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Empirical study of a Padé type accelerating method of
Picard iteration

OANA BUMBARIU and VASILE BERINDE

ABSTRACT. We use a Padé type acceleration technique for the method of successive approxima-
tions in [J. Biazar and A. Amirteimoori, An improvement to the fixed point iterative method, Applied Math-
ematics and Computation 182 (2006), 567-571, doi:10.1016/j.amc.2006.04.019] to empirically study the
possibility of accelerating Picard iteration for some other known test functions.

1. INTRODUCTION

Recently, Biazar and Amirteimoori considered in [9] a Padé-type technique to
accelerate Picard iteration method for solving three scalar equations of the form

f(x) = 0 (1.1)

which were equivalently written as a fixed point problem

x = g(x), (1.2)

where g : [a, b] → [a, b] is the iteration function.
Under appropriate assumptions on f (and therefore on g), the Picard iteration

(or the sequence of successive approximations, as it is generally known), i.e.,

xn+1 = g(xn), n ≥ 0, (1.3)

converges to the (unique) fixed point of g, say α, which is the (unique) solution
of (1.1) in the interval [a, b].

Note that for a certain nonlinear equation (1.1), the fixed point problem (1.2) is
not uniquely defined. For example, the equation x3 +4x2− 10 = 0 can be written
under a fixed point form as x = 1

2

√
10− x3 or x = 3

√
10− 4x2.

As the convergence order of the Picard iteration (1.3) is generally linear (see
for example Berinde [6]), the method converges rather slowly to the fixed point
α.

In order to improve the convergence speed of (1.3), the authors in [9] consid-
ered the following equivalent fixed point problem

x = gλ(x) (1.4)

with gλ of the form

gλ(x) =
g(x) + λ1x + λ2x

2 + λ3x
3 + . . . + λkxk

1 + λ1 + λ2x + λ3x2 + . . . + λkxk−1
, (1.5)
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where k ∈ N, k ≥ 2 and λ1, λ2, λ3, . . . , λk ∈ R are parameters that should be
determined in such a way that the new iteration function gλ will yield a faster
Picard iteration.

Note that the method of constructing (1.5) is rather similar to the way in which
the Padé approximant of order (m,n), [m/n]f (x), is obtained, see for example [5]:

[m/n]f (x) =
p0 + p1x + p2x

2 + . . . + pmxm

1 + q1x + q2x2 + . . . + qnxn
. (1.6)

This is the reason we shall name in the following (1.5) as a Padé type transform.
The aim of this paper is twofold: first, to derive the convergence order of the

Picard iteration associated to (1.4) and secondly, to perform a similar empirical
study of the rate of convergence for other values of k, in the case of the equations
from [9], as well as for other test functions taken from literature. This will allow
us to infer which value of k is optimal for each equation.

2. THE PADÉ-TYPE ACCELERATION OF THE PICARD ITERATION

This result is taken from [9].
Based on the fact that the fixed point equation

x = g(x)

is equivalent to

x + λ1x + λ2x
2 + λ3x

3 + . . . + λkxk = g(x) + λ1x + λ2x
2 + λ3x

3 + . . . + λkxk,

which can be written under the form

x = gλ(x) =
g(x) + λ1x + λ2x

2 + λ3x
3 + . . . + λkxk

1 + λ1 + λ2x + λ3x2 + . . . + λkxk−1
(2.7)

we get exactly the fixed point problem (1.4).
It is tacitely assumed that gλ(x) is well defined on the interval [a, b] where the
original equation is solved, that is, the equation

1 + λ1 + λ2x + λ3x
2 + . . . + λkxk−1 = 0

has no real roots on [a, b].
The main idea of constructing such an accelerated method is to determine the
parameters λ1, λ2, . . . , λk such that the new iteration function gλ satisfies

g
(i)
λ (α) = 0, i = 1, 2, . . . , k, (2.8)

where α is the unique solution of (1.1) and (1.2) in the interval [a, b].
Using (2.7), the equation (2.8) yields an upper diagonal linear system of equa-

tions with the unknowns λ1, λ2, . . . , λk which always is uniquely solvable, as in
the case of the original Padé transform. Indeed, by (2.7) we have

gλ(x)(1+λ1 +λ2x+λ3x
2 + . . .+λkxk−1) = g(x)+λ1x+λ2x

2 +λ3x
3 + . . .+λkxk

which, by differentiating with respect to x, gives

g′λ(x)(1 + λ1 + λ2x + . . . + λkxk−1) + gλ(x)(λ2 + 2λ3x + . . . + (k − 1)λkxk−2) =

= g′(x) + λ1 + 2λ2x + . . . + kλkxk−1. (2.9)
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If we take x = α in (2.9) and use the fact that gλ(α) = gλ(x) = α and g′λ(α) is
required to be zero, we get the linear equation

λ1 + 2λ2α + . . . + kλkαk−1 = −g′(α).

Now we differentiate again (2.9) and then, by letting x = α, we are lead to the
linear equation

2λ2 + 3λ3α + . . . + k(k − 1)λkαk−1 = −g′′(α)

and so on. The generic formula for the ith derivative of gλ is

−g(j)(α) =
k∑

i=j

i(i− 1)(i− 2) . . . (i− j + 1)λiα
i−j , j = 1, 2, . . . , k. (2.10)

If we rewrite the linear k × k system (2.10) in a matrix form we have
1 2α 3α2 . . . kαk−1

0 2 6α . . . k(k − 1)αk−2

0 0 6 . . . k(k − 1)(k − 2)αk−3

...
...

... . . .
...

0 0 0 . . . k!




λ1

λ2

λ3

...
λk

 =


−g′(α)
−g(2)(α)
−g(3)(α)

...
−g(k)(α)

 .

(2.11)
By solving (2.11), we can uniquely find the values of λ1, λ2, λ3, . . . , λk and hence
get the iteration function of the accelerated process

xn+1 = gλ(xn), n ≥ 0.

We end this section by reminding the concept of convergence order that will be
used in the paper.

Let {xn} ⊂ R be a sequence of real numbers convergent to α ∈ R (which is
obtained by iterating a fixed point equation)

Definition 2.1. [13]Let {xn} converge to α. If there exist an integer constant p,
and a real positive constant C such that

lim
n→∞

∣∣∣∣ xn+1 − α

(xn − α)p

∣∣∣∣ = C,

then p is called the order and C the constant of convergence.

The concept of rate of convergence given by Definition 2.1 is also known as the
Q-order of convergence, see the monographs by Măruşter [13] and Ortega and
Rheinboldt [14].

The next theorem shows how the fixed point iteration defined by the function
gλ accelerates the fixed point iteration defined by g.

Theorem 2.1. Let g ∈ Ck+1[a, b] such that the associated iteration function gλ sat-
isfy (2.8), where α is the unique solution in [a, b] of (1.2). Then the accelerated Picard
iteration

xλ
n+1 = g(xλ

n), n ≥ 0

has Q-order of convergence k.
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Proof. By the Taylor expansion of gλ at x we find

gλ(xn) = gλ(x) +
g′λ(x)

1!
(xn − x) + . . . +

g
(k)
λ (x)
k!

(xn − x)k + . . .

which yields, in view of gλ(α) = α and (2.8)

gλ(xn)− α =
g
(k+1)
λ (x)
(k + 1)!

(xn − α)k+1 + . . .

that is

lim
n→∞

|xn+1 − α|
|xn − α|k+1

=
g
(k+1)
λ (α)
(k + 1)!

,

which completes the proof. �

Remark 2.1. Note that, generally, g′(α) 6= 0, so (xn) has the Q-order of conver-
gence equal to 1, see the Examples in the next section.

3. SOME USEFUL FIXED POINT THEOREMS

In this section we present three known results in fixed point theory, taken from
[6], that ensure, under various assumptions, the existence and uniqueness of a
fixed point of a mapping g as well as the convergence of the Picard iteration to
that fixed point. For two of them, the rate of convergence is also given.

Theorem 3.2 (Contraction Mapping Principle). Let (X, d) be a complete metric space
and T : X −→ X a map satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (3.12)

where 0 ≤ a < 1 is constant. Then:
(p1) T has a unique fixed point x∗ in X ;
(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (3.13)

converges to x∗, for any x0 ∈ X .
(p3) The following estimate holds:

d(xn+i−1, x
∗) ≤ ai

1− a
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.14)

(p4) The rate of convergence of Picard iteration is given by

d(xn, x∗) ≤ a d(xn−1, x
∗) , n = 1, 2, . . . (3.15)

Theorem 3.3 (Zamfirescu’s Mapping Principle). Let (X, d) be a complete metric
space and let T : X → X be a mapping for which there exist a ∈ [0, 1), b, c ∈ [0, 1

2 )
such that for all x, y ∈ X, at least one of the following conditions is true:

(z1) d(Tx, Ty) ≤ a d(x, y);

(z2) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
;

(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.
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Then the Picard iteration {xn} defined by (3.13) and starting from x0 ∈ X converges
to the unique fixed point x∗ of T with the following error estimate

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . .

where δ = max
{

a,
b

1− b
,

c

1− c

}
.

Moreover, the convergence rate of the Picard iteration is given by

d(xn, x∗) ≤ δ · d(xn−1, x
∗) , n = 1, 2, . . . (3.16)

Theorem 3.4 (Almost Contraction Mapping Principle). Let (X, d) be a complete
metric space and T : X → X an almost contraction, that is, a mapping for which there
exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (3.17)

Then
1) F (T ) = {x ∈ X : Tx = x} 6= ∅;
2) For any x0 ∈ X , the Picard iteration {xn}∞n=0 given by (1.2) converges to some

x∗ ∈ F (T );
3) The following estimate holds

d(xn+i−1, x
∗) ≤ δi

1− δ
d(xn, xn−1) , n = 0, 1, 2, . . . ; i = 1, 2, . . . (3.18)

4. NUMERICAL EXAMPLES

Example 4.1. [9]Test function: f(x) = x3+4x2−10, which has a unique root in the
interval (1,2). We use an approximate value for α, α ∼= 1.5 and g(x) = 1

2

√
10− x3.

The values of the parameters λi involved in (2.7) are
For k = 2:

λ1 = −1.15660903, λ2 = 1.20815133.

For k = 3:

λ1 = 1.57623135, λ2 = −2.43563586, λ3 = 1.21459573.

For k = 4:

λ1 = −3.122090855, λ2 = 6.961008590, λ3 = −5.049833910, λ4 = 1.392095477.

and for k = 5:

λ1 = 6.176012965, λ2 = −17.83393493, λ3 = 19.74510962, λ4 = −9.627879427,

λ5 = 1.836662484. The results for the three fastest methods used in Example 4.1
are listed in Table 1.
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Table 1

n k = 2 k = 3 k = 4 k = 5
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 1.5 1.5 1.5 1.5 1.5
1 1.37131921 1.37131920 1.37131921 1.37131923 1.28695377
2 1.36517040 1.36525174 1.36523987 1.36524189 1.40254080
3 1.36523078 1.36523005 1.36523000 1.36523001 1.34545838
4 1.36523000 1.36523001 1.36523001 1.37517025
5 1.36523001 1.36009419
6 1.36784697
...

...
25 1.36523001

For Example 4.1 we observe that for k = 5 we have the best rate of conver-
gence.

Example 4.2. [9]Test function f(x) = x − tanx = 0. This equation has a root

which lies near
3π

2
. Let g(x) = tanx, then g′(x) = 1 + tan2 x ≥ 1, which is not

a suitable g(x). Let α ∼= 4.5 and g(x) = tanx. We show that the new technique
works even in this case. The values of the parameters λi involved in (2.7) are
For k = 3:

λ1 = −28939.740120, λ2 = 13060.829480, λ3 = −1474.394932.

For k = 4:

λ1 = 814467.2540, λ2 = −54910.4993, λ3 = 123474.7892, λ4 = −9255.495122.

For k = 5:

λ1 = −2.152270898 · 107, λ2 = 1.930605732 · 107, λ3 = −6.494947820 · 106,

λ4 = 9.712515583 · 105, λ5 = −54472.61408.
and for k = 6:

λ1 = 5.464009450 · 108, λ2 = −6.117202249 · 108, λ3 = 2.739611774 · 108,

λ4 = −6.135233180 · 107, λ5 = 6.870369979 · 106, λ6 = −3.077707818 · 105.

The results for the three fastest methods used in Example 4.2 are listed in Table
2.

Table 2

n k = 3 k = 4 k = 5 k = 6
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 4.5 4.5 4.5 4.5 4.5
1 4.493616 4.493280632 4.488372093 5.444444444 4.637332
2 4.493410 4.493716711 4.487779511 5.444305527 13.298192
3 4.493170168 4.479895561 5.444414683 0.898203
4 4.493888939 4.487352445 5.444477321 1.255520
5 4.493311705 4.495007882 5.444416274
...

...
...

...
...

10 -0.076296
...

...
...

...
...

25 4.493647770 4.504339881
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For Example 4.2 we observe that for k = 3 we have the best rate of conver-
gence.

Example 4.3. [9]
Test function f(x) = x− 3−x = 0. f(x) is continuous on [ 13 , 1] and f( 1

3 ) · f(1) <

0. By Weierstrass’ theorem, α, the root of f(x), lies in ( 1
3 , 1). Let α ∼= 0.6 ∈ ( 1

3 , 1)
and g(x) = 3−x. The values of the parameters λi involved in (2.7) are
For k = 5:

λ1 = 1.0979516, λ2 = −1.2013119, λ3 = 0.6435174, λ4 = −0.2083743, λ5 = 0.0344936.

For k = 6:

λ1 = 1.0985408, λ2 = −1.2062230, λ3 = 0.6598879, λ4 = −0.2356586, λ5 = 0.0572306,

λ6 = −0.00755790.
For k = 7:

λ1 = 1.0986056, λ2 = −1.2068705, λ3 = 0.6625857, λ4 = −0.2416536, λ5 = 0.0647243,

λ6 = −0.0125748, λ7 = 0.0013877.
and for k = 8:

λ1 = 1.0986117, λ2 = −1.2069416, λ3 = 0.6629413, λ4 = −0.2426415, λ5 = 0.0663709,

λ6 = −0.0142213, λ7 = 0.0023024, λ8 = 0.0002177.

The results for the three fastest methods used in Example 4.3 are listed in Table
3.

Table 3

n k = 5 k = 6 k = 7 k = 8
xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = gλ(xn) xn+1 = g(xn)

0 0.33333 0.33333 0.33333 0.33333 0.33333
1 0.53769 0.5376929282 0.5376928610 0.5376928590 0.69336
2 0.54779 0.5477874354 0.5477874346 0.5477874349 0.46686
3 0.54781 0.5478086216 0.5478086216 0.5478086223 0.59876
4 0.54781 0.5478086219 0.5478086213 0.5478086215 0.51799
5 0.5478086217 0.5478086215 0.5478086219
6 0.5478086213 0.5478086214
7 0.5478086215 0.5478086216
8 0.5478086218
9 0.5478086218
...

...
...

...
...

21 0.54781

For the Example 4.3 we observe that for k = 5 we have the best rate of conver-
gence.

Example 4.4. [11]Test function: f(x) = (x − 1)3 − 1 = 0. We observe that x = 2
is a root of f(x). We use an approximative value for α, α ∼= 1.7 and g(x) =
3
√

3x2 − 3x + 2. Note that g is a contraction on R. The values of the parameters λi

involved in (2.7) are
For k = 2:

λ1 = −0.8007005397, λ2 = 0.0217115888.
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For k = 3:

λ1 = −0.4719973830, λ2 = −0.3649980073, λ3 = 0.1137381165.

For k = 4:

λ1 = 0.2083667801, λ2 = −1.565640648, λ3 = 0.8199984934, λ4 = −0.1384824268.

For k = 5:

λ1 = 1.180921712, λ2 = −3.854005194, λ3 = 2.839143681, λ4 = −0.9303040692,

λ5 = 0.1164443592.
and for k = 6:

λ1 = 2.293100612, λ2 = −7.125119605, λ3 = 6.687513576, λ4 = −3.194051066,

λ5 = 0.7822522995, λ6 = −0.07833034592.

The results for the five fastest methods used in the Example 4.4 are listed in
Table 4.

Table 4

n k = 2 k = 3 k = 4 k = 5 k = 6
xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =g(xn)

0 1.7 1.7 1.7 1.7 1.7 1.7
1 2.007486966 2.007486965 2.007486965 2.007486949 2.007487047 1.772631238
2 1.999773454 2.000100489 1.999981347 2.000012547 2.000006093 1.828035437
3 2.000006791 2.000001178 2.000000064 2.000000040 1.999999912 1.870174554
4 1.999999796 2.000000017 1.999999996 1.999999980 2.000000124 1.902133792
5 2.000000006 1.999999998 2.000000008 2.000000000 1.999999912 1.926313267
6 1.999999999 2.000000004 2.000000004 2.000000000 2.000000124 1.944570353
7 1.999999997 2.000000000 1.999999996 1.958333871
8 1.999999997 2.000000008 1.968697038
9 2.000000004 1.976492529
10 1.999999996 1.982352284
11 2.000000008 1.986754546
...

... 2.000000008
...

...
...

32 1.999976320

For the Example 4.4 we observe that for k = 5 we have the best rate of conver-
gence.

Example 4.5. [11]Test function f(x) = cos x − x = 0, which has a unique root in
the interval (0, 1). We use an approximative value for α, α ∼= 0.5 and g(x) = cos x.
Note that g is a contraction on [0, 1]. The values of the parameters λi involved in
(2.7) are
For k = 2:

λ1 = 0.04063425765, λ2 = 0.8775825619.

For k = 3:

λ1 = −0.01929393468, λ2 = 1.117295331, λ3 = −0.2397127693.

For k = 4:

λ1 = −0.001010964635, λ2 = 1.007597511, λ3 = −0.02031712882, λ4 = −0.1462637603.

For k = 5:

λ1 = 0.0002375393714, λ2 = 0.9976094789, λ3 = 0.00964697338, λ4 = −0.1862158885,
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λ5 = 0.01997606411.
and for k = 6:

λ1 = 0.0000090022458559, λ2 = 0.9998948502, λ3 = 0.0005054823177,

λ4 = −0.1679329185, λ5 = 0.001693094069, λ6 = 0.007313188016.

The results for the five fastest methods used in the Example 4.5 are listed in
Table 5.

Table 5

n k = 2 k = 3 k = 4 k = 5 k = 6
xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =g(xn)

0 0.5 0.5 0.5 0.5 0.5 0.5
1 0.7552224168 0.7552224168 0.7552224168 0.7552224173 0.7552224180 0.8775825619
2 0.7393111553 0.7391639529 0.7391407837 0.73914159935 0.7391416688 0.6390124942
3 0.7390872396 0.739085247 0.7390851314 0.7390851334 0.7390851349 0.8026851007
4 0.7390851525 0.7390851333 0.7390851332 0.7390851335 0.7390851334 0.6947780268
5 0.7390851331 0.7390851327 0.7390851332 0.7390851341 0.7390851334 0.7681958313
6 0.7390851332 0.7390851335 0.719165449
7 0.7390851332 0.7390851341
...

...
...

52 0.7390852281

For the Example 4.5 we observe that for k = 2 we have the best rate of conver-
gence.

Example 4.6. [11]Test function f(x) = (sinx)2−x2 +1 = 0. f(x) is continuous on
[1, 2] and f(1) · f(2) < 0. By Weierstrass theorem, α, the root of f(x), lies in (1, 2).
Let g(x) =

√
1 + (sinx)2 and α ∼= 1.5. The values of the parameters λi involved

in (2.7) are
For k = 2:

λ1 = −1.103967914, λ2 = 0.7026746168.

For k = 3:

λ1 = −0.9630432881, λ2 = 0.5147751162, λ3 = 0.06263316685.

For k = 4:

λ1 = 0.03406382402, λ2 = −1.479439108, λ3 = 1.392109316, λ4 = −0.2954391443.

For k = 5:

λ1 = −0.4994602957, λ2 = −0.4317081221, λ3 = 0.7193783305, λ4 = −0.1631142617,

λ5 = 0.005723630675.
and for k = 6 we have the solutions

λ1 = −0.3772313996, λ2 = −0.8391377758, λ3 = 1.262617869, λ4 = −0.5252739538,

λ5 = 0.1264435280, λ6 = −0.01609598632.

The results for the five fastest methods used in the Example 4.6 are listed in
Table 6.
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Table 6
n k = 2 k = 3 k = 4 k = 5 k = 6

xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =g(xn)
0 1.5 1.5 1.5 1.5 1.5 1.5
1 1.407839387 1.407839386 1.407839387 1.407839385 1.407839388 1.412443361
2 1.404493085 1.404495094 1.404495963 1.404495477 1.404495477 1.405394334
3 1.404491648 1.404491648 1.404491651 1.404491648 1.404491650 1.404496296
4 1.404491648 1.404491647 1.404491648 1.404493062
5 1.404491649 1.404491813
6 1.404491646

1.404491646
...

...
...

9 1.404491648

For the Example 4.6 we observe that for k = 2, 3, 5 we have the best rate of con-
vergence.

Example 4.7. [11] Test function f(x) = ex2+7x−30 − 1 = 0. We observe that x = 3 is
a root for f(x). Let g(x) =

√
30− 7x and an approximative value of α, α ∼= 2.5. The

values of the parameters λi involved in (2.7) are
For k = 2:

λ1 = 0.2969848483, λ2 = 0.2771858582.

For k = 3:

λ1 = 1.024597726, λ2 = −0.3049044440, λ3 = 0.1164180604.

For k = 4:

λ1 = 0.1757160352, λ2 = 0.7137535850, λ3 = −0.2910451512, λ4 = 0.05432842822.

For k = 5:

λ1 = 1.215596106, λ2 = −0.9500545285, λ3 = 0.7072397170, λ4 = −0.2118808700,

λ5 = 0.02662092982.
and for k = 6:

λ1 = −0.09465278297, λ2 = 1.670443250, λ3 = −1.389158506, λ4 = 0.6266784191,

λ5 = −0.1410909280, λ6 = 0.01341694862.

The results for the five fastest methods used in the Example 4.6 are listed in
Table 7.

Table 7
n k = 2 k = 3 k = 4 k = 5 k = 6

xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =gλ(xn) xn+1 =g(xn)
0 2.5 2.5 2.5 2.5 2.5 2.5
1 3.020382004 3.020382004 3.020382005 3.020382007 3.020382003 3.535533906
2 2.999645349 2.999947206 3.00009189 3.000037463 3.000042237 2.291563366
3 3.000006356 3.000000021 2.999999980 2.999999986 2.999999988 3.736182067
4 2.999999888 2.999999999 2.999999989 2.999999997 2.999999973 1.961307097
5 3.000000002 3.000000000 3.000000002 3.000000001 3.000000005 4.033714209
6 3.000000001 3.000000001 3.000000005 2.999999993 1.328156821
7 3.000000000 2.999999999 3.000000005 2.999999989 4.550044203
8 3.000000002 2.999999994 ·
9 3.000000001 2.999999982 ·
10 3.000000001 2.999999991 ·
11 2.999999986
12 3.000000007
13 3.000000007
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For Example 4.7 we observe that for k = 3 we have the best rate of conver-
gence.
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[5] Baker, G. A. Jr. and Graves-Morris, P., Padé Approximants, 2nd edition, in: Encyclopedia of Math-
ematics and its Applications, 59 (1996), Cambridge University Press, Cambridge

[6] Berinde, V., Iterative Approximation of Fixed Points, 2nd Ed., Springer Verlag, Berlin Heidelberg
New York, 2007

[7] Berinde, V., Picard iteration converges faster than Mann iteration for a class of quasi-contractive opera-
tors, Fixed Point Theory and Applications 2004 (2004), No. 2, 97-105

[8] Berinde, V. and Berinde, M., The fastest Krasnoselskij iteration for approximating fixed points of stricty
pseudo-contractive mappings, Carpathian J. Math. 21 (2005), No. 1-2, 13-20

[9] Biazar, J. and Amirteimoori, A., An improvement to the fixed point iterative method, Appl. Math.
Comput. 182 (2006), 567-571

[10] Brezinski, C., Convergence acceleration during the 20th century, in: Numerical Analysis 2000, Vol. II:
29 Interpolation and Extrapolation, J. Comput. Appl. Math. 122 (2000), No. 1-2, 1-21

[11] Liang, Fang, Guoping, He, Some modifications of Newton’s method with higher-order convergence for
solving nonlinear equations, J. Comput. Appl. Math. 228 (2009) 296-303

[12] Kou, J., Wang, X., Yitian, Li Some eighth-order root-finding three-step methods, Appl. Math. Lett. 23
(2009), 92-96
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