sy = 2

3y. Then

|Tx− Ty| =
∣∣∣∣12x− 1

2
y

∣∣∣∣ ≤ δ ∣∣∣∣23x− 2

3
y

∣∣∣∣+ L

∣∣∣∣23y − 1

2
x

∣∣∣∣ = δ |Sx− Sy|+ L |Sy − Tx| ,

where δ ≥ 3
4 and any L ≥ 0.

Case 2) x, y ∈ ( 1
2 , 1]. Then Tx = 1

2x+ 1
6 , Ty = 1

2y + 1
6 , Sx = 2

3x and Sy = 2
3y. Then

|Tx− Ty| =
∣∣∣∣12x+

1

6
− 1

2
y − 1

6

∣∣∣∣ =

∣∣∣∣12x− 1

2
y

∣∣∣∣ ≤ δ ∣∣∣∣23x− 2

3
y

∣∣∣∣+ L

∣∣∣∣23y − 1

2
x− 1

6

∣∣∣∣
= δ |Sx− Sy|+ L |Sy − Tx| ,

where δ ≥ 3
4 and any L ≥ 0.

Case 3) x ∈ [0, 12 ), y ∈ ( 1
2 , 1]. Then Tx = 1

2x, Ty = 1
2y+ 1

6 , Sx = 2
3x and Sy = 2

3y. We
note that

−2

3
≤ 1

2
x− 1

2
y − 1

6
< −1

6
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and

1

12
<

2

3
y − 1

2
x ≤ 2

3
.

It follows that

|Tx− Ty| =
∣∣∣∣12x− 1

2
y − 1

6

∣∣∣∣ ≤ 2

3

and

|Sy − Tx| =
∣∣∣∣23y − 1

2
x

∣∣∣∣ > 1

12
.

Then |Tx− Ty| ≤ 2
3 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 8 and δ ∈ (0, 1).

Case 4) x ∈ ( 1
2 , 1], y ∈ [0, 12 ). Then Tx = 1

2x+ 1
6 , Ty = 1

2y, Sx = 2
3x and Sy = 2

3y. We
note that

1

6
<

1

2
x+

1

6
− 1

2
y ≤ 2

3

and

−2

3
≤ 2

3
y − 1

2
x− 1

6
< − 1

12
.

It follows that

|Tx− Ty| =
∣∣∣∣12x+

1

6
− 1

2
y

∣∣∣∣ ≤ 2

3

and

|Sy − Tx| =
∣∣∣∣23y − 1

2
x− 1

6

∣∣∣∣ > 1

12
.

Then |Tx− Ty| ≤ 2
3 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 8 and δ ∈ (0, 1).

Case 5) x = 1
2 , y ∈ [0, 12 ). Then Tx = − 1

2 , Ty = 1
2y, Sx = 1

3 and Sy = 2
3y. Then

|Tx− Ty| =
∣∣∣∣−1

2
− 1

2
y

∣∣∣∣ < 3

4

and

|Sy − Tx| =
∣∣∣∣23y +

1

2

∣∣∣∣ ≥ 1

2
.

Hence |Tx− Ty| < 3
4 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 3

2 and δ ∈ (0, 1).
Case 6) x ∈ [0, 12 ), y = 1

2 . Thus Tx = 1
2x, Ty = − 1

2 , Sx = 2
3x and Sy = 1

3 . Then

|Tx− Ty| =
∣∣∣∣12x+

1

2

∣∣∣∣ < 3

4
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and

|Sy − Tx| =
∣∣∣∣13 − 1

2
x

∣∣∣∣ > 1

12
.

Hence |Tx− Ty| < 3
4 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 9 and δ ∈ (0, 1).

Case 7) x = 1
2 , y ∈ ( 1

2 , 1]. Thus Tx = − 1
2 , Ty = 1

2y + 1
6 , Sx = 1

3 and Sy = 2
3y.

Therefore

|Tx− Ty| =
∣∣∣∣−1

2
− 1

2
y − 1

6

∣∣∣∣ ≤ 7

6

and

|Sy − Tx| =
∣∣∣∣23y +

1

2

∣∣∣∣ > 5

6
.

Hence |Tx− Ty| ≤ 7
6 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 7

5 and δ ∈ (0, 1).
Case 8) x ∈ ( 1

2 , 1], y = 1
2 . Thus Tx = 1

2x + 1
6 , Ty = − 1

2 , Sx = 2
3x and Sy = 1

3 .
Therefore

|Tx− Ty| =
∣∣∣∣12x+

1

6
+

1

2

∣∣∣∣ ≤ 7

6

and

|Sy − Tx| =
∣∣∣∣13 − 1

2
x− 1

6

∣∣∣∣ > 1

12
.

Hence |Tx− Ty| ≤ 7
6 ≤ δ |Sx− Sy|+ L |Sy − Tx|, where L ≥ 14 and δ ∈ (0, 1).

By concluding all possible cases, we summarize that T and S satisfy (3.3) with δ = 3
4

and L = 14.
Hence by Theorem 3 we can conclude that T and S have a point of coincidence in

X. For this example, the points of coincidence of T and S are 0 = T (0) = S(0) and
2
3 = T (1) = S(1). We also see that 0 is a common fixed point of T and S.

Moreover, we can show that T and S do not satisfy the condition (3.9) because∣∣∣∣T (0)− T
(

1

2

)∣∣∣∣ =
1

2
≥ 1

3
θ = θ

∣∣∣∣S(0)− S
(

1

2

)∣∣∣∣+ L |S(0)− T (0)| ,

for any θ ∈ (0, 1) and L ≥ 0.

4 Particular Cases and Conclusions

Our main theorems extend the results of V. Berinde and M. Păcurar [17] as follows.
Let X be a Banach space, K a nonempty closed subset of X and T : K → X a nonself

mapping. If x ∈ K is such that Tx /∈ K, then we can always choose y ∈ ∂K such that

y = (1− λ)x+ λTx, (0 < λ < 1) (4.1)
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and denote by Y the set of all points y ∈ ∂K satisfying (4.1). We see that

d(x, Tx) = d(x, y) + d(y, Tx).

In general, the set Y of points satisfying condition (4.1) may contain more than one
element. In this circumstance we will need the following concept.

Definition 4. Let X be a Banach space, K a nonempty closed subset of X and T : K → X
a nonself mapping. Let x ∈ K with Tx /∈ K and let y ∈ ∂K be the corresponding elements
given by (4.1). If, for any such element x, the inequality

d(y, Ty) ≤ d(x, Tx) (4.2)

is satisfied for at least one point y ∈ Y , then we say that T has property (M).

Corollary 1. ( [17]) Let X be a Banach space, K a nonempty closed subset of X and
T : K → X a nonself almost contraction, that is, a mapping for which there exist two
constants δ ∈ [0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx), for all x, y ∈ K. (4.3)

If T has property (M) and satisfies Rothe’s boundary condition

T (∂K) ⊂ K, (4.4)

then T has a fixed point in K.

Proof. We take S = I, where I : K → K is the identity mapping. Then the inequality (4.3)
becomes (3.3), property (M) becomes property (M ′) and condition (4.4) becomes (3.4).
Therefore, by Theorem 3, T and S have a point of coincidence y in X. Thus, there exists
p ∈ K such that y = Tp = Sp = p. Hence T has a fixed point p in K.

Corollary 2. ( [17]) Let X be a Banach space, K a nonempty closed subset of X and
T : K → X a nonself almost contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0
such that

d(Tx, Ty) ≤ θd(x, y) + L1d(x, Tx), for all x, y ∈ K. (4.5)

If T has property (M) and satisfies Rothe’s boundary condition T (∂K) ⊂ K, then T has a
unique fixed point in K.

Proof. By taking S = I, where I : K → K is the identity mapping, all conditions of
Theorem 4 are satisfied. By Theorem 4, T and S have a unique common fixed point p in
K. Since S is an identity mapping, T has the unique fixed point p in K.

Moreover, the following Corollaries can be obtained directly from our main results.
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Corollary 3. Let X be a Banach space and let T, S : X → X be two mappings for which
there exist two constants δ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(Sx, Sy) + Ld(Sy, Tx), for all x, y ∈ X. (4.6)

If T (X) ⊂ S(X) and S(X) is a complete subspace of X, then T and S have a point of
coincidence in X.

Proof. The mappings T, S : X → X that satisfy (4.6) are the mappings that satisfy (3.3)
in Theorem 3 in the case K = X. Since S(X) is a complete subspace of X, S(X) is closed.
If T (X) ⊂ S(X), then it is easy to see that the pair (T, S) has property (M ′) and satisfies
the condition (3.4). Hence, by Theorem 3, T and S have a point of coincidence in X.

Corollary 4. Let X be a Banach space and let T, S : X → X be two mappings satisfying
(4.6) for which there exist a constant θ ∈ (0, 1) and some L1 ≥ 0 such that

d(Tx, Ty) ≤ θd(Sx, Sy) + L1d(Sx, Tx), for all x, y ∈ X. (4.7)

If T (X) ⊂ S(X) and S(X) is a complete subspace of X, then T and S have a unique point
of coincidence in X. Moreover, if T and S are weakly compatible, then T and S have a
unique common fixed point in X.

Proof. The mappings T, S : X → X that satisfy (4.6) and (4.7) are the mappings in
Theorem 4 that satisfy (3.3) and (3.9) in the case K = X. Since S(X) is a complete
subspace of X, S(X) is closed. If T (X) ⊂ S(X), then the pair (T, S) has property (M ′)
and satisfies the condition (3.4). Hence, by Theorem 4, T and S have a unique point of
coincidence in X.

Moreover, if T and S are weakly compatible, by Theorem 4, T and S have a unique
common fixed point in X.

Conclusions: Our main results are more general than that of [17] and other related
results existing in literature. The proof of Theorem 3 is principally based on the hypothesis
that the pair (T, S) has property (M ′) and satisfies the condition (3.4). These facts lead to
the following open problems.

Open Problems:

1. We note that the property (M ′) is a sufficient condition for Theorem 3.
Question: Is it a necessary condition?

2. It is also noted that all results in this paper are considered in a Banach space.
Question: Can we extend our study in other spaces, such as a convex metric space?
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[24] Lj. B. Ćirić, Quasi contraction non-self mappings on Banach spaces, Bull. Cl. Sci.
Math. Nat. Sci. Math. 23, 25–31 (1998).
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