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A general concept of multiple fixed point for mappings
defined on spaces with a distance

MITROFAN M. CHOBAN1 and VASILE BERINDE2,3

ABSTRACT. Our main aim in this paper is to introduce a general concept of multidimensional fixed point
of a mapping in spaces with distance and establish various multidimensional fixed point results. This new
concept simplifies the similar notion from [A. Roldan, J. Martinez-Moreno, C. Roldan, Multidimensional fixed
point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl. 396 (2012), 536–545]. The obtained
multiple fixed point theorems extend, generalise and unify many related results in literature.

1. INTRODUCTION

The notion of multidimensional fixed point emerged naturally from the rich literature
devoted to the study of coupled fixed points in the last four decades. The concept of
coupled fixed point itself has been first introduced and studied by V. I. Opoitsev, in a series
of papers published in the period 1975-1986, see [58]-[62], for the case of mixed monotone
nonlinear operators satisfying a nonexpansive type condition.

Later, in 1987, Guo and Lakshmikantham [41], studied coupled fixed points in con-
nection with coupled quasisolutions of an initial value problem for ordinary differential
equations (see also [39]). In 1991, Chen [30] obtained coupled fixed point results of 1

2 -α-
condensing and mixed monotone operators, where α denotes the Kuratowski’s measure
of non compactness, thus extending some previous results from [41] and [77]. In the same
year, Chang and Ma [29] discussed some existence results and iterative approximation of
coupled fixed points for mixed monotone condensing set-valued operators. Next, Chang,
Cho and Huang [28] obtained coupled fixed point results of 1

2 -α-contractive and genera-
lized condensing mixed monotone operators.

More recently, Gnana Bhaskar and Lakshmikantham in [37] established coupled fixed
point results for mixed monotone operators in partially ordered metric spaces in the pre-
sence of a Bancah contraction type condition. Essentialy, the results by Bhaskar and
Lakshmikantham in [37] combine, in the context of coupled fixed point theory, the main
fixed point results previously obtained by Nieto and Rodriguez-Lopez in [55] and [56].
The last two papers are, in turn, in continuation to a very important fixed point theorem
established in the seminal paper of Ran and Reurings [63], which has the merit to combine
a metrical fixed point theorem (the contraction mapping principle) and an order theoretic
fixed point result (Tarski’s fixed point theorem).

Various applications of the theoretical results in the previous mentioned papers were
also given by several authors to: a) Uryson integral equations [60]; b) a system of Vol-
terra integral equations [30], [28]; c) a class of functional equations arising in dynamic
programming [29]; d) initial value problems for first order differential equations with dis-
continuous right hand side [41]; e) (two point) periodic boundary value problems [17],
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[37], [33], [80]; f) integral equations and systems of integral equations [3], [6], [9], [24],
[38], [42], [76], [78], [83]; g) nonlinear elliptic problems and delayed hematopoesis models
[82]; h) nonlinear Hammerstein integral equations [74]; i) nonlinear matrix and nonlinear
quadratic equations [4], [24]; j) initial value problems for ODE [8], [73] etc. For a very
recent account on the developments of coupled fixed point theory, we also refer to [22].

In 2010, Samet and Vetro [72] considered a concept of f ixed point of m-order as a natural
extension of the notion of coupled fixed point. One year later, Berinde and Borcut [18]
introduced the concept of triple fixed point and proved triple fixed-point theorems using
mixed monotone mappings, while, in 2012, Karapinar and Berinde [47], have studied
quadruple fixed points of nonlinear contractions in partially ordered metric spaces.

After these papers, a substantial number of articles were dedicated to the study of triple
fixed point and quadruple fixed point theory. Next, J. Roldan, Martinez-Moreno and C.
Roldan [64] introduced a new concept of fixed point of m-order, which is also called by
various authors ”a multidimensional fixed point”, or ”an m-tuplet fixed point”, or ”an
m-tuple fixed point”. For some other very recent results on this topic we refer to [1], [2],
[7], [25], [26], [27], [35], [46], [48], [49], [43], [44], [45], [50], [51], [57], [64]-[69], [79], [81],
[84].

In the present paper, our main aim is to introduce and study a general concept of multi-
dimensional fixed point in the setting of ordered spaces with distance. This concept sim-
plifies the similar notion from [64] and allows us to obtain general multiple fixed point
theorems that include as particular cases several related results in literature.

This point of view allows us to reduce the multidimensional case of fixed points and
coincidence points to the one-dimensional case. Note that, the first author who reduced
the problem of finding a coupled fixed point of mixed monotone operators to the problem
of finding a fixed point of an increasing operator was Opoitsev, see for example [60]. For
a more recent similar approach we refer to [14].

2. PRELIMINARIES

By a space we understand a topological T0-space. We use the terminology from [36, 40,
70, 31].

Let X be a non-empty set and d : X ×X → R be a mapping such that:
(im) d(x, y) ≥ 0, for all x, y ∈ X ;
(iim) d(x, y) + d(y, x) = 0 if and only if x = y.
Then d is called a distance on X , while (X, d) is called a distance space.
Let d be a distance on X and

B(x, d, r) = {y ∈ X : d(x, y) < r}

be the ball with the center x and radius r > 0. The set U ⊂ X is called d-open if for any
x ∈ U there exists r > 0 such that B(x, d, r) ⊂ U . The family T(d) of all d-open subsets is
the topology on X generated by d. A distance space is a sequential space, i.e., a space for
which a set B ⊆ X is closed if and only if together with any sequence it contains all its
limits [36].

Let (X, d) be a distance space, {xn}n∈N be a sequence in X and x ∈ X . We say that the
sequence {xn}n∈N is:

1) convergent to x if and only if

lim
n→∞

d(x, xn) = 0.

We denote this by xn → x or
x = lim

n→∞
xn.
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Actually, we might denote better
x ∈ lim

n→∞
xn.

2) convergent if it converges to some point x in X ;
3) Cauchy or fundamental if

lim
n,m→∞

d(xn, xm) = 0.

A distance space (X, d) is called complete if every Cauchy sequence in X converges to
some point x in X .

Let X be a non-empty set and d be a distance on X . Then:
• (X, d) is called a symmetric space and d is called a symmetric on X if

(iiim) d(x, y) = d(y, x), for all x, y ∈ X ;
• (X, d) is called a quasimetric space and d is called a quasimetric on X if

(ivm) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X ;
• (X, d) is called a metric space and d is called a metric if d is a symmetric and a

quasimetric, simultaneously.
Let X be a non-empty set and d(x, y) be a distance on X with the following property:
(N ) for each point x ∈ X and any ε > 0 there exists δ = δ(x, ε) > 0 such that from

d(x, y) ≤ δ and d(y, z) ≤ δ it follows d(x, z) ≤ ε.
Then (X, d) is called an N -distance space and d is called an N-distance on X . If d is a sym-
metric, then we say that d is a N -symmetric.

Spaces with N-distances were studied by V. Niemyzki [53, 54] and by S. I. Nedev [52].
Clearly, any (quasi) metric space is a N -distance space. If d satisfies uniformly the N -
distance condition, that is,

(F ) for any ε > 0 there exists δ = δ(ε) > 0 such that from d(x, y) ≤ δ and d(y, z) ≤ δ it
follows d(x, z) ≤ ε, then d is called a F-distance or a Fréchet distance, while (X, d) is called
an F-distance space.

Obviously, any F-distance d is an N-distance, too, but the reverse is not true, in general,
see Examples 1.1 and 1.2 in [31]. If d is a symmetric and a F-distance on a space X , then
we say that d is a F -symmetric.

Remark 2.1. If (X, d) is an F -symmetric space, then any convergent sequence is a Cauchy
sequence. For N -symmetric spaces and for quasimetric spaces this assertion is not more
true.

If s > 0 and
d(x, y) ≤ s[d(x, z) + d(z, y)]

for all points x, y, z ∈ X , then we say that d is an s-distance. Any s-distance is an F -
distance.

A distance space (X, d) is called an H-distance space if, for any two distinct points x, y ∈
X , there exists δ = δ(x, y) > 0 such that

B(x, d, δ) ∩B(y, d, δ) = ∅.

Remark 2.2. A distance space (X, d) is an H-distance space if and only if any convergent
sequence in X has a unique limit point.

We say that (X, d) is a C-distance space or a Cauchy distance space if any convergent
Cauchy sequence has a unique limit point.

Fix a mapping ϕ : X −→ X . For any point x ∈ X we put

ϕ0(x) = x, ϕ1(x) = ϕ(x), ..., ϕn(x) = ϕ(ϕn−1(x)), . . . .
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The sequence
O(ϕ, x) = {xn = ϕn(x) : n ∈ N}

is called the orbit of ϕ at the point x or the Picard sequence at the point x.
Let (X, d) be a distance space and ϕ : X −→ X a mapping. We say that the mapping ϕ

is:
- contractive if

d(ϕ(x), ϕ(y)) < d(x, y), provided d(x, y) > 0;

- a contraction if there exists λ ∈ [0, 1) such that

d(ϕ(x), ϕ(y)) ≤ λd(x, y), for all x, y ∈ X;

- strongly asymptotically regular if

lim
n→∞

(d(ϕn(x), ϕn+1(x) + d(ϕn+1(x), ϕn(x)))) = 0, for any x ∈ X.

Now, let (X, d) be a distance space and m ∈ N = {1, 2, ...}. On the set Xm we consider
the distances

dm((x1, ..., xm), (y1, ..., ym)) = sup{d(xi, yi) : i ≤ m}
and

d̄m((x1, ..., xm), (y1, ..., ym)) =

m∑
i=1

d(xi, yi).

Obviously, (Xm, dm) and (Xm, d̄m) are distance spaces, too.

Proposition 2.3. Let (X, d) be a distance space. Then:
1. If d is a symmetric, then (Xm, dm) and (Xm, d̄m) are symmetric spaces, too.
2. If d is a quasimetric, then (Xm, dm) and (Xm, d̄m) are quasimetric spaces, too.
3. If d is a metric, then (Xm, dm) and (Xm, d̄m) are metric spaces, too.
4. If d is an F -distance space, then (Xm, dm) and (Xm, d̄m) are F -distance spaces, too.
5. If d is an N -distance space, then (Xm, dm) and (Xm, d̄m) are N -distance spaces, too.
6. If d is an H-distance space, then (Xm, dm) and (Xm, d̄m) are H-distance spaces, too.
7. If (X, d) is a C-distance space, then (Xm, dm) and (Xm, d̄m) are C-distance spaces, too.
8. If (X, d) is a complete distance space, then (Xm, dm) and (Xm, d̄m) are complete distance

spaces, too.
9. If d is an s-distance space, then (Xm, dm) and (Xm, d̄m) are s-distance spaces, too.
10. The spaces (Xm, dm) and (Xm, d̄m) share the same convergent sequences and the same

Cauchy sequences. Moreover, the distances dm and d̄m are uniformly equivalent, i.e., for each
ε > 0, there exists δ = δ(ε) > 0 such that:

- from dm(x, y) ≤ δ it follows d̄m(x, y) ≤ ε;
- from d̄m(x, y) ≤ δ it follows dm(x, y) ≤ ε.

Proof. It is well known. �

3. MULTIPLE FIXED POINT PRINCIPLES

Fix m ∈ N and denote by λ = (λ1, ..., λm) a collection of mappings

{λi : {1, 2, ...,m} −→ {1, 2, ...,m} : 1 ≤ i ≤ m}.

Let (X, d) be a distance space and F : Xm −→ X be an operator. The operator F and
the mappings λ generate the operator λF : Xm −→ Xm, where

λF (x1, ...., xm) = (y1, ..., ym) and yi = F (xλi(1), ..., xλi(m)),

for any point (x1, ..., xm) ∈ Xm and any index i ∈ {1, 2, ...,m}.
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A point a = (a1, ..., am) ∈ Xm is called a λ-multiple fixed point of the operator F if

a = λF (a), i.e., ai = F (aλi(1), ..., aλi(m)), for any i ∈ {1, 2, ...,m}.

We say that the operator F is:

• λ-contractive if

dm(λF (x), λF (y)) < dm(x, y), for all x, y ∈ Xm with dm(x, y) > 0;

• a λ-contraction if there exist a number k ∈ [0, 1) such that

d(F (x1, ...., xm), F (y1, ...., ym)) ≤ k sup{d(xi, yi) : i ≤ m},
for all (x1, ...., xm), (y1, ...., ym) ∈ Xm.
• λ̄-contractive if

d̄m(λF (x), λF (y)) < d̄m(x, y), for all x, y ∈ Xm with d̄m(x, y) > 0;

• a λ̄-contraction if there exists a number k ∈ [0, 1) such that

d(F (x1, ...., xm), F (y1, ...., ym)) ≤ k
m ·

∑m
i=1 d(xi, yi),

for all (x1, ...., xm), (y1, ...., ym) ∈ Xm.

Proposition 3.1. Let (X, d) be a distance space, m ∈ N, F : Xm → X be an operator,

λ = {λi : {1, 2, ...,m} −→ {1, 2, ...,m} : 1 ≤ i ≤ m}

be a collection of mappings, k ≥ 0, a = (a1, ...., am) ∈ Xm, b = (b1, ...., bm) ∈ Xm such that

d(F (aλi(1), ...., aλi(m)), F (bλi(1), ...., bλi(m))) ≤ k sup{d(ai, bi) : i ≤ m},

for each 1 ≤ i ≤ m.
Then

dm(λF (a), λF (b)) ≤ kdm(a, b).

Proof. Let
ui = F (aλi(1), ...., aλi(m))

and
vi = F (bλi(1), ...., bλi(m)),

for any i ≤ m. Then
λF (a) = u = (u1, ..., um)

and
λF (b) = v = (v1, ..., vm).

We have
dm(λF (a), λF (b)) = dm(u, v) = sup{d(ui, vi) : i ≤ m}

= sup{d(F (aλi(1), ..., aλi(m)), F (bλi(1), ..., bλi(m))) : i ≤ m}

≤ sup{k sup{d(aλi(j), bλi(j)) : j ≤ m} : i ≤ m}

≤ k sup{d(ai, bi) : i ≤ m} = kdm(a, b).

�

Corollary 3.2. Let (X, d) be a distance space m ∈ N and F : Xm → X be an operator. If F is a
λ-contraction, then λF is a contraction on the distance space (Xm, dm).
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Proposition 3.3. Let (X, d) be a distance space, m ∈ N and F : Xm → X be an operator,

{λi : {1, 2, ...,m} −→ {1, 2, ...,m} : 1 ≤ i ≤ m}

be a collection of mappings, k ≥ 0, a = (a1, ...., am) ∈ Xm, b = (b1, ...., bm) ∈ Xm such that

d(F (aλi(1), ...., aλi(m)), F (bλi(1), ...., bλi(m))) ≤ k/m
m∑
i=1

d(ai, bi),

for each i ∈ {1, 2, ...,m}. If the mapping λi is a surjection or, more generally, if

| ∪ {λ−1i (j) : j ≤ m}| = m, for each i ∈ {1, 2, ...,m},

then
d̄m(λF (a), λF (b)) ≤ kd̄m(a, b).

Proof. We put u = (u1, ...., um) = λF (a) and v = (v1, ...., vm) = λF (b). Then

d̄m(λF (a), λF (b)) =

m∑
i=1

d(ui, vi) =

=

m∑
i=1

d(F (aλi(1), ..., aλi(m)), F (bλi(1), ..., bλi(m))) ≤

≤
m∑
i=1

k/m

m∑
j=1

d(aλi(j), bλi(j)) ≤ k
m∑
i=1

d(ai, bi) = kd̄m(a, b).

�

Corollary 3.4. Let (X, d) be a distance space, m ∈ N and F : Xm → X be an operator. If F is a
λ̄-contraction and for any i ∈ {1, 2, ...,m} the mapping λi is a surjection or, more generally, if

| ∪ {λ−1i (j) : j ≤ m}| = m, for each i ∈ {1, 2, ...,m},

then λF is a contraction on the distance space (Xm, d̄m).

4. MULTIPLE FIXED POINTS OF GENERAL OPERATORS

Fix m ∈ N, a distance space (X, d), an operator ϕ : Xm → X and the mappings

λ = {λi : {1, ...,m} → {1, ...,m : i ≤ m}.

For any point a = (a1, ..., an) ∈ Xm we put

a(1) = λF (a) and a(n+ 1) = λF (a(n)),

for each n ∈ N. The sequence

O(F, λ, a) = {a(n) : n ∈ N}

is the Picard sequence at the point a relatively to the operator λF . The orbit O(F, λ, a) is
called (F, λ)-bounded if

sup{dm(a, a(n)) + dm(a(n), a) : n ∈ N} <∞.

(this is equivalent to

sup{d̄m(a, a(n)) + d̄m(a(n), a) : n ∈ N} <∞.)

The space (X, d) is called (F, λ)-bounded if any Picard sequenceO(F, λ, a) is (F, λ)-bounded.
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Proposition 4.1. Let (X, d) be a C-distance space. Then:
1. d(x, y) = 0 if and only if x = y.
2. If, for a ∈ Xm, the Picard sequence O(F, λ, a) = {a(n) : n ∈ N} is a convergent Cauchy

sequence and
lim
n→∞

an = b = (b1, ..., bm),

then b is a multidimensional fixed point of the operator F with respect to the mappings λ, i.e.,

bi = F (bλi(1), ..., bλi(m)), for each i ∈ {1, 2, ...,m}.

Proof. Assume that x, y are two distinct points of X and d(x, y) = 0. Then the points x, y
are both limits of the Cauchy sequence {yn = y : n ∈ N}, a contradiction. So, assertion 1
is proved.

In the conditions of assertion 2, we have λF (b) = b. �

Corollary 4.2. Let (X, d) be a complete C-distance space, ρ ∈ {dm, d̄m}, k > 0 and F : Xm −→
X be an operator with the following properties:

(1) there exists k > 0 such that

d(F (x), F (y)) < kρ(x, y), for all distinct points x, y ∈ Xm;

(2) if x ∈ Xm, then the Picard sequence {xn ∈ X : n ∈ N} of F at the point x is a Cauchy
sequence.

Then
1. The operators F and λF are continuous.
2. The set Fix(F ) of the multidimensional fixed points of F is closed in Xm and non-empty.
3. If k ≤ 1, then F has a unique multidimensional fixed point.

Theorem 4.3. Let (X, d) be a (F, λ)-bounded complete C-distance space and F : Xm −→ X be
an operator.

1. If F is a λ-contraction, then any Picard sequence of the operator λF is a convergent Cauchy
sequence and F has a unique multidimensional fixed point.

2. If F is a λ̄-contraction and for any i ∈ {1, 2, ...,m} the mapping λi is a surjection or, more
generally, if

| ∪ {λ−1i (j) : j ≤ n}| = m, for each i ∈ {1, 2, ...,m},
then any Picard sequence of the operator λF is a convergent Cauchy sequence and F has a unique
multidimensional fixed point.

Proof. Let ρ = dm in the conditions of Assertion 1 and ρ = d̄m in the conditions of Assertion
2. From Propositions 3.1 and 3.3, respectively, it follows that λF is a contraction on the
complete C-distance space (Xm, ρ). Proposition 3.4 from [31] ensures that the operator
λF has a unique fixed point which is a multidimensional fixed point of F . �

Theorem 4.4. Let (X, d) be an N -symmetric space and F : Xm −→ X be an operator.
1. If F is a λ-contractive operator and for each point x ∈ Xm the Picard sequence O(F, λ, x) =

{xn : n ∈ N} has an accumulation point and lim
n→∞

dm(xn, xn+1) = 0, then any Picard sequence
of the operator λF is a convergent Cauchy sequence and F has a unique multidimensional fixed
point.

2. If F is a λ̄-contractive operator and, for any i ∈ {1, 2, ...,m}, the mapping λi is a sur-
jection or, more generally, | ∪ {λ−1i (j) : j ≤ m}| = m for each i ∈ {1, 2, ...,m} and for each
point x ∈ Xm the Picard sequence O(F, λ, x) = {xn : n ∈ N} has an accumulation point and
lim
n→∞

d̄m(xn, xn+1) = 0, then any Picard sequence of the operator λF is a convergent Cauchy
sequence and F has a unique multidimensional fixed point.

3. d is an H-distance and any Picard sequence has a unique accumulation point.
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Proof. Assertion 3 follows immediately from Theorem 4.1 from [31]. Let ρ be the symme-
tric constructed in the proof of Theorem 4.3. Then λF is a strongly asymptotically regular
contractive mapping on the N -symmetric space (Xm, ρ) and, for each point x ∈ Xm,
the Picard sequence O(F, λ, x) has an accumulation point. Now, Theorem 4.1 from [31]
completes the proof. �

Corollary 4.5. Let (X, d) be an N -symmetric compact space and F : Xm −→ X be an operator.
1. If F is a λ-contraction, then any Picard sequence of the operator λF is a convergent Cauchy

sequence and F has a unique multidimensional fixed point.
2. If F is a λ̄-contraction and for any i ≤ m the mapping λi is a surjection or, more generally,

| ∪ {λ−1i (j) : j ≤ m}| = m, for each i ≤ m, then any Picard sequence of the operator λF is a
convergent Cauchy sequence and F has a unique multidimensional fixed point.

The problem of the existence of fixed points for contracting mappings on F -symmetric
spaces was first studied in [20]. The following statement improves the fixed point theo-
rems of S. Czerwik [34] and I. A. Bakhtin [10] (see also [70]).

Theorem 4.6. Let (X, d) be a complete s-distance symmetric space and F : Xm −→ X be an
operator.

1. If F is a λ-contraction, then any Picard sequence of the operator λF is a convergent Cauchy
sequence and F has a unique multidimensional fixed point.

2. If F is a λ̄-contraction and, for any i ≤ m, the mapping λi is a surjection or, more generally,
| ∪ {λ−1i (j) : j ≤ m}| = m, for each i ≤ m, then any Picard sequence of the operator λF is a
convergent Cauchy sequence and F has a unique multidimensional fixed point.

Proof. Let ρ be the symmetric constructed in the proof of Theorem 4.3. By virtue of Pro-
position 2.3, ρ is a symmetric s-distance. Then λF is a contractive mapping of the s-
symmetric space (Xm, ρ). Now, Theorem 4.2 from [31] completes the proof. �

5. SOME PARTICULAR CASES AND CONCLUSIONS

If we take concrete values of m ∈ N and consider various particular functions λ =
{λi : {1, ...,m} → {1, ...,m} : 1 ≤ i ≤ m} then, most of the results in literature dedicated
to coupled, triple, quadruple,... fixed point theory, are obtained as particular cases of the
multiple fixed point theorems established in the present paper.

For example, if m = 2, λ1(1) = 1, λ1(2) = 2; λ2(1) = 2, λ2(2) = 1, by our main results
we obtain the coupled fixed point theorems in [37] and in various subsequent papers, see
especially the singular paper [71], where the setting is a (cone) metric space without any
order relation.

If m = 3, λ1(1) = 1, λ1(2) = 2, λ1(3) = 3; λ2(1) = 2, λ2(2) = 1, λ2(3) = 2; λ3(1) = 3,
λ3(2) = 2, λ3(3) = 1, then the concept of multiple fixed point studied in the present paper
reduces to that of triple fixed point, first introduced in [18] and intensively studied in
many other research works emerging from it.

We note that, as pointed out in [75], the notion of tripled fixed point due to Berinde and
Borcut [18] is different from the one defined by Samet and Vetro [72] for m = 3, since in
the case of ordered metric spaces in order to keep the mixed monotone property working,
it was necessary to take λ2(3) = 2 and not λ2(3) = 3.

We mention one more important particular case, i.e., the one of fixed point of N -order
introduced and studied in [72], which is obtained as particular case of our concept in-
troduced in the present paper, by taking m = N , λ1 = the identity permutation of
{1, 2, . . . , N} and, for i ≥ 2, λi is the cyclical permutation of {1, 2, . . . , N} that starts with
λi(1) = i, i.e., for example, λ2(1) = 2, λ2(2) = 3,. . . ,λ2(N − 1) = N , λ2(N) = 1. Note that
in this case the family of mappings λ = {λi : {1, ..., N} → {1, ..., N : i ≤ N} satisfies both
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alternative conditions imposed in Theorems 4.3, 4.4, 4.6, Proposition 3.3 and Corollaries
3.4, 4.5, i.e., λi is a surjection and | ∪ {λ−1i (j) : 1 ≤ j ≤ N}| = N , for each i ≤ N .

For other concepts of multiple fixed points considered in literature the condition ” λi
is a surjection, for each i ≤ m” is no more valid, see for example [18] and the research
papers emerging from it, while the second condition, | ∪ {λ−1i (j) : 1 ≤ j ≤ m}| = m, for
each i ≤ m, is satisfied.

As the great majority of the papers dealing with coupled, triple, quadruple,..., multiple
fixed points were established in ordered metric spaces or generalised order metric spaces,
we shall study them separately in a forthcoming paper [32], where the basic setting will
be an ordered distance space.

We point out the fact that the main idea of this paper was to obtain general multiple
fixed point theorems by reducing this problem to a unidimensional fixed point problem
and by simultaneously working in a more general and very reliable setting, that of dis-
tance spaces. Many other related and relevant results could be obtained in the same way,
by reducing the multidimensional fixed point problem to many other independent unidi-
mensional fixed point principles, like the ones established in [5], [11], [12], [13], [15], [16],
[19], [21], [23] etc.

Acknowledgements. This paper has been finalised during the second author’s visit to
Department of Mathematics and Statistics, King Fahd University of Petroleum and Mi-
nerals, Dhahran, Saudi Arabia, in the period December 2016-January 2017. He would
like to acknowledge the support provided by the Deanship of Scientific Research at King
Fahd University of Petroleum and Minerals for funding this work through the projects
IN151014 and IN141047.

REFERENCES
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[51] Mutlu, A. and Gürdal, U., An infinite dimensional fixed point theorem on function spaces of ordered metric spaces,
Kuwait J. Sci., 42 (2015), No. 3, 36–49

[52] Nedev, S. I., o-metrizable spaces, Trudy Moskov. Mat. Ob-va, 24 (1971), 201–236 (English translation: Trans.
Moscow Math. Soc., 24 (1974), 213–247)

[53] Niemytzki, V., On the third axiom of metric spaces, Trans Amer. Math. Soc., 29 (1927), 507–513
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