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A new generalization of Euler’s constant
VASILE BERINDE

. 1 1 .
ABSTRACT. A new generalization of Euler’s constant, ¢ = lim (1 + 3 4+ == lnn>, this
n—oo n

time as a function ~(a, b) of two positive real variables, a € (0,00),b € {07 2—} , is given such that, in
a

particular, we have ¢ = v(1, 0).
1. INTRODUCTION

. . .o x1 .
Let { H,} be the sequence of partial sums of the harmonic series > —, that s,
n

n=1
1 1
Hn:1+_++—,n:1,2,
2 n

It is well known that unless {H,,} diverges to 4o, the sequence {v,} given by

Yo = H, —Inn, n=1,2,... is convergent. Its limit
1 1
c= lim <1+—+---+——lnn> (1.2)
n— 00 2 n

is called the Euler’s constant or Euler-Mascheroni constant and has the approxi-
mate value ¢ = 0.577215.. . ..

A vast literature has been devoted to this topic, see [1]-[4] and [6]-[17], for a
selective list of papers published in the last twenty years.

Very recently, A. Sintamarian, in a series of papers [8]-[11] and then in the mono-
graph [12] studied a very interesting generalization of Euler’s constant, which is
actually a function ~ : (0,00) — R, defined by

- (12
n— oo a+1 a+n-—1 a

Clearly, the Euler’s constant is obtained for « = 1, that is, ¢ = v(1).
The first main result in [12] (Theorem 1.2.1) is stated below in a simplified form.

1 1 1 -1
~v(a) = lim <——|———|—~~—|— 1na—|—n )
a

Theorem 1.1. Let a € (0,40c). Consider the sequences {x,}, {y»} defined for each
n > 1hy

1 1 1
o=+ S At (1.3)
a a—+1 a+n—1 a
and 1 1 1 + 1
a+n-—
n = — et ———— —In——— 1.4
4 a+a+1+ +a—|—n—1 " a (1.4)

respectively. Then
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(i) the sequences {x., }, {y.} are convergent to the same limit, denoted by v(a), and satisfy
Ty < Tng1 < Y(a) < Yng1 < Yn, VR =1,2,... (1.5)

.. 1 1 1

(ii)0 < o —In(1+ E> <7(a) < P

(iii) Foreachn =1,2,... and a € (0, +00), we have the estimates
1 1

Aatn) <7(a)—xn<72(a+n_1), (1.6)
1 1
m <Yn—7(a) < m- .7)

Note that by (1.6) and (1.7) we deduce a result which expresses the linear order
of convergence of the sequences {z,,} and {y,} to v(a):

lim n(y(a) —x,) = % and lim n(y, —v(a)) = l (1.8)

n— oo n—oo 2
The main aim of this note is to further generalize the Euler’s constant, by defin-
ing it as the limit of a sequence of the form (1.3)-(1.4), which will depend this time
of two parameters a and b. The single variable case v(a), contained in Theorem 1.1,
will be thus recovered for b = 0 in Theorem 2.2.
2. MAIN RESULT

Our main result in this paper, given by the next theorem, corresponds to (i) — (i)
in Theorem 1.1.

Theorem 2.2. Leta € (0,+o00) and b € {0, %] Consider the sequences {x,,}, {yn}
a
defined for each n > 1 by

1 1 1
=t (2R ) (2.)
a a+1 at+n—1 a
and
1 1 1 a+n-—1
= = —1 b, 2.2
4 a+a+1+ +a+n—1 n( a +) (2.2)

respectively. Then
(i) the sequences {z,}, {y.} are convergent to the same limit, denoted by ~(a,b), and
satisfy

Tn < Tpt1 < Y(a,0) < Yny1 < Yn, ¥n=1,2,... (2.3

.. 1 1 1
(i)0< ——In(1+-+0b) <~(a,b) < — —Inb.
a a a

Proof. (i) We have

—ln<1+;>,b’n:1,2,... (2.4)

x — X, =
el R a+n+ab

n
and by using the inequality
In(1+¢) <t, te(0,00) (2.5)
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we get

1 1
In{1+ < <
a+n+ab a+n+ab " a+n

which, by (2.4), shows that the sequence {x,} is strictly increasing. We consider
now the Neper’s inequality

1
n+1<1n(n—|—1)—1nn<ﬁ,n—0,1,2,... (2.6)

which can be proved in various ways, e.g. by using the mean-value theorem for
the function f(z) = lnx defined on the interval [n,n + 1]. By means of (2.6) it is
now easy to prove that, forn > 1,

1 1
1+§+---+m—ln(n—1)<1.
As, for n > 2, we have

1 1 1 -1
T <-+|l+=-+--+———In(n—-1) +IHM,
a 2 n—1 a+n+ab

-1 .
and In aln=1) < Ina, we deduce that {x,} is upper bounded, hence conver-
a+n+ab

gent. Similarly,

a+n+ab 1
a+n+ab+1 a+n’
which suggest us to consider the function f : [1,00) — R, given by

Yn — Ynt+1 = In Yn=12,... 2.7)

a+x+ab 1
/(@) :hla—l—x—l—ab—l Ca+ta’
whose first derivative can be expressed in closed form as
) = (2ab — 1)z + 2a%b + a?b? —ab—a '
(a+z+ab)(a+x+ab—1)(a+ x)?
By hypothesis, 0 < 2ab < 1. Hence we have (2ab — 1)x < 0, forall z € [1,00) and
2a%b + a?b? — ab — a = a(2ab — 1) + a?b? — ab < a®b? — ab < 0, which shows that

x € [1,00),

f'(z) <0, forallz € [1,00),

that is, f is strictly decreasing on [1,00). As lim f(z) = 0, this means that

f(z) >0, forallz € [1,0).

In view of the inequality above, (2.7) implies that the sequence {y,, } is strictly de-
creasing. In a similar manner to the case of {z,}, we prove that {y,} is lower
bounded, and hence convergent.
As
a+n+ab—1
a+n+ab
it immediately follows that {x,,} and {y,} have the same limit. This proves (i),
while (ii) follows by (2.3). O

Ty —Yn =In ,Vn=1,2,...
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Remark 2.1. For b = 0, by Theorem 2.2 we obtain the first part of Theorem 1.1.
. 1 .
Note that the assumption b € {O, 2—} was used only for proving the convergence
a

of the sequence {y,} which, in the case « = 1 and b = 0, reduces to the Euler’s
original sequence {v,}.

1 .
Fora=0and b= 3 the sequence {y, } in Theorem 2.2 reduces to the sequence
{R,,} considered by De Temple [3]:

1 1 1
R,=1+-4+--+—-——-In(n+2-],
2 n 2

which still converges to the Euler’s constant ¢ but with a quadratic rate of conver-
gence, which is guaranteed by the estimates [3]:

1 1

W<Rn—c<m. (28)

By means of some elementary inequalities, L. Té6th proved in [13] a very inter-
esting result which is directly related to our topic and which can be briefly stated
as follows. Consider the sequence {«,, } defined by the implicit relation

1 1

n

. . 1
where ¢ is the Euler’s constant. Then {«,} is convergent and lim «, = 7 Note

n—oo

that {«,, } can explicitly be given by

1 1
anzexp(1+§+---+——c)—n,nzl-
n

The proof of lim «, = % is essentially based on the double inequality

n—oo

1 1 1 1

5oy ~ <32, (210)
established in [13] and valid for all n» > 1. The inequalities (2.10) suggested to Ne-
goi [6] to improve De Temple’s result by considering instead of { R,,} the sequence
{T.,} given by

which converges to the Euler’s constant ¢ but with a cubic rate of convergence

demonstrated by the estimates [6]
1 1
— < c-T,< —.
Bnr1p 7S B’

The first part of Theorem 3.1 in [9], which is also given as Theorem 3.1.1 in [12],

(2.11)

. . 1
can be obtained as a particular case of Theorem 2.2, for b = %"
a
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Corollary 2.1. Let a € (0,400) and consider the sequence {«,, } defined for each n > 1

by
1 1 1 a+n—1 1
n=— i ——— —In( ——+ — |, 2.12
@ a+a—|—1+ +a+n—1 n( a +2a> (212)

Then {«,, } converges to v(a) and satisfies

v(a) < apt1 < ap, Vn=1,2,... (2.13)

3. CONCLUSIONS AND OPEN PROBLEMS

Motivated by the previous results regarding the convergence order of the var-
ious sequences that converges to Euler’s constant, on the one hand, and by the
results established in [1]-[17] and other related papers, on the other hand, we for-
mulate the following problems.

Problem 3.1. Establish results regarding the convergence order of the sequences {x,, } and
! or {y,} defined by (2.1) and (2.2), respectively, similar to the estimates (1.6), (1.7) and
(2.8).

Problem 3.2. Consider the case when the two sequences {x., }, {y. } that are involved in
Theorem 2.2 are introduced by means of a constant a € (0, 00) and a sequence {b,,} C

[0, QL] , satisfying appropriate conditions, instead of the constant b, e.g., {«, } is given by
a

1 1 1
Ty = — + 4t —1n(a+n+bn)- (3.1)
a a+1 a+n-—1 a

Establish similar results to the ones given in Theorems 1.1 and 2.2.

Problem 3.3. Theorem 4.1.1 in [12] expresses the relationship between the generalization
~(a) of Euler’s constant and the logarithmic derivative of the Euler T" function. Establish
similar results for the case when the generalization ~(a, b) of Euler’s constant is considered
instead of v(a).

Problem 3.4. More general sequences of Euler type have been considered so far, for exam-
ple, the ones in [1] and [2]. The sequence considered in [1] is of the form

an= 3 1) - [ sy

/C:’ﬂ()

where f : [a,00) — R is a strictly decreasing function, a > 0 and ng = [a] + 1. Clearly,

. . L 1 .
the original Euler’s sequence is obtained in the case f(z) = — and no = 1. Establish
X
similar results to Theorem 1.1 and Theorem 2.2 for these types of sequences.

Problem 3.5. Study the properties of the function v(a, b) in connection with other func-
tions, cf. [5], [12] and [14].
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