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Controlling autonomous scalar discrete dynamical systems
generated by non self Lipschitzian functions

VASILE BERINDE 1,2 AND GABRIELLA KOVÁCS1

ABSTRACT. We apply fixed point techniques of Krasnoselskij type for stabilizing autonomous scalar discrete
dynamical systems in the case of Lipschitzian functions.

1. INTRODUCTION

Discrete dynamical systems, even in one dimension, constitute suitable modeling tools
for a large variety of real world phenomena. They also occur as components in hybrid dy-
namical systems which combine continuous and discrete behaviours. Time discretizations
of continuous dynamical systems as well as the first return Poincaré maps associated to
periodic orbits in continuous dynamical systems also lead to discrete dynamical systems.

Our aim in this paper is to give stability results for autonomous discrete dynamical
systems generated by Lipschitz functions.

In this section we recall some related concepts and the fixed point theorems of the
Krasnoselskij type iterations we use to establish the results of the paper.

The discrete dynamical system generated by the function f : [a, b] ! [a, b], a, b 2 R,
a < b, will be denoted by [[a, b], f ]. In [[a, b], f ] the trajectory of an x0 2 [a, b] is the
sequence (xn)n2N given by the Picard iteration xn+1 = f(xn), n 2 N. Motivated even
by practical interpretations there is a main interest in analyzing the dependences on the
starting points of the trajectories.

Denote Ff the set of fixed points of f . In case that the function f : [a, b] ! [a, b] is
continuous, the intermediate value theorem applied to the continuous function f(x) � x

and the inequalities f(a) � a, f(b)  b assure that Ff 6= ?; moreover, the set Ff is
compact, since it is a bounded, closed subset of R; thus Ff , as a nonempty compact subset
of R, has a least element and a greatest element.

In the discrete dynamical system [[a, b], f ] a fixed point x⇤ of f is considered, see [5, 7],
as

-attracting or stable if there exists an open interval I which contains x⇤ such that f(x) 2 I

for all x 2 I and lim

n!1
f

n
(x) = x

⇤ for all x 2 I;

-repelling or instable if there exists an open interval I which contains x

⇤ such that for
every x 2 I \ {x⇤} there exists n 2 N⇤ with f

n
(x) /2 I.

If [[a, b] , f ] is generated by a contraction (i. e. f satisfies a Lipschitz condition, see
below, with constant L < 1) then all trajectories converge to the unique fixed point of f
according to the contraction principle.
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If in [[a, b] , f ] the function f is monotone increasing, then all trajectories converge
monotonously, and if in addition f is continuous, they converge to some fixed points of
f . If the function f is decreasing, then each trajectory splits in monotone convergent sub-
sequences (x2k)k2N, (x2k+1)k2N, and if in addition f is continuous, then the subsequences
converge to some fixed points of f2. For results on Picard iterations with monotone and
continuous functions see [9].

Regarding sequences of real numbers we consider the following special properties of
monotony as in [3]. We call the sequence of real numbers (xn)n2N s-increasing if either
xn < xn+1 for all n 2 N, or there is a k 2 N such that x0 < x1 < . . . < xk�1 < xk = xk+1 =

xk+2 = . . .. We call the sequence (xn)n2N s-decreasing if either xn > xn+1 for all n 2 N, or
there is a k 2 N such that x0 > x1 > . . . > xk�1 > xk = xk+1 = xk+2 = . . ..

Slightly differently from [1] where the strict monotony is required, through this paper,
as in [3], for fixed points in [[a, b] , f ] we consider the following special types of stability.
We call a fixed point x⇤ of f within [[a, b] , f ] as

-monotonously attracting from below if there exists ✏ > 0 such that all trajectories starting
with x0 2 (x

⇤ � ✏, x

⇤
) are s-increasing and converge to x

⇤
;

-monotonously attracting from above if there exists ✏ > 0 such that all trajectories starting
with x0 2 (x

⇤
, x

⇤
+ ✏) are s-decreasing and converge to x

⇤
;

-monotonously stable if it is monotonously attracting both from below and from above.
We deal with two families of functions related to f , as in [3], with � 2 R⇤

f� : [a, b] ! R, f� (x) = x+ � (f (x)� x) ,

e

f� : [a, b] ! R, ef� (x) = x (1 + � (f (x)� x)) .
Comparing the fixed point sets

Ff = F f�
, � 2 R⇤.

If 0 /2 [a, b] or 0 2 Ff then also
Ff = F ef� , � 2 R⇤.

We will associate to [[a, b], f ] certain discrete dynamical systems
⇥

J, f�

⇤

respectively
h

J,

e

f�

i

with the intervals J ⇢ [a, b] and the values � 2 R⇤ suitably chosen.

We refer to
⇥

J, f�

⇤

as a variation controlled discrete dynamical system with control pa-
rameter �.

In
⇥

J, f�

⇤

the trajectory of a y0 2 J is (yn)n2N defined by yn+1 = f�(yn), n 2 N, i. e.

yn+1 = yn + � (f(yn)� yn) , n 2 N.

When J = [a, b], in the system
⇥

[a, b], f�

⇤

with � 2 (0, 1) given, this is exactly a Krasnosel-
skij iteration applied to f . For results on Krasnoselskij iterations within more general
settings see [2].

In
h

J,

e

f�

i

the trajectory of a z0 2 J is (zn)n2N given by zn+1 =

e

f(zn), n 2 N, i. e.

zn+1 = zn (1 + � (f(zn)� zn)) , n 2 N.
The relation

zn+1 � zn

zn
= � (f(zn)� zn)

constitutes the basis for referring to the system
h

J,

e

f�

i

as a growth-rate controlled discrete
dynamical system with control parameter �, [8].
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The fixed point theorems we recall below focus on functions f satisfying a Lipschitz
condition

|f (u1)� f (u2)|  L |u1 � u2| , u1, u2 2 [a, b] ,

where L > 0 is a constant, and propose monotonous Krasnoselskij type iterations of the
function f to approximate fixed points of f . The iterations are of the form xn+1 = f�(xn)

respectively xn+1 =

e

f� (xn), without the functions involved, f� and e

f� , being devised to
be monotone or contractive on vicinities of the limit points.

Theorem 1.1. ([3], Theorem 2.1) Let a, b 2 R, a < b, f : [a, b] ! [a, b] satisfy the Lipschitz
condition with L > 0, and let x0 2 [a, b].

i) If f(x0) > x0, letting � 2
✓

0,

1

L+ 1

�

, the sequence (xn)n2N, xn+1 = xn+� (f(xn)� xn),

is s-increasing and convergent to min (Ff \ [x0,b]).

ii) If f(x0) > x0 and Ff \ [a, x0] 6= ?, letting � 2


� 1

L+ 1

, 0

◆

, the sequence (xn)n2N,

xn+1 = xn + � (f(xn)� xn), is s-decreasing and convergent to max (Ff \ [a, x0]).

iii) If f(x0) < x0, letting � 2
✓

0,

1

L+ 1

�

, the sequence (xn)n2N, xn+1 = xn+� (f(xn)� xn),

is s-decreasing and convergent to max (Ff \ [a, x0]).

iv) If f(x0) < x0 and Ff \ [x0, b] 6= ?, letting � 2


� 1

L+ 1

, 0

◆

, the sequence (xn)n2N,

xn+1 = xn + � (f(xn)� xn), is s-increasing and convergent to min (Ff \ [x0, b]).

Theorem 2.2 from [3], and its proof, can be easily extended for nonself functions as
follows.

Theorem 1.2. Let a, b 2 R, 0  a < b, f : [a, b] ! R satisfy the Lipschitz condition with L > 0,
and let x0 > 0, x0 2 [a, b].

i) If f(x0) > x0 and Ff \ [x0, b] 6= ?, consider p = min (Ff \ [x0, b]). Letting � 2
✓

0,

1

p (L+ 1)

�

, the sequence (xn)n2N, xn+1 = xn (1 + � (f(xn)� xn)), is s-increasing and

convergent to p.
ii) If f(x0) > x0 and Ff \ [a, x0] 6= ?, consider q = max (Ff \ [a, x0]). Letting � 2



� 1

x0 (L+ 1)

, 0

◆

, the sequence (xn)n2N, xn+1 = xn (1 + � (f(xn)� xn)), is s-decreasing and

convergent to q.
iii) If f(x0) < x0 and Ff \ [a, x0] 6= ?, consider q = max (Ff \ [a, x0]). Letting � 2

✓

0,

1

x0 (L+ 1)

�

, the sequence (xn)n2N, xn+1 = xn (1 + � (f(xn)� xn)), is s-decreasing and

convergent to q.
iv) If f(x0) < x0 and Ff \ [x0, b] 6= ?, consider p = min (Ff \ [x0, b]). Letting � 2



� 1

p (L+ 1)

, 0

◆

, the sequence (xn)n2N, xn+1 = xn (1 + � (f(xn)� xn)), is s-increasing and

convergent to p.

The particular case of � =

1

L+ 1

from i) and iii) in Theorem 1.1 recovers Hillam’s result
[6] which for L = 1 is a real line version of the Krasnoselskij’s fixed point theorem.
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The iterations considered in Theorem 1.2 are related to the growth-rate controlling
mechanism studied under some assumptions on f

0 at the fixed point of f by Huang, W.
[8].

Our main results in this paper are stated in Section 2 as Theorems 2.1-2.3.

2. MAIN RESULTS

The theorems we develop here have potential applicability in stabilizing autonomous
scalar discrete dynamical systems generated by Lipschitz functions.

2.1. Stability by variation control. The following result is a consequence of Theorem 1.1.

Theorem 2.3. Let a, b 2 R, a < b and f : [a, b] ! [a, b] satisfy the Lipschitz condition with
L > 0 on the interval [a, b]. For � 2 R \ {0} define f� : [a, b] ! R, f� (x) = x+ � (f (x)� x).
Let c 2 [a, b]. The following holds.

i) If f(c) > c, consider p = min (Ff \ [c, b]). Let � 2
✓

0,

1

L+ 1

�

. In the dynamical system
⇥

[c, p] , f�

⇤

the fixed point p is monotonously attracting from below.

ii) If f(c) > c and Ff \ [a, c] 6= ?, consider q = max (Ff \ [a, c]). Let � 2


� 1

L+ 1

, 0

◆

. In
⇥

[q, c] , f�

⇤

the fixed point q is monotonously attracting from above.

iii) If f(c) < c, consider q = max (Ff \ [a, c]). Let � 2
✓

0,

1

L+ 1

�

. In
⇥

[q, c] , f�

⇤

the fixed

point q is monotonously attracting from above.

iv) If f(c) < c and Ff \ [c, b] 6= ?, consider p = min (Ff \ [c, b]). Let � 2


� 1

L+ 1

, 0

◆

. In
⇥

[c, p] , f�

⇤

the fixed point p is monotonously attracting from below.

Proof. The Lipschitz function f is continuous, so f : [a, b] ! [a, b] possesses at least one
fixed point. As we discussed earlier Ff = Ff�

.
i) Remark that f (c) > c and f (b)  b assure Ff \ [c, b] 6= ?. We show that c  f�(x)  p

for all x 2 [c, p], i. e. the discrete dynamical system
⇥

[c, p] , f�

⇤

is correctly defined. By the
definition of p is clear that f has no fixed points in the interval [c , p), so the continuous
function f(x)� x preserves its sign on the interval [c , p); since f(c)� c > 0, it follows that
f(x)� x > 0 for all x 2 [c , p). With � > 0 it results that f�(x)� x = �(f (x)� x) > 0 and
f�(x) > x � c for all x 2 [c , p). To prove f�(x)  p for all x 2 [c , p) suppose there is a
t 2 [c, p) with f�(t) > p. From t < p < f�(t) it follows successively

|p� t| <
�

�

f�(t)� t

�

�

= |�(f(t)� t)| = � |f(t)� t| =

� |f(t)� f(p) + p� t|  � (|f(t)� f(p)|+ |p� t|) 
� (L |t� p|+ |p� t|) = � (L+ 1) |p� t|  |p� t| ,

which is a contradiction.

For all x0 2 [c, p), as the inequality f(x0) > x0 holds, i) from Theorem 1.1 applies, thus
the sequence xn+1 = f�(xn), that is the trajectory of x0 in

⇥

[c, p] , f�

⇤

, is s-increasing and
convergent to p.
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ii) We show that q  f�(x)  c for all x 2 [q, c], i. e.
⇥

[q, c] , f�

⇤

is correctly defined. By
the definition of q is clear that f has no fixed points in (q, c], so the continuous function
f(x)�x preserves its sign on the interval (q, c]; since f(c)�c > 0, it follows that f(x)�x > 0

for all x 2 (q, c]. With � < 0 it results that f�(x)� x = �(f (x)� x) < 0 and f�(x) < x  c

for all x 2 (q, c]. To prove f�(x) � q for all x 2 (q, c] suppose there is a t 2 (q, c] with
f�(t) < q. From f�(t) < q < t it follows successively

|q � t| <
�

�

f�(t)� t

�

�

= |�(f(t)� t)| = |�| |f(t)� t| =

|�| |f(t)� f(q) + q � t|  |�| (|f(t)� f(q)|+ |q � t|) 

|�| (L |t� q|+ |q � t|) = |�| (L+ 1) |q � t|  |q � t| ,

which is a contradiction.
For all x0 2 (q, c], as the inequality f(x0) > x0 holds, ii) from Theorem 1.1 applies, thus

the sequence xn+1 = f�(xn) i. e. the trajectory of x0 in
⇥

[q, c] , f�

⇤

is s-decreasing and
convergent to q.

iii) Remark that f (c) < c and f (a) � a assure Ff\[a, c] 6= ?. We show that q  f�(x) 
c for all x 2 [q, c], i. e.

⇥

[q, c] , f�

⇤

is correctly defined. By the definition of q is clear that f
has no fixed points in (q, c], so the continuous function f(x) � x preserves its sign on the
interval (q, c]; since f(c) � c < 0, it follows that f(x) � x < 0 for all x 2 (q, c]. With � > 0

it results that f�(x) � x = �(f (x)� x) < 0 and f�(x) < x  c for all x 2 (q, c]. To prove
f�(x) � q for all x 2 (q, c] suppose there is a t 2 (q, c] with f�(t) < q. From f�(t) < q < t

it follows successively

|q � t| <
�

�

f�(t)� t

�

�

= |�(f(t)� t)| = � |f(t)� t| =

� |f(t)� f(q) + q � t|  � (|f(t)� f(q)|+ |q � t|) 

� (L |t� q|+ |q � t|) = � (L+ 1) |q � t|  |q � t| ,

which is a contradiction.
For all x0 2 (q, c], as the inequality f(x0) < x0 holds, iii) from Theorem 1.1 applies,

thus the sequence xn+1 = f�(xn) i. e. the trajectory of x0 in
⇥

[q, c] , f�

⇤

is s-decreasing and
convergent to q.

iv) We show that c  f�(x)  p for all x 2 [c, p], i. e.
⇥

[c, p] , f�

⇤

is correctly defined. By
the definition of p is clear that f has no fixed points in [c , p), so the continuous function
f(x)�x preserves its sign on the interval [c , p); since f(c)�c < 0, it follows that f(x)�x <

0 for all x 2 [c , p). With � < 0 it results that f�(x)�x = �(f (x)� x) > 0 and f�(x) > x � c

for all x 2 [c , p).To prove f�(x)  p for all x 2 [c , p) suppose there is a t 2 [c, p) with
f�(t) > p. From t < p < f�(t) it follows successively

|p� t| <
�

�

f�(t)� t

�

�

= |�(f(t)� t)| = |�| |f(t)� t| =

|�| |f(t)� f(p) + p� t|  |�| (|f(t)� f(p)|+ |p� t|) 

|�| (L |t� p|+ |p� t|) = |�| (L+ 1) |p� t|  |p� t| ,

which is a contradiction.
For all x0 2 [c, p), as the the inequality f(x0) < x0 holds, iv) from Theorem 1.1 applies,

thus the sequence xn+1 = f�(xn) i. e. the trajectory of x0 in
⇥

[c, p] , f�

⇤

is s-increasing and
convergent to p. ⇤
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2.2. Stability by growth-rate control. The subsequent theorems are inspired by the growth-
rate controlling mechanism studied under some assumptions on f

0 at the fixed point of f
by Huang, W. [8].

The following theorem is a consequence of Theorem 1.2.

Theorem 2.4. Let a, b 2 [0,+1), a < b and f : [a, b] ! R satisfy the Lipschitz condi-
tion with L > 0 on the interval [a, b]. For � 2 R \ {0} define e

f� : [a, b] ! R, e

f� (x) =

x (1 + � (f (x)� x)). Let c 2 [a, b]. The following holds.

i) If f(c) > c and Ff \ [c, b] 6= ?, consider p = min (Ff \ [c, b]). Let � 2
✓

0,

1

p (L+ 1)

�

. In

the dynamical system
h

[c, p] ,

e

f�

i

the fixed point p is monotonously attracting from below.

ii) If f(c) > c and Ff \ [a, c] 6= ?, consider q = max (Ff \ [a, c]). Let � 2


� 1

c (L+ 1)

, 0

◆

.

In
h

[q, c] ,

e

f�

i

the fixed point q is monotonously attracting from above.

iii) If f(c) < c and Ff \ [a, c] 6= ?, consider q = max (Ff \ [a, c]). Let � 2
✓

0,

1

c (L+ 1)

�

.

In
h

[q, c] ,

e

f�

i

the fixed point q is monotonously attracting from above.

iv) If f(c) < c and Ff \ [c, b] 6= ?, consider p = min (Ff \ [c, b]). Let � 2


� 1

p (L+ 1)

, 0

◆

.

In
h

[c, p] ,

e

f�

i

the fixed point p is monotonously attracting from below.

Proof. The function f is continuous as it satisfies a Lipschitz condition.
i) We show that c  e

f� (x)  p for all x 2 [c, p], i. e. the discrete dynamical system
h

[c, p] ,

e

f�

i

is correctly defined. By the definition of p is clear that f has no fixed points in
the interval [c , p), so the continuous function f(x) � x preserves its sign on the interval
[c , p); since f(c)�c > 0, it follows that f(x)�x > 0 for all x 2 [c , p). With � > 0 and x � 0

it results that ef�(x)� x = �x(f (x)� x) � 0 and e

f�(x) � x � c for all x 2 [c , p). To prove
e

f�(x)  p for all x 2 [c , p) suppose there is a t 2 [c, p) with e

f�(t) > p. From t < p <

e

f�(t)

it follows successively

|p� t| <
�

�

�

e

f�(t)� t

�

�

�

= |�t(f(t)� t)| = �t |f(t)� t| =

�t |f(t)� f(p) + p� t|  �t (|f(t)� f(p)|+ |p� t|) 

�t (L |t� p|+ |p� t|) = �t (L+ 1) |p� t| < �p (L+ 1) |p� t|  |p� t| ,

which is a contradiction.
For all x0 2 (c, p), as the inequalities x0 > 0 and f(x0) > x0 hold, i) from Theorem

1.2 applies, thus the sequence xn+1 =

e

f�(xn), that is the trajectory of x0 in
h

[c, p] ,

e

f�

i

, is
s-increasing and convergent to p.

ii) We show that q  e

f� (x)  c for all x 2 [q, c], i. e.
h

[q, c] ,

e

f�

i

is correctly defined. By
the definition of q is clear that f has no fixed points in (q, c], so the continuous function
f(x)�x preserves its sign on the interval (q, c]; since f(c)�c > 0, it follows that f(x)�x > 0

for all x 2 (q, c]. With � < 0 and x > 0 it results that e

f�(x) � x = �x(f (x)� x) < 0 and
e

f�(x) < x  c for all x 2 (q, c]. To prove e

f�(x) � q for all x 2 (q , c], suppose there is a t 2
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(q , c] with e

f�(t) < q. From e

f�(t) < q < t it follows successively

|q � t| <
�

�

�

e

f�(t)� t

�

�

�

= |�t(f(t)� t)| = |�| · t · |f(t)� t| =

|�| · t · |f(t)� f(q) + q � t|  |�| t (|f(t)� f(q)|+ |q � t|) 
|�| t (L |t� q|+ |q � t|) = |�| t (L+ 1) |q � t|  |�| c (L+ 1) |q � t|  |q � t| ,

which is a contradiction.
For all x0 2 (q, c], as the inequalities x0 > 0, f(x0) > x0 hold and � 2



� 1

x0 (L+ 1)

, 0

◆

is guaranteed by � 2


� 1

c (L+ 1)

, 0

◆

, ii) from Theorem 1.2 applies, thus the sequence

xn+1 =

e

f�(xn) i. e. the trajectory of x0 in
h

[q, c] ,

e

f�

i

is s-decreasing and convergent to q.

iii) We show that q  e

f� (x)  c for all x 2 [q, c], i. e.
h

[q, c] ,

e

f�

i

is correctly defined. By
the definition of q is clear that f has no fixed points in (q, c], so the continuous function
f(x)�x preserves its sign on the interval (q, c]; since f(c)�c < 0, it follows that f(x)�x < 0

for all x 2 (q, c]. With � > 0 and x > 0 it results that e

f�(x) � x = �x(f (x)� x) < 0 and
e

f�(x) < x  c for all x 2 (q, c]. To prove e

f�(x) � q for all x 2 (q , c] suppose there is a t 2
(q , c] with e

f�(t) < q. From e

f�(t) < q < t it follows successively

|q � t| <
�

�

�

e

f�(t)� t

�

�

�

= |�t(f(t)� t)| = �t |f(t)� t| =

�t |f(t)� f(q) + q � t|  �t (|f(t)� f(q)|+ |q � t|) 
�t (L |t� q|+ |q � t|) = �t (L+ 1) |q � t|  �c (L+ 1) |q � t|  |q � t| ,

which is a contradiction.
For all x0 2 (q, c], as the inequalities x0 > 0, f(x0) < x0 hold and � 2

✓

0,

1

x0 (L+ 1)

�

is guaranteed by � 2
✓

0,

1

c (L+ 1)

�

, iii) from Theorem 1.2 applies, thus the sequence

xn+1 =

e

f�(xn) i. e. the trajectory of x0 in
h

[q, c] ,

e

f�

i

is s-decreasing and convergent to q.

iv) We show that c  e

f� (x)  p for all x 2 [c, p], i. e.
h

[c, p] ,

e

f�

i

is correctly defined. By
the definition of p is clear that f has no fixed points in [c , p), so the continuous function
f(x)�x preserves its sign on the interval [c , p); since f(c)�c < 0, it follows that f(x)�x <

0 for all x 2 [c , p). With � < 0 and x � 0 it results that ef�(x)� x = �x(f (x)� x) � 0 and
e

f�(x) � x � c for all x 2 [c , p). To prove e

f�(x)  p for all x 2 [c , p) suppose there is a
t 2 [c, p) with e

f�(t) > p. From t < p <

e

f�(t) it follows successively

|p� t| <
�

�

�

e

f�(t)� t

�

�

�

= |�t(f(t)� t)| = |�| · t · |f(t)� t| =

|�| · t · |f(t)� f(p) + p� t|  |�| t (|f(t)� f(p)|+ |p� t|) 
|�| t (L |t� p|+ |p� t|) = |�| t (L+ 1) |p� t| < |�| p (L+ 1) |p� t|  |p� t| ,

which is a contradiction.
For all x0 2 (c, p), as the inequalities x0 > 0 and f(x0) < x0 hold, iv) from Theorem

1.2 applies, thus the sequence xn+1 =

e

f�(xn) i. e. the trajectory of x0 in
h

[c, p] ,

e

f�

i

is
s-increasing and convergent to p. ⇤



160 Vasile Berinde and Gabriella Kovács

Remark 2.1. There is a range of �, namely with values sufficiently close to 0, that in-
dependently on c or p satisfies the conditions form i) and that from iii) in Theorem 2.4:

� 2
✓

0,

1

b (L+ 1)

�

; respectively the conditions from ii) and that from iv) in Theorem 2.4:

� 2


� 1

b (L+ 1)

, 0

◆

.

The following theorem can be proved similarly to the previous one.

Theorem 2.5. Let a, b 2 (�1, 0], a < b and f : [a, b] ! R satisfy the Lipschitz condi-
tion with L > 0 on the interval [a, b]. For � 2 R \ {0} define e

f� : [a, b] ! R, e

f� (x) =

x (1 + � (f (x)� x)). Let c 2 [a, b]. The following holds.

i) If f(c) > c and Ff \ [c, b] 6= ?, consider p = min (Ff \ [c, b]). Let � 2


1

c (L+ 1)

, 0

◆

. In

the dynamical system
h

[c, p] ,

e

f�

i

the fixed point p is monotonously attracting from below.

ii) If f(c) > c and Ff \ [a, c] 6= ?, consider q = max (Ff \ [a, c]). Let � 2
✓

0,

1

�q (L+ 1)

�

.

In
h

[q, c] ,

e

f�

i

the fixed point q is monotonously attracting from above.

iii) If f(c) < c and Ff \ [a, c] 6= ?, consider q = max (Ff \ [a, c]). Let � 2


1

q (L+ 1)

, 0

◆

.

In
h

[q, c] ,

e

f�

i

the fixed point q is monotonously attracting from above.

iv) If f(c) < c and Ff \ [c, b] 6= ?, consider p = min (Ff \ [c, b]). Let � 2
✓

0,

1

�c (L+ 1)

�

.

In
h

[c, p] ,

e

f�

i

the fixed point p is monotonously attracting from below.

Remark 2.2. There is a range of �, namely with values sufficiently close to 0, that in-
dependently on c or q satisfies the conditions form i) and that from iii) in Theorem 2.5:

� 2


1

a (L+ 1)

, 0

◆

; respectively the conditions from ii) and that from iv) in Theorem 2.5:

� 2
✓

0,

1

�a (L+ 1)

�

.

By choosing a convenient value for the control parameter � when applying Theorem
2.3, 2.4 or 2.5 one may assure an acceptable rate of convergence for the controlled trajecto-
ries, and at the same time, for the function f� , or e

f� respectively, to be not very different,
on the considered interval, from the given function f .

Periodic points should be studied in a future work.

3. NUMERICAL EXAMPLES

Consider the discrete dynamical system [[�3/2, 3/2] , f ], f(x) = 2

�

�

x

2 � 1

�

� � 1. This
function f : [�3/2, 3/2] ! [�3/2, 3/2] satisfies a Lipschitz condition with L = 6, it is not
differentiable at x 2 {�1, 1}, and its fixed points set is

Ff =

⇢

�1,
1

2

,
3

2

�

.

Remark that there is a fixed point of f , i. e. �1, where f is not differentiable. Figure 1a
plots the graph of f .
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In [[�3/2, 3/2] , f ] the trajectories of the starting points 0.7 and �0.6, as initiated in
Figures 1b and 2a respectively, seem to be chaotic. On the horizontal axis is graphed n, on
the vertical axis f

n
(0.7), respectively f

n
(�0.6). We will use the theorems of Section 2 to

obtain stabilized systems.
Stabilizing by variation control. In

⇥

[1/2, 0.7] , f0.125

⇤

the fixed point 1/2 is monotonously
attracting from above by Theorem 2.3 iii). In

⇥

[0.7, 3/2] , f�0.125

⇤

the fixed point 3/2 is
monotonously attracting from below by Theorem 2.3 iv). In

⇥

[�0.6, 1/2] , f0.125

⇤

the fixed
point 1/2 is monotonously attracting from below by Theorem 2.3 i). In

⇥

[�1,�0.6] , f�0.125

⇤

the fixed point �1 is monotonously attracting from above by Theorem 2.3 ii). Figure 2b
displays the stabilized trajectories of 0.7 in the controlled systems

⇥

[1/2, 0.7] , f0.125

⇤

, by
Diamond symbols, and

⇥

[0.7, 3/2] , f�0.125

⇤

, by Box symbols, as well as the stabilized tra-
jectories of �0.6 in the controlled systems

⇥

[�0.6, 1/2] , f0.125

⇤

, by Circle symbols, and
⇥

[�1,�0.6] , f�0.125

⇤

, by Asterisk symbols.
Stabilizing by growth-rate control. In

h

[1/2, 0.7] ,

e

f0.2

i

the fixed point 1/2 is monotonously

attracting from above by Theorem 2.4 iii). In
h

[0.7, 3/2] ,

e

f�0.09

i

the fixed point 3/2 is

monotonously attracting from below by Theorem 2.4 iv). In
h

[�1,�0.6] ,

e

f0.09

i

the fixed
point �1 is monotonously attracting from above by Theorem 2.5 ii). Figure 3a displays
the stabilized trajectories of 0.7 in the controlled systems

h

[1/2, 0.7] ,

e

f0.2

i

, by Diamond

symbols, and
h

[0.7, 3/2] ,

e

f�0.09

i

, by Box symbols, as well as the stabilized trajectory of

�0.6 in the controlled system
h

[�1,�0.6] ,

e

f0.09

i

by Circle symbols.

Figure 3b plots the graph of f0.125 (Dash) and the graph of f�0.125 (Dash Dot). Figure
4a plots the graphs of ef0.2 (Dash), ef0.09 (Dash Dot) and e

f�0.09 (Dot).
Figures 4b and 5a are stability diagrams of

�

f�

�

�

� 2 [�1/7, 1/7] \ {0}
 

, for the starting
points 0.7 and �0.6 respectively. A stability diagram here suggests, through the levels
attained on the vertical axis, the fixed points monotonously attracting form below (above)
in the controlled systems depending on the values of the control parameter �. Figures
4b and 5a are realized by depicting the 20 points

⇣

�, f
n
� (0.7)

⌘

, n 2 {101, 102, . . . , 120},

and respectively
⇣

�, f
n
� (�0.6)

⌘

, n 2 {101, 102, . . . , 120}, for 201 equidistant values of � 2
[�1/7, 1/7] \ {0}.

Figure 5b shows a stability diagram of
n

e

f�

�

�

�

� 2 [0.01, 0.2]

o

for the starting point 0.7

by depicting the points
⇣

�, efn
� (0.7)

⌘

, n 2 {101, 102, . . . , 120} with 101 equidistant values

of � 2 [0.01, 0.2]. Figure 6 shows a stability diagram of
n

e

f�

�

�

�

� 2 [�0.1, 0.1] \ {0}
o

for the

starting point �0.6 by depicting the points
⇣

�, efn
� (�0.6)

⌘

, n 2 {101, 102, . . . , 120} with
101 equidistant values of � 2 [�0.1, 0.1] \ {0}.

Remark 3.3. The functions f� and e

f� in Theorems 2.3-2.5 are not required to be mono-
tone or contractive on the interval between c and the fixed point p respectively q. In
h

[0.7, 3/2] ,

e

f�0.09

i

the fixed point 3/2 is monotonously attracting from below; ef�0.09 is not

a contraction on the interval [0.7, 3/2]. In
h

[1/2, 1],

e

f0.2

i

the fixed point 1/2 is monotonously
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attracting from above according to Theorem 2.4. iii), while the function e

f0.2 is not mono-
tone on [1/2, 1], see its graph in Figure 4a.

Remark 3.4. Figure 6 also shows that the sequence
⇣

e

f

n
� (�0.6)

⌘

n2N
with � 2 [�0.1, 0)

converges to the fixed point 0 of ef� which is not a fixed point of f - actually f has no fixed
points between �0.6 and 0.

FIGURE 1. a) left and b) right

FIGURE 2. a) left and b) right

FIGURE 3. a) left and b) right
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FIGURE 4. a) left and b) right

FIGURE 5. a) left and b) right

FIGURE 6.
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