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Remarks on some completeness conditions involved
in several common fixed point theorems

VASILE BERINDE and MITROFAN CHOBAN

ABSTRACT. In this note we discuss the subspace completeness conditions involved in some recent
common fixed point theorems, show that they are indeed weaker than the completeness assumption
of the whole ambient space and find a unifying condition for both. Using this fact, several common
fixed point theorems are then reformulated under slightly more general conditions.

1. INTRODUCTION

In some very recent papers dealing with common fixed points of contractive
type mappings, see [1], [5]-[9], [18] and [22]-[24], the completeness condition of
the ambient space X has been replaced with conditions of the form ”g(X) is a
complete subspace of X”, or ”there exists a complete metric subspace Y ⊂ X
such that T (X) ⊂ Y ⊂ S(X)”, where g, S, T are self maps of X , under the tacit
idea that such assumptions are weaker than the original one, a fact which is not
quite obvious.

It is therefore the main aim of this note to show that such kind of conditions
are indeed weaker than the assumption ”X is a complete metric space” and then
to re-state under slightly more general conditions, some common fixed points
obtained in [5]-[9].

2. WEAK COMPLETENESS CONDITIONS

In this section we introduce the distinct completeness conditions and some
weakly contractive conditions for the mappings of a metric space into itself.

Let (X, d) be a metric space. A subsetA ofX is said to be compact (or complete)
in X if the closure clXA of A in X is a compact subset (or a complete subspace) of
X . If the set is compact in X , then it is complete in X , too. Consider a mapping
f : X → X . We put N = {1, 2, ...}, and denote

f0(x) = x and , fn(x) = f(fn−1(x)), for all x ∈ X and n ∈ N.

The set P (f, x) = {fn(x) : n ∈ N} is called the Picard iteration or the trajectory of
the point x ∈ X relatively to f . Let

P (f,X) = ∪{clXP (f, x) : the set P (f, x) is complete in X}
be the set of points with the complete Picard iteration and let also

CP (f,X) = ∪{clXP (f, x) : the set P (f, x) is compact in X}
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be the set of points with the compact Picard iteration. Obviously,

CP (f,X) ⊆ P (f,X), f(P (f,X)) ⊆ P (f,X) and f(CP (f,X)) ⊆ CP (f,X).

Definition 2.1. A mapping f : X → X is called:
(a) with compact range if the set f(X) is compact in X ;
(b) with complete range if the set f(X) is complete in X ;
(c) with point compact range if the set P (f, x) is compact in X for any point

x ∈ X ;
(d) with point complete range if the set P (f, x) is complete in X for any point

x ∈ X ;
(e) with weakly compact range if there exists a compact subset F of X such that

the set P (f, x) \ F is finite for any point x ∈ X ;
(f) a contractive mapping (or a contraction), if there exists a nonnegative number

k < 1 such that d(f(x), f(y)) ≤ k · d(x, y) for all x, y ∈ X ;
(g) a weakly contractive mapping d(f(x), f(y)) < d(x, y) for all x, y ∈ X ;
(h) a point contractive mapping if for every point x ∈ X there exists a nonnega-

tive number k = k(x) < 1 such that d(fn(x), f(fn(x))) ≤ k · d(fn−1(x), fn(x)) for
any n ∈ N;

(i) a weakly point contractive mapping if d(f(x), f(f(x))) < d(x, f(x)) for every
point x ∈ X .

Remark 2.1. Let f : X → X be a point contractive mapping with the point com-
plete range. Then for each point x ∈ X there exists a fixed point x∗ = limfn(x).

Remark 2.2. If the subspace Y ⊆ X is complete, then the set Y is closed in X .
Hence the mapping f : X → X is with the complete range if and only if there
exists a complete subspace Y ⊂ X such that f(X) ⊂ Y . Thus we have the fol-
lowing implications (a) → (e) → (b) → (d), (e) → (c) → (h) + (d) → (c) → (d),
(f)→ (g)→ (i) and (f)→ (h)→ (i) in the Definition 2.1.

Proposition 2.1. Let f : X → X be a weakly point contractive mapping with the point
compact range. Then:

1. f is a point contractive mapping.
2. For each point x ∈ X there exists a fixed point x∗ = limfn(x).

Proposition 2.2. Let f : X → X be a contractive mapping. The following assertions
are equivalent.

1. P (f,X) 6= ∅. 2. CP (f,X) 6= ∅.
3. f is a mapping with the point compact range, i.e.,

CP (f,X) = P (f,X) = X.

4. There exist a unique fixed point of the mapping f .

By the virtue of the next examples, the conditions (a)− (i) from the Definition
2.1 are distinct.

Example 2.1. Let X be the space of irrational numbers. There exist a metric d on
X and a mapping f : X → X such that:

(i) the metric space (X, d) is complete;
(ii) 2d(f(x), f(y)) < d(x, y) for all x, y ∈ X ;
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(iii) f(X) is an analytical not a Borel subset of X and, in particular, f(X) is not
a complete subspace of X .

Proof. Indeed, let Xn = {t ∈ [2−n, 2−n+1] : t is a irrational number } and X̃ =
{0}∪(∪n∈NXn. The spaces X̃ andXn are homeomorphic to the space of irrational
numbers. For each n ∈ N, fix a homeomorphism hn : Xn+1 → Xn. On X2 fix a
complete metric d2. There exists a continuous mapping f1 : X1 → X2 such that
F1 = clXf1(X1) is a compact subset of X̃ .

We can consider that Y2 = f1(X1) is an analytical not Borel subset of X (see
[21], §38, VI). On X1 consider the complete metric

d2(x, y) = d2(h−1
1 )(x), h−1

1 )(y)) + 2d2(f1(x), f1(y)), for all x, y ∈ X1.

We assume that d2(x, y) ≤ 2−1 for all x, y ∈ X2. By induction, we construct the
complete metric dn+1(x, y) = 2−1dn(hn(x), hn(y)) for all x, y ∈ Xn+1 and n ≥ 2.
On X consider the complete metric d, where:

1) d(x, y) = dn(x, y) for all x, y ∈ Xn and n ∈ N;
2) if n,m ∈, m < n, x ∈ Xn and y ∈ Xm, then

d(x, y) = d(y, x) = Σ{2−i : m− 1 ≤ i ≤ n};

3) if n ∈ and x ∈ Xn, then d(x, 0) = d(0, x) =Σ{2−i : n− 1 ≤ i, i ∈ N}.
Now we consider the mapping f : X → X , where f(0) = 0, f1 = f |X1 and

f(x) = h−1
n (x) for all x ∈ Xn and n ≥ 2. By construction

d(f(x), f(y)) ≤ 2−1d(x, y) for all x, y ∈ X.

Denote Fn+1 = fn(F1) for any n ∈ N, F = {0} ∪ (∪{Fn : n ∈ N}), Y = X1 ∪ F
and g = f |Y . Then:

1) (Y, d) is a complete metric space;
2) 2d(g(x), g(y)) < d(x, y) for all x, y ∈ Y ;
3) g(Y ) is an analytical not Borel subset of Y and, in particular, g(Y ) is not a

complete subspace of Y ;
4) g(Y ) ⊆ F and F is a compact subset of Y . Now we put

Z = Y ×X, ρ((x, u), (y, v)) = d(x, y)+d(u, v) for all (x, u), (y, v) ∈ Z,Φ = F ×{0}

and ϕ(x, u) = (g(x), 0) = (f(x), 0) for all (x, u) ∈ Z. Then:
1) (Z, ρ) is a complete metric space homeomorphic to the space of irrational

numbers;
2) 2ρ(ϕ(x), ϕ(y)) < ρ(x, y) for all x, y ∈ Z;
3) ϕ(Z) is an analytical not Borel subset of Z and, in particular, ϕ(Z) is not a

complete subspace of Z;
4) ϕ(Z) ⊆ Φ and Φ is a compact subset of Z. �

Example 2.2. Let X0 = {b}, (X1, d1) be a metric space and (X2, d2) be a metric
space for which:

a) b 6∈ X1 ∪X2 and X1 ∩X2 = ∅;
b) d1(x, y) ≤ 1 for all x, y ∈ X1;
c) d2(x, y) ≥ 2 for all distinct points x, y ∈ X2.
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We put X = {b} ∪X1 ∪X2, d(x, y) = d1(x, y) for all x, y ∈ X1,

d(x, y) = d2(x, y) for all x, y ∈ X2, d(x, y) = d(y, x) = 1 for x ∈ X1, y ∈ X2,

d(x, 0) = d(0, x) = 2−1 and , d(y, 0) = d(0, y) = 1 for x ∈ X1 and y ∈ X2.

Fix some mapping f : X → X , where f(X2) ⊆ X1 and f(X1) = {b}.
By construction, the mapping f has the following properties:
1) 2d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X , i.e. f is a contractive mapping;
2) b is the unique fixed point of the mapping f ;
3) f is a mapping with the point compact range and the Picard iteration P (f, x)

is finite for any point x ∈ X ;
4) if the metric space X1 is complete, then the space X is complete too;
5) if the metric spaceX1 is locally compact, then the spaceX is locally compact

too;
6) f is a mapping with the weakly compact range {b};
7) if the set clXf(X2) is not compact, then f is a mapping without the compact

range;
8) if X1 is a non-analitic subspace of the segment [0, 1] of the space of reals R

and X1 = f(X2), then f is a mapping without the complete range;
9) if the set X2 is uncountable, then the space X is not separable.

Example 2.3. LetX be the space of rational numbers, d(x, y) = |x−y| and f(x) =
2−1x. The metric space (X, d) is not complete, f is a contractive mapping with a
point compact range and with a unique fixed point 0. The mapping f is not with
a weakly compact range.

Example 2.4. Let A = {(1 + 2−n, 2−n) : n ∈ N}, A = {(−1 − 2−n, 2−n) : n ∈ N},
X = {(1, 0)} ∪ A ∪ B and (X, d) be a subspace of the Euclidean plane. The space
(X, d) is not complete and admit an equivalent complete metric.

Proof. We put f(1, 0) = (1, 0) and f(1 + 2−n, 2−n) = (1 + 2−n−1, 2−n−1), f(−1 −
2−n, 2−n) = (−1− 2−n−1, 2−n−1) for each n ∈ N.
The mapping f is weakly contractive and not contractive, CP (f,X) = P (f,X) =
A ∪ {(1, 0)} and (1, 0) is the unique fixed point of the mapping f .

If C = {(1, 0)} ∪ A, then C is a compact subspace, f(A) ⊆ A, f(B) ⊆ B,
f(C) ⊆ C and the mappings g = f |C : C → C, h = f |B : B → B are contractive.

Now let Y = X ∪ {−1, 0)}, ϕ(−1, 0) = (−1, 0) and f = ϕ|X . Then:
1) the mapping ϕ is not weakly contractive;
2) ϕ is a point contractive mapping;
3) Y is a compact space. �

Remark 2.3. In view of Bessaga’s converse of Banach contraction principle [11],
see also [27]-[30], let f : X → X be a self mapping of an abstract set X such that
the set of fixed points of f , Fix (f), is nonempty and let k be such that 0 < k < 1.
Fix a point b ∈ Fix (f). Let Y be the set of all points x 6= b in X for which the
Picard iteration P (f, x) is finite and let Z = X \ Y . Then by virtue of Bessaga’s
theorem, there exists a complete metric on Z such

d(f(x), f(y)) ≤ k d(x, y), for all x, y ∈ Z.
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IfX = Z, then d is a complete metric onX and f is a contraction. AssumeX 6= Z.
Fix a point c ∈ Y . We extend the metric d on X in the following way:

d(x, y) = 1, x, y ∈ Y ; d(y, z) = d(z, y) = d(y, c) + 1 + d(b, z), y ∈ Y, z ∈ Z.
The metric d is complete on X and relatively to the metric d the mapping f is:

1) with point compact range;
2) point contractive at each point x ∈ Z ∪ Fix (f).

As a conclusion of this section, we can use the general completeness condition
”the closure S(X) of the set S(X) in X is a complete subspace of X”, which obviously
includes the two particular cases already mentioned:

a) the metric space (X, d) is complete; b) S(X) is a complete subspace of X .
In several common fixed point theorems that involve two mappings T and

S, see [22]-[23], the following alternative completeness condition have been also
considered: there exists a complete metric subspace Y ⊂ X such that T (X) ⊂
Y ⊂ S(X), which implies the inclusion T (X) ⊂ S(X), explicitly assumed in
most papers on this topic, see [1], [5]-[10], [15]-[17], [22]-[26].

3. SOME COMMON FIXED POINT THEOREMS UNDER WEAK COMPLETENESS
CONDITIONS

The next results extend Theorems 3 and 4 in [8], and Theorem 4 in [10], respec-
tively by weakening the completeness condition in two different ways.

Theorem 3.1. Let (X, d) be a metric space and let T, S : X → X be two mappings for
which there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

(3.1) d(Tx, Ty) ≤ δ · d(Sx, Sy) + Ld(Sy, Tx) , for all x, y ∈ X .

Assume T (X) ⊂ S(X) and that the closure S(X) of the set S(X) in X is a complete
subspace of X . Then T and S have a coincidence point in X .

Moreover, for any x0 ∈ X , the iteration {Sxn} defined by (3.3) converges to some
coincidence point x∗ of T and S, with the following error estimate

(3.2) d(Sxn+i−1, x
∗) ≤ δi

1− δ
d(Sxn, Sxn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

Proof. Let x0 be an arbitrary point in X . Since T (X) ⊂ S(X), we can choose a
point x1 in X such that Tx0 = Sx1 Continuing in this way, for a xn in X , we can
find xn+1 ∈ X such that

(3.3) Sxn+1 = Txn, n = 0, 1, . . .

If x := xn, y := xn−1 are two successive terms of the sequence defined by
(3.3), then by (3.1) we have

d(Sxn, Sxn+1) = d(Txn−1, Txn) ≤ L · d(Sxn, Txn−1) + δ · d(Sxn−1, Sxn),

which, in view of the fact that (3.3) implies d(Sxn, Txn−1) = 0, yields

(3.4) d(Sxn+1, Sxn) ≤ δ · d(Sxn, Sxn−1), n = 0, 1, 2 . . . .

Now by induction, from (3.4) we obtain

(3.5) d(Sxn+k, Sxn+k−1) ≤ δk · d(Sxn, Sxn−1), n, k = 0, 1, . . . (k 6= 0),
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and then, for p > i, we get after straightforward calculations

(3.6) d(Sxn+p, Sxn+i−1) ≤ δi(1− δp−i+1)
1− δ

· d(Sxn, Sxn−1), n ≥ 0; i ≥ 1.

Take i = 1 (3.6) and the, by an inductive process, we get

d(Sxn+p, Sxn) ≤ δ

1− δ
· d(Sxn, Sxn−1) ≤ δn

1− δ
· d(Sx1, Sx0), n = 0, 1, 2 . . . ,

which shows that {Sxn} is a Cauchy sequence.
Since S(X) is a complete subspace of X , there exists a x∗ in S(X) such that

(3.7) lim
n→∞

Sxn+1 = x∗.

We can find p ∈ X such that Sp = x∗. By (3.3) and (3.4) we further have

d(Sxn, Tp) ≤ δd(Sxn−1, Sp) ≤ δn−1d(Sx1, Sp),

which shows that we also have

(3.8) lim
n→∞

Sxn = Tp.

Now by (3.7) and (3.8) it results now that Tp = Sp, that is, p is a coincidence
point of T and S (or x∗ is a point of coincidence of T and S). The estimate (3.2) is
obtained from (3.6) by letting p→∞. �

Remark 3.4. Note that the coincidence point ensured by Theorem 3.1 is not gen-
erally unique, see Example 1 in [10].

In order to derive a common fixed point theorem from the coincidence Theo-
rem 3.1, we have two possibilities: 1) to ensure the uniqueness of the coincidence
point; or 2) to impose an additional property for the pair (S, T ).

The next result adapts Theorem 2 in [10] to the case of metric spaces, by using
a different weak completeness condition.

Theorem 3.2. Let (X, d) be a metric space and let T, S : X → X be two mappings
satisfying (3.1), for which there exist a constant θ ∈ (0, 1) and some L1 ≥ 0 such that

(3.9) d(Tx, Ty) ≤ θ · d(Sx, Sy) + L1d(Sx, Tx) , for all x, y ∈ X .

Assume there exists a complete metric subspace Y ⊂ X such that T (X) ⊂ Y ⊂
S(X). Then T and S have a unique coincidence point in X . Moreover, if T and S are
weakly compatible, then T and S have a unique common fixed point in X .

In both cases, for any x0 ∈ X , the iteration {Sxn} defined by (3.3) converges to the
unique common fixed point (coincidence point) x∗ of S and T , with the error estimate
(3.2)

The convergence rate of the iteration {Sxn} is given by

(3.10) d(Sxn, x
∗) ≤ θ · d(Sxn−1, x

∗) , n = 1, 2, . . .

Proof. By the proof of Theorem 3.1, we have that T and S have at least a point
of coincidence. Now let us show that T and S actually have a unique point of
coincidence. Assume there exists q ∈ X such that Tq = Sq. Then, by (3.9) we get

d(Sq, Sp) = d(Tq, Tp) ≤ 2δd(Sq, Tq) + δd(Sq, Tp) = δd(Sq, Sp)
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which shows that Sq = Sp = x∗, that is T and S have a unique point of coinci-
dence, x∗.

Now if T and S are weakly compatible, by Proposition 1 it follows that x∗ is
their unique common fixed point. �

A stronger but simpler contractive condition that ensures the uniqueness of the
coincidence point and which unifies (3.1) and (3.9), has been recently obtained by
Babu et al. [2], see the general common fixed point theorem (Theorem 4) in [10].

Theorem 3.3. Let (X, d) be a metric space and let T, S : X → X be two mappings for
which there exist the constants δ ∈ (0, 1) and L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(Sx, Sy) + Lmin {d(Sx, Tx), d(Sy, Ty),

(3.11) d(Sx, Ty), d(Sy, Tx)} , for all x, y ∈ X .

If the range of S contains the range of T and the closure S(X) of the set S(X) in X is
a complete subspace ofX , then T and S have a unique coincidence point inX . Moreover,
if T and S are weakly compatible, then T and S have a unique common fixed point in
X . In both cases, for any x0 ∈ X , the iteration {Sxn} defined by (3.3) converges to the
unique common fixed point (coincidence point) x∗ of S and T .

Proof. If x := xn, y := xn−1 are two successive terms of the sequence defined by
(3.3), then by (3.11) we have

d(Sxn, Sxn+1) = d(Txn−1, Txn) ≤ δ · d(Sxn−1, Sxn) + L ·M,

where
M = min {d(Sxn, Txn), d(Sxn−1, Txn−1), d(Sxn, Txn−1),

d(Sxn−1, Txn)} = 0,
since d(Sxn, Txn−1) = 0. �

Example 3.5. Let X = [0, 1] with the usual norm and consider T, S : X → X be
defined by

Tx =


x

4
, 0 ≤ x <

2
3

2
3
,

2
3
≤ x ≤ 1

and

Sx =


x, 0 ≤ x ≤

2
3

1,
2
3
< x ≤ 1,

respectively.
We have T (X) = [0, 2/3] ⊂ [0, 2/3] ∪ {1} = S(X). To show that S and T fulfill

the assumptions of Theorem 3.1 we consider four cases.
Case 1. x, y ∈ [0, 2/3). In this case (3.1) reduces to the inequality∣∣∣x

4
− y

4

∣∣∣ ≤ δ |x− y|+ L ·
∣∣∣y − x

4

∣∣∣ ,
which holds for all x, y ∈ [0, 2/3) and any constant L ≥ 0 if we simply take δ such
that 1 > δ ≥ 1/4.
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Case 2. x ∈ [0, 2/3), y ∈ (2/3, 1]. As Tx =
x

4
, T y =

2
3

and Sx = x, Sy = 1,
condition (3.1) reduces to show that there exist the constants δ and L, 0 ≤ δ < 1,
and L ≥ 0, such that

(3.12)
∣∣∣∣x4 − 2

3

∣∣∣∣ ≤ δ |x− 1|+ L ·
∣∣∣1− x

4

∣∣∣ , ∀x ∈ [0,
2
3

).

As, for x ∈ [0,
2
3

) we have
∣∣∣x
4
− 2

3

∣∣∣ ∈ (1
2
,

2
3

]
and

∣∣∣1− x
4

∣∣∣ ∈ (5
6
, 1
]
, in order to have

(3.12) fulfilled, it suffices to take L ≥ 4
5

and allow 0 ≤ δ < 1 be arbitrary.

Case 3. x ∈ [0, 2/3), y = 2/3. In this case, (3.1) reduces to show that there exist
the constants δ and L, 0 ≤ δ < 1, and L ≥ 0 such that

(3.13)
∣∣∣∣x4 − 2

3

∣∣∣∣ ≤ δ ∣∣∣∣x− 2
3

∣∣∣∣+ L ·
∣∣∣1− x

4

∣∣∣ , ∀x ∈ [0, 2
3

)
,

which, by the previous case, is indeed satisfied for any 0 ≤ δ < 1 if we similarly

take L ≥ 4
5

.

Case 4. x, y ∈ [2/3, 1]. In this case (3.1) holds for any constants δ and L satisfy-
ing 0 ≤ δ < 1 and L ≥ 0, since its left hand side is always equal to 0.

By summarizing, we conclude that S and T satisfy the contractive condition

(3.1) in Theorem 3.1 with δ =
1
4

and L =
4
5

.
Hence, Theorem 3.1 applies and T and S have two common fixed points,

namely 0 and 2/3.

Remark. Note that T and S in Example 3.5 do not satisfy neither conditions
(3.9) in Theorem 3.2 and (3.11) in Theorem 3.3, nor the contractive conditions in
[1] and other related papers.

Indeed, for x = 0 and y =
2
3

, condition (3.9) would require that there exist the
constants θ and L1, with 0 < θ < 1 and L1 ≥ 0 such that:∣∣∣0− 2

3

∣∣∣ ≤ θ∣∣∣0− 2
3

∣∣∣+ L1 |0− 0| ,

which yields the contradiction θ ≥ 1. Thus Theorems 3.2 and 3.3 do not apply to
the mappings in Example 3.5.
T and S in Example 3.5 do not satisfy Kannan’s contractive condition [20],

either. Indeed, for x = 0 and y =
2
3

this condition would require the existence of

a constant b, 0 ≤ b < 1/2, such that∣∣∣0− 2
3

∣∣∣ ≤ b [|0− 0|+
∣∣∣1− 2

3

∣∣∣] ,
which obviously yields the contradiction 2 ≤ b < 1/2. Thus Theorem 2.3 in [1] do
not apply to the mappings in Example 3.5.

Moreover, T and S in Example 2.1 do not satisfy Chatterjea’s contractive con-

dition in [12]. Indeed, for x =
2
3
−ε, ε > 0 and y =

2
3

this condition would require
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the existence of a constant c, 0 ≤ c < 1/2, such that∣∣∣ 2
3 − ε

4
− 2

3

∣∣∣ ≤ c [∣∣∣2
3
− ε− 2

3

∣∣∣+
∣∣∣2
3
−

2
3 − ε

4

∣∣∣] ,
which by letting ε→ 0 yields the contradiction 1 ≤ c < 1/2. Thus Theorem 2.4 in
[1] do not apply to Example 3.5.

Note that in Example 3.5 all the three completeness conditions considered in
Section 2 are satisfied: (X, d) is a complete metric space; S(X) is a complete sub-
space of X ; and there exists a complete metric subspace Y = [0, 2/3] ⊂ X or
Y = [0, 2/3] ∪ {1} ⊂ X such that T (X) ⊂ Y ⊂ S(X).

Note also that, in relation to Definition 2.1, the mapping T in Example 3.5 has
the following properties:

a) is with compact and complete range;
b) is with the point compact range, see the main results in [3];
c) is with the point complete range;
d) is not a contraction;
e) is not weakly contractive;
f) is weakly point contractive, see [3].
To prove d) just take x = 1/2, y = 2/3 to get |1/8− 2/3| ≤ |1/2− 2/3| ⇔ 4k ≥

13 that contradicts k < 1.
Similarly, to prove e) take the same values x = 1/2, y = 2/3 to get the contra-

diction 13 < 4.
To prove f), observe that the weakly point contractive condition (i) in Defini-

tion 2.1 may be obtained by (3.1) if we take S = idX and y = Tx.
Example 3.5 partially illustrates how general the common fixed point result

given by Theorem 3.1 is.
To show more on its power let us also mention some common fixed point the-

orems which are particular cases of Theorem 3.1 and which cannot be applied to
the mappings S and T in Example 3.5: Theorem 3.2, Theorem 3.3, Theorem 3.4
in [6]; Theorem 3, Theorem 4, and Corollaries 1-3 in [10]; Theorem 2, Theorem 3,
and Corollaries 1-2 in [9]; Theorem 3, Theorem 4, Theorem 5, and Corollaries 1-3
in [8].
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[24] Păcurar, M., A multi-step iterative method for approximating fixed points of Presic-Kannan operators,

Acta Math. Univ. Comenianae 79 (2010) (in print)
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