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On a family of first order difference inequalities used
in the iterative approximation of fixed points

VASILE BERINDE

ABSTRACT. Several first order difference inequalities which are intensively used in proving conver-
gence theorems for various fixed point iteration procedures are unified and detailedly demonstrated. In
terms of the difference equations terminology, the obtained results basically show that the zero solution
of these difference inequalities is globally asymptotically stable. Some new more general conditions
under which the zero solution of these difference inequalities is globally asymptotically stable, which
extends and includes corresponding related results obtained in recent literature, are also given.

1. INTRODUCTION

An important tool for proving several convergence theorems in the iterative ap-
proximation of fixed points is based on various stability results concerning various
first order difference inequalities. This type of inequalities occurs in the following
way.

Let (X, d) be a metric space, T : X → X be a given self-mapping and let x∗ ∈ X
be a fixed point of T . The classical way to construct x∗ is to use a certain iter-
ative method, i.e., to consider a sequence {xn} ⊂ X generated by a certain fixed
point iterative scheme, see [2] and the very recent introductory monograph [9] and
references therein.

For those classes of weak contractive type operators for which we are not able
to prove directly that

xn → x∗, as n→ ∞, (1.1)

a feasible alternative way is to consider the sequence of positive numbers {δn}n≥0

given by
δn = d(xn, x

∗), n = 0, 1, . . . ,

provided we can deduce, from the properties of the operator T and those of the
ambient space, a certain difference inequality satisfied by {δn}n≥0 which should
be strong enough to ensure that

δn → 0, as n→ ∞. (1.2)

Clearly, (1.2) implies (1.1) and the convergence theorem is thus proved.
If we interpret (1.2) from the point of view of difference equations, then we

are naturally lead to the study of the global stability of solutions of the difference
inequalities thus obtained.
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Although there is a current intensive work on the study of stability of solutions
of difference equations, see for example [18], [3], [19], [20],[21], [27] and the intro-
ductory monograph [16], there is little or no systematic research work on the same
topic for all kind of difference inequalities, see the monograph [26] and the bibliog-
raphy therein. Moreover, the stability results regarding the difference inequalities
which are used in the iterative approximation of fixed points are not explicitly for-
mulated in the appropriate terms of stability of their solutions, see for instance the
very recent monograph [9].

Therefore, our main aim in this paper is to unify and improve several results re-
garding the asymptotic stability of a family of difference inequalities which are in-
tensively used in the iterative approximation of fixed points. Secondly, we would
like to draw attention on the fact that several stability results of the solutions of dif-
ference inequalities are very important from the point of view of fixed point theory
and that there are also some other fields of research where such kind of results are
extremely useful, see [31], for example.

We shall be mainly interested of some difference inequalities used in the iter-
ative approximation of fixed points that have been collected in [9], at the end of
Section 1.1, as Lemmas 1.2-1.7, but given there without proofs. Some other ad-
vanced difference inequalities, accompanied by more or less detailed proofs, are
given in several works by Alber et al., see [2] and the papers cited there. As it of-
ten happened to the present author to be asked by young researchers working in
the field for more complete and detailed proofs of such kind of results, which are
missing in literature, this note will subsidiary offer such detailed proofs for most
of the difference inequalities we can find in the iterative approximation of fixed
points, as a starting point for future insights.

2. A SIMPLE DIFFERENCE INEQUALITY

We start by proving the following result, regarding a simple difference equation
which appears in the monograph [9] as Lemma 1.6. It is originating in a conver-
gence test for series of positive numbers that generalizes the well-known ratio test
or D’Alembert test and has been first published in 1991 [4], see also [7] for other
developments and some sample applications to fixed point theory.

Theorem 2.1. Let {xn}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers for which
there exists 0 ≤ q < 1, so that

xn+1 ≤ qxn + bn, ∀n ≥ 0. (2.1)

(i) If lim
n→∞ bn = 0, then lim

n→∞ xn = 0.

(ii) If
∞∑

n=0
bn <∞, then

∞∑
n=0

xn <∞.

Proof. We divide side by side the inequality (2.1) by qn+1 > 0, to get:
xn+1

qn+1
≤ xn

qn
+

bn
qn+1

, n ≥ 0.
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By summing up all the inequalities obtained from the previous one by taking n :=
0, 1, . . . , n− 1, we get

xn

qn
≤ x0 +

b0
q

+
b1
q2

+ . . .+
bn−1

qn
,

and hence

xn ≤ x0q
n + qn

n∑
i=1

bi−1

qi
, n ≥ 1. (2.2)

Since xn ≥ 0 and qn → 0 as n→ ∞, in order to prove (i) it suffices to show that

lim
n→∞q

n
n∑

i=1

bi−1

qi
= 0.

Now we need the Stolz-Césaro theorem, which claims that if {un}n≥0, {vn}n≥0 are
two sequences of real numbers, |vn| → ∞, as n→ ∞, and such that there exists the
limit

l = lim
n→∞

un+1 − un

vn+1 − vn
,

then we also have
lim

n→∞
un

vn
= l.

Denoting un =
n∑

i=1

bi−1

qi
and vn =

1
qn

, and using the Stolz-Césaro theorem we have:

un+1 − un

vn+1 − vn
=

bn

qn+1

1
qn+1 − 1

qn

=
bn

1 − q
.

As lim
n→∞bn = 0, it follows that

lim
n→∞

un

vn
= lim

n→∞
un+1 − un

vn+1 − vn
= 0, that is, lim

n→∞q
n

n∑
i=1

bi−1

qi
= 0.

Now by (2.2) immediately follows conclusion (i): lim
n→∞xn = 0.

To prove the second part of the theorem we follow the technique of proof used
for the generalized ratio test in the paper [5]. Another shorter proof can also be
find in [6].

By (2.2) we get

n∑
k=1

xk ≤ x0

n∑
k=1

qk +
n∑

k=1

(
k∑

i=1

qk−ibi−1), n ≥ 1. (2.3)

Denote by S the double sum in (2.3) and evaluate it in the following way:

S = b0 + (qb0 + b1) + (q2b0 + qb1 + b2) + · · · + (qn−1b0 + · · · + qbn−2 + bn−1)

= b0(1 + q + · · · + qn−1) + b1(1 + q + · · · + qn−2) + · · · + bn−2(1 + q) + bn−1

≤ (1 + q + · · · + qn−1)(b0 + b1 + · · · + bn−1) =
1 − qn

1 − q
(b0 + b1 + · · · + bn−1).
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Using the fact that 0 ≤ q < 1, it follows that 1−qn

1−q ≤ 1
1−q and therefore

S ≤ 1
1 − q

(b0 + b1 + · · · + bn−1) =
1

1 − q
Bn−1.

Now, in (2.3) the first term is just the partial sum of a geometric series, which is
convergent, while the second term, in view of the inequality above, is also less
than the partial sum of a convergent series.

The comparison test now proves the second part of the theorem. �

Using the terminology from difference equations [16], on the one hand, and
adopting the concept of summable asymptotical stability [8] from fixed point itera-
tion procedures to difference equations and difference inequalities, we can restate
Theorem 2.1 as a result of independent interest.

Corollary 2.1. Under the assumptions of Theorem 2.1, (i), the zero solution of the dif-
ference inequality (2.1) is globally asymptotically stable, while under the assumptions of
Theorem 2.1, (ii), the zero solution of the difference inequality (2.1) is summable asymptot-
ically stable.

3. MORE ADVANCED DIFFERENCE INEQUALITIES

A more general result than the one given in the first part of Theorem 2.1 could be
now proved essentially by the same technique. To this end we need the following
result, generally known as Cauchy’s lemma ([11], see also [17], Application 9 (b),
page 78), for which we present a direct proof which does not make use of Toeplitz
theorem.

Lemma 3.1. (Cauchy) Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers sat-
isfying

(i) lim
n→∞ an = 0; (ii)

∞∑
k=0

bk <∞.

Then

lim
n→∞

n∑
k=0

akbn−k = 0.

Proof. By (ii) it follows that the sequence of partial sums, {Bn}∞n=0, given by Bn =
b0 + · · · + bn, n ≥ 0 converges to some B ≥ 0 and hence it is bounded. Let M > 0
be such that

Bn ≤M, for all n ≥ 0.

Now, by (i), we have that for any ε > 0, there exists an integer m such that

an <
ε

2M
, for all n ≥ m+ 2.

For n ≥ m+ 2, we can write
n∑

k=0

akbn−k = (anb0 + · · · + am+2bn−m−2) + (am+1bn−m−1 + · · · + a0bn).
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Then

anb0 + · · · + am+2bn−m−2 <
ε

2M
· (b0 + · · · + bn−m−2) ≤ ε

2
, for all n ≥ m+ 2.

On the other hand, if we denote A = max{a0, . . . , am+1}, then we have

am+1bn−m−1 + · · · + a0bn ≤ A · (bn−m+1 + · · · + bn) = A · (Bn −Bn−m).

As m is fixed, lim
n→∞Bn = lim

n→∞Bn−m = B, which shows that there exists a positive

integer k such that

am+1bn−m−1 + · · · + a0bn <
ε

2
, for all n ≥ k.

Now put N = max{k,m+ 2} to obtain

anb0 + · · · + a0bn < ε, for all n ≥ N,

which concludes the Lemma. �

Theorem 3.2. Let {xn}∞n=0, {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers sat-
isfying

xn+1 ≤ (1 − an)xn + bn, ∀n ≥ 0, (3.1)

and such that {an}∞n=0 ⊂ [0, 1] satisfies
∞∑

n=0

an = ∞.

If either

(i) lim
n→∞

bn
an

= 0 or (ii)
∞∑

n=0

bn <∞,

then
lim

n→∞xn = 0.

Proof. By (3.1) we obtain inductively

xn+1 ≤ x0un + un

n∑
k=0

bk
uk
, ∀n ≥ 0, (3.2)

where we denoted

un =
n∏

k=0

(1 − ak), n ≥ 0.

First of all, let us prove a well known and useful fact about the relationship be-
tween the convergence of infinite series and products of positive numbers, i.e.,
that if {an}∞n=0 ⊂ [0, 1] then

∞∑
n=0

an = ∞ ⇒
∞∏

n=0

(1 − an) = 0. (3.3)

To this end we only need to know the elementary inequality

ex ≥ 1 + x, for all x ∈ R,
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which can be proved by using derivatives and from which we deduce, by formally
changing x by −x the following inequality

1 − x ≤ e−x, for all x ∈ R. (3.4)

Now, by taking x = an in (3.4), we get

0 ≤
∞∏

n=0

(1 − an) ≤ e
−

∞∑
n=0

an

and so the implication (3.3) is proved. This shows that

lim
n→∞un = 0 (3.5)

and so the first term in the right hand side of (3.2) tends to zero.
Let us now prove that the second term in the right hand side of (3.2) tends to

zero, too. In order to compute this limit, i.e.,

lim
n→∞un

n∑
k=0

bk
uk

= lim
n→∞(

n∑
k=0

bk
uk

)/(
1
un

)

let us denote

αn =
n∑

k=0

bk
uk

and βn =
1
un
.

Since lim
n→∞un = 0, it results lim

n→∞βn = ∞, and so by Stolz-Césaro theorem, if there

exists the limit

lim
n→∞

αn+1 − αn

βn+1 − βn
= l, then the limit h lim

n→∞
αn

βn
,

also exists and equals l. But

αn+1 − αn

βn+1 − βn
=
bn+1

un+1
· un+1un

un − un+1
=
bn+1un

unan+1
=
bn+1

an+1
.

If condition (i) holds, this shows that

lim
n→∞

αn+1 − αn

βn+1 − βn
= 0, that is, lim

n→∞
αn

βn
= 0,

and therefore

lim
n→∞ un

n∑
k=0

bk
uk

= 0.

Since xn is nonnegative, by (3.2) it follows now immediately that

lim
n→∞xn = 0,

as required.
If (ii) holds, then the conclusion follows in the following way. We write the

second term in (3.2) in the form

un

n∑
k=0

bk
uk

=
n∑

k=0

bk
un

uk
=

n∑
k=0

bk

n∏
i=k+1

(1 − ai). (3.6)
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If we take now

an−k =
un

uk
=

n∏
i=k+1

(1 − ai),

in Lemma 3.1, then condition (i) in that lemma means

lim
n→∞

un

1 − a0
= 0,

which is obviously satisfied, by (3.5).
Because condition (ii) in Lemma 3.1 coincides with (ii) in the present theorem,

by Lemma 3.1 we get

lim
n→∞ un

n∑
k=0

bk
uk

= 0,

which completes the proof. �

The result given by Theorem 3.2 can be re-stated as a result of independent
interest.

Corollary 3.1. Under the assumptions in Theorem 3.2, the zero solution of the difference
inequality (3.2) is globally asymptotically stable.

Remark 3.1. 1) If we take now an ≡ 1 − q < 1 in Theorem 3.2, we get exactly the
first part of Theorem 2.1.

2) When the sequence {an}∞n=0 converges to zero, what is required in most con-
vergence theorems that are using Theorem 3.2, we actually have instead of (3.3)
the equivalence:

∞∑
n=0

an = ∞ ⇔
∞∏

n=0

(1 − ak) = 0, (3.7)

which follows by the following inequality

e−2x ≤ 1 − x

valid for any x ∈ [0, 1/2].
3) Note that assumptions (i) and (ii) in Theorem 3.2 are independent, as shown

by the second part in Proposition 3.1.

Proposition 3.1. Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers such that

(a)
∞∑

k=0

ak = ∞; (b)
∞∑

k=0

bk <∞.

1) If the sequence
{
bn
an

}
has a limit, then this limit is necessarily equal to zero;

2) There exists sequences {an}∞n=0, {bn}∞n=0 satisfying (a) and (b), for which the limit

lim
n→∞

bn
an

does not exist.
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Proof. 1) Indeed, if we denote

un =
n∑

k=0

bk, vn =
n∑

k=0

ak, n = 0, 1, . . .

then by (a) and (b) we get

lim
n→∞un = L (finite) and lim

n→∞ vn = ∞,

which yields

lim
n→∞

un

vn
= 0.

On the other hand, by Stolz-Césaro theorem, if there exists

lim
n→∞

un+1 − un

vn+1 − vn
= l, then the limit lim

n→∞
un

vn
,

also exists and equals l. But, it is easy to see that

lim
n→∞

un+1 − un

vn+1 − vn
= lim

n→∞
bn
an
,

and since, by hypothesis, the last limit exists, the conclusion follows.

2) If we take an =
1

n+ 1
, n = 0, 1, . . . , then (a) is satisfied. We can construct a

subsequence of positive integer numbers

n1 < n2 < · · · < nk < . . .

Now construct {bn} in the following way: put bn =
1
2k

, for n = nk, k = 1, 2, . . .
and an = 0, elsewhere. Then

∞∑
n=0

bn <

∞∑
k=1

1
2k

<∞

but the limit

lim
n→∞

bn
an

does not exist. �

Note that, if (a) and (b) in Proposition 3.1 are satisfied, then we actually have

lim inf
n→∞

bn
an

= 0 and therefore, if lim sup
n→∞

bn
an

= 0, then lim
n→∞

bn
an

= 0.

Remark 3.2. By comparing Theorem 2.1 and Theorem 3.2, the following question
arises: is still valid conclusion (ii) in Theorem 2.1 under the assumptions in Theo-
rem 3.2, that is, do we still have

∞∑
n=0

xn <∞ ?

In order to answer this question we need another fundamental result due to
Cauchy, regarding the multiplication of convergent series.
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Lemma 3.2. (Cauchy) Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers such
that

(i)
∞∑

k=0

ak <∞; (ii)
∞∑

k=0

bk <∞.

If we denote

un =
n∑

k=0

akbn−k, n ≥ 0,

then we also have ∞∑
n=0

un <∞.

Proof. Denote by Sn the partial sum of the series
∞∑

n=0
un, that is,

Sn =
n∑

k=0

k∑
i=0

aibk−i.

Then, similarly to the proof of the second part of Theorem 2.1, we have
m∑

k=0

ak ·
m∑

k=0

bk < Sn <

n∑
k=0

ak ·
n∑

k=0

bk, (3.8)

where m is the integer part of n−1
2 , i.e., n−1

2 , if n is odd and n−2
2 , if n is even. As

m→ ∞, when n→ ∞, by (3.8), we get the conclusion. Moreover, we clearly have
∞∑

n=0

un =
∞∑

k=0

ak ·
∞∑

k=0

bk.

�

Theorem 3.3. Let {xn}∞n=0, {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers sat-
isfying

xn+1 ≤ (1 − an)xn + bn, ∀n ≥ 0, (3.9)
and such that {an}∞n=0 ⊂ [0, 1] satisfies

∞∑
n=0

an = ∞.

Denote

un =
n∏

k=0

(1 − ak), n ≥ 0.

If

(i)
∞∑

n=0
un <∞, and (ii)

∞∑
n=0

bn <∞,

then ∞∑
n=0

xn <∞.
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Proof. By (3.9) we have similarly to the proof of Theorem 3.2,

xn+1 ≤ x0un +
n∑

k=0

bk
un

uk
= x0un +

n∑
k=0

bk

n∏
i=k+1

(1 − ai), ∀n ≥ 0. (3.10)

Now apply Lemma 3.2 to the second term in the right hand side of (3.10) to get the
conclusion. �

In order to show that assumptions in Theorem 3.3 are much more restrictive

than the corresponding ones in Theorem 3.2, simply take an =
n+ 1
n+ 2

, n = 0, 1, . . . .

We can have simultaneously both assumptions (i) and (ii) in Theorem 3.2, but
imposed to different sequences, as in the next theorem, which is fundamental
in proving many convergence theorems regarding the iterative approximation of
fixed points, and which first appeared in [22], where a different proof is given.

Theorem 3.4. Let {xn}∞n=0, {bn}∞n=0, {cn}∞n=0 be sequences of nonnegative numbers sat-
isfying

xn+1 ≤ (1 − an)xn + bn + cn, for all n ≥ 0, (3.11)

where {an}∞n=0 ⊂ [0, 1]. If

(i)
∞∑

n=0

an = ∞; (ii) bn = o(an) and (iii)
∞∑

n=0

cn <∞,

then
lim

n→∞xn = 0.

Proof. Similarly to the proof of Theorem 3.2, by (3.11) we obtain

xn+1 ≤ x0un + un

n∑
k=0

bk
uk

+ un

n∑
k=0

ck
uk
, ∀n ≥ 0, (3.12)

where we used the same notation, i.e.,

un =
n∏

k=0

(1 − ak), n ≥ 0.

We write the third term in the right hand side of (3.12) in a similar form to that in
(3.6) and so (3.12) will become

xn+1 ≤ x0un + un

n∑
k=0

bk
uk

+
n∑

k=0

ck

n∏
i=k+1

(1 − ai), ∀n ≥ 0. (3.13)

Now, similarly to the proof of Theorem 3.2, we have

lim
n→∞ x0un = 0.

For the second term in the right hand side of (3.13), we are in the case of Theorem
3.2, condition (i), while for the third term in the right hand side of (3.13), we are in
the case of Theorem 3.2, condition (ii). �
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Using the terminology from difference equations, the first part of Theorem 3.4
can also be re-stated as a result of independent interest.

Corollary 3.2. Under the assumptions of Theorem 3.4, the zero solution of the difference
inequality (3.11) is globally asymptotically stable.

The second part of the next theorem, which appeared in several papers, see [13]
where it is Lemma 2.2, is an easy consequence of Theorem 3.2, too. We leave the
reader to prove its first part.

Theorem 3.5. Let {xn}∞n=0 be a sequence of nonnegative real numbers and let {an}∞n=0

be a real sequence in [0, 1] such that
∞∑

n=0

an = ∞.

(i) If for a given ε > 0 there exists a positive integer n0 such that

xn+1 ≤ (1 − an)xn + ε · an, for all n ≥ n0,

then we have 0 ≤ lim sup
n→∞

xn ≤ ε.

(ii) If there exists a positive integer n1 such that

xn+1 ≤ (1 − an)xn + anbn, for all n ≥ n1,

where bn ≥ 0 for all n = 0, 1, 2, ... and bn → 0 as n→ ∞, then we have

lim
n→∞xn = 0.

4. TWO SPECIAL DIFFERENCE INEQUALITIES

By taking advantage of the various tools used in proving all previous results,
it is now an easy task to prove the following theorems regarding the asymptotic
stability of the zero solution of two special difference inequations.

Theorem 4.6. Let {xn}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers satisfying

xn+1 ≤ xn + bn, for all n ≥ 0,

with
∞∑

n=0
bn <∞. Then

(i) lim
n→∞xn exists.

(ii) If, additionally, {xn}∞n=0 has a subsequence converging to zero, then

lim
n→∞xn = 0.

Theorem 4.7. Let {xn}∞n=0, {an}∞n=0 be sequences of nonnegative numbers satisfying

xn+1 ≤ (1 + an)xn, for all n ≥ 0,

where
∞∑

n=0
an <∞. Then

1) lim
n→∞xn exists; 2) If lim inf

n→∞ xn = 0 then

lim
n→∞xn = 0.
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5. CONCLUSIONS AND FUTURE DIRECTIONS

The family of difference inequalities studied in this paper are frequently used
in the iterative approximation of fixed points and have been collected in [9] from
several sources, at the end of Section 1.1, as Lemmas 1.2-1.7, without proofs. An-
other monograph devoted to this topic is [12]. Our results here improve, extend
and unify the most useful ones. Theorem 3.5, which is Lemma 1.2 in [9], appears
in many papers. In the form given here it corresponds to Lemma 2 in [28]. Theo-
rem 3.4, which is Lemma 1.3 in [9], appears to have been first considered in [22].
Theorem 4.6, which is Lemma 1.7 in [9], has been given in [29] (part (i)) and [15]
(part (ii)), respectively, while Theorem 4.7 is taken from [24]. Some more advanced
difference inequalities of the more general form

xn+1 ≤ ψ(xn) + σ(an, bn), for all n ≥ 0,

utilized in several papers on approximation of fixed points (see for example [1],
[2], [25], [34] and the papers cited there), and given as Lemmas 1.4 and 1.5 in [9],
will be considered in detail in a future work.

The similar multidimensional difference inequalities, like those in [30], as well
as the difference inequalities used in stochastic approximation, see [31], have to be
approached from the same point of view of asymptotic stability, too.
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