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About the implementation and some applications of the
FIXPOINT software minipackage

ANDREI BOZANTAN and VASILE BERINDE

ABSTRACT. The main aim of this note is to briefly present the implementation, main features and some
current and potential applications of the software minipackage FIXPOINT, designed and implemented by the
first author and used by the second author in solving some concrete problems.

1. INTRODUCTION

In the iterative approximation of fixed points there exist various classical and new spe-
cific methods to compute the fixed points of concrete functions or mappings, see for ex-
ample the monographs [9], [19] and [17]. Most of these methods are extensions of the
Picard iteration or method of successive approximations: Krasnoselskij iterative method,
Mann iterative method, Ishikawa iterative method and so on.

For Picard iteration there exist several software packages implemented in various large
computer algebra (Mathematica, Maple, MathCAD etc.)

There exist also several fixed point type iterative methods, like Newton method, which
are separately studied and implemented.

Having in view the fact that for Krasnoselskij, Mann and Ishikawa iterative methods
there are no corresponding implementations, a first version of the FIXPOINT minipackage
has been designed and implemented in [15].

It was later used to perform numerical experiments for the comparison study of fixed
point iteration procedures that were reported in [9] and [10]. By inspecting the empirical
results obtained by means of FIXPOINT for several fixed point iterative methods, some
theoretical results have been also inferred and proved in [7], [8] and continued by other
authors [3]-[5], [20]-[23], [27]-[37], [39].

Later, the FIXPOINT minipackage has been extended to include k-step fixed point iter-
ative methods.

The aim of this note is to present the main features FIXPOINT minipackage, some de-
tails about its implementations and also to illustrate its use by some concrete applications.

2. FIXED POINT RELATED SOFTWARE

In this section we will analyse existing software alternatives for computing fixed points
using iterative numerical methods and two different categories of software will be de-
scribed: specialized software packages and general purpose computer algebra systems
(CAS). We start our description with the CAS category and we will analyse the features
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related to fixed point iterations, offered in some of the most used and well known general
purpose CAS: Mathematica, Maple and Matlab.

From all the software analysed in this paper, including the category of specialized soft-
ware, Maple offers the most flexible and feature rich implementation for a fixed point
iteration, in the form of the built in command FixedPointIteration, included in the Stu-
dent [NumericalAnalysis] subpackage. The command will numerically approximate the
roots of a real function f , by converting the problem to a fixed point problem and then
using the Picard fixed point iteration with the supplied initial approximation for the root.
The command can be invoked using one of the following forms:

• FixedPointIteration(f, x = a, opts)
• FixedPointIteration(f, a, opts)

The arguments have the following significance:
• f - is an expression in the variable x representing a continuous function
• x - specifies the independent variable of f
• a - is the initial approximation of the root
• opts - optional arguments in the form keyword=value

Some of the most important other options for the command are:
• fixedpointiterator = expression - specifies directly the expression to be used in

the fixed point iteration; if this option is present, the first argument, f , must be
omitted.

• tolerance = value - specifies the error tolerance of the approximation
• stoppingcriterion = value - specifies the criterion that the approximation must

meet before stopping the iteration, and can have one of the following values:

– relative -
|xn − xn−1|
|xn|

< tolerance

– absolute - |xn − xn−1| < tolerance
– function value - |f(xn)| < tolerance

• maxiterations = value - specifies the maximum iterations to perform, if the error
tolerance is not achieved

• output = value - specifies the type of the return value of the command, and it can
have on of the following values:

– value - returns just the final numerical approximation of the root
– sequence - returns the sequence of intermediate approximations produced by

the fixed point iteration
– plot - returns a plot of f with each iterative approximation shown
– animation - returns an animation showing the iterations of the root approxi-

mation process
– information - returns detailed information about the iterative approximations

of the root of f
There are many other options available, used to control the plotting functionality of the

command. More details about the Maple FixedPointIteration command are available on
the Maple Online Help web page (http://www.maplesoft.com/support/help/Maple/
view.aspx?path= Student/ NumericalAnalysis/ FixedPointIteration). As an example we
use the Maple commands to solve the problem x2−x− 2 = 0 and to produce a plot of the
fixed point iteration which are displayed in figure 1.

In Mathematica there are available two built in functions related to fixed point itera-
tions: FixedPoint and FixedPointList.
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FIGURE 1. Fixed point iteration commands in Maple

Both functions use the Picard iteration in order to compute a fixed point and have the
same parameters, with the difference that FixedPoint returns only the final value, while
FixedPointList generates a list with all the intermediate values. The FixedPoint function
can be called with using one of the following forms:

• FixedPoint[f, expr] - where expr is the initial approximation.
• FixedPoint[f, expr, n] - stops after at most n steps.
• FixedPoint[f, expr, . . . , SameTest -> s] - a custom test, s, can be used to check if to

consecutive results are equal
More details and examples are available online, on the Wolfram Mathematica Docu-

mentation website http://reference.wolfram.com/mathematica/ref/FixedPoint.html. In
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Mathematica there is no built in functionality for plotting the fixed point iteration, like in
Maple, but this can be achieved using few lines of code, as shown below.

1 g = Function [ x , 1 + 2/x ] ;
f p l = F i x e d P o i n t L i s t [ g , 1 . 0 ] ;

3 fpCoords = F l a t t e n [ Table [
{{ f p l [ [ k ] ] , f p l [ [ k ] ]} , { f p l [ [ k ] ] , f p l [ [ k + 1]]}} ,

5 {k , 10} ] ,
1 ] ;

7 i t e r a t i o n P l o t = L i s t P l o t [ fpCoords ,
AxesOrigin −> {0 , 0} ,

9 PlotRange −> {{0 , 4} , {0 , 4}} ,
Jo ined −> True , P l o t S t y l e −> {Blue , Dashed} ] ;

11 f u n c t i o n P l o t = P l o t [{x , g [ x ]} , {x , 0 , 4} , P l o t S t y l e −> {Thick } ] ;
Show[ i t e r a t i o n P l o t , f u n c t i o n P l o t ]

LISTING 1. Fixed point iteration and plot in Mathematica

FIGURE 2. Mathematica plot: fixed point iteration applied to f(x) = 1+ 2
x

with initial point x0 = 1.0

Matlab and MathCAD do not offer any built in functions related to fixed point itera-
tions, but fixed point computation is possible using custom written functions, as demon-
strated by the following Matlab listing.
func t ion [ p0 , err , P ] = f i x p t ( g , x0 , t o l , max1 )

2 x = x0 ; %i n i t i a l guess
P ( 0 ) = x0 ;

4 xold = x ;
n = 1 ; %i t e r a t i o n counter

6 while n < max1
x = f e v a l ( g , x ) ;

8 P ( n ) = x ;
i f abs ( x−xold ) < t o l

10 break ;
end

12 xold = x ;
n = n + 1 ;

14 end

LISTING 2. Picard fixed point iteration and plot in Matlab

As alternatives to the CAS software there are several other basic implementations of the Picard
fixed point iteration which can be used, from which we mention the following:

• EasyNumerics is a desktop application which, beside other numerical algorithms, has an
implementation of the Picard fixed point iteration together with some basic plotting of the
iteration. It is available for download from
http://www.metu.edu.tr/ csert/EasyNumerics/.

• Fixed Point Iteration Java Applet is available online at
http://www.csulb.edu/ wziemer/FixedPoint/FixedPoint.html and has another implemen-
tation of fixed point iteration plotting.

• other simple implementations of the Picard fixed point iterations are available online at:
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– http://maccery.com/maths/#fixed-point
– http://planetcalc.com/2824/
– http://cs.laurentian.ca/badams/numeric/javascript/fpoint.htm

The above research indicates that all existing implementations for fixed point iterations have
rather basic functionality, excepting Maple, which also has a good cobweb diagram potting and
animation. Another interesting point is that even the implementations in well known CAS like
Maple and Mathematica are lacking advanced features like oscillation detection (e.g. the case of
logistic map, λx(1−x)). Also, there are no available implementations for other fixed point iterative
methods like Krasnoselskij, Mann and Ishikawa. Such implementations are possible in CAS using
custom written code, but, beside expensive licenses, this requires at least some familiarity with the
corresponding CAS programming language and functions.

3. MAIN FEATURES OF FIXPOINT SOFTWARE MINIPACKAGE

The FIXPOINT software package was developed considering the previously described limita-
tions of existing implementations of fixed point iterations numerical methods. The software pack-
age evolved during several versions from a C++ to a C# implementation, and in the latest version
to a the Javascript implementation, complemented by a web-based application, which has great
advantages for users in the form of: easy accessibility and usability, seamless updates and even en-
hanced collaboration. Considering the latest advancements in the programming tools for Javascript
language, this new implementation also offers the unique possibility to run the same implementa-
tion of the algorithms on the client machine, using a smart client application or on servers using for
example nodejs (http://nodejs.org/). Also the Javascript language has a straightforward syntax, it
doesn’t require a compiler and the support for developers is very good in the form of documen-
tation, samples and tools, so it is expected that the Javascrit FIXPOINT package can be used very
easily by other persons for different applications.

The FIXPOINT software package contains implementations for several fixed point iterative meth-
ods for real valued functions: Picard, Krasnoselskij, Mann, Ishikawa and k-step fixed point iterative
methods. In the latest version two more algorithms were added for functions in Rn: a simplicial
fixed point algorithm and a piecewise linear homotopy algorithm [16]. The implementation of the
algorithms for real valued functions are similar, so here we will describe the details just for the
Picard algorithm.

The new Javascript implementation of the Picard iteration computes an approximate fixed point
of real valued functions f : R → R. The implementation is in the form of a Javascript function,
which accepts the following parameters:

• f - the function for which the approximate fixed point will be computed, specified as a
Javascript function which must accept a single argument;

• x0 - the real number which specifies the initial guess used to start the algorithm;
• options - a Javascript object which can contain additional optional arguments used to con-

trol the behaviour of the algorithm, as described below;
• options.maxRelativeError - specifies the minimum desired precision for the approximate

fixed point; the algorithm stops if the relative error between the approximations obtained in
two consecutive steps is smaller than the specified value; the relative error is used due to the
precision limitations of the IEEE 754 floating point format; the algorithm is using standard
IEEE 754 double precision floating point numbers and of course, the maxRelativeError
should be greater than the machine epsilon (or unit roundoff);

• options.maxSteps - the maximum number of steps to be executed before stopping the al-
gorithm, in the case that a fixed point with the desired approximation precision was not
found;

• options.checkCycles - by default, the implementation of the algorithm is also checking
for cycles of the iteration (oscillations), but this increases the complexity of the algorithm to
O(n2); if greater performance is required, this options can be used to disable this additional
check.
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For further details about the algorithm implementation, a simplified version of the code is pre-
sented in the following listing.

var f i x p o i n t = funct ion ( )
2 {

func t ion mixedErrorTest ( maxError , x , xprev1 , xprev2 ) {
4 // compute an es t imate of the absolute e r r o r

var e r r = Math . abs ( x − xprev1 ) + Math . abs ( xprev1 − xprev2 ) ;
6 // use a mixed e r r o r t e s t f o r absolute and r e l a t i v e e r r o r

re turn ( e r r <= maxError ∗ (1 + Math . abs ( x ) ) ) ;
8 }

10 funct ion i t e r a t e ( f , x0 , opt ions ) {
// helper v a r i a b l e s

12 var values = [ x0 ] ;
var x = x0 , xprev1 = x0 , xprev2 = x0 ;

14 var n = 1 ;
var re s = {};

16
do {

18 // perform an i t e r a t i o n step
x = f ( x , n ) ;

20 // s t o r e l a s t r e s u l t
values . push ( x ) ;

22 // perform the s p e c i f i e d convergence t e s t and stop i f i t i s s u c c e s s f u l
i f ( opt ions . convergenceTest ( opt ions . maxError , x , xprev1 , xprev2 , values ) )

24 break ;
// check max number of i t e r a t i o n s

26 i f ( n === options . maxSteps ) {
re s . errorMessage = ’Maximum number of i t e r a t i o n s was reached . ’ ;

28 break ;
}

30 // check f o r overflows and undefined operat ions
i f ( ! Number . i s F i n i t e ( x ) ) {

32 re s . errorMessage = ’ I t e r a t i o n i s divergent ( numerical e r r o r ) . ’ ;
break ;

34 }
// check i f the sequence already conta ins the current value

36 i f ( opt ions . checkCycles ) {
f o r ( var i = 0 ; i < n ; i ++) {

38 i f ( x === values [ i ] ) {
r es . errorMessage = ’ I t e r a t i o n i s divergent ’

40 + ’ ( c y c l e detec ted between i t e r a t i o n s # ’ + i . t o S t r i n g ( )
+ ’ and # ’ + n . t o S t r i n g ( ) + ’ ) . ’ ;

42 break ;
}

44 }
i f ( re s . errorMessage !== undefined )

46 break ;
}

48 n++;
// save the values f o r the l a s t two i t e r a t i o n s

50 // these w i l l be used f o r the mixed e r r o r convergence t e s t
xprev2 = xprev1 ;

52 xprev1 = x ;
}

54 while ( t rue ) ;

56 re s . values = values ;
r es . numSteps = n ;

58 re s . x0 = x0 ;
r es . xn = x ;

60 return re s ;
}

62
return {

64 picard : funct ion ( f , x0 , opt ions ) {
re turn i t e r a t e ( f , x0 , opt ions ) ;

66 } ,
mann : funct ion ( f , x0 , alphan , opt ions ) {

68 funct ion m( x , n ) {
var an = alphan ( n ) ;

70 re turn (1 − an ) ∗ x + an ∗ f ( x ) ;
}

72 return i t e r a t e (m, x0 , opt ions ) ;
} ,

74 e r r t e s t : { mixed : mixedErrorTest }
} ;

76 } ( ) ;

LISTING 3. FIXPOINT software minipackage implementation in Javascript
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The functions defined in the software package will return the following values (wrapped in a
Javascript object):

• xn - the approximate fixed point obtained by the iteration
• values - an array containing all the intermediate approximations (including the initial ap-

proximation x0)
• numSteps - the number of iterations performed by the algorithm
• error - it will contain a short description in case that the iteration is not successful (iteration

is not convergent, the maximum number of iterations is reached or an undefined numerical
operation is performed, e.g. 0/0).

Complementary to the algorithms implementations, a simple web-based user interface is avail-
able at http://algonum.appspot.com/fixpoint.picard, which can be used very easily by persons
without knowledge of Javascript programming for experimenting with the algorithm. The user in-
terface allows the users to enter the input data for the algorithm in a very easy format. Some special
attention was paid on editing the mathematical formulas, and as it is visible in figure 3, it is possible
to edit complex formulas using a powerful editor.

FIGURE 3. Web-based user interface for Picard iteration

The web-based application can be also used to obtain nice interactive visualisations of the func-
tion and the associated Picard iteration (as a cobweb plot), similar to the plots obtained in Maple.

FIGURE 4. FIXPOINT software minipackage plot: fixed point iteration
applied to f(x) = 1 + 2

x with initial point x0 = 1.0
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4. APPLICATIONS

The initial versions of the FIXPOINT package have been used by the second author in the study
of convergence rate of various fixed point iterative algorithms. The main results reported on this
topic were included in Chapter 7 of the monograph [6]. These were empirical studies of the rate of
convergence of Picard, Mann and Ishikawa fixed point iteration procedures. We quote here some
extracts from Example 9.4 from [9].

Example 4.1. Let K = [0, 1] and T : K → K be given by Tx = (1− x)6.
Then T has p1 ≈ 0.2219 and p1 ≈ 2.1347 as fixed points. Both of them are repulsive fixed points

with respect to the Picard iteration. However, p1 is attractive with respect to Krasnoselskij, Mann
and Ishikawa iterations, while p2 stays repulsive, as indicated by the numerical results obtained by
running the new version of the program FIXPOINT.

Krasnoselskij iteration: if we start from x0 = 2 and the parameter that defines the iteration is λ =
0.5, then we obtain x1 = 1.5, x2 = 0.757, x3 = 0.379, x4 = 0.2181, x5 = 0.2232 and x6 = 0.2214;

Mann iteration: if we start from x0 = 2 and the parameter sequence is αn = 1/(n + 1), then we
obtain x1 = 1.0, x2 = 0.5, x3 = 0.338, x4 = 0.2748, x5 = 0.2489 and x6 = 0.2378;

Ishikawa iteration: if we start from x0 = 2 and the parameter sequences are αn = 1/(n + 1) and
βn = 1/(n + 2), respectively, then we obtain x1 = 0.01, x2 = 0.55, x3 = 0.346, x4 = 0.2851, x5 =
0.2527 and x6 = 0.2392;

These empirical results suggest that Krasnoselskij iteration converges faster than both Mann
and Ishikawa iterations. This fact is more clearer illustrated if we choose x0 = p2, the repulsive
fixed point of T : after 20 iterations, Krasnoselskij method gives x20 = 0.2219, while Mann and
Ishikawa iteration procedures give x20 = 0.6346 and x20 = 0.6347, respectively. The convergence
of Mann and Ishikawa iteration procedures is indeed very slow in this case: after 500 iterations we
get x500 = 0.222 for both methods.

Note that for x0 ∈ {−2, 3, 4} and the previous values of the parameters λ, αn and βn, all three
iteration procedures: Krasnoselskij, Mann and Ishikawa, converge to 1, which is not a fixed point
of T .

Starting from such kind of numerical results, we tried to infer that, for certain classes of map-
pings, Picard iteration always converges faster than Mann or Ishikawa iterations. The first results
of this kind have been reported in [7], which opened a fruitful direction of research that has been
later considered by many other authors, see, for an incomplete list, [1], [2], [3], [4], [5], [8], [10], [20],
[21]-[23], [24], [25], [26], [27], [28], [29], [36], [37], [39], [40].

5. CONCLUSIONS AND FUTURE WORK

All our empirical studies based on the use of the FIXPOINT package have been mainly devoted
to continuous single-valued self mappings of the form T : X → X . It is therefore our aim to
continue the study by considering discontinuous mappings (which are governed by more general
fixed point principles than the classical Banach contraction mapping principle) or single-valued self
mappings defined on product spaces T : Xk → X , in view of the recent papers [11], [12], [13],
[14], [18], [30]-[35], where more sophisticated k-step fixed point algorithms implemented in recent
versions of FIXPOINT have to be used.
Acknowledgements. The second author’s research was supported by the Grants PN-II-RU-TE-
2011-3-239 and PN-II-ID-PCE-2011-3-0087 of the Romanian Ministry of Education and Research.
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[18] Chen, Y.-Z., A Prešić type contractive condition and its applications, Nonlinear Anal., 71 (2009), No. 12,
2012–2017

[19] Chidume, C. E., Geometric Properties of Banach Spaces and Nonlinear Iteration, Springer, Berlin Heidelberg
New York, 2009

[20] Duong V. T., The comparison of the convergence speed between Picard, Mann, Ishikawa and two-step iterations in
Banach spaces, Acta Math. Vietnam, 37 (2012), No. 2, 243–249
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