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Approximating common fixed points of

noncommuting discontinuous weakly contractive

mappings in metric spaces

V. BERINDE

ABSTRACT. In this paper we prove the existence of coincidence points and common fixed points
for a large class of noncommuting discontinuous contractive type mappings in metric spaces. More-
over, a method for approximating the coincidence points and common fixed points is also constructed,
for which both a priori and a posteriori error estimates are obtained.

These results generalize, extend and unify several well-known recent related results in literature.

1. INTRODUCTION

Having in view that many of the most important nonlinear problems of ap-
plied mathematics reduce to solving a given operator equation which in turn may
be reduced to finding the fixed points of a certain mapping or the common fixed
points of two mappings, the study of fixed and common fixed points of mapping
satisfying certain contractive conditions attracted more research work in the last
three decades, see for example [25] and the very recent monographs [10], [27].

Among these (common) fixed point theorems, only a few are important from
a practical point of view, that is, they provide a constructive method for finding
the fixed points or the common fixed points of the mappings involved, and only
seldom offer information on the error estimate (or rate of convergence) of the
iterative method used to approximate the (common) fixed point.

But, from a practical point of view it is important not only to know that the
(common) fixed point exists (and, possibly, is unique), but also to be able to effec-
tively construct that (common) fixed point.

Very recently M. Abbas and G. Jungck [3], obtained existence results of coin-
cidence and common fixed points for noncommuting discontinuous contractive
mappings in a cone metric space.

In this paper, inspired by the results in [3], we generalize, extend and unify
several results in [3] and in some other related papers, and also provide an it-
erative method for approximating these points. A priori and a posteriori error
estimates, expressed by a unique formula, as well as the rate of convergence for
this method, are also obtained.
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14 Vasile Berinde

2. PRELIMINARIES

The classical Banach’s contraction principle is one of the most useful results
in nonlinear analysis. In a metric space setting its statement is given by the next
theorem.

Theorem B. Let (X, d) be a complete metric space and T : X °! X a map satisfying

(2.1) d(Tx, Ty) ∑ a d(x, y) , for all x, y 2 X ,

where 0 ∑ a < 1 is constant. Then:
(p1) T has a unique fixed point x

§ in X ;
(p2) The Picard iteration {xn}1n=0 defined by

(2.2) xn+1 = Txn , n = 0, 1, 2, . . .

converges to x

§, for any x0 2 X .
(p3) The following estimate holds:

(2.3) d(xn+i°1, x
§
) ∑ a

i

1° a

d(xn, xn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

(p4) The rate of convergence of Picard iteration is given by

(2.4) d(xn, x

§
) ∑ a d(xn°1, x

§
) , n = 1, 2, . . .

Remarks.

A map satisfying (p1) and (p2) in Theorem B is said to be a Picard operator, see
[25], [26], while a mapping satisfying (2.1) is usually called strict contraction or
a-contraction or Banach contraction.

Theorem B shows therefore that any strict contraction is a Picard operator.
Theorem B has many applications in solving nonlinear equations. Its merit

is not only to state the existence and uniqueness of the fixed point of the strict
contraction T but also to show that the fixed point can be approximated by means
of Picard iteration (2.2). Moreover, for this iterative method both a priori

d(xn, x

§
) ∑ a

n

1° a

d(x0, x1) , n = 0, 1, 2, . . .

and a posteriori

d(xn, x

§
) ∑ a

1° a

d(xn, xn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

error estimates are available, which were both encapsulated in (2.3), following an
idea from [29].

On the other hand, the inequality (2.4) shows that the rate of convergence of
Picard iteration is linear in the class of strict contractions.

Despite these important features, Theorem B suffers from one drawback - the
contractive condition (2.1) forces T be continuous on X .

It was then natural to ask if there exist or not weaker contractive conditions
which do not imply the continuity of T . This was answered in the affirmative by
R. Kannan [16] in 1968, who proved a fixed point theorem which extends Theo-
rem B to mappings that need not be continuous on X (but are continuous at their
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Approximating common fixed points... 15

fixed point), see [23], by considering instead of (2.1) the next condition: there

exists b 2
h
0,

1

2

¥
such that

(2.5) d(Tx, Ty) ∑ b

£
d(x, Tx) + d(y, Ty)

§
, for all x, y 2 X .

Following the Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point and common fixed point theorems for various classes of contractive
type conditions that do not require the continuity of T , see for example, [25], [10]
and the references therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to

Chatterjea [13], is based on a condition similar to (2.5): there exists c 2
h
0,

1

2

¥

such that

(2.6) d(Tx, Ty) ∑ c

£
d(x, Ty) + d(y, Tx)

§
, for all x, y 2 X.

For a presentation and comparison of such kind of fixed point theorems, see
[21], [22], [17], [4], [12] and [10]. For other related results, see [1], [2], [18] and [19].

These fixed point results were then complemented by important results re-
garding the existence of common fixed points of such contractive type mappings.
So, Jungck [14] proved in 1976 a common fixed point theorem for commuting
maps, thus generalizing Theorem B. In the same spirit, very recently M. Abbas
and G. Jungck [3], obtained coincidence and common fixed point theorems for the
class of Banach contractions, Kannan contractions and Chatterjea contractions in
cone metric spaces, without making use of the commutative property, but based
on the so called concept of weakly compatible mappings, introduced by Jungck
[15].

On the other hand, in 1972, Zamfirescu [28] obtained a very interesting fixed
point theorem, by combining the contractive conditions (2.1) of Banach, (2.5) of
Kannan and (2.6) of Chatterjea.

Note that, as shown by Rhoades [21], the contractive conditions (2.1) and (2.5),
as well as (2.1) and (2.6), and (2.5) and (2.6), respectively, are independent.

We give here the complete statement of Zamfirescu’s fixed point theorem, in-
cluding also the error and rate of convergence estimates, similar to that given in
the very recent paper [11], in view of its extension to coincidence and common
fixed points. A complete proof of Theorem 2.1 can be found in [9] and [10].

Theorem 2.1. Let (X, d) be a complete metric space and let T : X ! X be a mapping

for which there exist a 2 [0, 1), b, c 2
h
0,

1

2

¥
such that for all x, y 2 X, at least one of

the following conditions is true:
(z1) d(Tx, Ty) ∑ a d(x, y);

(z2) d(Tx, Ty) ∑ b

£
d(x, Tx) + d(y, Ty)

§
;

(z3) d(Tx, Ty) ∑ c

£
d(x, Ty) + d(y, Tx)

§
.

Then the Picard iteration {xn} defined by (2.2) and starting from x0 2 X converges
to the unique fixed point x

§ of T with the following error estimate

d(xn+i°1, x
§
) ∑ ±

i

1° ±

d(xn, xn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .
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16 Vasile Berinde

where ± = max

(
a,

b

1° b

,

c

1° c

)
.

Moreover, the convergence rate of the Picard iteration is given by

(2.7) d(xn, x

§
) ∑ ± · d(xn°1, x

§
) , n = 1, 2, . . .

It is therefore the main aim of this paper to extend and unify all the results in
[3], Theorem 2.1 and several other related results in literature, by proving a gene-
ral result regarding the existence, the uniqueness and the approximation of (co-
incidence) common fixed points of two discontinuous weakly contractive map-
pings of Zamfirescu type. To this end we need some notions and results from [3]
and [15].

Definition 2.1. ([3]) Let S and T be selfmaps of a nonempty set X . If there exists
x 2 X such that Sx = Tx then x is called a coincidence point of S and T , while
y = Sx = Tx is called a point of coincidence of S and T . If Sx = Tx = x, then x is
a common fixed point of S and T .

Definition 2.2. ([15]) Let S and T be selfmaps of a nonempty set X . The pair
of mappings S and T is said to be weakly compatible if they commute at their
coincidence points.

The next Proposition, which is given in [3] as Proposition 1.4, will be needed
to prove the last part in our main result.

Proposition 2.1. Let S and T be weakly compatible selfmaps of a nonempty set X. If S

and T have a unique point of coincidence y = Sx = Tx, then y is the unique common
fixed point of S and T .

3. MAIN RESULTS

In [3], the authors obtained three coincidence and common fixed point the-
orems, corresponding to Banach contraction condition (Theorem 2.1), Kannan’s
contractive condition (Theorem 2.3) and Chatterjea’s contractive condition (The-
orem 2.4), respectively, in cone metric spaces. We state in the following the one
corresponding to Kannan’s contractive condition, in view of its extension and
generalization.

Theorem 3.2. Let (X, d) be a cone metric space and P a cone with normal constant K.
Suppose that the mappings f, g : X ! X satisfy the contractive condition

(3.8) d(fx, fy) ∑ k [d(fx, gx) + d(fy, gy)] , 8x, y 2 X,

where k 2
h
0,

1

2

¥
is a constant. If the range of g contains the range of f and g(X) is a

complete subspace of X , then f and g have a unique coincidence point in X . Moreover,
if f and g are weakly compatible, then then f and g have a unique common fixed point in
X .

In the present paper, we restrict ourselves to state an prove our main result in
a usual metric space setting, since its formulation in the abstract case of a cone
metric space with normal cone will be given in a future paper. Note that our
technique of proof is significantly different from the one used in [3].
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Approximating common fixed points... 17

Theorem 3.3. Let (X, d) be a metric space and let T, S : X ! X be two mappings for

which there exist a 2 [0, 1), b, c 2
h
0,

1

2

¥
such that for all x, y 2 X, at least one of the

following conditions is true:
(z1) d(Tx, Ty) ∑ a d(Sx, Sy);

(z2) d(Tx, Ty) ∑ b

£
d(Sx, Tx) + d(Sy, Ty)

§
;

(z3) d(Tx, Ty) ∑ c

£
d(Sx, Ty) + d(Sy, Tx)

§
.

If the range of S contains the range of T and S(X) is a complete subspace of X , then T

and S have a unique coincidence point in X . Moreover, if T and S are weakly compatible,
then T and S have a unique common fixed point in X .

In both cases, the iteration {Sxn} defined by (3.15) converges to the unique (coin-
cidence) common fixed point x

§ of S and T , for any x0 2 X , with the following error
estimate

(3.9) d(Sxn+i°1, x
§
) ∑ ±

i

1° ±

d(Sxn, Sxn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

where ± = max

Ω
a,

b

1° b

,

c

1° c

æ
.

The convergence rate of the iteration {Sxn} is given by

(3.10) d(Sxn, x

§
) ∑ ± · d(Sxn°1, x

§
) , n = 1, 2, . . .

Proof. We first fix x, y 2 X . At least one of (z1), (z2) or (z3) is true. If (z2) holds,
then

d(Tx, Ty) ∑ b[d(Sx, Tx) + d(Sy, Ty)] ∑
∑ b{d(Sx, Tx) + [d(Sy, Sx) + d(Sx, Tx) + d(Tx, Ty)]}.

So
(1° b) d(Tx, Ty) ∑ 2b d(Sx, Tx) + b d(Sx, Sy),

which yields

(3.11) d(Tx, Ty) ∑ 2b

1° b

d(Sx, Tx) +

b

1° b

d(Sx, Sy).

If (z3) holds, then similarly we get

(3.12) d(Tx, Ty) ∑ 2c

1° c

d(Sx, Tx) +

c

1° c

d(Sx, Sy).

Therefore, by denoting

± = max

Ω
a,

b

1° b

,

c

1° c

æ
,

we have 0 ∑ ± < 1 and then, by (z1), (3.11) and (3.12), we find that, for all
x, y 2 X, the following inequality

(3.13) d(Tx, Ty) ∑ 2± · d(Sx, Tx) + ± · d(Sx, Sy)

holds. In a similar manner we obtain

(3.14) d(Tx, Ty) ∑ 2± · d(Sx, Ty) + ± · d(Sx, Sy),

valid for all x, y 2 X.

fo
r a

uth
or

 us
e o

nly



18 Vasile Berinde

Let now x0 be an arbitrary point in X . Since T (X) Ω S(X), we can choose a
point x1 in X such that Tx0 = Sx1. Continuing in this way, for a xn in X , we can
find xn+1 2 X such that

(3.15) Sxn+1 = Txn, n = 0, 1, . . .

If x := xn, y := xn°1 are two successive terms of the sequence defined by
(3.15), then by (3.14) we have

d(Sxn+1, Sxn) = d(Txn, Txn°1) ∑ 2± · d(Sxn, Txn°1) + ± · d(Sxn, Sxn°1),

which in view of (3.15) yields

(3.16) d(Sxn+1, Sxn) ∑ ± · d(Sxn, Sxn°1), n = 0, 1, 2 . . . .

Now by induction, from (3.16) we obtain

(3.17) d(Sxn+k, Sxn+k°1) ∑ ±

k · d(Sxn, Sxn°1), n = 0, 1, 2 . . . ; k = 1, 2, . . . ,

and then, for p > i, we get after straightforward calculations

(3.18) d(Sxn+p, Sxn+i°1) ∑
±

i
(1° ±

p°i+1
)

1° ±

· d(Sxn, Sxn°1), n ∏ 0; i ∏ 1.

For i = 1 and then by an inductive process, (3.18) yields

d(Sxn+p, Sxn) ∑ ±

1° ±

· d(Sxn, Sxn°1) ∑
±

n

1° ±

· d(Sx1, Sx0), n = 0, 1, 2 . . . ,

which shows that {Sxn} is a Cauchy sequence.
Since S(X) is complete, there exists a x

§ in S(X) such that

(3.19) lim

n!1
Sxn+1 = x

§
.

We can find p 2 X such that Sp = x

§. By (3.15) and (3.16) we further have

d(Sxn, Tp) = d(Txn°1, Tp) ∑ ±d(Sxn°1, Sp) ∑ ±

n°1
d(Sx1, Sp),

which shows that we also have

(3.20) lim

n!1
Sxn = Tp.

By (3.19) and (3.20) it results now that Tp = Sp, that is, p is a coincidence point of
T and S (or x

§ is a point of coincidence of T and S).
Now let us show that T and S have a unique point of coincidence. Assume

there exists q 2 X such that Tq = Sq. Then, by (3.13) we get

d(Sq, Sp) = d(Tq, Tp) ∑ 2±d(Sq, Tq) + ±d(Sq, Tp) = ±d(Sq, Sp)

which shows that Sq = Sp = x

§, that is, T and S have a unique point of coinci-
dence, x

§.
Now if T and S are weakly compatible, by Proposition 1 it follows that x

§ is
their unique common fixed point.

The estimate (3.10) is obtained from (3.18) by letting p ! 1, while (3.11) is
obtained by (3.13) by taking x = xn and y = x

§. §
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Approximating common fixed points... 19

Particular cases

1) If in Theorem 3.3, condition (z1) holds for all x, y 2 X , then by Theorem 3.3
we obtain a common fixed point result corresponding to Theorem 2.1 in [3].

2) If in Theorem 3.3, condition (z2) holds for all x, y 2 X , then by Theorem 3.3
we obtain a common fixed point result corresponding to Theorem 2.3 in [3], that
is, Theorem 2.1 in this paper.

3) If in Theorem 3.3, condition (z3) holds for all x, y 2 X , then by Theorem 3.3
we obtain a result on the existence, uniqueness and approximation of the com-
mon fixed point, stated in Theorem 3.4, corresponding to Theorem 2.4 in [3].

But, what is extremely important, our result also provides both a priori and a
posteriori error estimate, as well as information on the rate of convergence of the
iterative process that approximates that common fixed point.

Theorem 3.4. Let (X, d) be a metric space and let T, S : X ! X be two mappings for

which there exist c 2
h
0,

1

2

¥
such that for all x, y 2 X,

d(Tx, Ty) ∑ c

£
d(Sx, Ty) + d(Sy, Tx)

§
.

If the range of S contains the range of T and S(X) is a complete subspace of X , then T

and S have a unique coincidence point in X . Moreover, if T and S are weakly compatible,
then T and S have a unique common fixed point in X .

In both cases, the iteration {Sxn} defined by (3.15) converges to the unique (coinci-
dence) common fixed point x

§ of S and T , for any x0 2 X , with the following error
estimate

d(Sxn+i°1, x
§
) ∑ c

i

1° c

d(Sxn, Sxn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

The convergence rate of the iteration {Sxn} is given by

d(Sxn, x

§
) ∑ c · d(Sxn°1, x

§
) , n = 1, 2, . . .

4. CONCLUSIONS AND AN EXAMPLE

By Theorem 3.3 we can obtain a common fixed point result for mappings that
satisfy a single contractive condition, as in the next theorem.

Theorem 4.5. Let (X, d) be a metric space and let T, S : X ! X be two mappings for
which there exist h 2 [0, 1) such that

d(Tx, Ty) ∑ h · max

©
d(Sx, Sy), [d(Sx, Tx) + d(Sy, Ty)]/2,

(4.21) [d(Sx, Ty) + d(Sy, Tx)]/2

™
, for all x, y 2 X .

If the range of S contains the range of T and S(X) is a complete subspace of X , then T

and S have a unique coincidence point in X . Moreover, if T and S are weakly compatible,
then T and S have a unique common fixed point in X .

In both cases, the iteration {Sxn} defined by (3.15) converges to the unique (coin-
cidence) common fixed point x

§ of S and T , for any x0 2 X , with the following error
estimate

d(Sxn+i°1, x
§
) ∑ h

i

1° h

d(Sxn, Sxn°1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .
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20 Vasile Berinde

The convergence rate of the iteration {Sxn} is given by

d(Sxn, x

§
) ∑ h · d(Sxn°1, x

§
) , n = 1, 2, . . .

Proof. The contractive condition (4.21) is equivalent to Zamfirescu’s conditions,
see [21], so the theorem follows by Theorem 3.3. §
Remark 4.1. We mention that, as noted in [20], the assumption ”S(X) is a com-
plete metric space”, used in all Theorems 3.2-4.5, appears to be too restrictive in
applications.

Therefore, similarly to the paper [20], this assumption could be replaced by the
more practical and slightly relaxed condition ”there exists a complete metric sub-
space Y µ X such that T (X) µ Y µ S(X)”, under which all results established
in these paper remain valid.

The next example shows that the generalizations given by our results in this
paper are effective.

Example 4.1. Let X = [0, 1] with the usual norm. Let T, S : X ! X be defined by

Tx =

8
>>><

>>>:

x

4

, 0 ∑ x < 1

1

3

, x = 1

and Sx =

8
>><

>>:

x , 0 ∑ x < 1

2

3

, x = 1,

respectively.

We have T (X) = [0, 1/4) [ {1/3} Ω [0, 1/3]. So, see Remark 1, there exists
the complete metric subspace Y = [0, 1/3] such that T (X) µ Y µ S(X) = [0, 1].
Moreover, 0 is the unique coincidence point of S and T and, since, obviously, T

and S commute at 0, S and T are weakly compatible.
In order to show that S and T do satisfy the contractive conditions in Theorem

3.3 (and also in Theorem 4.5), let us denote

M1 = [0, 1)£ [0, 1); M2 = [0, 1)£ {1} [ {1}£ [0, 1); M3 = {1}£ {1}.
Clearly, [0, 1]£ [0, 1] = M1 [M2 [M3. For (x, y) 2 M1, S and T satisfy condition
(z1), with constant a = 1/4 which immediately holds:

ØØØ
x

4

° y

4

ØØØ ∑ a |x° y| .

For (x, y) 2 M3, Tx = Ty and so (z2) is obviously satisfied. Consider now (x, y) 2
M2. Due to the symmetry of the contractive condition (z3), it suffices to show

that (z3) is satisfied for all x 2 [0, 1) and y = 1. As Tx =

x

4

, T1 =

1

3

, Sx = x and

S1 =

2

3

, condition (z3) reduces to show that there exists a constant c, 0 ∑ c <

1

2

,
such that

(4.22)
ØØØØ
x

4

° 1

3

ØØØØ ∑ c

µØØØØx°
1

3

ØØØØ +

ØØØØ
2

3

° x

4

ØØØØ

∂
, 8x 2 [0, 1).

We shall prove that (4.22) holds with c =

3

7

<

1

2

, that is,

(4.23)
ØØØØ
x

4

° 1

3

ØØØØ ∑
3

7

µØØØØx°
1

3

ØØØØ +

ØØØØ
2

3

° x

4

ØØØØ

∂
, 8x 2 [0, 1).
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Approximating common fixed points... 21

As, for x 2 [0, 1),
x

4

<

1

4

<

1

3

, we have
ØØØØ
x

4

° 1

3

ØØØØ =

1

3

° x

4

. Similarly, since

2

3

>

1

4

>

x

4

, we get
ØØØØ
2

3

° x

4

ØØØØ =

2

3

° x

4

and therefore, (4.23) becomes

(4.24)
1

3

° x

4

∑ 3

7

µØØØØx°
1

3

ØØØØ +

2

3

° x

4

∂
, 8x 2 [0, 1).

If 0 ∑ x ∑ 1

3

, then
ØØØØx°

1

3

ØØØØ =

1

3

° x and (4.24) reduces to x ∑ 1

3

, which is true.

If
1

3

∑ x < 1, then
ØØØØx°

1

3

ØØØØ = x ° 1

3

and (4.24) reduces to x ∏ 1

3

, which is also

true. This proves that (4.22) is satisfied, that is, S and T satisfy condition (z3) on
M3.

Note that T and S do not satisfy condition (z1) on the whole space X . Indeed,
this would imply that there exists a constant a, 0 ∑ a < 1, such that

(4.25) |Tx° Ty| ∑ a |x° y| , 8x, y 2 [0, 1].

Take 0 ∑ x < 1 and y = 1 to get
1

3

° x

4

∑ a(1° x),

which by letting x! 1 yields the contradiction
1

12

∑ 0.
So, the metric space variant of Theorem 2.1 in [3] do not apply. Moreover, S

and T do not satisfy (z2) on the whole X . Indeed, for 0 ∑ x < 1 and y = 1,
condition (z2) reduces to

(4.26)
ØØØØ
x

4

° 1

3

ØØØØ ∑ b

µØØØx°
x

4

ØØØ +

ØØØØ1°
2

3

ØØØØ

∂
, 8x 2 [0, 1),

where 0 ∑ b <

1

2

. If we take x = 0 in (4.26), we get

1

3

∑ b · 1

3

<

1

6

,

a contradiction.
This shows that S and T do not satisfy (z2) on the whole X and hence, the

metric space variant of Theorem 2.3 in [3] cannot be applied here.
In view of Remark 1 above, both Theorem 3.3 and Theorem 4.5 in our paper

do apply and 0 is the unique common fixed point of S and T .
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[21] Rhoades, B. E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc.

226 (1977) 257–290
[22] Rhoades, B. E., Contractive definitions revisited, Contemporary Mathematics 21 (1983) 189–205
[23] Rhoades, B. E., Contractive definitions and continuity, Contemporary Mathematics 72 (1988)

233–245
[24] Rus, I. A., Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia,

Cluj-Napoca, 1979
[25] Rus, I. A., Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001
[26] Rus I. A., Picard operators and applications, Scientiae Math. Japon. 58 (2003), No. 1, 191–219
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