
Chapter 4
The Retraction-Displacement Condition in the
Theory of Fixed Point Equation with a
Convergent Iterative Algorithm

V. Berinde, A. Petruşel, I.A. Rus, and M.A. Şerban

Abstract Let .X; d/ be a complete metric space and f W X ! X be an operator with
a nonempty fixed point set, i.e., Ff WD fx 2 X W x D f .x/g ¤ ;. We consider an
iterative algorithm with the following properties:

(1) for each x 2 X there exists a convergent sequence .xn.x// such that xn.x/ !
x!.x/ 2 Ff as n!1;

(2) if x 2 Ff , then xn.x/ D x, for all n 2 N.

In this way, we get a retraction mapping r W X ! Ff , given by r.x/ D x!.x/.
Notice that, in the case of Picard iteration, this retraction is the operator f1, see I.A.
Rus (Picard operators and applications, Sci. Math. Jpn. 58(1):191–219, 2003). By
definition, the operator f satisfies the retraction-displacement condition if there is an
increasing function W RC ! RC which is continuous at 0 and satisfies  .0/ D 0,
such that

d.x; r.x// !  .d.x; f .x//; for all x 2 X:

In this paper, we study the fixed point equation x D f .x/ in terms of a retraction-
displacement condition. Some examples, corresponding to Picard, Krasnoselskii,
Mann and Halpern iterative algorithms, are given. Some new research directions
and open questions are also presented.
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A. Petruşel • I.A. Rus (!) • M.A. Şerban
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4.1 Introduction

In this paper we will consider the following two conditions involving a singlevalued
✿✿✿✿✿✿✿✿✿✿✿

single-valued operator f from a metric space X to itself.

Definition 1. Let .X; d/ be a metric space and f W X ! X be an operator so that
its fixed point set Ff is nonempty. Let r W X ! Ff be a set retraction. Then,
by definition, f satisfies the . ; r/ retraction-displacement condition ( -condition
in [11], . ; r/-operator in [41],  -weakly Picard operator in the case of Picard
iterations in [37], the collage condition in [2]) if:

(i)  W RC ! RC is increasing, continuous at 0 and  .0/ D 0;
(ii) d.x; r.x// !  .d.x; f .x//, for every x 2 X.

Remark 1. If Ff D fx!g, then the . ; r/ retraction-displacement condition takes the
following form:

(i)  W RC ! RC is increasing, continuous at 0 and  .0/ D 0;
(ii) d.x; x!/ !  .d.x; f .x//, for every x 2 X.
We will call it the .x!;  / retraction-displacement condition.

Definition 2. Let .X; d/ be a metric space and f W X ! X be an operator so that its
fixed point set Ff is nonempty. Let

!
xnC1 D fn.xn/; n 2 N

x0 2 X
(4.1)

(where fn W X ! X is a sequence of singlevalued
✿✿✿✿✿✿✿✿✿✿

single-valued
✿

operators, for n 2 N)
be an iterative algorithm such that :

(i) Ffn D Ff ;
(ii) the sequence .xn/n2N converges to an element x!.x0/ 2 Ff as n!C1.
If we denote by r W X ! Ff given by r.x/ WD x!.x/ the retraction defined above,

then, by definition, the above algorithm satisfies a retraction-displacement condition
if the operator f satisfies a . ; r/ retraction condition.

Notice that r is the limit operator of the iterative algorithm.
In this paper we study the fixed point equation x D f .x/ in terms of a retraction-

displacement condition. Some examples, corresponding to Picard, Krasnoselskii,
Mann and Halpern iterative algorithms, are given. Some new research directions are
also presented.
Through the paper we will denote by R the set of real numbers, by N the set

of natural numbers, by RC the set f
✿✿

of
✿

positive numbers, by R!
C the set of strict

positive numbers and by N! WD N n f0g. We also denote by RmC the space of all
m-dimensional vectors with positive components.
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4.2 Generalized Contractions: Examples

We will start this section by presenting some notions and results concerning
generalized contractions, which will be used in our main section.
A first generalization of the Banach contraction principle involves the concept of

comparison function.

Definition 3 ( [36, 39]). A function ' W RC ! RC is called a comparison function
if it satisfies:

.i/' ' is increasing;
.ii/' the sequence .'n.t//n2N converges to 0 as n!1, for all t 2 RC.

If the condition .ii/' is replaced by the condition:

.iii/'
1X

kD0
'k.t/ <1, for any t > 0,

then ' is called a strong comparison function.
Moreover, if the condition .iii/' is replaced by the condition:

.iv/' t " '.t/!C1, as t!C1,
then ' is said to be a strict comparison function.

As a consequence of the above definition, we have the following lemmas.

Lemma 1 ( [36, 39]). If ' W RC ! RC is a comparison function, then the following
hold:

(i) '.t/ < t, for any t > 0;
(ii) '.0/ D 0;
(iii) ' is continuous at 0.

Lemma 2 ( [3, 24, 39]). If ' W RC ! RC is a strong comparison function, then the
following hold:

(i) ' is a comparison function;
(ii) the function s W RC ! RC, defined by

s.t/ D
1X

kD0
'k.t/; t 2 RC; (4.2)

is increasing and continuous at 0;
(iii) there exist k0 2 N, a 2 .0; 1/ and a convergent series of nonnegative terms

1X

kD1
vk such that

'kC1.t/ ! a'k.t/C vk; for k # k0 and any t 2 RC:
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Remark 2. Some authors use the notion of (c)-comparison function defined by the
statements (i) and (iii) in Lemma 2. Actually, the concept of (c)-comparison function
coincides with that of strong comparison function.

Example 1. (1) ' W RC ! RC, '.t/ D at, where a 2 Œ0; 1Œ, is a strong comparison
function and a strict comparison function. In this case, f is called a contraction
with constant a 2 Œ0; 1Œ.

(2) ' W RC ! RC, '.t/ D
t

1C t
is a strict comparison function, but is not a strong

comparison function.
(3) ' W RC ! RC defined by

'.t/ WD

8
<̂

:̂

1

2
t; t 2 Œ0; 1!

t " 1
2
; t > 1

is a strong comparison function.

(4) ' W RC ! RC, '.t/ D at C 1

2
Œt!, where a 2

"
0;
1

2

#
is a strong comparison

function.

For other considerations on comparison functions
✿

, see [3, 17, 18, 36, 39], and the
references therein.

4.3 The Retraction-Displacement Condition in the Theory of
Weakly Picard Operators

The first part of the following result is known as Matkowski’s Theorem (see [20]),
while the second part belongs to Rus [36].

Theorem 1. Let .X; d/ be a complete metric space and f W X ! X be a '-
contraction, i.e., ' W RC ! RC is a comparison function and

d.f .x/; f .y// ! '.d.x; y// for all x; y 2 X:

Then f is a Picard operator, i.e., f has a unique fixed point x! 2 X and
lim

n!C1
f n.x/ D x!, for all x 2 X. Moreover, if ' W RC ! RC is a strict comparison

function, then f is a  -Picard operator, i.e., f is a Picard operator and

d.x; x!/ !  '.d.x; f .x///; for all x 2 X;

where  ' W RC ! RC is given by  '.t/ WD supfsjs" '.s/ ! tg.
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The second conclusion of the above theorem gives an answer to the following
very general problem.

Problem 1. Let .X; d/ be a metric space and f W X ! X. Which generalized
contractions f are  -Picard operators? Which generalized contractions f satisfy a
. ; r/ retraction-displacement condition?

A general result concerning the above problem is the following.

Theorem 2. Let .X; d/ be a metric space, f W X ! X be an operator, ' W RC !
RC a strict comparison function and " W RC ! RC be an increasing function,
continuous at 0 with " .0/ D 0. We suppose that:
(i) Ff D fx!g;
(ii) d.f .x/; x!/ ! ' .d.x; x!//C " .d.x; f .x///, for all x 2 X:
Then:

d.x; x!/ !  ' .d .x; f .x//C " .d.x; f .x/// ; for all x 2 X; (4.3)

i.e., f is a  -Picard operator with  D  ' ı
$
1RC C "

%

Proof. We have

d.x; x!/ ! d .x; f .x//C d
$
f .x/; x!% !

! d .x; f .x//C '
$
d.x; x!/

%
C " .d.x; f .x/// :

From the definition of  ' we get the conclusion. We remark that the function  D
 ' ı

$
1RC C "

%
is increasing, continuous at 0 and  .0/ D 0.

A class of  -Picard operators (with a particular  .t/ WD ˛t, for some ˛ 2 Œ0; 1Œ
and with a particulate

✿✿✿✿✿✿✿✿

particular ".t/ D Lt, for some L # 0) is given by the following
consequence.

Corollary 1. Let .X; d/ be a metric space and f W X ! X be an operator. We
suppose:

(a) Ff D fx!g;
(b) (see [32]) there exists ˛ 2 Œ0; 1Œ and L # 0 such that

d.f .x/; x!/ ! ˛d.x; x!/C Ld.x; f .x//; for all x 2 X:

Then:

d.x; x!/ ! 1C L
1 " ˛ d.x; f .x///; for all x 2 X:
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We will present now some examples of generalized contractions which satisfy
the assumptions (a) and (b) in the above theorems. For example, using the Hardy
and Rogers type condition, we can prove the following result.

Theorem 3. Let .X; d/ be a complete metric space and f W X ! X be an operator.
We suppose there exist a; b; c 2 RC with aC 2bC 2c < 1 such that, for all x; y 2 X,
we have

d.f .x/; f .y// ! ad.x; y/C b.d.x; f .x//C d.y; f .y///C c.d.x; f .y//C d.y; f .x///:

Then:

(i) Ff D fx!g;
(ii) d.x; x!/ ! 1Cb"c

1"a"2c d.x; f .x///; for all x 2 X:
Proof. Let x0 2 X and xn WD f n.x0/, n 2 N!. Then, by Hardy-Rogers

✿✿✿✿✿✿✿✿✿✿✿✿

Hardy–Rogers’
fixed point theorem we get Ff D fx!g. Now, we also have :

d.f .x/; x!/ D d.f .x/; f .x!// !
ad.x; x!/C b.d.x; f .x/C d.x!; f .x!//C c.d.x; f .x!//C d.x!; f .x///:

Thus

d.f .x/; x!/ ! aC c
1" c d.x; x

!/C b
1 " cd.x; f .x/; for all x 2 X:

The conclusion follows now from Theorem 2.

We will discuss now the case of so-called Suzuki type contractions.

Theorem 4. Let .X; d/ be a metric space, " W RC ! RC such that " .0/ D 0,
' W RC ! RC be a strict comparison function and f W X ! X be an operator. We
suppose that :

(i) Ff D fx!g;
(ii) x; y 2 X, " .d.f .x/; x// ! d .x; y/ H) d .f .x/ ; f .y// ! ' .d.x; y//.
Then:

d.x; x!/ !  ' .d .x; f .x/// ; for all x 2 X: (4.4)

Proof. We take in .ii/ x D x! and we apply Theorem 2.

Remark 3. It is worth to notice that there exists operators which satisfy all the
assumptions in Theorem 2, but which are not Picard operators. For example,
f W R! R, f .x/ WD 2x. In this case, Ff WD f0g and

jf .x/j ! 1

2
jxj C 2jx " f .x/j; for all x 2 X;



4 The Retraction-Displacement Condition in Fixed Point Theory 83

but f is not a Picard operator.

In the next part of this section, the case of the cyclic '-contractions is discussed.
One of the most important generalization

✿✿✿✿✿✿✿✿✿✿✿✿

generalizations
✿

of the Banach Con-
traction Principle was given in 2003 by Kirk, Srinivasan and Veeramani, using the
concept of cyclic operator. More precisely, they proved in [19] the following result.

Theorem 5 ( [19, Theorem 2.4]). Let fAigmiD1 be nonempty subsets of a complete

metric space and suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ $ AiC1 for 1 ! i ! m, where AmC1 D A1;
(2) d.f .x/; f .y// ! '.d.x; y//, for all x 2 Ai, and all y 2 AiC1, for 1 ! i ! m,

where the mapping ' W RC ! RC is upper semi-continuous from the right and
satisfies the condition 0 ! '.t/ < t for t > 0.

Then f has a unique fixed point.

An extension of this result was given by Păcurar and Rus in [24].

Theorem 6 ( [24, Theorem 2.1]). Let fAigmiD1 be nonempty subsets of a complete

metric space and suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ $ AiC1 for 1 ! i ! m, where AmC1 D A1;
(2) there exists a comparison function ' W RC ! RC such that

d.f .x/; f .y// ! '.d.x; y//; for all x 2 Ai and all y 2 AiC1; 1 ! i ! m:

Then:

(a) f has a unique fixed point x! 2
m\

iD1
Ai and, for each x 2 A WD

m[

iD1
Ai the sequence

xn WD .f n.x//n2N converges to x! as n! C1;
(b) the following estimates take place:

d.xn; x!/ ! s.'n.d.x0; f .x0/// and d.xn; x!/ ! s.'.d.xn; f .xn///; for all n 2 N!I

(c) the following relation holds:

d.x; x!/ ! s.d.x; f .x///; for all x 2 A;

where s W RC ! RC is defined by s.t/ WD
1X

kD0
'k.t/.

Our next result is an extension of the previous result.
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Theorem 7. Let fAigmiD1 be nonempty subsets of a complete metric space and

suppose f W
m[

iD1
Ai !

m[

iD1
Ai satisfies the following conditions:

(1) f .Ai/ $ AiC1 for 1 ! i ! m, where AmC1 D A1;
(2) there exists a strict comparison function ' W RC ! RC such that

d.f .x/; f .y// ! '.d.x; y//; for all x 2 Ai and all y 2 AiC1; 1 ! i ! m:

Then:

(a) f is a Picard operator, i.e., f has a unique fixed point and, for each x 2 A WD
m[

iD1
Ai the sequence xn WD .f n.x//n2N converges to x! as n!C1;

(b) x! 2
m\

iD1
Ai;

(c) the following relation holds:

d.x; x!/ !  '.d.x; f .x///; for all x 2 A;

where  ' W RC ! RC is given by  '.t/ WD supfsjs" '.s/ ! tg.
Proof. The conclusions (a) and (b) follow by Theorem 6. The conclusion (c) follows

(since x! 2
m\

iD1
Ai) by the following relations:

d.x; x!/ ! d.x; f .x//C d.f .x/; f .x!// ! d.x; f .x//C '.d.x; x!//:

Another general open problem is the following one.
Problem 2. Let .X; d/ be a metric space and f W X ! X be such that there exists
n0 2 N! such that f n0 is a generalized contraction. Under which conditions f is a  -
Picard operator (or a  -weakly Picard operator)? Under which conditions f satisfies
the  -condition with respect to a set retraction r?

For the above problem, we have the following result (see [22, 35, 46, 52], etc.).
Theorem 8. Let .X; d/ be a complete metric space and f W X ! X be such that
there exists n0 2 N! such that f n0 is a contraction with constant a 2 Œ0; 1Œ. We also
suppose that f is L-Lipschitz with constant L # 1. Then, the following conclusions
hold:

(i) f is a Picard operator and Ff D fx!g;
(ii) (a) if L > 1, then

d.x; x!/ ! Ln0 " 1
.1 " a/.L " 1/d.x; f .x//; for all x 2 X:
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(b) if L D 1, then

d.x; x!/ ! n0
1 " ad.x; f .x//; for all x 2 X:

Proof. We only need to prove (ii). Since f n0 is a contraction with constant a 2 Œ0; 1Œ,
we get that f is a 1

1"a -Picard operator. Thus, for all x 2 X, we have :

d.x; x!/ ! 1

1 " ad.x; f
n0 .x// !

1

1 " a .d.x; f .x//C d.f .x/; f 2.x//C d.f n0"1.x/; f n0 .x///

! Ln0 " 1
.1 " a/.L" 1/d.x; f .x//:

In a similar way one obtain (b).

A third general problem is the following.

Problem 3. Let .X; d/ be a metric space and f W X ! X be such that there exists
n0 2 N! such that fjf n0 .X/ W f n0 .X/ ! f n0 .X/ is a generalized contraction. Under
which conditions f is a  -Picard operator

✿

(or a  -weakly Picard operator)? Under
which conditions f satisfies the  -condition with respect to a set retraction r?

A first answer to the above problem is the following theorem.

Theorem 9. Let .X; d/ be a complete metric space and f W X ! X be such that
there exists n0 2 N! such that fjf n0 .X/ W f n0 .X/ ! f n0 .X/ is a contraction with
constant a 2 Œ0; 1Œ. Suppose that f is Lipschitz with constant L # 1. Then, the
following conclusions hold:

(i) f is a Picard operator and Ff D fx!g;
(ii) (a) if L > 1, then

d.x; x!/ ! .L
n0 " 1
L" 1 C

Ln0
1 " a / % d.x; f .x//; for all x 2 X:

(b) if L D 1, then

d.x; x!/ ! .n0 C
1

1 " a / % d.x; f .x//; for all x 2 X:

Proof. (a) Since fjf n0 .X/ is a contraction with constant a, we obtain that fjf n0 .X/ is a
contraction with constant a, too. Thus, Ff WD fx!g. Moreover, since f n0 is a 1

1"a -
Picard operator, for all x 2 X, we have :

d.f n0 .x/; x!/ ! 1

1 " ad.f
n0 .x/; f .f n0 .x/// ! Ln0

1 " ad.x; f .x//:
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On the other hand, for all x 2 X, we can write:

d.x; x!/ ! d.x; f n0 .x//C d.f n0 .x/; x!/ !

.d.x; f .x//C d.f .x/; f 2.x//C d.f n0"1.x/; f n0 .x///C Ln0

1 " ad.x; f .x// ! % % % !

Ln0 " 1
L " 1 d.x; f .x//C Ln0

1 " ad.x; f .x//:

Notice now that (b) follows by a similar approach.

Notice now that in Theorem 2 and Corollary 1 the uniqueness of the fixed point
can be deduced by the imposed condition (b). In the absence of the uniqueness
assumption for the fixed point, we can prove the following extension of Corollary 1.

Corollary 2. Let .X; d/ be a metric space and f W X ! X be an operator. We
suppose:

(a) for each x 2 X there exists a sequence .xn.x//n2N and there exists x!.x/ 2 Ff
with lim

n!C1
xn.x/ D x!.x/. In particular, if x 2 Ff , then xn.x/ D x, for all n 2 N.

Thus, r W X ! Ff x 7! x!.x/ is a set retraction.
(b) there exists ˛ 2 Œ0; 1Œ and L # 0 such that

d.f .x/; r.x// ! ˛d.x; r.x//C Ld.x; f .x//; for all x 2 X:

Then

d.x; r.x// ! 1C L
1 " ˛ d.x; f .x//; for all x 2 X:

Proof. Notice that, for every x 2 X, we have

d.x; r.x// ! d .x; f .x//C d .f .x/; r.x// !
! d .x; f .x//C ˛d.x; r.x//C Ld.x; f .x//:

As an illustrative example, we have the following result for graphic contractions.

Theorem 10. Let .X; d/ be a complete metric space and f W X ! X be an operator.
We suppose:

(a) there exists a 2 Œ0; 1Œ such that

d.f .x/; f 2.x// ! ad.x; f .x//; for all x 2 X:

(b) f has closed graph.
Then:
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(i) for each x 2 X, the sequence xn WD f n.x/, n 2 N! converges to an element
x!.x/ D f1.x/ 2 Ff ;

(ii)

d.x; f1.x// ! 1

1 " ad.x; f .x// for all x 2 X:

Proof. (i) is the well known
✿✿✿✿✿✿✿✿✿✿

well-known
✿

Graphic Contraction Principle. For the
sake of completeness, we recall here the proof. Let x0 2 X and xn WD f n.x0/, n 2 N.
Then, by (a), the sequence .xn/ is Cauchy and, by the completeness of the space
.X; d/, there exists x!.x0/ 2 X such that lim

n!C1
xn D x!.x0/. By (b), we get that

x!.x0/ 2 Ff . Now, for each x 2 X, we also have :

d.f .x/; f1.x// ! d.f .x/; f 2.x//C d.f 2.x/; f 3.x//C % % %C d.f n.x/; f1.x// !

ad.x; f .x//C a2d.x; f .x//C % % %C an"1d.x; f .x//C d.f n.x/; f1.x// D

D a.1 " an"1/
1 " a d.x; f .x//C d.f n.x/; x!.x//:

Letting n!C1, we get that

d.f .x/; f1.x// ! a
1 " ad.x; f .x//; for all x 2 X:

Now we can conclude

d.x; f1.x// ! d .x; f .x//C d .f .x/; f1.x// !

! d .x; f .x//C a
1 " ad.x; f .x// D

1

1 " ad.x; f .x//:

In the case of Caristi–Browder operators (see [18, 39]) we have a similar result.

Theorem 11. Let .X; d/ be a complete metric space, f W X ! X be an operator and
' W X ! RC be a given function. We suppose:

(a) d.x; f .x// ! '.x/" '.f .x//; for all x 2 X;
(b) f has closed graph.

Then:

(i) Ff ¤ ;;
(ii) for each x 2 X, the sequence xn WD f n.x/, n 2 N! converges to an element

f1.x/ 2 Ff ;
(ii) if, additionally, there is ˛ 2 R!

C such that '.x/ ! ˛d.x; f .x//, then

d.x; f1.x// ! ˛d.x; f .x//; for all x 2 X:

Proof. For (i) and (ii), let us consider x 2 X. From (a) it follows
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nX

kD0
d.f k.x/; f kC1.x// ! '.x/ " '.f nC1.x// ! '.x/:

This implies that .f n.x//n2N is a convergent sequence. Let us denote by f1.x/ 2 X
its limit. From (b) we have that f1.x/ 2 Ff .
For (iii), notice that for each x 2 X, we have

d.x; f nC1.x// !
nX

kD0
d.f k.x/; f kC1.x// ! '.x/ ! ˛d.x; f .x//:

Thus, d.x; f1.x// ! ˛d.x; f .x//; for all x 2 X.

Remark 4. For other considerations on weakly Picard operator theory, see [6, 13,
27, 37, 40, 45], etc.

Remark 5. For generalized contractions conditions and related results, see [3, 17,
18, 23, 28, 30, 31, 34, 36, 39, 46, 52], etc.

4.4 The Retraction-Displacement Condition in the Case of
Other Iterative Algorithms

Let .X;C;R; k % k/ be a Banach space, Y & X a nonempty convex subset, f W Y ! Y
an operator, 0 < # < 1 and $ WD .#n/n2N with 0 < #n < 1, n 2 N.

4.4.1 Krasnoselskii Algorithm

By the Krasnoselskii perturbation of f we understand the operator f# W Y ! Y
defined by

f#.x/ D .1 " #/xC #f .x/; x 2 Y:

For this perturbation of f we have (see [3, 10, 42, 50, 51], etc.):

Theorem 12. Let f# be defined as above. Then:

(i) Ff# D Ff . In general Ff n# ¤ Ffn , n # 2.
(ii) If f is l-Lipschitz, then f# is l-Lipschitz.
(iii) If f is a '-contraction, then f# is a '#-contraction.
(iv) If in addition Y is bounded and closed and f is nonexpansive, then f# is

asymptotically regular.
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(v) If f satisfies a.r;  / retraction-displacement condition, then f# satisfies the

.r; "/ retraction-displacement condition with ".t/ D  
&
1

#
t
'
, t 2 RC.

(vi) If X is an ordered Banach space, then f increasing implies f# increasing.

The following problem arises:

Problem 4. If f# is WPO, in which conditions on f , f# satisfies the .f1
# ;  /

retraction-displacement condition?

Some results for this problem was given in Sect. 3, when f is a generalized
contraction (see (v) in Theorem 12).

Remark 6. For the condition in which f# is WPO see [3, 10, 18, 50, 51], etc. For
example, the following result is well known, see [3].

Definition 4. Let H be a Hilbert space with inner product h%; %i and norm k%k. An
operator f W H ! H is said to be a generalized pseudo-contraction if there exists a
constant r > 0 such that, for all x; y in H,

k f .x/ " f .y/k2 ! r2 k x " y k2 C k f .x/" f .y/" r.x " y/ k2 : (4.5)

Remark 7. Condition 4.5 is equivalent to

hf .x/ " f .y/; x " yi ! r k x " yk2 ; for all x; y 2 H; (4.6)

or to

h.I " f / x " .I " f / yi # .1" r/ k x " yk2 : (4.7)

Remark 8. Note that any Lipschitzian operator f , that is, any operator for which
there exists s > 0 such that

k f .x/ " f .y/k ! s % k x " yk ; x; y 2 H; (4.8)

is also a generalized pseudo-contractive operator, with r D s.

Theorem 13. Let K be a non-empty
✿✿✿✿✿✿✿✿

nonempty closed convex subset of a real Hilbert
space and let f W K ! K be a generalized pseudocontractive and Lipschitzian
operator with the corresponding constants r and s, respectively, such that

0 < r < 1 and r ! s: (4.9)

Then

(i) f has an
✿

a
✿

unique fixed point p;
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(ii) For each x0 2 K, the Krasnoselskii iteration fxng1nD0, given by

xnC1 D .1 " #/xn C # f .xn/ ; n D 0; 1; 2; : : : ; (4.10)

converges (strongly) to p, for all # 2 .0; 1/ satisfying

0 < # < 2.1 " r/=.1 " 2rC s2/: (4.11)

.
(iii) The following retraction-displacement condition holds:

d.x; f1
# .x// !

#

1 " " d.x; f .x//; 8x 2 K;

where

" D
$
.1" #/2 C 2#.1 " #/ rC #2s2

%1=2
: (4.12)

Proof. Denote

f#.x/ D .1 " #/xC # % f .x/ ; x 2 K; (4.13)

for all # 2 .0; 1/.
Since f is generalized pseudo-contractive and Lipschitzian, we have

kf#.x/" f#.y/k2 D k .1 " #/ xC # f .x/" .1 " #/ y " #f .y/k2 D (4.14)

k .1" #/.x " y/C #.f .x/ " f .y/k2 D (4.15)

.1" #/2 % k x " yk2 C 2#.1 " #/ % hf .x/ " f .y/; x " yi C #2 % kf .x/" f .y/k2 !
(4.16)

$
.1 " #/2 C 2#.1" #/rC #2s2

%
% k x " yk2 ; (4.17)

which yields

kf#.x/ " f#.y/k ! " % k x " yk ; for all x; y 2 K: (4.18)

In view of condition (4.12), we get that 0 < " < 1, so f# is a "-contraction. The
conclusion now follows by Theorem 3.6 in [3] and Theorem 12.

A more general result can be similarly proven.

Theorem 14. Let K be a non-empty
✿✿✿✿✿✿✿

nonempty
✿

closed convex subset of a Banach
space and let f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;



4 The Retraction-Displacement Condition in Fixed Point Theory 91

(ii) The Krasnoselskii iteration fxng1nD0 converges to x!.x/ 2 Ff , for any x 2 K;
(iii) There exist 0 ! ı < 1 and a function " W RC ! RC, continuous at 0 with

".0/ D 0, such that

kf .x/ " x!k ! ıkx " x!k C ".kx " f .x/k/; 8x 2 K; x! 2 Ff : (4.19)

Then the following retraction-displacement condition holds:

kx " f1
# .x/k !

1

1 " ı .kx " f .x/k C ".kx " f .x/k// ; 8x 2 K:

4.4.2 Mann Algorithm

Let us consider the Mann algorithm corresponding to f and$ (see [3, 10, 51]):

x0 2 Y; xnC1.x0/ D f#n.xn.x0//; n 2 N:

We suppose that this algorithm is convergent, i.e.,

for all x0 2 Y; xn.x0/"!x!.x0/ 2 Ff as n!1:

In this condition we define the operator

f1
$ W Y ! Ff ; x 7! x!.x/

operator which is a set retraction.
By definition a convergent Mann algorithm satisfies a retraction-displacement

condition if

kx " f1
$ .x/k !  .kx " f .x/k/; 8 x 2 Y

with  as in Definition 1.
The basic problem is the following

✿

:

Problem 5. If the Mann algorithm is convergent, in which conditions on f and$ is
✿

it
✿

satisfies a retraction-displacement condition?

Remark 9. For the conditions in which the Mann algorithm is convergent see: [3,
10,51], etc. For example, we have the following well known

✿✿✿✿✿✿✿✿✿

well-known
✿

result, see
[3], Chap. 4.

Theorem 15. Let E be an arbitrary Banach space, K a closed convex subset of E,
and f W K ! K a Zamfirescu operator. Let fxng1nD0 be the Mann iteration defined by
x0 2 K and
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xnC1 D .1 " ˛n/xn C ˛nf .xn/ ; n D 1; 2; : : : (4.20)

with f˛ng & Œ0; 1! satisfying

.iv/
1X

nD0
˛n D 1 :

Then

(i) f is a Picard operator with Ff D fpg;
(ii) fxng1nD0 converges strongly to the unique fixed point of f ;
(iii) f satisfies the following retraction-displacement condition

kx " pk ! 2ı

1 " ı kx " f .x/k; 8x 2 K:

Proof. Remind that if f is a Zamfirescu mapping on K, then there exist the real
numbers a; b; c satisfying 0 ! a < 1; 0 ! b < 0:5 and 0 ! c < 0:5; such that, for
each x; y 2 X, at least one of the following is true:
(z1) kf .x/ " f .y/k ! a kx " ykI
(z2) kf .x/ " f .y/k ! bŒkx " f .x/k C ky " f .y/k!I
(z3) kf .x/ " f .y/k ! cŒkx " f .y/k C ky " f .x/k!:
It is well known that f is a Picard operator (see,

✿

for example, Theorem 2.4 in
[3]). By .z1/–.z3/, we obtain that, for all x; y 2 K, T satisfies

kf .x/ " f .y/k ! ıkx " yk C 2ıkx " f .x/k (4.21)

where

ı D max
!
a;

b
1 " b ;

c
1 " c

(
< 1: (4.22)

Let fxng1nD0 be the Mann iteration given by 4.20, with x0 2 K arbitrary. Then

kxnC1 " pk D
)).1 " ˛n/xn C ˛nf .xn/ " .1 " ˛n C ˛n/p

)) D
D
)).1 " ˛n/.xn " p/C ˛n.f .xn/" p/

)) !

! .1 " ˛n/kxn " pk C ˛nkf .xn/" pk : (4.23)

Take x WD p and y WD xn in 4.21 to obtain

kf .xn/ " pk ! ı % kxn " pk;

which together with 4.23 yields
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kxnC1 " pk !
*
1 " .1 " ı/˛n

+
kxn " pk ; n D 0; 1; 2; : : : : (4.24)

Inductively we get

kxnC1 " pk !
nY

kD0

*
1 " .1 " ı/˛k

+
% kx0 " pk ; n D 0; 1; 2; : : : : (4.25)

As 0 < ı < 1, ˛k 2 Œ0; 1! and
1P
kD0

˛k D 1, by a standard argument it results that

lim
n!1

nY

kD0

*
1 " .1 " ı/˛k

+
D 0 ;

which, together with the previous inequality, implies

lim
n!1

kxnC1 " pk D 0 ;

i.e., fxng1nD0 converges strongly to p. So, (i) and (ii) are proven. To prove (iii), we
use the fact that

kx " pk ! kx " f .x/k C kf .x/ " f .p/k:

So, by inequality 4.21,

kf .x/ " f .p/k ! ıkx " pk C 2ıkx " f .x/k;

the desired estimate follows.

A more general result can be similarly proven.

Theorem 16. Let K be a non-empty
✿✿✿✿✿✿✿

nonempty
✿

closed convex subset of a Banach
space and let f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;
(ii) The Mann iteration fxng1nD0 converges to x!.x/ 2 Ff , for any x 2 K;
(iii) There exist 0 ! ı < 1 and a function " W RC ! RC, continuous at 0 with

".0/ D 0, such that

kf .x/ " x!k ! ıkx " x!k C ".kx " f .x/k/; 8x 2 K; x! 2 Ff : (4.26)

Then, the following retraction-displacement condition holds:

kx " f1
# .x/k !

1

1 " ı .kx " f .x/k C ".kx " f .x/k// ; 8x 2 K:
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Remark 10. By Theorem 16, one can obtain a convergence theorem for Mann
iteration by considering f an almost contraction with a unique fixed point, seefor
example

✿

,
✿✿✿

for
✿✿✿✿✿✿✿

example,
✿

[3].

4.4.3 Halpern Algorithm

Now we consider the Halpern algorithm (see [3, 10, 41, 50], etc.):

x0 2 Y; xnC1.x0/ D .1 " #n/uC #nf .xn.x0//; n 2 N;

where u 2 Y is a fixed anchor, see [47, 54, 55, 59] for more details.
We suppose that this algorithm is convergent, i.e.,

for all x0 2 Y; xn.x0/! x!.x0/ 2 Ff as n!1:

So, if we denote $ D ff#ng1nD0 W #n 2 Œ0; 1!g, then we have the set retraction,
f1
$ W Y ! Ff , f1

$ .x/ D x!.x/.
By definition, a convergent Halpern algorithm satisfies a retraction-displacement

condition if

kx " f1
$ .x/k !  .kx " f .x/k/; 8 x 2 Y;

with  as in Definition 1.
Similarly to the case of the previous algorithms, we have

Problem 6. If the Halpern algorithm is convergent, under which condition on f and
$ it satisfies a retraction-displacement condition?

Remark 11. For some conditions under which the Halpern algorithm is convergent,
see [1, 3, 47, 50, 53–55, 59], etc.

A general result similar to the ones established for Krasnoselskii and Mann
algorithms can be easily proven for Halpern iteration, too.

Theorem 17. Let K be a non-empty
✿✿✿✿✿✿✿

nonempty
✿

closed convex subset of a Banach
space and let f W K ! K be a mapping satisfying the following assumptions:

(i) Ff ¤ ;;
(ii) The Halpern iteration fxn.x/g1nD0 converges to x!.x/ 2 Ff , for any x 2 K;
(iii) There exist 0 ! ı < 1 and a function " W RC ! RC, continuous at 0 with

".0/ D 0, such that

kf .x/ " x!k ! ıkx " x!k C ".kx " f .x/k/; 8x 2 K; x! 2 Ff : (4.27)

Then the following retraction-displacement condition holds:
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kx " f1
$ .x/k !

1

1 " ı .kx " f .x/k C ".kx " f .x/k// ; 8x 2 K:

The next corollary provides an answer to Problem 6.

Corollary 3. Let K be a non-empty
✿✿✿✿✿✿✿✿

nonempty
✿

closed convex subset of a Banach
space and let f W K ! K be a Zamfirescu mapping. Then

(i) Ff D fx!g;
(ii) The Halpern iteration fxng1nD0 converges to x! 2 Ff , for any x0 2 K, provided

that f#ng1nD0 & Œ0; 1! satisfies the following condition:

lim
n!1

#n D 0: (4.28)

(iii) The following retraction-displacement condition holds:

kx " f1
$ .x/k !

1C 2ı
1 " ı kx " f .x/k; 8x 2 K:

Proof. (i) This follows by Theorem 2.4 in [3].
(ii) Let fxng1nD0 be the Halpern iteration, defined by x0 2 K, the fixed anchor u 2 K

and the parameter sequence f#ng1nD0 & Œ0; 1! satisfying 4.28. Then we have

kxnC1 " x!k D k#nuC .1 " #n/f .xn/ " x!k D k#nu " #nx! C .1 " #n/.f .xn/" f .x!/k
! #nku " x!k C .1 " #n/kf .xn/ " f .x!/k ! #nku " x!k C .1 " #n/ıkxn " x!k

! ıkxn " x!k C #nku " x!k:

Thus

kxnC1 " x!k ! ıkxn " x!k C #nku " x!k; n # 0;

which, by applying Lemma 1.6 in [3], yields the conclusion.
(iii) Since f is a Zamfirescu mapping, see Theorem 15, the inequality 4.21 holds

and so, by Theorem 16, we get the estimate

kx " f1
$ .x/k !

1C 2ı
1" ı kx " f .x/k; 8x 2 K;

where ı is given by

ı D max
!
a;

b
1 " b ;

c
1 " c

(
< 1 (4.29)

and a; b; c are the constants appearing in Zamfirescu’s conditions .z1/ " .z3/.
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4.4.4 Retraction-Displacement Condition and the Condition
(I), in the Case Ff D fx!g

In this section we briefly discuss, in the context of fixed point iterative algorithms,
the connection between the retraction-displacement condition considered in the
present paper and the condition (I), the latter introduced by Senter and Dotson in
[48] (see also [58]) for the case of single-valued mappings, and used by many au-
thors mainly in the case of multi-valued operators, to study the convergence of Mann
and Ishikawa iterations for nonexpansive type mappings, see [25,48,49,56,57] and
✿✿

the
✿

references therein.

Definition 5 ( [48]). Let .X; d/ be a metric space. A mapping f W X ! X is said to
satisfy condition (I) if there is a nondecreasing function " W Œ0;C1/ ! Œ0;C1/
with ".0/ D 0 and ".r/ > 0 for all r > 0 such that

d.x;Tx/ # ".d.x;Ff //;8x 2 X;

where Ff denotes, as usually, the set of fixed points of f .

In the particular case announced in the title of this section, i.e., when Ff D fx!g, it
is easy to see that condition (I) requires in fact that

d.x;Tx/ # ".d.x; x!//;8x 2 X:

Example 2. Let .X; d/ be a metric space and f W X ! X a #-contraction (0 ! # <
1). Then, f satisfies condition (I) with ".r/ D .1 " #/ % r, for all r > 0.

Example 3. Let .X; d/ be a metric space and f W X ! X a Kannan mapping, i.e., a
mapping for which there exists 0 < ˇ < 0:5 such that

d.f .x/; f .y// ! ˇŒd.x; f .x//C d.y; f .y//!; 8x; y 2 X:

Then, f satisfies condition (I) with ".r/ D 1 " 2ˇ
2ˇ

r, for all r > 0.

Example 4. Let .X; d/ be a metric space and f W X ! X a Zamfirescu mapping,

see Theorem 16. Then, f satisfies condition (I) with ".r/ D 1 " 2ı
2ı

r, for all r > 0,
where

ı D max
!
a;

b
1 " b ;

c
1 " c

(
< 1; (4.30)

and a; b; c are the constants appearing in conditions .z1/–.z3/.

Based on Examples 2–4, we can state the following generic result.
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Proposition 1. Let K be a non-empty
✿✿✿✿✿✿✿✿

nonempty closed convex subset of a Banach
space and let f W K ! K be a mapping satisfying the following assumptions:

(i) Ff D fx!g;
(ii) A certain iterative algorithm fP ' fxn.x0/g1nD0 converges to x!, for any x0 2 K;
(iii) f satisfies condition (I) with " a bijection.

Then the algorithm fP satisfies the following retraction-displacement condi-
tion:

kx " f1
P .x/k ! ""1 .kx " f .x/k/ ; 8x 2 K:

Remark 12. In the case of Krasnoselskii algorithm we have P D f#g, # 2 .0; 1/,
and hence fP ' f#, while in the case of Mann iteration we have P ' $ D f#ng1nD0,
#n 2 .0; 1/, and hence fP ' f$.

4.5 The Impact of Retraction-Displacement Condition on the
Theory of Fixed Point Equations

Let .X; d/ be a metric space and f W X ! X an operator with Ff ¤ ;. We suppose
that f satisfies a retraction-displacement condition as in Definition 1. In this section
we consider the fixed point equation

x D f .x/: (4.31)

4.5.1 Data Dependence

Let us consider the fixed point equation (4.31) and let g W X ! X be an operator
such that Fg ¤ ;.
We have :

Theorem 18. We suppose that:

(i) f satisfies the .r1;  1/ retraction-displacement condition;
(ii) g satisfies the .r2;  2/ retraction-displacement condition;
(iii) there exists % > 0 such that

d.f .x/; g.x// ! %; 8 x 2 X:

Then, Hd.Ff ;Fg/ ! max. 1.%/;  2.%//.
Proof. Let x! 2 Ff . Then, r2.x!/ 2 Fg and

d.x!; r2.x!// !  2.d.x!/; g.x!// D  2.d.f .x!/; g.x!/// !  2.%/:
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Let y! 2 Fg. Then r1.y!/ 2 Ff and

d.y!; r1.y!// !  1.d.y!/; f .y!// D  1.d.g.y!/; f .y!/// !  1.%/:

From a well known
✿✿✿✿✿✿✿✿✿

well-known
✿

property of the Pompeiu–Hausdorff functional (see,
for example, [31], p. 76) it follows that

Hd.Ff ;Fg/ ! max. 1.%/;  2.%//:

Theorem 19. We suppose that :

(i) Ff D fx!g and f satisfies a .r;  / retraction-displacement condition, where
r.x/ D x!, 8 x 2 X;

(ii) there exists % > 0 such that

d.f .x/; g.x// ! %; 8 x 2 X:

Then, d.y!; x!/ !  .%/, for each y! 2 Fg.

Proof. Let y! 2 Fg. Then

d.y!; x!/ D d.y!; r.y!// !  .d.y!/; f .y!// D  .d.g.y!//; f .y!// !  .%/:

Example 5. Let us consider the following functional integral equation

x.t/ D
Z t

t"&
f .s; x.s//ds; where t 2 RC: (4.32)

This equation is a mathematical model for epidemics and population growth (see,
for example, [12, 14] and the references therein.
Let 0 < m < M and / < ˛ < ˇ. We suppose:

(i) f 2 C.R ( Œ˛; ˇ!/;
(ii) there exists ! > 0 such that f .t C !; u/ D f .t; u/, for all t 2 R and all u 2

Œ˛; ˇ!/;
(iii) there exists k > 0 such that k& < 1 and jf .t; u/ " f .t; v/j ! kju " vj, for all

t 2 R and all u; v 2 Œ˛; ˇ!/;
(iv) m ! f .t; u/ ! M, for all t 2 R and all u 2 Œ˛; ˇ!/;
(v) ˛ ! m& and ˇ # M& .

If we define

X! WD fx 2 C.R; Œ˛; ˇ!/ j x.tC !/ D x.t/; for each t 2 Rg

endowed with the metric
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d.x; y/ WD max
0#t#!

jx.t/ " y.t/j;

then the operator A defined as

Ax.t/ WD
Z t

t"&
f .s; x.s//ds; where t 2 RC

has (using .i/–.iv/) the following properties:

(a) A.X!/ & X! ;
(b) A is a k&-contraction.

Then, by the Contraction Principle and Theorem 19, we obtain :

Theorem 20. Let us consider Eq. (4.32) and suppose that the assumptions (i)–(v)
take place. Then:

(1) Eq. (4.32) has in X! a unique solution x!;
(2) d.x; x!/ ! 1

1"k& d.x;A.x//, for all x 2 X!;
(3) let g W R ( Œ˛; ˇ! ! R be a function which satisfies the conditions (i),(ii),(iv)

and (v) above. In addition, we suppose that there exists % > 0 such that

jf .t; u/" g.t; u/j ! %; for all t 2 R and u 2 Œ˛; ˇ!/I

If y 2 X! is a solution of the integral equation

y.t/ D
Z t

t"&
g.s; y.s//ds; where t 2 RC;

then

d.x; y/ ! &%

1" k& :

4.5.2 Ulam Stability

We start our considerations with the following notions (see [44]).

Definition 6. By definition, the fixed point equation (4.31) is Ulam–Hyers stable if
there exists a constant cf > 0 such that: for each " > 0 and each solution y! 2 X of
the inequation

d.y; f .y// ! " (4.33)

there exists a solution x! of Eq. (4.31) such that
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d.y!; x!/ ! cf ":

Definition 7. By definition, Eq. (4.31) is generalized Ulam–Hyers stable if there
exists " W RC ! RC increasing and continuous in 0 with ".0/ D 0 such that: for
each " > 0 and for each solution y! of (4.33) there exists a solution x! of (4.31)
such that

d.y!; x!/ ! "."/:

We have

Theorem 21. If f satisfies a .r;  / retraction-displacement condition, then
Eq. (4.31) is generalized Ulam–Hyers stable.

Proof. Let y! 2 X be a solution of (4.33). Then x! D r.y!/ 2 Ff . Since f satisfies
the .r;  / retraction-displacement condition we have

d.y!; x!/ !  .d.y!/; f .y!// !  ."/:

Remark 13. If in the Theorem 21, the function .t/ D cf t, 8t 2 RC, then Eq. (4.31)
is Ulam–Hyers stable.

Example 6. Let˝ be a bounded domain in Rm and let X WD C.˝;R/ endowed with
the metric d.x; y/ WD max

t2˝
jx.t/ " y.t/j.

We consider on X the following integral equation

x.t/ D
Z

˝

K.t; s; x.s//dsC l.t/; t 2 ˝: (4.34)

With respect to the above equation, we suppose:

(i) K 2 C.Œ˝ (˝ ( R;R/ and l 2 C.˝;R/;
(ii) there exists k > 0 such that

jK.t; s; u/" K.t; s; v/j ! kju " vj; for all t; s 2 ˝ and u; v 2 RI

(iii) k % mes.˝/ < 1.
Then, if we define A W X ! X by

Ax.t/ WD
Z

˝

K.t; s; x.s//dsC l.t/; t 2 ˝;

then, by (ii) and (iii), we obtain that A is a k % mes.˝/-contraction. Applying
the Contraction Principle and Theorem 21, we get

Theorem 22. Consider Eq. (4.34) and suppose that the assumption (i)–(iv) take
place. Then, Eq. (4.34) is Ulam–Hyers stable.
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Remark 14. For Ulam stability theory related to fixed point equations see [7,21,26,
44], etc.

4.5.3 Well-Posedness for Fixed Point Problems

Let .X; d/ be a metric space and f W X ! X be an operator such that its fixed point
set Ff D fx!g. Following F.S. De Blasi and J. Myjak (see [39] p. 42, see also [43]),
we say, by definition, that the fixed point problem

x D f .x/; x 2 X

is well-posed if the following implication holds:

.xn/n2N & X and d.xn; f .xn//! 0 as n! C1 ) lim
n!1

xn D x!:

In this setting, we have the following general result.

Theorem 23. Let .X; d/ be a metric space and f W X ! X be an operator such
that its fixed point set Ff D fx!g. If the operator f satisfies an .r;  / retraction-
displacement condition, then the fixed point problem for f is well-posed.

Proof. Let .xn/n2N & X such that d.xn; f .xn//! 0 as n! C1. Then, we have :

d.xn; x!/ !  .d.xn; f .xn//! 0 as n!1:

4.5.4 Ostrowski Stability

Let .X; d/ be a metric space and f W X ! X be an operator such that its fixed point
set Ff D fx!g. Let

xnC1 D fn.xn/; n 2 N

be an iterative algorithm with fn W X ! X. By definition, this algorithm is said to be
Ostrowski stable if the following implication holds:

.yn/n2N & X and d.ynC1; fn.yn//! 0 as n!C1 ) lim
n!1

yn D x!:

Some authors refer to the above property as the “limit shadowing property” (see
[16, 23, 29, 41, 46], etc.).
The following open question seems to be a difficult one.
Open Question.
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Open Question In which conditions a retraction-displacement condition on f
implies that the fixed point problem for f is Ostrowski stable?

4.6 Some New Research Directions

4.6.1 Examples in Rm

We will present in this section some examples related to the following problem:

Problem 7. Which operators f W Rn ! Rn with Ff ¤ ; and r W Rn ! Ff a retraction
satisfies the retraction-displacement condition

d .x; r .x// !  .d .x; f .x/// ; for all x 2 Rn ‹

Example 7. Let f W R ! R such that Ff D ŒaI b!. Then f satisfies the retraction-
displacement condition with  .t/ D ct, c > 0 and r W R! Ff

r .x/ D

8
<

:

a; x < a
x; x 2 ŒaI b!
b; x > b

if the following conditions are satisfied:

a
c
C c " 1

c
x ! f .x/ or

cC 1
c

x " a
c
# f .x/ for x < a;

and

b
c
C c " 1

c
x # f .x/ or cC 1

c
x " b

c
! f .x/ for x > b:

Example 8. Let R > 0 and

Di D
˚
.x; y/ 2 R2 j x2 C y2 ! R

,
;

De D
˚
.x; y/ 2 R2 j x2 C y2 > R

,

Let f W R2 ! R2 be defined by

f .x; y/ D
!

.x; y/ ; .x; y/ 2 Di

.x cos˛ " y sin˛; x sin ˛ C y cos˛/ ; .x; y/ 2 De

with ˛ 2!0I 2'Œ.
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In this case we have that Ff D Di.
Let’s consider

r .x; y/ D

8
<

:

.x; y/ ; .x; y/ 2 Di&
R xp

x2Cy2
;R yp

x2Cy2

'
; .x; y/ 2 De:

Then

k.x; y/ " r .x; y/k ! c % k.x; y/ " f .x; y/k ; .x; y/ 2 R2;

with c D 1p
2.1"cos ˛/ ; i.e., f satisfies the retraction-displacement condition with

 .t/ D ct.

Proof. For .x; y/ 2 Di the retraction-displacement condition with  .t/ D ct, c > 0,
and r is satisfied for any c > 0.
If .x; y/ 2 De, then

k.x; y/ " r .x; y/k D k.x; y/k" R

and

k.x; y/ " f .x; y/k D k.x; y/k %
p
2 .1 " cos˛/:

The function ' W ŒRIC1Œ! R defined by

' .t/ D t " R
t
p
2 .1 " cos˛/

is an increasing bounded function with

' .t/ <
1

p
2 .1" cos˛/

; t 2 ŒRIC1Œ;

thus

k.x; y/" r .x; y/k
k.x; y/" f .x; y/k D

k.x; y/k " R
k.x; y/k %

p
2 .1 " cos˛/

<
1

p
2 .1 " cos˛/

; 8 .x; y/ 2 De;

and we get the conclusion.



104 V. Berinde et al.

4.6.2 The Case of Rm
C
-Metric Spaces

Another research direction is the study of the retraction-displacement condition in
the case of generalized metric spaces (see [18,23,39,44,44,45], etc.) For example, if
we consider a vector-valued metric (i.e., d.x; y/ 2 RmC, then we can do the following
commentaries:

(1) Let X be a nonempty set and let d W X ( X ! RmC be a RmC-metric on X.
Let f W X ! X be an operator such that Ff ¤ ; and let r W X ! Ff be a
set retraction. Then, by definition, f satisfies the . ; r/ retraction-displacement
condition if:

(i)  W RmC ! RmC is increasing, continuous at 0 with  .0/ D 0;
(ii) d.x; r.x// !  .d.x; f .x//, for all x 2 X.

(2) For the weakly Picard operator theory in RmC-metric spaces,✿see [36,37,39,45],
etc.

(3) For the Ulam stability in RmC-metric spaces✿, see [7, 26, 44], etc.

4.6.3 The Case of Nonself Operators

Let .X; d/ be a metric space and Y be a nonempty subset of X. Then, by definition,
the operator f W Y ! X with Ff ¤ ; satisfies the . ; r/ retraction-displacement
condition if:

(i)  W RmC ! RmC is increasing, continuous at 0 with  .0/ D 0;
(ii) r W Y ! Ff is a set retraction;
(iii) d.x; r.x// !  .d.x; f .x///, for all x 2 Y.
In this case, the problem is to study the fixed point equation x D f .x/ in terms of

the . ; r/ retraction-displacement condition.
Again some commentaries can be done:

(1) Let Qr W X ! Y be a set retraction such that Ff D FQrıf . Then, the problem is
to find a retraction r W Y ! Ff as the limit operator of an iterative algorithm
corresponding to the self operator

✿✿✿✿✿✿✿✿✿✿✿

self-operator Qr ı f .
(2) For some results concerning this problem

✿

, see [5, 11, 29, 43].

4.6.4 The Case of Multivalued
✿✿✿✿✿✿✿✿✿✿✿✿✿

Multi-valued
✿

Operators

We will present first a concept of set-retraction related to multivalued
✿✿✿✿✿✿✿✿✿✿✿

multi-valued
operators. Recall first that, if T W X ! P.X/ is a multivalued

✿✿✿✿✿✿✿✿✿✿

multi-valued operator,
then we denote by
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Graph.T/ WD f.x; y/ 2 X ( X W y 2 T.x/g; the graphic of T

and by

FT WD fx 2 Xj x 2 T.x/g; the fixed point set of T:

Definition 8. Let X be a nonempty set, Y 2 P.X/ and T W X ! P.X/ be a
multivalued

✿✿✿✿✿✿✿✿✿✿

multi-valued operator. An operator r W Graph.T/! Y is called a strong
set-retraction of X onto Y if r.x; x/ D x, for all x 2 Y.

Then, we define the retraction-displacement condition for multivalued
✿✿✿✿✿✿✿✿✿✿

multi-valued
✿

operators as follows.

Definition 9. Let .X; d/ be a metric space and let T W X ! P.X/ be a
multivalued

✿✿✿✿✿✿✿✿✿✿

multi-valued operator such that its fixed point set FT is nonempty. Then,
by definition, T satisfies the . ; r/ retraction-displacement condition if there exist
 W RC ! RC and a strong set retraction r W Graph.T/! P.FT/ such that:

(i)  W RC ! RC is increasing, continuous at 0 with  .0/ D 0;
(ii) d.x; r.x; y// !  .d.x; y//; for all .x; y/ 2 Graph.T/:

In this case, the problem is to study the fixed point inclusion x 2 T.x/ and the
strict fixed point equation fxg D T.x/ in terms of the . ; r/ retraction-displacement
condition.
The case of nonself multivalued

✿✿✿✿✿✿✿✿✿✿

multi-valued
✿

operators can also be considered in
a similar way.
Moreover, in particular, if T W X ! P.X/ is a multivalued

✿✿✿✿✿✿✿✿✿✿

multi-valued
✿

weakly
Picard operator (i.e., for each .x; y/ 2 Graph.T/ there exists a sequence .xn/n2N
such that:

(i) x0 D x, x1 D y;
(ii) xnC1 2 T.xn/, for each n 2 N;
(iii) .xn/n2N is convergent and its limit is a fixed point of T),

and we define the multivalued
✿✿✿✿✿✿✿✿✿✿

multi-valued
✿

operator T1 W Graph.T/! P.FT/
by the formula T1.x; y/ WD f z 2 FT j there exists a sequence .xn/n2N
satisfying the assertions (i) and (ii) and convergent to z), then the strong
set retraction r is any selection of T1 which satisfies the condition (ii) in
Definition 9.

For the weakly Picard operator theory for multivalued
✿✿✿✿✿✿✿✿✿✿

multi-valued
✿

operators
and related topics (data dependence, Ulam–Hyers stability, iterative algorithms) see
[21, 26, 27, 29, 30, 36, 39, 44], etc. For retraction theory in the multivalued operators
context

✿✿✿✿✿✿✿✿✿✿

multi-valued
✿✿✿✿✿✿✿✿

operators
✿✿✿✿✿✿✿

context, see also [8].
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