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Stability of Picard iteration for contractive mappings
satisfying an implicit relation

VASILE BERINDE

ABSTRACT. We obtain new and very general stability results for Picard iteration associated to self
operators satisfying an implicit relation. Our stability results unify, extend, generalize, enrich and
complement a multitude of related stability results from recent literature.

1. INTRODUCTION

Let (X, d) be a metric space, T : X → X a self operator with Fix (T ) := {x ∈
X : Tx = x} ̸= ∅ and let {xn}∞n=0 be the Picard iteration, that is, the sequence
defined by xn+1 = Txn, n = 0, 1, . . . , with x0 ∈ X , arbitrary. If (X, d) is complete
and T is a contraction, i.e., there exists a constant α ∈ [0, 1) such that

(1.1) d(Tx, Ty) ≤ a d(x, y), for all x, y ∈ X,

then, by Banach contraction mapping principle, we know that T has a unique
fixed point p and, for any x0 ∈ X , the Picard iteration {xn}∞n=0 converges to p.
Moreover, the following error estimate, which is very useful in concrete applica-
tions for stopping the iterative process,

d(xn+1, p) ≤
αn

1− α
d(x0, x1) , n = 0, 1, 2, . . . ,

holds.
However, when solving concrete problems, because of rounding errors, nu-

merical approximations of functions, derivatives or integrals, discretization etc.,
instead of the theoretical sequence {xn}∞n=0, defined by the given iterative method,
we will practically obtain an approximate sequence {yn}∞n=0, satisfying the follow-
ing approximation bounds:

y0 := x0, d(y1, T y0) ≤ ϵ1, . . . , d(yn, Tyn−1) ≤ ϵn, . . . ,

where the positive quantity ϵn can be interpreted as the ”round-off error” of xn,
see [18].

The problem of the numerical stability of Picard iteration is now whether this
approximate sequence {yn}∞n=0 is still convergent to the fixed point p of T , pro-

vided ϵn → 0 or
∞∑

n=1
ϵn < ∞.
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This question has been answered in the positive in 1967 by Ostrowski [24] who
thus established the first stability theorem for a fixed point iteration procedure,
by using the following estimate

d(yn, p) ≤
αn

1− α
d(x0, x1) +

n∑
k=1

αn−kϵk, n = 0, 1, 2, . . . ,

from which easily follows that yn → p, provided ϵn → 0.
In 1988, Harder and Hicks [15], [16], introduced the notion of stability for a

general fixed point iteration procedure and started the systematic study of this
concept, thus obtaining various stability results for Picard iteration that extended
Ostrowski’s theorem to mappings satisfying more general contractive conditions
and also established some stability results for other fixed point iteration proce-
dures in the class of Banach contractions, Zamfirescu operators etc.

Further, Rhoades [31], [32], [33] extended the results of Harder and Hicks by
considering more general contractive mappings. More specifically, Rhoades [32]
considered the following explicit contractive condition which extends both (1.1)
and Zamfirescu contractive condition [37]: there exists a constant c, 0 ≤ c < 1,
such that for all x, y ∈ X :

(1.2) d(Tx, Ty) ≤ c max
{
d(x, y),

d(x, Tx) + d(y, Ty)

2
, d(x, Ty), d(y, Tx)

}
.

In [32] Rhoades has shown that any mapping T satisfying (1.2) also satisfies the
inequality

(1.3) d(Tx, Ty) ≤ a d(x, y) + Ld(x, Tx),

where a = c and L =
c

1− c
.

Osilike [21] extended Rhoades’ results by considering mappings T for which
Fix (T ) ̸= ∅ and satisfy condition (1.3), with a ∈ [0, 1) and L ≥ 0, arbitrary, thus
also extending all results of Harder and Hicks [15], [16].

All the stability results previously mentioned are basically established in con-
nection with a corresponding fixed point theorem: Banach, Kannan, Chatterjea,
Zamfirescu etc., see for example [10] for more details. Note that a mapping T
satisfying (1.3) does not have a fixed point, in general, but, if T has a fixed point,
this fixed point is certainly unique.

Alternatively, Jachymski [18] extended Ostrowski’s theorem to the class of φ-
contractions, which is independent from the classes of operators discussed above,
by using Browder’s fixed point theorem [13].

On the other hand, several classical fixed point theorems and common fixed
point theorems have been recently unified by considering general contractive
conditions expressed by an implicit condition. This approach has been initiated
by Popa [25], [26]. Following Popa’s papers, a consistent literature (that cannot be
completely cited here) on fixed point, common fixed point and coincidence point
theorems, for both single valued and multi-valued mappings, in various ambient
spaces, has been developed, see [2]-[3], [25]-[27] and references therein, for a very
selective list of references on this topic. For a similar but different approach to
implicit contractions see also the papers by M. Turinici [35] and [36].
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As for these new fixed point theorems do not exist corresponding stability re-
sults, yet, the main aim of this paper is to fill this gap and establish stability
theorems for fixed point iteration procedures associated to contractive mappings
defined by an implicit relation.

The fixed point theorems and the stability results we shall obtain in this way
are extremely general. They unify, extend, generalize, enrich and complement
a multitude of related results from recent literature: [6]-[10], [14]–[25], [29]-[34],
[37], [39] and most of the references therein.

The paper is organized as follows: in Section 2 we present the basic concepts
and results concerning the stability of fixed point iteration procedures associated
to self mappings that satisfy explicit contractive conditions. In Section 3 we in-
troduce the implicit relations that will be used in the paper and establish a basic
fixed point theorem based on such relations, while in Section 4, the main stabil-
ity results of this paper are presented. In Section 5, we end this paper by some
concluding remarks and also discuss some directions for further study.

2. STABILITY OF FIXED POINT ITERATION PROCEDURES

Let (X, d) be a metric space, T : X → X a self operator with Fix (T ) ̸= ∅ and
let {xn}∞n=0 be a fixed point iteration procedure of the general form

(2.4) xn+1 = f(T, xn), n = 0, 1, 2, ...,

where f(T, xn) is given (For example, in the case of Picard iteration we have
f(T, xn) := Txn).

Definition 2.1. (Harder and Hicks, [15]) Let {yn}∞n=0 be an arbitrary sequence in
X and set

(2.5) εn = d(yn+1, f(T, yn)), for n = 0, 1, 2, ...

We shall say that the fixed point iteration procedure (2.4) is T -stable or stable with
respect to T if

(2.6) lim
n→∞

εn = 0 ⇒ lim
n→∞

yn = p.

In view of their generalization in this paper, we state here in an abbreviated
form, two illustrative samples of stability results: Theorem 1 from [33] and the
main result of [21]. For other related results we refer to [6], [7], and [10].

Theorem 2.1. (Rhoades, [33]) Let (X, d) be a complete metric space, T : X → X a
self mapping satisfying (1.2) and let p be the (unique) fixed point of T . Then the Picard
iteration associated to T is T -stable.

Theorem 2.2. (Osilike, [21]) Let (X, d) be a complete metric space, T : X → X a self
mapping satisfying (1.3) with Fix (T ) ̸= ∅ and let p be the fixed point of T . Then Picard
iteration {xn}∞n=0 associated to T is T -stable.

As Picard iteration and other fixed point iteration procedures are not stable
with respect to some classes of contractive operators, various weak stability con-
cepts have been also introduced, see [6], [10], [22], [38]. For example Osilike [22]
introduced the concept of almost stability, while Berinde [6] introduced the con-
cept of summable almost stability, two notions which are presented in the following.
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Definition 2.2. (Osilike, [22]) Let (X, d) be a metric space, T : X → X a self
operator with Fix (T ) ̸= ∅ and let {xn}∞n=0 be a fixed point iteration procedure
given by (2.4), supposed to converge to a fixed point p of T . Let {yn}∞n=0 be an
arbitrary sequence in X and let {εn} be defined by (2.5). We shall say that the
fixed point iteration procedure (2.4) is almost T -stable or almost stable with respect
to T if

(2.7)
∞∑

n=1

εn < ∞ ⇒ lim
n→∞

yn = p.

Definition 2.3. (Berinde, [7]) Let (X, d) be a metric space, T : X → X a self
operator with Fix (T ) ̸= ∅ and let {xn}∞n=0 be a fixed point iteration procedure
given by (2.4), supposed to converge to a fixed point p of T . Let {yn}∞n=0 be
an arbitrary sequence in X and let {εn} be defined by (2.5). We shall say that the
fixed point iteration procedure (2.4) is summable almost T -stable or summable almost
stable with respect to T if

(2.8)
∞∑

n=1

εn < ∞ ⇒
∞∑

n=1

d(yn, p) < ∞.

It is clear from Definitions 2.1-2.3 that:
1) any stable iteration procedure is almost stable;
2) any summable almost stable procedure is almost stable,

but the reverses of these assertions are not generally true, see Example 1 in [7].
Moreover, in general, the class of stable iteration procedures is independent of
the class of summable almost stable procedures.

In order to prove our main stability results in this paper we shall need Lemma
1.6 from [10]:

Lemma 2.1. Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers and a constant
q, 0 ≤ q < 1, so that

an+1 ≤ qan + bn, for all n ≥ 0.

(i) If lim
n→∞

bn = 0, then lim
n→∞

an = 0.

(ii) If
∞∑

n=0
bn < ∞, then

∞∑
n=0

an < ∞.

3. SOME FIXED POINT THEOREMS FOR MAPPINGS SATISFYING AN IMPLICIT
RELATION

A simple and natural way to unify and prove in a simple manner several met-
rical fixed point theorems is to consider an implicit contraction type condition
instead of the usual explicit contractive conditions. V. Popa in 1997, [25] and [26],
initiated this direction of research which, produced so far a consistent literature
(that cannot be completely cited here) on fixed point, common fixed point and
coincidence point theorems, for both single valued and multi-valued mappings,
in various ambient spaces.
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Let F be the set of all continuous real functions F : R+
6 → R+, for which we

consider the following conditions:
(F1a) F is non-increasing in the fifth variable and

F (u, v, v, u, u+ v, 0) ≤ 0 for u, v ≥ 0⇒ ∃h ∈ [0, 1) such that u ≤ hv;
(F1b) F is non-increasing in the fourth variable and

F (u, v, 0, u+ v, u, v) ≤ 0 for u, v ≥ 0⇒ ∃h ∈ [0, 1) such that u ≤ hv;
(F1c) F is non-increasing in the third variable and

F (u, v, u+ v, 0, v, u) ≤ 0 for u, v ≥ 0⇒ ∃h ∈ [0, 1) such that u ≤ hv;
(F2) F (u, u, 0, 0, u, u) > 0, for all u > 0.
The following functions correspond to well known fixed point theorems and

satisfy most of the conditions (F1a)-(F2) above.

Example 3.1. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at2,

where a ∈ [0, 1), satisfies (F2) and (F1a)-(F1c), with h = a.

Example 3.2. Let b ∈
[
0,

1

2

)
. Then the function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − b(t3 + t4),

satisfies (F2) and (F1a)-(F1c), with h =
b

1− b
< 1.

Example 3.3. Let c ∈
[
0,

1

2

)
. Then the function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − c(t5 + t6),

satisfies (F2) and (F1a)-(F1c), with h =
c

1− c
< 1.

Example 3.4. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − amax

{
t2,

t3 + t4
2

,
t5 + t6

2

}
,

where a ∈ [0, 1), satisfies (F2) and (F1a)-(F1c), with h = a.

Example 3.5. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at2 − b(t3 + t4)− c(t5 + t6),

where a, b, c ∈ [0, 1) and a + 2b + 2c < 1, satisfies (F2) and (F1a)-(F1c), with

h =
a+ b+ c

1− b− c
< 1.

Example 3.6. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − amax

{
t2,

t3 + t4
2

, t5, t6

}
,

where a ∈ [0, 1), satisfies (F2) and (F1b), (F1c), with h = a and (F1a), with h =
a

1− a
< 1, if a < 1/2.
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Example 3.7. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at2 − Lt3,

where a ∈ [0, 1) and L ≥ 0, satisfies (F2) and (F1b), with h = a, but, in general,
does not satisfy (F1a) and (F1c).

Example 3.8. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at2 − Lt6,

where a ∈ [0, 1) and L ≥ 0, satisfies (F1a), with h = a, but, in general, does not
satisfy (F1b), (F1c) and (F2).

The following theorem, which is an enriched version of Theorem 3 of Popa
[25], unifies the most important metrical fixed point theorems for contractive
mappings in Rhoades’ classification [30].

Theorem 3.3. Let (X, d) be a complete metric space, T : X → X a self mapping for
which there exists F ∈ F such that for all x, y ∈ X

(3.9) F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0.

If F satisfies (F1a) and (F2) then:
(p1) T has a unique fixed point x∗ in X ;
(p2) The Picard iteration {xn}∞n=0 defined by

(3.10) xn+1 = Txn , n = 0, 1, 2, . . .

converges to x, for any x0 ∈ X .
(p3) The following estimate holds:

(3.11) d(xn+i−1, x) ≤
hi

1− h
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . ,

where h is the constant appearing in (F1a).
(p4) If, additionally, F satisfies (F1c), then the rate of convergence of Picard

iteration is given by:

(3.12) d(xn+1, x) ≤ hd(xn, x) , n = 0, 1, 2, . . . .

Proof.
(p1) Let x0 be an arbitrary point in X and xn+1 = Txn, n = 0, 1, . . . , be

the Picard iteration. If we take x := xn−1 and y := xn in (3.9), by denoting
u := d(xn, xn+1), v := d(xn−1, xn) we get

F (u, v, v, u, d(xn−1, xn+1), 0) ≤ 0.

By triangle inequality, d(xn−1, xn+1) ≤ d(xn−1, xn) + d(xn, xn+1) = u + v and,
since F is non-increasing in the fifth variable, we have

F (u, v, v, u, u+ v, 0) ≤ F (u, v, v, u, d(xn−1, xn+1), 0) ≤ 0

and hence, in view of assumption (F1a), there exists h ∈ [0, 1) such that u ≤ hv,
that is,

(3.13) d(xn, xn+1) ≤ hd(xn−1, xn).

In a straightforward way, (3.13) leads to the conclusion that {xn}∞n=0 is a Cauchy
sequence.
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Since (X, d) is complete, there exists a x in X such that

(3.14) lim
n→∞

xn = x.

By taking x := xn and y := x in (3.9) we get

(3.15) F (d(Txn, Tx), d(xn, x), d(xn, Txn), d(x, Tx), d(xn, Tx), d(x, Txn)) ≤ 0.

As F is continuous, by letting n → ∞ in (3.15) we obtain

F (d(x, Tx), 0, d(x, Tx), d(x, Tx), d(x, Tx), 0)) ≤ 0

which, by assumption (F1a), yields d(x, Tx) ≤ 0, that is, x = Tx. Now, we shall
prove that x is the unique fixed point of T . Assume the contrary, i.e., there exists
y ∈ Fix (T ), x ̸= y. Then by taking x := x and y := y in (3.9) and by denoting
δ := d(x, y) > 0 we get

F (δ, δ, 0, 0, δ, δ) ≤ 0,

which contradicts (F2). This proves that T has a unique fixed point.
(p2) It follows by the proof of (p1).
(p3) By using (3.13) we inductively get

(3.16) d(xn+i−1, xn+i) ≤ hid(xn−1, xn), i = 1, 2, . . .

and hence by triangle inequality

d(xn+i−1, xn+i+p) ≤ d(xn+i−1, xn+i) + · · ·+ d(xn+i+P−1, xn+i+p) ≤

≤
p−1∑
k=0

hi+kd(xn−1, xn) =
hi

1− h
(1− hp)d(xn−1, xn), i, n, p = 1, 2, . . . ,

which, by letting p → ∞, yields exactly the desired estimate (3.11).
(p4) By taking x := xn and y := x in (3.9) we get

F (d(Txn, x), d(xn, x), d(xn, Txn), d(x, x), d(xn, x), d(x, Txn)) ≤ 0.

that is,

(3.17) F (d(xn+1, x), d(xn, x), d(xn, xn+1), 0, d(xn, x), d(x, xn+1)) ≤ 0.

Denote u := d(xn+1, x), v := d(xn, x). Then, by triangle inequality we have
d(xn, xn+1) ≤ d(xn, x) + d(xn+1, x) = u + v and hence, in view of assumption
(F1c), by (3.17) we obtain

F (u, v, u+ v, 0, v, u)) ≤ F (u, v, d(xn, xn+1), 0, v, u) ≤ 0,

which again by (F1c) implies the existence of a h ∈ [0, 1) such that u ≤ hv, which
is exactly the desired estimate (3.12). �

Remark 3.1. Theorem 3.3 completes Theorem 3 in Popa [25] with the additional
information regarding the iterative method available for approximating the fixed
point x, with the estimate (3.12) of the rate of convergence of Picard iteration, and
by providing the unifying error estimate (3.11) inspired from [39], from which
one can deduce both the a priori estimate

d(xn, x) ≤
hn

1− h
d(x0, x1) , n = 0, 1, 2, . . .
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and the a posteriori estimate

d(xn, x) ≤
h

1− h
d(xn, xn−1) , n = 1, 2, . . .

Remark 3.2.
(a) If F is the function in Example 3.1, then by Theorem 3.3 we obtain the well

known Banach contraction mapping principle, in its complete form, see Theorem
B in [9].

(b) If F is the function in Example 3.2, then by Theorem 3.3 we obtain Theo-
rem 1 in [9], that completes the well known Kannan fixed point theorem [19].

(c) If F is the function in Example 3.3, then by Theorem 3.3 we obtain a fixed
point theorem that completes Chatterjea fixed point theorem [14].

(d) If F is the function in Example 3.4, then by Theorem 3.3 we obtain Theo-
rem 2 in [9], that completes the well known Zamfirescu fixed point theorem [37].

(e) If F is the function in Example 3.5, then by Theorem 3.3 we obtain a fixed
point theorem that extends the Reich fixed point theorem [29].

4. STABILITY OF PICARD ITERATION FOR MAPPINGS SATISFYING AN IMPLICIT
RELATION

The first main result of this paper is the following general stability theorem for
Picard iteration.

Theorem 4.4. Let (X, d) be a complete metric space, T : X → X a self mapping for
which there exists F ∈ F such that for all x, y ∈ X

(4.18) F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) ≤ 0.

If F satisfies (F1), (F2a), and (F3), then T has a unique fixed point. If, additionally, F
satisfies (F2b), then Picard iteration is: a) T -stable; b) summable almost T -stable.

Proof. Let {xn}∞n=0 be the Picard iteration associated to T and defined by (2.4),
converging to the fixed point x of T , which exists and is unique by virtue of
Theorem 3.3. Let {yn}∞n=0 be an arbitrary sequence in X and let {εn} be defined
by

εn = d(yn+1, f(T, yn)), for n = 0, 1, 2, ...

In order to show that Picard iteration is T -stable we shall prove that the implica-
tion

lim
n→∞

εn = 0 ⇒ lim
n→∞

yn = p,

holds. Indeed, assume lim
n→∞

εn = 0. Then

(4.19) d(yn+1, x) ≤ d(yn+1, T yn) + d(Tyn, x) = ϵn + d(Tyn, x).

Take x := x and y := yn in (4.18) to obtain

(4.20) F (u, v, 0, w, v, u) ≤ 0,

where u := d(Tyn, x), v := d(yn, x), w := d(yn, T yn). By triangle inequality,
d(yn, T yn) ≤ d(Tyn, x)+d(yn, x), that is, w ≤ u+v. Now, since F is non-increasing
in the fourth variable, we have

F (u, v, 0, u+ v, v, u) ≤ F (u, v, 0, w, v, u) ≤ 0
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which implies, by assumption (F2) that there exists h ∈ [0, 1) such that u ≤ qv,
that is,

d(Tyn, x) ≤ hd(yn, x),

which, by (4.19) yields

d(yn+1, x) ≤ hd(yn, x) + εn.

Now both conclusions follow by applying Lemma 1. �

Remark 4.3. Note that for the class of mappings satisfying the hypotheses of The-
orem 4.4, all the three concepts of stability given by Definitions 2.1-2.3 coincide.

In a similar way to the proof of Theorem 4.4 one can prove a slightly more gen-
eral version of Theorem 4.4, in order to include other stability results as particular
cases.

Theorem 4.5. Let (X, d) be a complete metric space, T : X → X a self mapping with
Fix (T ) ̸= ∅, for which there exists F ∈ F such that for all x, y ∈ X (4.18) holds.

If F satisfies (F2b), then Picard iteration is: a) T -stable; b) summable almost T -stable.

Corollary 4.1. Let (X, d) be a complete metric space and T : X → X a self mapping
with Fix (T ) ̸= ∅, for which (4.18) holds, for all x, y ∈ X , with F ∈ F from Example
3.7.

Then Picard iteration is: a) T -stable; b) summable almost T -stable.

Proof. As the function F ∈ F from Example 3.7 satisfies (F1), (F3) and (F2b),
with h = a, we can apply Theorem 4.5 (but not Theorem 4.4) to get the desired
conclusion. �

Remark 4.4. Corollary 4.1 is the main result in [21] and [23], see also [6].

Corollary 4.2. Let (X, d) be a complete metric space, T : X → X a self mapping with
Fix (T ) ̸= ∅, which satisfies (4.18) for all x, y ∈ X , with F ∈ F from Example 3.8.

Then Picard iteration is: a) T -stable; b) summable almost T -stable.

Proof. As the function F ∈ F from Example 3.8 satisfies (F1), (F3) and (F2b),
with h = a, we can apply Theorem 4.5 (but not Theorem 4.4) to get the desired
conclusion. �

Remark 4.5. Corollary 4.2 is the main result in [17], see also [20]. If φ(t) = Lt,
with the constant L ≥ 0, then Corollary 4.2 reduces to Corollary 4.1.

5. CONCLUDING REMARKS AND SOME DIRECTIONS FOR FURTHER STUDY

The results obtained in this paper are significant generalizations of a multitude
of both fixed point theorems and stability theorems for Picard iteration existing in
literature: [6]-[10], [14]–[25], [29]-[34], [37], [39] and most of the references therein.

Note that all contractive conditions obtained from (3.9) with F in Examples
3.1-3.7 imply the contraction condition (1.2) used by Rhoades in [31], [32] and
[33].

Thus, Theorem 4.4 extends Theorem 1 [33] and Theorem 1 [31] of Rhoades,
Theorem 2 of Harder and Hicks [16] and Theorem 2 of Ostrowski [24]. For ex-
ample, Theorem 1 in [33] is obtained from Theorem 4.4 in this paper, if F is the
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function in Example 3.6, Theorem 2 in [16] is obtained from Theorem 4.4 in this
paper, if F is the function in Example 3.4, while Theorem 2 in [24] is obtained
from Theorem 4.4 in this paper, if F is the function in Example 3.1.

Moreover, our Theorem 4.5 extends several stability results obtained by M. O.
Osilike and M. O. Olatinwo and co-workers, in a series of papers from which we
quote [21] and [17], respectively. Osilike’s stability results for Picard iteration are
obtained from Theorem 4.5 in this paper, if F is the function in Example 3.7, while
Olatinwo’s stability results for Picard iteration are obtained from Theorem 4.5 in
this paper, if F is the function in Example 3.8.

On the other hand, our Theorem 3.3 extends several classical fixed point theo-
rems, among which we mention that of Banach, Kannan, Chatterjea, Zamfirescu,
and many others, which are obtained from Theorem 3.3 if F is as in Example 3.1,
Example 3.2, Example 3.3, Example 3.4, respectively, see also [1], [4], [5], [11], [12].

We end this paper by noting that some weaker concepts of stability of fixed
point iteration procedures were also considered in literature: a notion of weak
stability, introduced and studied in [10], Chapter 7, and a different concept of
weak stability together with that of pseudo stability, introduced and studied in [38],
for the Ishikawa fixed point iteration procedure in the case of Φ-hemicontractive
and accretive operators.

As noted in [38], if an iteration procedure is T-stable, then it is weakly T-
stable and, if the iteration procedure is weakly T-stable, then it is both almost and
pseudo T-stable. But if an iteration procedure is either almost or pseudo T-stable,
it may fail to be weakly T-stable.

Consequently, it is of important theoretical interest to study the weak stability
of fixed point iteration procedures for those classes of contractive mappings for
which Picard and other fixed point iteration procedures are not stable (almost
stable).
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