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Convergence theorems for fixed point iterative methods
defined as admissible perturbations of a nonlinear operator

VASILE BERINDE

ABSTRACT. The aim of this paper is to prove some convergence theorems for a general fixed point iterative
method defined by means of the new concept of admissible perturbation of a nonlinear operator, introduced in
[Rus, I. A., An abstract point of view on iterative approximation of fixed points, Fixed Point Theory 13 (2012), No.
1, 179–192]. The obtained convergence theorems extend and unify some fundamental results in the iterative
approximation of fixed points due to Petryshyn [Petryshyn, W. V., Construction of fixed points of demicompact
mappings in Hilbert space, J. Math. Anal. Appl. 14 (1966), 276–284] and Browder and Petryshyn [Browder, F. E.
and Petryshyn, W. V., Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20
(1967), No. 2, 197–228].

1. INTRODUCTION AND PRELIMINARIES

There exists a vast literature on the iterative approximation of fixed points, see for
example the recent monographs [2], [7] and [16] and references therein. The fundamental
problem of this field of research could be briefly stated as follows.

We have to solve a certain nonlinear fixed point equation

(1.1) x = Tx,

where T is a given self operator of a spaceX . SupposeX and T are such that the equation
(1.1) has at least one solution (usually called a fixed point of T ).

A typical situation of this kind is illustrated by the well known Browder-Gohde-Kirk
fixed point theorem (see Theorem 3.1 in [2]), stated here in a Hilbert space, because in this
paper we are particularly interested to work in this setting.

Theorem 1.1. Let C be a closed bounded and convex subset of a Hilbert space H and T : C → C
be a nonexpansive operator. Then T has at least one fixed point.

In case X and T are general enough, like in Theorem 1.1 (or even more general, e.g., X
is a uniformly Banach space and T is nonexpansive), when T has at least one fixed point,
however, the Picard iteration associated to (1.1), that is, the sequence defined by x0 ∈ X
and

(1.2) xn+1 = Txn, n = 0, 1, 2, . . .

does not converge in general or, even if it converges, its limit is not a fixed point of T .
In such circumstances, it is necessary to consider more reliable fixed point iterative

methods, like Krasnoselskij iteration, Mann iteration, Ishikawa iteration etc. For the sake
of completeness, we present below the definitions of Krasnoselskij, Mann and Ishikawa
iteration procedures (for more details and convergence results, see [2], [7]).
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Let E be a real vector space and T : E → E a given operator. Let x0 ∈ E be arbitrary
and {αn} ⊂ [0, 1] a sequence of real numbers.
The sequence {xn}∞n=0 ⊂ E defined by x0 ∈ E and

(1.3) xn+1 = (1− αn)xn + αnTxn , n = 0, 1, 2, . . .

is called the Mann iteration or Mann iterative procedure. The sequence {xn}∞n=0 ⊂ E defined
by

(1.4)

{
xn+1 = (1− αn)xn + αnTyn , n = 0, 1, 2, . . .

yn = (1− βn)xn + βnTxn , n = 0, 1, 2, . . . ,

where {αn} and {βn} are sequences of positive numbers in [0, 1], and x0 ∈ E arbitrary, is
called the Ishikawa iteration or Ishikawa iterative procedure.

Remark 1.1. For βn ≡ 0 the Ishikawa iteration (1.4) reduces to Mann iteration (1.3), while,
for αn = λ (constant), the Mann iteration (1.3) reduces to the so called Krasnoselskij itera-
tion. Picard iteration is obtained from the latter for λ = 1.

In order to state a very important convergence theorem for the Krasnoselskij iteration
in the class of nonexpansive mappings, due to Petryshyn [18], we need the following
concept.

Definition 1.1. (Petryshyn [18]) LetH be a Hilbert space and C a subset ofH . A mapping
T : C → H is called demicompact if it has the property that whenever {un} is a bounded
sequence in H and {Tun − un} is strongly convergent, then there exists a subsequence
{unk

} of {un}which is strongly convergent.

Theorem 1.2. (Petryshyn [18]) Let C be a bounded closed convex subset of a Hilbert space H
and T : C → C be a nonexpansive and demicompact operator. Then the set Fix (T ) of fixed points
of T is a nonempty convex set and for any given x0 in C and any fixed number λ with 0 < λ < 1
the Krasnoselskij iteration {xn}∞n=0 given by

(1.5) xn+1 = (1− λ)xn + λTxn , n = 0, 1, 2, . . .

converges (strongly) to a fixed point of T .

In a very recent paper, I. A. Rus [22] considered a new approach to fixed point iterative
methods, based on the concept of admissible perturbation of a self operator. The theory
of admissible perturbations of an operator opened a new direction of research that unifies
the most important aspects of the iterative approximation of fixed points for single val-
ued self and nonself operators. In the case of nonself operators the theory of admissible
perturbations has been studied in [4].

The problems tackled in [22] and [4] are the following: a) The admissible perturbation
of an operator; b) Iterative algorithms in terms of admissible perturbations; c) Gronwall
lemmas; d) Comparison lemmas; e) Data dependence; f) Stability of an iterative algorithm.

In the present paper our aim is more limited: just to use the theory of admissible per-
turbations in order to establish convergence theorems for Krasnoselskij type fixed point
iterations, thus obtaining very general and interesting results that extend Theorem 1.2 and
unify many related results in literature.
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2. ADMISSIBLE PERTURBATIONS OF AN OPERATOR

Definition 2.2. ([22]) Let X be a nonempty set. A mapping G : X × X → X is called
admissible if it satisfies the following two conditions:
(A1) G(x, x) = x, for all x ∈ X ;
(A2) G(x, y) = x implies y = x.

Definition 2.3. ([22]) Let X be a nonempty set. If f : X → X is a given operator and
G : X ×X → X is an admissible mapping, then the operator fG : X → X , defined by

(2.6) fG(x) = G(x, f(x)), ∀x ∈ X,

is called the admissible perturbation of f .

Remark 2.2. The following property of admissible perturbations is fundamental in the
iterative approximation of fixed points: if f : X → X is a given operator and fG : X → X
denotes its admissible perturbation, then

(2.7) Fix (fG) = Fix (f) := {x ∈ X|x = f(x)},

that is, the admissible perturbation fG of f has the same set of fixed points as the operator
f itself.

Note that, in general,

(2.8) Fix (fnG) 6= Fix (fn), n ≥ 2.

Example 2.1. ([22]) Let (V,+,R) be a real vector space, X ⊂ V a convex subset, λ ∈ (0, 1),
f : X → X and G : X ×X → X be defined by

G(x, y) := (1− λ)x+ λy, x, y ∈ X.

Then fG is an admissible perturbation of f . We shall denote fG by fλ and call it the
Krasnoselskij perturbation of f .

Example 2.2. ([22]) Let (V,+,R) be a real vector space, X⊂V a convex subset, χ :X×X→
(0, 1), f : X → X and G(x, y) := (1− χ(x, y))x+ χ(x, y)y.

Then fG is an admissible perturbation of f which reduces to the Krasnoselskij pertur-
bation in the case χ(x, y) is a constant function.

For other important examples of admissible mappings and admissible perturbations of
nonlinear operators, see [22] (for the case of self mappings) and [4] (for the case of nonself
mappings).

Definition 2.4. ([22])
Let f : X → X be a nonlinear operator and G : X ×X → X an admissible mapping.

Then the iterative algorithm {xn} given by x0 ∈ X and

(2.9) xn+1 = G(xn, f(xn)), n ≥ 0,

is called the Krasnoselskij algorithm corresponding to G or the GK-algorithm.

Definition 2.5. Let H be a Hilbert space and T : H → H be an operator with Fix (T ) 6= ∅.
We say that the admissible mapping G : H ×H → H has the property (C) with respect to T
if there exists λ ∈ (0, 1) such that

(2.10) ‖G(x, Tx)− p‖ ≤ λ2 · ‖x− p‖2 + (1− λ)2 · ‖Tx− p‖2 + 2λ(1− λ) 〈Tx− p, x− p〉 ,

for all x ∈ H and all p ∈ Fix (T ).
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Remark 2.3. In the particular case

(2.11) G(x, y) := (1− λ)x+ λy, x, y ∈ X,
the GK-algorithm (2.9) reduces to the classical Krasnoselskij algorithm (1.5).

Note that in a Hilbert spaceH , the admissible mappingG : H×H → H given by (2.11)
has the property (C) with respect to any selfmap T : H → H with Fix (T ) 6= ∅, as a direct
consequence of the next lemma.

Lemma 2.1. ([2], Lemma 1.8) Let x, y, z be points in a Hilbert space and λ ∈ [0, 1]. Then

‖λx+ (1− λ) y − z ‖2 = λ ‖x− z ‖2 + (1− λ) ‖ y − z ‖2 − λ (1− λ) ‖x− y ‖2 .

Starting from these concepts and results, the main aim of the next section is to extend
Theorem 1.2 from the case of classical Krasnoselskij algorithm (1.5) to the general case of
the GK-algorithm (2.9).

3. CONVERGENCE THEOREMS

The main result of this paper is the following strong convergence theorem for the GK-
algorithm associated to nonexpansive operators in Hilbert spaces.

Theorem 3.3. LetC be a bounded closed convex subset of a Hilbert spaceH and let T : C → C be
a nonexpansive and demicompact operator. Then the set Fix (T ) of fixed points of T is a nonempty
convex set.

Moreover, ifG : H×H → H is an admissible mapping which has the property (C) with respect
to T , then the GK-algorithm {xn}∞n=0 given by x0 in C and

(3.12) xn+1 = G(xn, f(xn)), n ≥ 0,

converges (strongly) to a fixed point of T .

Proof. By Theorem 1.1, Fix (T ) is nonempty. In order to prove that Fix (T ) in convex, let
us consider p, q ∈ Fix (T ) and λ ∈ [0, 1]. Then, by Lemma 2.1 we have

(3.13) ‖T [λp+ (1− λ)q]− [λp+ (1− λ)q]‖2 = ‖λp+ (1− λ)q − T [λp+ (1− λ)q]‖2

= λ ‖p− T [λp+ (1− λ)q]‖2 + (1− λ) ‖q − T [λp+ (1− λ)q]‖2 − λ(1− λ) ‖p− q‖2 .
Using the fact that p = Tp, q = Tq and T is nonexpansive, one obtains

‖p− T [λp+ (1− λ)q]‖ ≤ (1− λ) ‖p− q‖ ; ‖q − T [λp+ (1− λ)q]‖ ≤ λ ‖p− q‖ ,
and therefore, by (3.13)

‖T [λp+ (1− λ)q]− [λp+ (1− λ)q]‖2 ≤ λ(1− λ)2 ‖p− q‖2 + (1− λ)λ2 ‖p− q‖2

−λ(1− λ) ‖p− q‖2 =
[
λ(1− λ)2 + (1− λ)λ2 − λ(1− λ)

]
‖p− q‖2 = 0,

which shows that
T [λp+ (1− λ)q] = λp+ (1− λ)q,

that is, λp+ (1− λ)q ∈ Fix (T ), which proves that Fix (T ) is convex.
In order to prove the second part of the theorem, let p be a fixed point of T .
We first show that the sequence {xn − Txn}n∈N converges strongly to zero.
Indeed, since G has the property (C) with respect to T , we have

(3.14) ‖xn+1 − p‖2 = ‖TG(xn)− p‖2 = ‖G(xn, Txn)− p‖2

≤ λ2 · ‖xn − p‖2 + (1− λ)2 · ‖Txn − p‖2 + 2λ(1− λ) 〈Txn − p, xn − p〉 .
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On the other hand,

(3.15) ‖xn − Txn‖2 = ‖xn − p‖2 + ‖Txn − p‖2 − 〈Txn − p, xn − p〉 .

By (3.14) and (3.15) and by using the nonexpansiveness of T and the fact that Tp = p, for
any real number a we have

‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤ [2a2 + λ2 + (1− λ)2] · ‖ xn − p‖2 +

+2[λ(1− λ)− a2] · 〈Txn − p, xn − p〉 .

If we choose now a nonzero a such that a2 ≤ λ(1 − λ), then from the last inequality we
obtain

(3.16) ‖xn+1 − p‖2 + a2 ‖xn − Txn‖2 ≤

≤
(
2a2 + λ2 + (1− λ)2 + 2λ(1− λ)− 2a2

)
‖xn − p‖2 = ‖xn − p‖2 .

(we used the Cauchy-Schwarz inequality,

〈Txn − p, xn − p〉 ≤ ‖Txn − p‖ · ‖xn − p‖ ≤ ‖ xn − p‖2
)
.

So, by (3) we get

(3.17) a2 ‖xn − Txn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 , n ≥ 0.

Now, take n = 0, 1, . . . , N in (3.17) and sum up all the obtained inequalities to get

(3.18) a2 ·
N∑
n=0

‖xn − Txn‖2 ≤ ‖x0 − p‖2 − ‖xN+1 − p‖2 ≤ ‖x0 − p‖2 ,

which shows that the series
N∑
n=0

‖xn − Txn‖2

is convergent, and hence

(3.19) lim
n→∞

‖xn − Txn‖ = 0.

This shows that xn−Txn → 0 (strongly), and since T is demicompact, it follows that there
exists a subsequence {xnk

} ⊂ C and a point q ∈ C such that

lim
k→∞

xnk
= q.

But T is nonexpansive, hence continuous. This implies

lim
k→∞

Txnk
= Tq.

But, by virtue of (3.19), 0 = limk→∞ (xnk
− Txnk

) = q−Tq,which shows that q ∈ Fix (T ).
Using the inequality (3.17), with p := q, we deduce that the sequence of nonnegative

real numbers {‖xn − q‖}n≥0 is nonincreasing, hence convergent.
Since its subsequence {‖xnk

− q‖}k≥0 converges to 0, it follows that the entire sequence
{‖xn−q‖}n≥0 converges to 0, that is, the sequence {xn} converges strongly to q, as n→∞.

�
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Remark 3.4. 1) If the admissible mapping G(x, y) is given by (2.11), then by Theorem 3.3
we obtain Theorem 1.2, which is actually Theorem 6 of Petryshyn [18] (reformulated in
Browder and Petryshyn [6]);

2) As the class of demicompact operators contains the compact operators, by Theorem
3.3 we obtain, in particular, two theorems in Hilbert spaces that extend the original results
of Krasnoselskij [13] and Schaefer [23] (established there in the more general context of
uniformly Banach spaces) from the case of classical Krasnoselskij algorithm (1.5) to the
general case of the GK-algorithm (2.9);

Remark 3.5. 1) The first part of the proof of Theorem 3.3 is inspired by the proof of Propo-
sition 4.1 in [14], while the second part of the proof follows the arguments in the proof
from Browder and Petryshyn [6] (see also [2], Theorem 3.2);

2) It is possible to obtain the conclusion that the sequence {xn − Txn}n∈N converges
strongly to zero in the proof of Theorem 3.3 in a simpler manner, suggested by the proof
of Proposition 3.2 in [14]. Indeed, using the inequality (3.17), we deduce that the sequence
of nonnegative real numbers {‖xn − p‖}n≥0 is nonincreasing, hence convergent.

By the same inequality (3.17) we have

(3.20) 0 ≤ ‖xn − Txn‖2 ≤
1

a2

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
, n ≥ 0,

from which, by letting n→∞, we get exactly the desired conclusion.

Definition 3.6. ([2], pp. 67) A map T of C ⊂ H into H is said to be demicompact at u if,
for any bounded sequence {xn} in C such that xn − Txn → u as n → ∞, there exists a
subsequence {xnj

} and an x in C such that xnj
→ x as j →∞ and x− Tx = u.

Remark 3.6. Clearly, if T is demicompact on C, then it is demicompact at 0 but the con-
verse is not true.

The demicompactness on the whole C of T in Theorem 3.3 may be weakened to the
demicompactness at 0 by simultaneously adding another compensating assumption.

Theorem 3.4. Let H be a Hilbert space, C a closed bounded convex subset of H , and T : C → C
a nonexpansive mapping such that T satisfies any one of the following two conditions:
(i) I − T maps closed sets in C into closed sets in H ;
(ii) T is demicompact at 0.

If G : H × H → H is an admissible mapping which has the property (C) with respect to T ,
then the GK-algorithm {xn}∞n=0 given by x0 in C and

(3.21) xn+1 = G(xn, f(xn)), n ≥ 0,

converges (strongly) to a fixed point of T .

Proof. Note that in the proof of Theorem 3.3 we actually used the demicompactness of T
at 0, so the arguments used there could be applied unchanged here. �

Remark 3.7. Let us observe that the if {xn} is the GK-algorithm {xn}∞n=0 given by x0 in
C and

xn+1 = G(xn, f(xn)), n ≥ 0,

then xn = TnG(x0), for all n ≥ 0, where TG is the admissible perturbation of T .
From the proof of Theorem 3.3 it results that TG is asymptotically regular, i.e.,∥∥ TnG(x)− Tn+1

G (x)
∥∥→ 0,
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as n→∞, for any x ∈ C, that is,

(3.22) xn − xn+1 → 0, as n→∞,
for any x0 ∈ C.

The existence of the previous limit alone does not imply generally the convergence
of the sequence {xn}∞n=0 to a fixed point of T . For example, in Theorems 3.3 and 3.4
certain additional assumptions were necessary, i.e., the demicompactness of T and the
demicompactness of T at 0, respectively).

But there are other possible additional assumptions to ensure the convergence of {xn}∞n=0

under the hypothesis of asymptotic regularity. For example, in the case of the real line,
C = [a, b] the closed bounded interval and T : C → C a continuous function, Hillam [10]
showed that the Picard iteration associated to T converges if and only if it is asymptoti-
cally regular.

Definition 3.7. Let G : X ×X → X be an admissible mapping on a normed space X . We
say that G is affine Lipschitzian if there exists a constant µ ∈ [0, 1] such that

(3.23) ‖G(x1, y1)−G(x2, y2)‖ ≤ µ ‖x1 − x2‖+ (1− µ) ‖y1 − y2‖ ,
for all x1, x2, y1, y2 ∈ X .

Example 3.3. The admissible mapping G(x, y) given by

G(x, y) := (1− λ)x+ λy, x, y ∈ X,
which corresponds to the classical Krasnoselskij iteration, is an affine Lipschitzian map-
ping.

In fact, the admissible mappings corresponding to other important fixed point iterative
algorithms, like Picard, Mann, Ishikawa etc., are all affine Lipschitzian mappings.

If in Theorems 3.3 and 3.4 we remove the demicompactness assumption, then, as in
the case of classical Krasnoselskij iteration (see [2]), the GK-algorithm does not longer
converge strongly, in general, but it could converge (at least) weakly to a fixed point, as
shown by the next theorem, which extends Theorem 3.3 in [2].

Theorem 3.5. LetH be a Hilbert space, C a closed bounded convex subset ofH , and T : C → C a
nonexpansive mapping such that FT = {p}. IfG : H×H → H is a affine Lipschitzian admissible
mapping which has the property (C) with respect to T , then the GK-algorithm {xn}∞n=0 given by
x0 in C and

(3.24) xn+1 = G(xn, f(xn)), n ≥ 0,

converges weakly to p.

Proof. It suffices to show that if {xnj
}∞j=0, xnj

= T
nj

G x, converges weakly to a certain p0,
then p0 is a fixed point of TG (and hence of T ) and therefore p0 = p. Suppose that {xnj

}∞j=0

does not converge weakly to p. Then, sinceG is affine Lipschitzian and T is nonexpansive,
we have

‖G(x, Tx)−G(y, Ty)‖≤µ ‖x−y‖+ (1−µ) ‖Tx−Ty‖≤µ ‖x−y‖+ (1−µ) ‖x−y‖=‖x−y‖ ,
which shows that the admissible perturbation TG of T is nonexpansive and hence∥∥ xnj

− TGp0
∥∥ ≤ ∥∥ TGxnj

− TGp0
∥∥+ ∥∥ xnj

− TGxnj

∥∥ ≤
≤
∥∥ xnj

− p0
∥∥+ ∥∥ xnj

− TGxnj

∥∥
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and, using the arguments in the proof of Theorem 3.3, it results∥∥ xnj − TGxnj

∥∥→ 0, as n→∞,
and so the last inequality implies that

(3.25) lim sup
( ∥∥ xnj

− TGp0
∥∥− ∥∥ xnj

− p0
∥∥ ) ≤ 0.

But, like in the proof of Theorem 3.3, we have∥∥ xnj − TGp0
∥∥2 =

∥∥ (xnj − p0) + (p0 − TGp0)
∥∥2 =

=
∥∥ xnj

− p0
∥∥2 + ‖p0 − TGp0‖2 + 2

〈
xnj
− p0, p0 − TGp0

〉
,

which shows, together with xnj
⇀ p0 (as j →∞), that

(3.26) lim
n→∞

[∥∥ xnj
− TGp0

∥∥2 − ∥∥xnj
− p0

∥∥2 ] = ‖p0 − TGp0‖2 .
On the other hand, we have

(3.27)
∥∥ xnj

− TGp0
∥∥2 − ∥∥xnj

− p0
∥∥2 =

( ∥∥ xnj
− TGp0

∥∥− ∥∥ xnj
− p0

∥∥ ) ·
·
( ∥∥ xnj

− TGp0
∥∥+ ∥∥ xnj

− p0
∥∥ ) .

Since C is bounded, the sequence{∥∥ xnj − TGp0
∥∥+ ∥∥ xnj − p0

∥∥}
is bounded, too, and so by the relations (3.25) – (3.27) we get

‖p0 − TGp0‖ ≤ 0, i.e., TGp0 = p0 ⇔ p0 ∈ FT = {p}.
�

Remark 3.8. The assumption FT = {p} in Theorem 3.5 may be removed in order to obtain
a more general result, similar to Theorem 3.4 in [2].

Theorem 3.6. Let C be a bounded closed convex subset of a Hilbert space and T : C → C be a
nonexpansive operator. If G : H ×H → H is a affine Lipschitzian admissible mapping which has
the property (C) with respect to T , then the GK-algorithm {xn}∞n=0 given by x0 in C and

xn+1 = G(xn, f(xn)), n ≥ 0,

converges weakly to a fixed point of T in C.

Proof. We follow essentially the steps and arguments in the proof of Theorem 3.4 in [2]
but transposed from the classical Krasnoselskij iteration to the GK-algorithm. For each
p ∈ Fix (T ) and each n we have, by the proof of Theorem 3.3,

‖ xn+1 − p‖ ≤ ‖ xn − p‖ ,
which shows that the function g(p) = lim

n→∞
‖ xn − p‖ is well defined and is a lower semi-

continuous convex function on the nonempty convex set Fix (T ). Let

d0 = inf{g(p) : p ∈ Fix (T )}.
For each ε > 0, the set

Fε = {y : g(y) ≤ d0 + ε}
is closed, convex, and, hence, weakly compact. Therefore ∩

ε>0
Fε 6= ∅, and in fact

∩
ε>0

Fε = {y : g(y) = d0} ≡ F0.
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Moreover, F0 contains exactly one point. Indeed, since F0 is convex and closed, for
p0, p1∈F0, and pλ = (1− λ)p0 + λp1,

g2(pλ) = lim
n→∞

‖ pλ − xn‖2 = lim
n→∞

(‖λ(p1 − xn) + (1− λ)(p0 − xn)‖2) =

= lim
n→∞

(λ2 ‖p1 − xn‖2 + (1− λ)2 ‖ p0 − xn‖2 + 2λ(1− λ) 〈p1 − xn, p0 − xn〉)

= lim
n→∞

(λ2 ‖p1 − xn‖2 + (1− λ)2 ‖ p0 − xn‖2 + 2λ(1− λ) ‖ p1 − xn‖ · ‖ p0 − xn‖)+

+ lim
n→∞

{2λ(1− λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} =

= g2(p) + lim
n→∞

{2λ(1− λ) 〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖} .

Hence
lim
n→∞

{2λ(1− λ) [〈p1 − xn, p0 − xn〉 − ‖ p1 − xn‖ · ‖ p0 − xn‖]} = 0.

Since
‖p1 − xn‖ → d0 and ‖ p0 − xn‖ → d0,

the latter relation implies that

‖ p1 − p0‖2 = ‖ (p1 − xn) + (xn − p0‖2 = ‖ p1 − xn‖2 +

+ ‖ xn − p0‖2 − 2 < p1 − xn, p0 − xn >→ d20 + d20 − 2d20 = 0,

giving a contradiction.
Now, in order to show that xn = TnGx0 ⇀ p0, it suffices to assume that xnj

⇀ p for
an infinite subsequence and then prove that p = p0. By the arguments in Theorem 3.3,
p ∈ Fix (T ). Considering the definition of g and the fact that xnj → p, we have∥∥ xnj − p0

∥∥2 =
∥∥ xnj − p+ p− p0

∥∥2 =
∥∥ xnj − p

∥∥2 + ‖ p− p0‖2−
−2

〈
xnj − p, p− p0

〉
→ g2(p) + ‖ p− p0‖2 = g2(p0) = d20.

Since g2(p) ≥ d20, the last inequality implies that

‖ p− p0‖ ≤ 0,

which means that p = p0.
�

4. CONCLUSIONS AND FURTHER STUDY

The results established in the present paper are generalizations of several important
results in literature, amongst which we mention the following ones: Theorem 3.3 gener-
alizes Theorem 6 of Petryshyn [18] (which may also be found reformulated in Browder
and Petryshyn [6]); Theorem 3.4 extends Corollary 3.1 from [19], while Theorem 3.5 and
Theorem 3.6 are generalizations of Theorem 7 and Theorem 8, respectively, from [6].

Similar results to those established in the present paper could be obtained for most of
the convergence theorems in [1]-[5], [8]-[12], [15]-[21], [24], [25] and many other related
papers.
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