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Abstract. Following the concept of T-stability defined in [1] for a fixed point

iteration procedure, we establish in a more simpler manner than in [1], the same

stability results for the Picard iteration and Mann iteration considered in metric

spaces and normed linear spaces, respectively.
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Introduction.

Let (X, d) be a metric space, T : X → X a map and let F (T ) = {p ∈
X |Tp = p} denote the set of fixed points of T . The literature abounds with
metrical fixed point theorems for mapping satisfying a variety of contractive
conditions. In most cases the contractive conditions are strong enough to
ensure not only the existence of the fixed point but also its uniqueness
and, moreover, the convergence to that fixed point of various fixed point
iteration procedures.

The most used iteration procedure to approximate fixed points is the
method of successive approximations (or Picard iteration), given by

xn+1 = T xn , n = 0, 1, 2, . . . (1)

and x0 ∈ X.

Since the Picard iteration does not converge to a fixed point for all kind
of contractive mappings (as the nonexpansive mappings, for example), to
over come these difficulties, other fixed point iteration procedures were
considered: Mann iteration, Ishikawa iteration, Kirk iteration etc. (see
[3],[5], [6], [7],[8],[10] and references therein).

An important practical feature of a given fixed point iteration proce-
dure consists in its numerical stability. Harder and Hicks [5] introduced
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a concept of stability of fixed points iteration procedures and established
some stability results for the Picard, Mann and Kirk interations under var-
ious contractive conditions. Rhoades [9, 11] extended the results of Harder
and Hicks to other classes of contractive mappings.

The main aim of this paper is to prove in a more simpler manner than
in [5] the stability results established there.

1. Preliminaries.

Let {xn}
∞

n=0 be the sequence generated by an iteration procedure in-
volving the operator T ,

xn+1 = f(T, xn) , n = 0, 1, 2, . . . . (2)

where x0 ∈ X is the initial approximation and f is some function.
For example, the Picard iteration is obtained from (2) for f(T, xn) =

T xn, while the Mann iteration is obtained for f(T, xn) = (1 − an)xn +
an T xn, with {an} a sequence in [0, 1] and X a normed linear space. Sup-
pose {xn}

∞

n=0 converges to a fixed point p of T . When calculating {xn}
∞

n=0,

then we cover the following steps:
1. We chose the initial approximation x0 ∈ X;
2. Then we compute x1 = f(T, x0) but, due to various errors (rounding

errors, numerical approximations of functions, derivatives or integrals), we
do not get the exact value of x1, but a different and one y1 which is very
closed to x1, y1 ≈ x1.

3. Consequently, when computing x2 = f(T, x1) we shall have actually
x2 = f(T, y1) and instead of the theoretical value x2 we shall obtain a
closed value y2 ≈ x2, and so on.

In this way, instead of the theoretical sequence {xn}
∞

n=0 generated by
the iterative method, we get an approximant sequence {yn}

∞

n=0. We shall
consider the iteration method is stable if and only if for yn, closed enough
to xn, {yn}

∞

n=0 still converges to the fixed point p of T . Following this idea,
Harder and Hicks introduced the following concept of stability[5].

Definition 1. Let (X, d) be a metric space, T : X → X a self map,
x0 ∈ X and the iteration procedure defined by (2), such that the generated
sequence {xn}

∞

n=0 converges to a fixed point p of T . Let {yn}
∞

n=0 be an
arbitrary sequence in X, and set

εn = d(yn+1, f(T, yn)), for n = 0, 1, 2, . . . . (3)

We say that the iteration (2) is T-stable or stable with respect to T if and
only if

lim
n→∞

εn = 0 ⇒ lim
n→∞

yn = p.
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Using this concept, Harder and Hicks [5] emphasized four stability re-
sults, one of them being due to Ostrowski. Our main aim in this paper
is to obtain in a more simpler way the same stability results for the same
iterations and contractive conditions considered by Harder and Hicks in
[5]. The following Lemma will be used in the proofs of Theorem 1-4 which
follow.

Lemma 1. If δ is a real number such that 0 ≤ δ < 1, and {εn}
∞

n=0 is a
sequence of positive numbers such that lim

n→∞

εn = 0, then for any sequence of

positive numbers {un}
∞

n=0 satisfying

un+1 ≤ δ un + εn , n = 0, 1, 2, . . . (4)

we have

lim
n→∞

un = 0.

Proof. For δ = 0, the conclusion is obvious. So we assume that 0 <

δ < 1 and rewrite (4) as

uk+1 δ−k−1 ≤ ukδ
−k + δ−k−1εk , k = 0, 1, 2, . . .

and sum these inequalities for k = 0, 1, 2, . . . , n + 1. After doing all cance-
lations, we obtain

0 ≤ un+1 ≤ δn+1 · u0 +
n
∑

k=0

δn−kεk. (4’)

Now, using Lemma 1 [5], it results that

lim
n→∞

(

n
∑

k=0

δn−kεk

)

= 0

and hence from (4’), we obtain that lim
n→∞

un = 0.

2. Stability of Picard iteration for strict contractions.

The Banach’s fixed point theorem (or the contraction mapping princi-
ple) is the most important metrical fixed point theorem. We give here its
full statement and prove only the stability part, which is rather simpler
than that contained in Theorem 1 [5]. For the proof of (i)-(iv) in Theorem
1, we refer to [1].

Theorem 1. Let (X, d) be a complete metric space and T : X → X be
an a contraction, that is,
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d(Tx, Ty) ≤ α · d(x, y) , for each x, y ∈ X (5)

where α is a constant such thar 0 ≤ α < 1. Then:
(i) F (T ) = {p} ;
(ii) The Picard iteration {xn}

∞

n=0, xn+1 = f(T, xn) := T xn, x =
0, 1, . . ., converges to p for each x0 ∈ X;

(iii) d(xn, p) ≤ αn

1−α
· d(x0, x1) , n ≥ 1;

(iv) d(xn, p) ≤ α
1−α

· d(xn, xn−1) , n ≥ 1;
(v) If {yn}

∞

n=0 is a sequence in X and {εn}
∞

n=0 the sequence defined
by (3), then

lim
n→∞

εn = 0 ⇔ lim
n→∞

yn = p. (6)

Proof. (v) We prove firstly the ”⇒ ” implication in (6). Using the
triangle inequality, we get

d(yn+1, p) ≤ d(yn+1, T yn) + d(T yn, p).

But p ∈ F (T ), hence by the contraction condition (5) we get

d(T yn, p) = d(T yn, T p) ≤ α · d(yn, p).

This yields

d(yn+1, p) ≤ α · d(yn, p) + εn, n = 0, 1, 2, . . . (7)

and by Lemma 1 we deduce lim
n→∞

d(yn+1, p) = 0, that is

lim
n→∞

yn+1 = p.

The reverse implication is an immediate consequence of the inequalities

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(p, T yn) ≤ d(yn+1, p) + α · d(yn, p).

The proof is complete.
Remarks. 1) In Theorem 1, (iii) gives the a priori estimation of the

convergence rate for Picard iteration, while (iv) gives the a posteriori error
estimation. The last one is very usefull in applications, because it provides
a direct stopping criterion for the iterative procedure;

2) Our condition (7) is essentially simpler than conclusions (1) and (2)
in Theorem 1 [5], needed to ensure the T−stability of the Picard iteration.
In fact (v) from Theorem 1, shows that the Picard iteration corresponding
to a strict contraction T , is T−stable.
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3. Stability of Picard and Mann iterations for Zamfirescu con-

tractions

Definition 2. A selfmap T : X → X is said to be a Zamfirescu
contraction if there exist real numbers α, β and γ satisfying 0 ≤ α <

1 , 0 ≤ β < 0.5, and 0 ≤ γ ≤ 0.5 such that for each x, y ∈ X, at least one
of the following is true:

(z1) d(T x, T y) ≤ α · d(x, y);
(z2) d(Tx, Ty) ≤ β[d(x, T y) + d(y, T y)];
(z3) d(Tx, Ty) ≤ γ[d(x, T y) + d(y, Tx)].
It was showed [13] that any Zamfirescu contraction in a complete metric

space X has a unique fixed point p and that the Picard iteration converges
to p for any initial approximation x0 ∈ X.

The next theorem offers information on its stability.
Theorem 2. The Picard iteration corresponding to a Zamfirescu con-

traction T : X → X on a complete metric space (X, d) is T−stable.
Proof. Let F (T ) = {p} and {xn}

∞

n=0 be the Picard iteration associated
to T . Let {yn}

∞

n=0 be a sequence in X and {εn}
∞

n=0 the sequence given by
(3). To prove that the Picard iteration is T -stable, we have to prove that (5)
is true. To this end, we firstly prove (in a similar manner to [5], Theorem
2) that if T is a Zamfirescu contraction, then the following condition

d(T x, T y) ≤ 2δ d(x, T x) + δ d(x, y), (8)

holds for each x, y ∈ X, where

δ = max

{

α,
β

1 − β
,

γ

1 − γ

}

. (9)

Now, by triangle inequality and (8) we get

d(yn+1, p) ≤ d(yn+1, T yn) + d(Tyn, p) = εn + d(T yn, T p) ≤

≤ εn + 2δ d(p, T p) + δ d(yn, p) ,

and since p = Tp, it results that

d(yn+1, p) ≤ δ d(yn, p) + εn , n = 0, 1, 2, . . . . (10)

Recall that 0 ≤ α < 1 , 0 ≤ β < 0.5 and 0 ≤ γ < 0.5.

So δ = max
{

α, β
1−β

, γ
1−γ

}

implies that 0 ≤ δ < 1.

Suppose lim
n→∞

εn = 0, then by (10) and Lemma 1 we obtain

lim
n→∞

yn = 0.
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The reverse implication is immediate:

εn = d(yn+1, T yn) ≤ d(yn+1, p) + d(T yn, p) = d(yn+1, p) + d(T yn, T p) ≤

≤ d(yn+1, p) + 2 δ d(p, T p) + δ · d(yn, p)

and hence

0 ≤ εn ≤ d(yn+1, p) + δ · d(yn, p)

which shows that lim
n→∞

yn = p implies lim
n→∞

εn = 0.

Remark. 1) Our stability result established here is significantly simpler
than the similar one from [5], Theorem 2, based on condition (1) there;
based on condition (1) in Theorem 2 from [5];

2) Having in view that many contractive conditions (see [12] and [5]) im-
ply the Zamfirescu conditions, it result that Theorem 2 establishes T−stability
of Picard iteration for all such mappings.

Let us now restrict ourselves to a normed linerar space (X, ‖·‖ ) and let
T : X → X be a self map. The Mann iteration is defined by (2) with

f(T, xn) = (1 − αn)xn + αn T xn , n = 0, 1, . . . (11)

where x0 ∈ X and {αn}
∞

n=0 is a sequence of real numbers, 0 ≤ αn ≤ 1, n =
0, 1, 2, . . ..

There exist various convergence theorems for the Mann iteration [ ]
based on certain assumptions on the sequence {αn}

∞

n=0, which must ensure,
among other facts, that

∞
∑

n=0

αn = ∞. (12)

For example, the sequence {αn}
∞

n=0 for which there exists the constants
a and b such that

0 < a ≤ α < b < 1 , for n = 0, 1, . . . (13)

does satisfy (12).
Theorem 3. Let (X, ‖·‖ ) be a normed linear space and T : X → X be a

Zamfirescu contraction. Suppose there exists p ∈ F (T ) such that the Mann
iteration {xn}

∞

n=0 with x0 ∈ X and {αn}
∞

n=0 satisfying (12), converges to
p.

Then the Mann iteration procedure is T−stable.
Proof. Let {yn}

∞

n=0 be a sequence in X and
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εn = ‖yn+1 − [(1 − αn) yn + αn T yn] ‖ , n = 0, 1, 2, . . . .

We have to prove that

lim
n→∞

yn = p ⇐⇒ lim
n→∞

εn = 0.

From the proof of Theorem 2 we know that for each x, y ∈ X

‖T x − T y‖ ≤ 2 δ · ‖x − T x‖ + δ · ‖x − y‖ (14)

holds, with δ given by (9). Now suppose lim
n→∞

εn = 0. Then

‖ yn+1 − p ‖ ≤ ‖ yn+1 − f(T, yn) ‖ + ‖ f(T, yn) − p ‖ =

= εn + ‖ (1 − αn) yn + αn T yn − [ (1 − αn) + αn] · p ‖ <

< εn + (1 − αn) ‖ yn − p ‖ + αn ‖ T yn − p ‖ ,

and using (13), we get

‖ T yn − p ‖ = ‖T yn − T p ‖ ≤ 2 δ · ‖ p − T p ‖ + δ · ‖ yn − p ‖ =

= δ · ‖ yn − p ‖ ,

and then

‖ yn+1 − p ‖ ≤ (1 − αn + αn δ) ‖ yn − p ‖ + εn , n = 0, 1, . . . . (15)

Since 0 ≤ 1 − αn + αn δ < 1, by using Lemma 1, it follows that

lim
n→∞

yn = p.

Remarks. 1) Theorem 3 in this paper corresponds to Theorem 3 in
[5]. The inequality (1) in [5]from which it is deduced the T−stability of
the Mann iteration is much more complicated then our inequality obtained
from (4’) and (14) as in the proof of Lemma 1.

2) In a similar way one can prove the T−stability of the Kirk’s iteration
[13] for the case of strict contractions in a Banach space.
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