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A new generalization of Euler’s constant

VASILE BERINDE

ABSTRACT. A new generalization of Euler’s constant, c = lim
n→∞

(
1 +

1

2
+ · · · + 1

n
− lnn

)
, this

time as a function γ(a, b) of two positive real variables, a ∈ (0,∞), b ∈
[
0,

1

2a

]
, is given such that, in

particular, we have c = γ(1, 0).

1. INTRODUCTION

Let {Hn} be the sequence of partial sums of the harmonic series
∞∑

n=1

1
n

, that is,

Hn = 1 +
1
2

+ · · · + 1
n

, n = 1, 2, . . .

It is well known that unless {Hn} diverges to +∞, the sequence {γn} given by
γn = Hn − ln n, n = 1, 2, . . . is convergent. Its limit

c = lim
n→∞

(
1 +

1
2

+ · · · + 1
n
− ln n

)
(1.1)

is called the Euler’s constant or Euler-Mascheroni constant and has the approxi-
mate value c = 0.577215 . . . .

A vast literature has been devoted to this topic, see [1]-[4] and [6]-[17], for a
selective list of papers published in the last twenty years.

Very recently, A. Sı̂ntămărian, in a series of papers [8]-[11] and then in the mono-
graph [12] studied a very interesting generalization of Euler’s constant, which is
actually a function γ : (0,∞) → R, defined by

γ(a) = lim
n→∞

(
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

a + n − 1
a

)
. (1.2)

Clearly, the Euler’s constant is obtained for a = 1, that is, c = γ(1).
The first main result in [12] (Theorem 1.2.1) is stated below in a simplified form.

Theorem 1.1. Let a ∈ (0, +∞). Consider the sequences {xn}, {yn} defined for each
n ≥ 1 by

xn =
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

a + n

a
, (1.3)

and
yn =

1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

a + n − 1
a

, (1.4)

respectively. Then
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(i) the sequences {xn}, {yn} are convergent to the same limit, denoted by γ(a), and satisfy

xn < xn+1 < γ(a) < yn+1 < yn, ∀n = 1, 2, . . . (1.5)

(ii) 0 <
1
a
− ln(1 +

1
a
) < γ(a) <

1
a

;

(iii) For each n = 1, 2, . . . and a ∈ (0, +∞), we have the estimates

1
2(a + n)

< γ(a) − xn <
1

2(a + n − 1)
, (1.6)

1
2(a + n)

< yn − γ(a) <
1

2(a + n − 1)
. (1.7)

Note that by (1.6) and (1.7) we deduce a result which expresses the linear order
of convergence of the sequences {xn} and {yn} to γ(a):

lim
n→∞n (γ(a) − xn) =

1
2

and lim
n→∞n (yn − γ(a)) =

1
2
. (1.8)

The main aim of this note is to further generalize the Euler’s constant, by defin-
ing it as the limit of a sequence of the form (1.3)-(1.4), which will depend this time
of two parameters a and b. The single variable case γ(a), contained in Theorem 1.1,
will be thus recovered for b = 0 in Theorem 2.2.

2. MAIN RESULT

Our main result in this paper, given by the next theorem, corresponds to (i)−(ii)
in Theorem 1.1.

Theorem 2.2. Let a ∈ (0, +∞) and b ∈
[
0,

1
2a

]
. Consider the sequences {xn}, {yn}

defined for each n ≥ 1 by

xn =
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

(
a + n

a
+ b

)
, (2.1)

and

yn =
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

(
a + n − 1

a
+ b

)
, (2.2)

respectively. Then
(i) the sequences {xn}, {yn} are convergent to the same limit, denoted by γ(a, b), and
satisfy

xn < xn+1 < γ(a, b) < yn+1 < yn, ∀n = 1, 2, . . . (2.3)

(ii) 0 <
1
a
− ln(1 +

1
a

+ b) < γ(a, b) <
1
a
− ln b.

Proof. (i) We have

xn+1 − xn =
1

a + n
− ln

(
1 +

1
a + n + ab

)
, ∀n = 1, 2, . . . (2.4)

and by using the inequality

ln(1 + t) < t, t ∈ (0,∞) (2.5)
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we get

ln
(

1 +
1

a + n + ab

)
<

1
a + n + ab

≤ 1
a + n

which, by (2.4), shows that the sequence {xn} is strictly increasing. We consider
now the Neper’s inequality

1
n + 1

< ln(n + 1) − ln n <
1
n

, n = 0, 1, 2, . . . (2.6)

which can be proved in various ways, e.g. by using the mean-value theorem for
the function f(x) = lnx defined on the interval [n, n + 1]. By means of (2.6) it is
now easy to prove that, for n ≥ 1,

1 +
1
2

+ · · · + 1
n − 1

− ln(n − 1) < 1.

As, for n ≥ 2, we have

xn <
1
a

+
[
1 +

1
2

+ · · · + 1
n − 1

− ln(n − 1)
]

+ ln
a(n − 1)

a + n + ab
,

and ln
a(n − 1)

a + n + ab
< ln a, we deduce that {xn} is upper bounded, hence conver-

gent. Similarly,

yn − yn+1 = ln
a + n + ab

a + n + ab + 1
− 1

a + n
, ∀n = 1, 2, . . . (2.7)

which suggest us to consider the function f : [1,∞) → R, given by

f(x) = ln
a + x + ab

a + x + ab − 1
− 1

a + x
, x ∈ [1,∞),

whose first derivative can be expressed in closed form as

f ′(x) =
(2ab − 1)x + 2a2b + a2b2 − ab − a

(a + x + ab)(a + x + ab − 1)(a + x)2
.

By hypothesis, 0 ≤ 2ab ≤ 1. Hence we have (2ab − 1)x < 0 , for all x ∈ [1,∞) and
2a2b + a2b2 − ab − a = a(2ab − 1) + a2b2 − ab ≤ a2b2 − ab < 0, which shows that

f ′(x) < 0, for all x ∈ [1,∞),

that is, f is strictly decreasing on [1,∞). As lim
x→∞ f(x) = 0, this means that

f(x) > 0, for all x ∈ [1,∞).

In view of the inequality above, (2.7) implies that the sequence {yn} is strictly de-
creasing. In a similar manner to the case of {xn}, we prove that {yn} is lower
bounded, and hence convergent.

As

xn − yn = ln
a + n + ab − 1

a + n + ab
, ∀n = 1, 2, . . .

it immediately follows that {xn} and {yn} have the same limit. This proves (i),
while (ii) follows by (2.3). �
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Remark 2.1. For b = 0, by Theorem 2.2 we obtain the first part of Theorem 1.1.

Note that the assumption b ∈
[
0,

1
2a

]
was used only for proving the convergence

of the sequence {yn} which, in the case a = 1 and b = 0, reduces to the Euler’s
original sequence {γn}.

For a = 0 and b =
1
2

, the sequence {yn} in Theorem 2.2 reduces to the sequence

{Rn} considered by De Temple [3]:

Rn = 1 +
1
2

+ · · · + 1
n
− ln

(
n +

1
2

)
,

which still converges to the Euler’s constant c but with a quadratic rate of conver-
gence, which is guaranteed by the estimates [3]:

1
24(n + 1)2

< Rn − c <
1

24n2
. (2.8)

By means of some elementary inequalities, L. Tóth proved in [13] a very inter-
esting result which is directly related to our topic and which can be briefly stated
as follows. Consider the sequence {αn} defined by the implicit relation

1 +
1
2

+ · · · + 1
n
− ln(n + αn) = c, n = 1, 2, . . . (2.9)

where c is the Euler’s constant. Then {αn} is convergent and lim
n→∞αn =

1
2

. Note

that {αn} can explicitly be given by

αn = exp
(

1 +
1
2

+ · · · + 1
n
− c

)
− n, n ≥ 1.

The proof of lim
n→∞αn =

1
2

is essentially based on the double inequality

1
2

+
1

24(n + 1)
< αn <

1
2

+
1

24n
(2.10)

established in [13] and valid for all n ≥ 1. The inequalities (2.10) suggested to Ne-
goi [6] to improve De Temple’s result by considering instead of {Rn} the sequence
{Tn} given by

Tn = 1 +
1
2

+ · · · + 1
n
− ln

(
n +

1
2

+
1

24n

)
,

which converges to the Euler’s constant c but with a cubic rate of convergence
demonstrated by the estimates [6]

1
48(n + 1)3

< c − Tn <
1

48n3
. (2.11)

The first part of Theorem 3.1 in [9], which is also given as Theorem 3.1.1 in [12],

can be obtained as a particular case of Theorem 2.2, for b =
1
2a

.
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Corollary 2.1. Let a ∈ (0, +∞) and consider the sequence {αn} defined for each n ≥ 1
by

αn =
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

(
a + n − 1

a
+

1
2a

)
, (2.12)

Then {αn} converges to γ(a) and satisfies

γ(a) < αn+1 < αn, ∀n = 1, 2, . . . (2.13)

3. CONCLUSIONS AND OPEN PROBLEMS

Motivated by the previous results regarding the convergence order of the var-
ious sequences that converges to Euler’s constant, on the one hand, and by the
results established in [1]-[17] and other related papers, on the other hand, we for-
mulate the following problems.

Problem 3.1. Establish results regarding the convergence order of the sequences {xn} and
/ or {yn} defined by (2.1) and (2.2), respectively, similar to the estimates (1.6), (1.7) and
(2.8).

Problem 3.2. Consider the case when the two sequences {xn}, {yn} that are involved in
Theorem 2.2 are introduced by means of a constant a ∈ (0,∞) and a sequence {bn} ⊂[
0,

1
2a

]
, satisfying appropriate conditions, instead of the constant b, e.g., {xn} is given by

xn =
1
a

+
1

a + 1
+ · · · + 1

a + n − 1
− ln

(
a + n

a
+ bn

)
. (3.1)

Establish similar results to the ones given in Theorems 1.1 and 2.2.

Problem 3.3. Theorem 4.1.1 in [12] expresses the relationship between the generalization
γ(a) of Euler’s constant and the logarithmic derivative of the Euler Γ function. Establish
similar results for the case when the generalization γ(a, b) of Euler’s constant is considered
instead of γ(a).

Problem 3.4. More general sequences of Euler type have been considered so far, for exam-
ple, the ones in [1] and [2]. The sequence considered in [1] is of the form

αn =
n∑

k=n0

f(k) −
∫ n

n0

f(x)dx,

where f : [a,∞) → R is a strictly decreasing function, a > 0 and n0 = [a] + 1. Clearly,

the original Euler’s sequence is obtained in the case f(x) =
1
x

and n0 = 1. Establish

similar results to Theorem 1.1 and Theorem 2.2 for these types of sequences.

Problem 3.5. Study the properties of the function γ(a, b) in connection with other func-
tions, cf. [5], [12] and [14].
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