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A note on a difference inequality used in the iterative
approximation of fixed points

VASILE BERINDE

ABSTRACT. In this note we present a more detailed proof of Lemma 2 in [Liu, L.S., Ishikawa and
Mann iteration process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal.
Appl., 194 (1995), 114-125], regarding the global asymptotic stability of the solution of a first order
difference inequality.

1. A FIRST ORDER DIFFERENCE INEQUALITY

The lemma bellow, concerning the global asymptotic stability of the zero solu-
tion of a first order difference inequality, appears to have been first given in [10] as
Lemma 2.2 and further used by many authors as the key tool in proving several
convergence theorems, see [4], for a very recent and comprehensive bibliography
on the papers based on this technique of proof in the field of iterative approxima-
tion of fixed points.

Lemma 1.1. Let {an}∞n=0, {bn}∞n=0, {cn}∞n=0 be three nonnegative real sequences satis-
fying

an+1 ≤ (1− tn)an + bn + cn, for all n ≥ 0, (1.1)

with {tn}∞n=0 ⊂ [0, 1],
∞∑

n=0
tn = ∞, bn = o(tn) and

∞∑
n=0

cn < ∞. Then

lim
n→∞

an = 0.

Lemma 1.1 extends Lemma 1.4 in [18], which is obtained from Lemma 1.1 for
cn ≡ 0. Because both Lemma 1.1 and Lemma 1.4 are very useful in the iterative
approximation of fixed points (see for example the papers [1], [2], [3], [6], [7], [9],
[12], [13], [14], [15], [16], [17], where these lemmas or some of their particular cases
are used as auxiliary tools in proving convergence theorems), it is the main aim
of this note to offer a different but more detailed proof of Lemma 1.1, based on
Cauchy’s Lemma.

Proof of Lemma 1. By a straightforward induction, by using (1.1) one obtains

0 ≤ an+1 ≤ a0un + un

n∑
j=0

bj

uj
+

n∑
j=0

cj

n∏
i=j+1

(1− ti), ∀n ≥ 0, (1.2)
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where, for brevity, we denoted

un =
n∏

j=0

(1− tj), n ≥ 0.

In view of the inequality
∞∏

j=0

(1− ti) ≤ exp(−
∞∑

j=0

tj)

from
∞∑

n=0
tn = ∞, we get lim

n→∞
un = 0, which shows that the first term in the right

hand side of (1.2) converges to zero.
If we apply Lemma 2.1 at the end of this note, with

an−k =
un

uk
=

n∏
i=k+1

(1− ti), and bn = cn

then both conditions (i) and (ii) are satisfied and so it follows

lim
n→∞

n∑
j=0

cj

n∏
i=j+1

(1− ti) = 0,

which shows that the third term in the right hand side of (1.2) converges to zero,
too. As we need to compute

lim
n→∞

un

n∑
j=0

bj

uj
= lim

n→∞
(

n∑
j=0

bj

uj
)/(

1
un

),

let us denote

αn =
n∑

j=0

bj

uj
and βn =

1
un

.

Since lim
n→∞

un = 0 implies lim
n→∞

βn = ∞, we can apply Stolz-Césaro theorem: if
there exists the limit

lim
n→∞

βn+1 − βn

αn+1 − αn
= l, then the limit lim

n→∞

βn

αn
,

also exists and equals l. But

βn+1 − βn

αn+1 − αn
=

bn+1

un+1
· un+1un

un − un+1
=

bn+1un

untn+1
=

bn+1

tn+1
,

and since, by hypothesis, bn = o(tn), that is,

lim
n→∞

bn+1

tn+1
= 0,

we finally get

lim
n→∞

un

n∑
j=0

bj

uj
= 0

which completes the proof of Lemma 1.1. �
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2. CAUCHY’S LEMMA

For the sake of completeness, we present in the end a direct proof (which does
not make use of Toeplitz theorem) of the result we used before, which is generally
known as Cauchy’s lemma after a result in [5], see also [8], Application 9 (b), page
78.

Lemma 2.1. (Cauchy) Let {an}∞n=0, {bn}∞n=0 be sequences of nonnegative numbers sat-
isfying

(i) lim
n→∞

an = 0; (ii)
∞∑

k=0

bk < ∞.

Then

lim
n→∞

n∑
k=0

akbn−k = 0.

Proof. By (ii) it follows that the sequence of partial sums, {Bn}∞n=0, given by Bn =
b0 + · · ·+ bn, n ≥ 0 converges to some B ≥ 0 and hence it is bounded. Let M > 0
be such that

Bn ≤ M, for all n ≥ 0.

Now, by (i), we have that for any ε > 0, there exists an integer m such that

an <
ε

2M
, for all n ≥ m + 2.

For n ≥ m + 2, we can write
n∑

k=0

akbn−k = (anb0 + · · ·+ am+2bn−m−2) + (am+1bn−m−1 + · · ·+ a0bn).

Then

anb0 + · · ·+ am+2bn−m−2 <
ε

2M
· (b0 + · · ·+ bn−m−2) ≤

ε

2
, for all n ≥ m + 2.

On the other hand, if we denote A = max{a0, . . . , am+1}, then we have

am+1bn−m−1 + · · ·+ a0bn ≤ A · (bn−m+1 + · · ·+ bn) = A · (Bn −Bn−m).

As m is fixed, lim
n→∞

Bn = lim
n→∞

Bn−m = B, which shows that there exists a positive
integer k such that

am+1bn−m−1 + · · ·+ a0bn <
ε

2
, for all n ≥ k.

Now we put N = max{k, m + 2} to get

anb0 + · · ·+ a0bn < ε, for all n ≥ N.

�
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