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THE GENERALIZED RATIO TEST REVISITED

Vasile BERINDE

Abstract. A new extension of the generalized ratio test (1]- 8}, [8] s
“tained by taking over an ideea from [8], where the ratio tny1/un is placed
+ the ratio Unir/un, With k fixed, k> 1.
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1. INTRODUCTION

A generalization of the well-known ratio or D’Alembert test for positive
«eries was obtained in [1].

Theorem 1. Let 3. un be a series of positive terms.
n=1

oG
(1) If there exist a convergent series of non-negative terms 3. Un, and a
n=1
ronstant number N such that

Up+1

<g<1 for, n>N, (1)
u’n+vn

Q0
then the series Y. up is convergent;
n=1
(2) If there exists a decreasing sequence of positive numbers such that for

n> N (fired) we have
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then the sertes f Uy, 18 divergent. : ft‘,‘g);arks- 1) The proof ¢

n=1
A typical exemple to show that the generahzed ratio test applies wt - — 1, Theorem 3 be
the ratio test fails is the pair u, = 732 ,Up = n(m sy >1: )

The dlvergence part of
o .. -he corresponding ver

~heorem 2, [3])-
Theorem 4. Let 2::1 Us

G ™1y
Uy +vn 224+ 3n+1 2 et

As mentioned in [1]-[3], if we have a series Z u, for which the rat

test fails, then generally it is not easy to find a Sllltdble comparison” seri

Z Up.
n=1

The ratio test is obtained from Theorem 1 for v, =0, n > 1.
Nurcombe [8] extended the same ratio test as follows:

x0
. rgent series Y. Un and
- n=]}

0<wn <1, n> L
S Wpam S Wa W T

-4 such that

Theorem 2. Let S a, be a series of positive terms, and k, a fized positive
integer. If lim “2tt <1 (> 1) then 3 a, converges ( dwerqes)
The main alm of the present paper is to extend both Theorem 1 and

Theorem 2.

w .
-hen the series Elfu." !
n=—

2. A NEW EXTENSION OF THE GENERALIZED RATIO

TEST
3 For we =q" <4

1) As the generahzed 1
sv { |, Proposition 1), s
- the ratio test family &
2aabe’s, Gauss’s, and ve

By restricting ourselvcs to the convergence part of tests, We can prove
Theorem 3. Let Z uy be a series of positive terms and Z Up G CONUVET-
n= n=1
gent series of non-negative terms. If there exists a positive ( constant) integer

k such that

Utk

< >
— qg<1, for n> N (fized)

00
then the series 3, u, converges.

n=1
Proof. Consider the k subseries,

oo oo oo
Z UL4nk; Z U4k, - - - 5 Z Unk, (2)
n=1 n=1 n—1
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o0
=hich collectively comprise all the terms of > Up. Every subseries from
n=l
converges by the generalized ratio test and, since the sum of series of
~."ive terms is invariant under alterations in the order of the terms, Y u,
~verges.
Remarks. 1) The proof given above is essentially adapted after [8]

:

cor k = 1, Theorem 3 becomes Theorem 1 and for v, = 0, it becomes
~orem 2.
2 The divergence part of Theorem 3 may be now easily formulated, as
- as the corresponding version of another extension of the generalized ratio
~* {Theorem 2, [3]).
o0
Theorem 4. Let S u, be a scries of positive terms. If there exist a
n=1
" vergent series ). v, and a sequence (Wn)n>1 satisfying
n=] -
DO0<w, <1, n>I;
1) Wngm < Wy Wy, Yo, m > 1;

and such that

(22 w ,
—LH—S—@, n>1 (3)
Uy, + Uy, W,

o0
then the series Y w, is convergent.
n=1

3) For w, = ¢", ¢ < ¢ < 1, from (3) we obtain (1).
4) As the generalized ratio test has at least the power of the Raabe test
¢ [5], Proposition 1), we suggest to the reader to compare all the tests

- the ratio test family given here, with other significant comparison tests
“aabe’s, Gauss’s, and various test of the logarithmic scale)
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