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A generalization of Mortici lemma

VASILE BERINDE

ABSTRACT. The aim of this note is to obtain a generalization of a very simple, elegant but powerful con-
vergence lemma introduced by Mortici [Mortici, C., Best estimates of the generalized Stirling formula, Appl. Math.
Comp., 215 (2010), no. 11, 4044–4048; Mortici, C., Product approximations via asymptotic integration, Amer. Math.
Monthly, 117 (2010), no. 5, 434–441; Mortici, C., An ultimate extremely accurate formula for approximation of the
factorial function, Arch. Math. (Basel), 93 (2009), no. 1, 37–45; Mortici, C., Complete monotonic functions associated
with gamma function and applications, Carpathian J. Math., 25 (2009), no. 2, 186–191] and exploited by him and
other authors in an impressive number of recent and very recent papers devoted to constructing asymptotic
expansions, accelerating famous sequences in mathematics, developing approximation formulas for factorials
that improve various classical results etc.

We illustrate the new result by some important particular cases and also indicate a way for using it in similar
contexts.

1. INTRODUCTION

C. Mortici introduced the following simple, elegant but powerful lemma which was
first used in [11], [12], [7], [8] to accelerate some sequences and to construct asymptotic
expansions, and afterwards was intensively used in [7]-[51] and many other related pa-
pers. We state here this lemma as given and proved by its author in [51].

Lemma 1.1. (Mortici, [51])
If {!n}n�1 is convergent to 0 and there exists the limit

(1.1) lim
n!1

n

k(!n � !n+1) = l 2 R,

with k > 1, then there exists the limit

(1.2) lim
n!1

n

k�1
!n =

l

k � 1
.

Remark 1.1. Let {an} and {bn} be two sequences of real numbers converging to a and b,
respectively, for which there exists the limit

lim
n!1

an � a

bn � b

= L 2 R.

If L 6= 0, then we say (see for example [1] and [2]) that {an} and {bn} have the same rate (or-
der) of convergence. If L = 0, then we say that {an} converges faster to a than {bn} converges
to b.
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In view of the above concept, the interpretation of Lemma 1.1 is the following one: if

the sequences {!n�!n+1}n�1 and
⇢

1
n

k

�
, with k > 1, have the same order of convergence,

then the same happens with the sequences {!n}n�1 and
⇢

1
n

k�1

�
.

Lemma 1.1 is actually a consequence of the classical Cesaro-Stolz lemma for the case
(0/0) (see [5]), an auxiliary result that has been used by Mortici in [29] directly and not in
the form of the derived Lemma 1.1:

Lemma 1.2. Let {an} and {bn} be two sequences of real numbers with the following properties
(i) lim

n!1
an = lim

n!1
an = 0;

(ii) {bn} is strictly increasing;
(iii) there exists the limit

lim
n!1

an � an�1

bn � bn�1
= l 2 R.

Then there exists the limit of the sequence
an

bn
and

lim
n!1

an

bn
= l.

In applications, however, Lemma 1.1 is more powerful than Lemma 1.2, as shown by
the following selected examples which are taken from papers that use Lemma 1.1.

• In the paper [10] Mortici considers the sequence {!n}n�1 given by

!n = ln�(n)� ln
p

2⇡ + b� ln(n + b) + n +
1
2
 (n + c),

where � is the Euler gamma function,  = �0/� is the digamma function and
a, b, c are some parameters.

• In [25] Mortici considers the sequence {!n}n�1 given by

!n = ln�(n + 1)� ln
p

2⇡ + p� n ln(n + p) + n� 1
6

ln(n3 + an

2 + bn + c), p 2 [0, 1],

where a, b, c are parameters depending on p;
• In [14] Mortici considers the sequence {!n}n�1 defined either by the equality

n! =
r

2⇡

e

✓
n + 2

e

◆n+ 3
2

· 1
n + a

· e!n
,

or by

n! =
r

2⇡

e

✓
n + 3

e

◆n+ 5
2

· 1
n

2 + bn + c

· e!n
,

where a, b, c are some parameters;
• In [11] Mortici considers the sequence {!n}n�1 defined by the equality

n! =
p

2⇡e

b�a

✓
n + a

e

◆n+b

· (n + c)
1
2�b · e!n

,

with a, b parameters;
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• In [32] Mortici considers the sequence {!n}n�1 given by

!n(a, b, c) =
1
a

+
1

a + 1
+ · · · + 1

a + n� 2
+

b

a + n� 1
� ln

✓
a + n� 1

a

+ c

◆
,

with a, b, c 2 R such that c > �a + 1
a

.
• In [30] Mortici considers the sequence {!n}n�1 given by

!n = 1 +
1
2

+ · · · + 1
n

� ln
n

2 + an + b

n + c

,

with a, b, c 2 R parameters.
• In [30] Mortici considers the sequence {!n}n�1 given by

!n = 1 +
1
2

+ · · · + 1
n

� ln
n

2 + an + b

n + c

,

with a, b, c 2 R parameters.
• In [3] Chen considers the sequence {!n}n�1 given by

!n =  (n + 1)� ln
✓

n +
1
2

◆
+ q 00(n + p),

where � is the Euler gamma function,  = �0/� is the digamma function and p, q

are parameters.
• In [4] Chen considers the sequence {!n}n�1 given by

!n =
nX

k=0

1
16k

✓
2k
k

◆2

� c0 +
b

n + c

,

where c0 is given and b, c are parameters.
Many other papers in the list [7]-[51] are using directly Lemma 1.1, while Lemma 1.2

was used in significantly less cases, amongst which we mention the paper [29].

2. MAIN RESULT

Lemma 2.3. Let {an} and {bn} be two sequences of positive real numbers such that the series
1P

n=1
an converges to S with the same rate as {bn} converges to 0.

If {!n}n�1 is a sequence of real numbers converging to ! such that {!n�!n+1}n�1 and {an}
have the same rate of convergence, then {!n�!}n�1 and {bn} have the same rate of convergence,
too.

Proof. Although the proof easily follows by Cesaro-Stolz lemma in the case (0/0), we give
here an independent proof, as the proof of Lemma 1.2 cannot be found easily in textbooks,
under this form, except for the book [5] which is very scarce, even in Russian. Let, by
hypothesis, l, L 2 R be such that

(2.3) lim
n!1

!n � !n+1

an
= l 2 R

and, respectively,

(2.4) lim
n!1

S �
n�1P
i=1

ai

bn
= L 2 R.
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Let ✏ > 0. Then there exists n0 = n0(✏) such that

(2.5) l � ✏  !n � !n+1

an
 l + ✏, n � n0.

If we write (2.5) in the equivalent form (note that an > 0)

(l � ✏)an  !n � !n+1  (l + ✏)an, n � n0,

and sum up the inequalities obtained for n, n + 1, . . . , n + p� 1 (p � 2), one obtains

(2.6) (l � ✏)
n+p�1X

i=n

ai  !n � !n+p  (l + ✏)
n+p�1X

i=n

ai, n � n0.

By letting p!1 in (2.6), we obtain

(2.7) (l � ✏)

 
S �

n�1X

i=1

ai

!
 !n � !  (l + ✏)

 
S �

n�1X

i=1

ai

!
, n � n0.

Now, divide (2.7) by bn > 0 and use (2.4) to get, by letting n ! 1 in the resulted
inequality,

(2.8) lim
n!1

!n � !

bn
= l · L,

as required. ⇤

Remark 2.2. In the particular case an =
1
n

k
(k > 1), bn = nan and ! = 0, by Lemma 2.3 we

get Lemma 1.1, i.e., the Lemma 2.1 in [32]. Essential here is the fact that the series
1P

n=1
an

involved in Lemma 2.3 will be in this particular case the generalized harmonic series
1X

n=1

1
n

k

which is known to converge to Riemann zeta function ⇣(k), for k > 1, see [6], with the
convergence order given by the relation

lim
n!1

n

k�1

 
⇣(k)�

n�1X

i=1

1
i

k

!
=

1
k � 1

.

A particular case. As shown in the first section, in the paper [10] the sequence {!n}n�1

is given by

!n = ln�(n)� ln
p

2⇡ + b� ln(n + b) + n +
1
2
 (n + c),

where � is the Euler gamma function,  = �0/� is the digamma function and a, b, c are
some parameters, while the sequences {an} and {bn} are

an =
1
n

k
and bn =

1
n

k�1
, for k = 2, 3, 4,

depending on the values of parameters a, b, c (there exist three distinct cases).
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3. CONCLUSIONS

Lemma 1.1 is based essentially on the assumption k > 1. If 0 < k  1, then it cannot be
applied, since in this case the generalized harmonic series

1X

n=1

1
n

k

is divergent. In such cases, we could be interested to find instead of generalized harmonic
series another ”comparison” series which is still convergent, even though its order of
convergence is very slow.

On the contrary, we could be interested to use ”comparison” sequences which con-

verge faster than the sequence
⇢

1
n

k

�
, used overall in the papers that use Lemma 1.1. For

example, as it is known, see [1], the recursive sequence that calculates
p

a for a > 0, that
is,

xn+1 =
1
2

✓
xn +

a

xn

◆
, n � 0, x0 > 0,

converges to
p

a faster than any of the sequences
⇢

1
n

k

�
, k = 1, 2, . . . .

These contexts would require the use of our Lemma 2.3 rather than of Lemma 1.1.
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