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Abstract
The aim of this chapter is to survey the most relevant developments done in the last decade
around the concept of almost contraction, introduced in Berinde V, Approximating fixed points
of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004;9(1):43–53.

2.1. Introduction

Metrical fixed point theory developed around Banach’s contraction principle, which,
in the case of a metric space setting, can be briefly stated as follows.

Theorem 2.1.1. Let (X ,d) be a complete metric space and T : X → X a strict con-
traction, i.e., a map satisfying

d(Tx,Ty)≤ ad(x,y), for all x,y ∈ X , (2.1.1)
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where 0 ≤ a < 1 is constant. Then

(p1) T has a unique fixed point p in X (i.e., T p = p);

(p2) The Picard iteration {xn}∞
n=0 defined by

xn+1 = Txn, n = 0,1,2, . . . , (2.1.2)

converges to p, for any x0 ∈ X.

Remark 2.1.1. A map satisfying (p1) and (p2) in Theorem 2.1.1 is said to be a Picard
operator (see Refs. [235, 236, 239, 240] for more details).

Theorem 2.1.1, which was established in a complete linear normed space in 1922
by Stefan Banach [49] (see also Ref. [50]), is in fact a formalization of the method
of successive approximation that has previously been systematically used by Picard in
1890 [210] to study differential and integral equations.

Being a simple and versatile tool in establishing existence and uniqueness theo-
rems for operator equations, Theorem 2.1.1 plays a very important role in nonlinear
analysis. This fact motivated researchers to try to extend and generalize Theorem 2.1.1
in such a way that its area of applications should be enlarged as much as possible.

Most of these generalizations considered only continuous mappings, like in the
original case of the contraction mapping in Theorem 2.1.1. It was natural to ask
whether there exist or not alternative contractive conditions that ensure the conclusions
of Theorem 2.1.1 but which do not force implicitly or explicitly that T is continuous.

This question was answered in the affirmative by Kannan in 1968 [149], who
proved a fixed point theorem which extends Theorem 2.1.1 to mappings that need not
be continuous. Kannan considered instead of (2.1.1) the following condition: there
exists b ∈

(
0, 1

2

)
such that

d(Tx,Ty)≤ b[d(x,Tx)+d(y,Ty)], for all x,y ∈ X . (2.1.3)

Following Kannan’s theorem, many papers were devoted to obtaining fixed point
theorems for various classes of contractive type conditions that do not require the
continuity of T (see for example Refs. [60, 235, 239] and the references therein).

One of these results is actually a sort of dual of Kannan’s fixed point theorem, and
is due to Chatterjea [85]. It makes use of a condition similar to (2.1.3): there exists
c ∈

(
0, 1

2

)
such that

d(Tx,Ty)≤ c
[
d(x,Ty)+d(y,Tx)

]
, for all x,y ∈ X . (2.1.4)

Based on the fact (established later by Rhoades [226]) that the contractive condi-
tions (2.1.1), (2.1.3), and (2.1.4) are independent, Zamfirescu [280] obtained a very
interesting fixed point theorem, by combining (2.1.1), (2.1.3) and (2.1.4).
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Theorem 2.1.2. Let (X ,d) be a complete metric space and T : X → X a map for which
there exist the real numbers a,b and c satisfying 0 ≤ a < 1, 0 < b, c < 1/2 such that
for each pair x,y in X, at least one of the following is true:

(z1) d(Tx,Ty)≤ ad(x,y);

(z2) d(Tx,Ty)≤ b
[
d(x,T x)+d(y,Ty)

]
;

(z3) d(Tx,Ty)≤ c
[
d(x,Ty)+d(y,Tx)

]
.

Then T is a Picard operator.

The class of almost contractions, the central concept surveyed in this chapter, is
closely related to Zamfirescu’s contractions. Indeed, by conditions (z2) and (z3) one
obtains that T satisfies the conditions:

d(Tx,Ty)≤ b
1−b

d(x,y)+
2b

1−b
d(y,Tx), for all x,y ∈ X , (2.1.5)

and

d(Tx,Ty)≤ c
1− c

d(x,y)+
2c

1− c
d(y,Tx), for all x,y ∈ X , (2.1.6)

respectively.
Thus, the birth of almost contractions could be dated to the very moment when we

realized that (2.1.5) and (2.1.6) share the same property, i.e., 0< b
1−b < 1, 0< c

1−c < 1,
and that (z1), (z2) and (z3) could be unified within a single condition of the form:

d(Tx,Ty)≤ δ d(x,y)+Ld(y,Tx), (2.1.7)

with the constants δ and L satisfying 0 < δ < 1 and L ≥0.
Soon after the publication of the first papers devoted to almost contractions

[53–55], various researchers were attracted by the novelty that this class of mappings
has brought to fixed point theory, see the rich list of references [2–16, 18–30, 40–
48, 51, 60–76, 78–80, 84, 88–93, 102–104, 106, 107, 109–123, 125–143, 147, 148,
152–163, 166, 168–189, 194, 195, 197–199, 202–209, 216, 217, 219–225, 231, 232,
241–248, 250–258, 260–263, 266, 268–271, 276, 277].

It is therefore the main aim of this chapter to survey some of the most relevant
developments in the last ten years or so on the concept of almost contraction.

The main aspects considered in the chapter are as follows:
• Fixed point theorems for single-valued self almost contractions
• Iterative approximation of the fixed point of implicit almost contractions
• Common fixed point theorems for almost contractions
• Almost contractive type mappings on product spaces
• Fixed point theorems for single-valued nonself almost contractions.
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2.2. Fixed Point Theorems for Single-valued Self Almost
Contractions

Definition 2.2.1 [55]. Let (X ,d) be a metric space. A map T : X → X is called an
almost contraction if there exist the constants δ ∈ (0,1) and L ≥0 such that

d(Tx,Ty)≤ δ ·d(x,y)+Ld(y,Tx), for all x,y ∈ X . (2.2.8)

In order to be more precise, we shall also call T a (δ ,L)-almost contraction.

Remark 2.2.1. Note that the almost contraction condition (2.2.8) is not symmetric.
But, due to the symmetry of the distance, (2.2.8) implicitly includes the following
dual one:

d(Tx,Ty)≤ δ ·d(x,y)+L ·d(x,Ty), for all x,y ∈ X , (2.2.9)

and so, by (2.2.8) and (2.2.9), we obtain the following symmetric condition:

d(Tx,Ty)≤ δ ·d(x,y)+L1 · [d(x,Ty)+d(x,Ty)], for all x,y ∈ X , (2.2.10)

where L1 = L/2. As shown in Ref. [73], (2.2.10) does not imply either (2.2.8) or
(2.2.9).

Remark 2.2.2. Note that at the beginning (see Refs. [53–55]) and in some other sub-
sequent papers, the author adopted the name weak contraction to designate an almost
contraction. Soon after these papers had been published, we discovered that the term
weak contraction had been used previously by other authors in different contexts.

Indeed, in 1967 Sz.-Nagy and Foiaş [267] used the concept of weak contraction in
the context of the spectral theory of operators.

Later, Dugundji and Granas [124] also considered the concept of weak contraction,
this time in the field of metrical fixed point theory. Dugundji and Granas called weak
contraction a mapping T : X → X that satisfies the following condition:

d(Tx,Ty)≤ d(x,y)−φ(d(x,y)), for all x,y ∈ X , (2.2.11)

where φ : R+ → R+ is a compactly positive function. They also obtained some appli-
cations of weak contractions, including a domain invariance theorem (see Ref. [124]
for details).

Apparently not aware of the paper by Dugundji and Granas (the paper [124] is not
cited in Ref. [17]), in 1997 Alber and Guerre-Delabriere [17] used exactly the same
condition for a map T defined from a closed convex subset C of a Banach space X into
C and called T weakly contractive if

∥Tx−Ty∥ ≤ ∥x− y∥−ψ(∥x− y∥), for all x,y ∈C,
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where ψ : R+ →R+ is continuous and nondecreasing, ψ is positive on R+ \0, ψ(0) =
0 and lim

t→∞
ψ(t) = +∞.

The concept of weak contraction by Alber and Guerre-Delabriere has been ex-
tremely successful, as shown by Google Scholar, where we found more than 340 pa-
pers citing this reference.

So, the existence of different concepts of weak contraction in fixed point theory led
us to change the name adopted in 2003 (see Refs. [53–55] and the subsequent papers)
to that of almost contraction. This name has been adopted for the first time in our
paper from 2008 [62], five years after the original use of almost contractions.

It is therefore not surprising that the authors that studied this class of mappings
used various names to designate an almost contraction, depending on the source of
documentation: weak contraction [3, 5, 25, 27, 44, 110, 137, 140, 147, 169, 177, 178,
186, 188, 205, 209, 224, 242, 248, 254, 255, 256], almost contraction [2, 6, 7, 11,
14, 16, 19, 20, 23, 24, 28, 40, 42, 43, 44, 91, 134, 183, 198, 199, 203, 204, 232, 246,
253, 257, 258, 260, 262, 271], (δ ,L)-almost contraction [10, 128, 138, 277], Berinde
mapping [9, 11, 22, 41, 47, 89, 90, 152, 202, 245, 251, 255, 266], etc.

Remark 2.2.3. Obviously, any classical contraction (2.1.1) will satisfy (2.2.8) with
δ = a and L = 0, and hence the class of almost contractions (properly) includes the
Banach contractions (see Examples 2.2.1 and 2.2.2).

Other examples of almost contractions are given in the following propositions.

Proposition 2.2.1. Let (X ,d) be a metric space. Any Kannan contraction, i.e., any
mapping T : X → X satisfying the contractive condition (2.1.3), is an almost
contraction.

Proof. By condition (2.1.3) and the triangle inequality, we get

d(Tx,Ty) ≤ b
[
d(x,T x)+d(y,Ty)

]

≤ b
{ [

d(x,y)+d(y,Tx)
]
+
[
d(y,Tx)+d(Tx,Ty)

]}
,

which yields

(1−b)d(Tx,Ty)≤ bd(x,y)+2b ·d(y,Tx)

and this implies

d(Tx,Ty)≤ b
1−b

d(x,y)+
2b

1−b
d(y,Tx), for all x,y ∈ X .

Hence, in view of the condition 0< b< 1
2 , (2.2.8) holds with δ = b

1−b and L= 2b
1−b . !
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Proposition 2.2.2. Let (X ,d) be a metric space. Any Kannan contraction, i.e., any
mapping T : X → X satisfying the contractive condition (2.1.4), is an almost
contraction.

Proof. Using d(x,Ty) ≤ d(x,y)+d(y,Tx)+d(Tx,Ty) by (2.1.4) we get, after simple
computations,

d(Tx,Ty)≤ c
1− c

d(x,y)+
2c

1− c
d(y,Tx),

which is (2.2.8), with δ = c
1−c < 1 (since c < 1/2) and L = 2c

1−c ≥0. !

From Remark 2.2.3 and Propositions 2.2.1 and 2.2.2, we have the following
proposition.

Proposition 2.2.3. Let (X ,d) be a metric space. Any Zamfirescu contraction, i.e.,
any mapping T : X → X satisfying the assumptions in Theorem 2.1.2, is an almost
contraction.

Proposition 2.2.4 [197]. Let (X ,d) be a metric space. Any Ćirić-Reich-Rus contrac-
tion, i.e., any mapping T : X → X satisfying the condition

d(Tx,Ty)≤ α d(x,y)+β[d(x,Tx)+d(y,Ty)], for all x,y ∈ X ,

where α ,β ∈ R+ and α +2β < 1, is an almost contraction.

Proposition 2.2.5. Let (X ,d) be a metric space. Let T : X → X be a quasi-contraction
[96], i.e., an operator for which there exists 0 < h < 1 such that

d(Tx,Ty)≤ h ·M(x,y), for all x,y ∈ X , (2.2.12)

where

M(x,y) = max
{

d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)
}
. (2.2.13)

If 0 < h < 1/2, then T is an almost contraction.

Proof. Let T satisfy (2.2.13) and let x,y ∈ X be arbitrarily taken. We have to discuss
five possible cases.

Case 1. M(x,y) = d(x,y). In this case, by virtue of (2.2.12), conditions (2.2.8) and
(2.2.9) are obviously satisfied (with δ = h and L = 0).

Case 2. M(x,y) = d(x,T x). In this case, by (2.2.12) and triangle inequality one
obtains
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d(Tx,Ty)≤ hd(x,Tx)≤ h
[
d(x,y)+d(y,Tx)

]
,

and so (2.2.8) holds with δ = h and L = h.
Since d(x,Tx)≤ d(x,Ty)+d(Ty,Tx), we get

d(Tx,Ty)≤ h
1−h

d(x,Ty)≤ δd(x,y)+
h

1−h
d(x,Ty), for all δ ∈ (0,1).

So (2.2.9) also holds.
Case 3. M(x,y) = d(y,Ty), when (2.2.8) and (2.2.9) follow by Case 2, by virtue of

the symmetry of M(x,y).
Case 4. M(x,y) = d(x,Ty), when (2.2.9) is obviously true and (2.2.8) is obtained

only if h < 1
2 . Indeed, since by (2.2.12), d(Tx,Ty)≤ h ·d(x,Ty) and

d(x,Ty)≤ d(x,y)+d(y,Tx)+d(Tx,Ty),

one obtains

d(Tx,Ty)≤ h
1−h

d(x,y)+
h

1−h
d(y,Tx),

which is (2.2.8) with δ = h
1−h < 1 (since h < 1

2 ) and L = h
1−h > 0.

Case 5. M(x,y) = d(y,Tx), which reduces to Case 4. !

Remark 2.2.4. Proposition 2.2.5 shows that the quasi-contractions with 0 < h < 1/2
are almost contractions. It appears then that h < 1

2 is not a necessary condition for a
quasi-contraction to be an almost contraction, as there exist quasi-contractions with
h ≥1

2 , which are still almost contractions, as shown by Example 2.2.2.

There are many other examples of contractive conditions which imply the almost
contractiveness condition (see the list in Rhoades’ classification [226]).

The first main result of this section is the following theorem.

Theorem 2.2.1 [55, Theorem 2]. Let (X ,d) be a complete metric space and let T :
X → X be a (δ ,L)-almost contraction. Then

(a) Fix(T ) = {x ∈ X : T x = x} ! /0;

(b) For any x0 ∈ X, the Picard iteration {xn}∞
n=0, xn = T nx0, converges to some

x∗ ∈ Fix(T );

(c) The following estimate holds:

d(xn+i−1,x∗)≤
δ i

1−δ d(xn,xn−1), n = 0,1,2, . . . ; i = 1,2, . . . . (2.2.14)
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Proof. We shall prove that T satisfying (2.2.8) has at least a fixed point in X . To this
end, let x0 ∈ X be arbitrary but fixed and let {xn}∞

n=0 be the Picard iteration defined by
(2.1.2).

Take x := xn−1, y := xn in (2.2.8) to obtain

d(Txn−1,T xn)≤ δ ·d(xn−1,xn),

which shows that

d(xn,xn+1)≤ δ ·d(xn−1,xn). (2.2.15)

Using (2.2.15), we obtain by induction

d(xn,xn+1)≤ δ nd(x0,x1), n = 0,1,2, . . . ,

and then

d(xn,xn+p) ≤ δ n(1+δ + · · ·+δ p−1)d(x0,x1)

=
δ n

1−δ (1−δ p) ·d(x0,x1), n, p ∈ N, p ! 0. (2.2.16)

Since 0 < δ < 1, (2.2.16) shows that {xn}∞
n=0 is a Cauchy sequence and hence it is

convergent. Let us denote

x∗ = lim
n→∞

xn. (2.2.17)

Then

d(x∗,T x∗)≤ d(x∗,xn+1)+d(xn+1,T x∗) = d(xn+1,x∗)+d(Txn,T x∗).

By (2.2.8), we have

d(Txn,T x∗)≤ δ d(xn,x∗)+Ld(x∗,T xn)

and hence

d(x∗,T x∗)≤ (1+L)d(x∗,xn+1)+δ ·d(xn,x∗), (2.2.18)

which is valid for all n ≥0. Letting n → ∞ in (2.2.18), we obtain

d(x∗,T x∗) = 0,

i.e., x∗ is a fixed point of T .
By letting p → ∞ in (2.2.16), one obtains the a priori estimate

d(xn,x∗)≤
δ n

1−δ d(x0,x1), n = 0,1,2, . . . , (2.2.19)

where δ is the constant appearing in (2.2.8).
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On the other hand, let us observe that by (2.2.15) we inductively obtain

d(xn+k,xn+k+1)≤ δ k+1 ·d(xn−1,xn), k,n ∈ N,

and hence, similarly to deriving (2.2.16), we get

d(xn,xn+p)≤
δ (1−δ p)

1−δ d(xn−1,xn), n ≥1, p ∈ N∗. (2.2.20)

Now, by letting p → ∞ in (2.2.20), the a posteriori estimate follows:

d(xn,x∗)≤
δ

1−δ d(xn−1,xn), n = 1,2, . . . . (2.2.21)

Now, (2.2.19) and (2.2.21) can be merged to obtain the estimate (2.2.14). !

Remark 2.2.5. (a) Theorem 2.2.1 is a significant extension of Theorem 2.1.1, The-
orem 2.1.2 and many other related results in metrical fixed point theory.

(b) Note that for all the fixed point theorems mentioned in (a) as particular cases
of Theorem 2.2.1, the fixed point is unique. However, in general, almost con-
tractions need not have a unique fixed point, as shown by Examples 2.2.1 and
2.2.2.

(c) Recall (see Refs. [235, 236, 239]), that an operator T : X → X is said to be a
weakly Picard operator if the sequence {T nx0}∞

n=0 converges for all x0 ∈ X and
its limit is a fixed point of T . So, almost contractions are weakly Picard opera-
tors, while Banach contraction, Kannan contraction and Ćirić quasi-contractions
are Picard operators.

(d) Note also that condition (2.2.8) implies the so-called Banach orbital condition or
graphic contraction condition

d(Tx,T 2x)≤ ad(x,Tx), for all x ∈ X , (2.2.22)

studied by various authors (see Ref. [239, p. 39], for some historical remarks).
As shown by the Graphic Contraction Principle (see Ref. [239, p. 35]), a graphic
contraction that has closed graph is a weakly Picard operator.

So, in this context, the merit of condition (2.2.8) is that no other additional
hypothesis is needed in order for an almost contraction to be a weakly Picard
operator.

Remark 2.2.6. From a numerical point of view, a fixed point theorem is valuable if,
apart from the conclusion regarding the existence (and, possibly, uniqueness) of the
fixed point:

(a) it provides a method (generally, iterative) for constructing the fixed point(s);
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(b) it is able to provide information on the error estimate or / and rate of convergence
of the iterative process used to approximate the fixed point; and

(c) it can give concrete information on the stability of this procedure, that is, on the
data dependence of the fixed point(s).

As shown above, Theorem 2.2.1 does possess all these features (see also Theorem
2.2.2), for the rate of convergence.

The next examples illustrate the diversity of almost contractions.

Example 2.2.1. Let X = [0,1] be the unit interval with the usual norm and let T :
[0,1]→ [0,1] be given by Tx = 1

2 , for x ∈ [0,2/3) and Tx = 1, for x ∈ [2/3,1].
As T has two fixed points, that is, Fix(T ) =

{ 1
2 ,1

}
, it does not satisfy either

Banach contraction condition (2.1.1), Kannan contraction condition (2.1.3), Chatter-
jea contraction condition (2.1.4), Zamfirescu contractive conditions (z1) and (z2), or
Ćirić’s quasi-contraction condition (2.2.12), but T satisfies the almost contraction con-
dition (2.2.8).

Indeed, for x,y ∈ [0,2/3) or x,y ∈ [2/3,1], (2.2.8) is obvious. For x ∈ [0,2/3) and
y ∈ [2/3,1] or y ∈ [0,2/3) and x ∈ [2/3,1] we have d(Tx,Ty) = 1/2 and d(y,Tx) =
|y−1/2| ∈ [1/6,1/2], in the first case, and d(y,Tx) = |y−1| ∈ [1/3,1], in the second
case, which show that it suffices to take L = 3 in order to ensure that (2.2.8) holds for
0 < δ < 1 and L ≥0 arbitrary and all x,y ∈ X .

Example 2.2.2. Let X = [0,1] with the usual metric and let T : [0,1] → [0,1] be
defined by

T x =
2
3

x, if 0 ≤ x <
1
2

and Tx =
2
3

x+
1
3
, if

1
2
≤ x ≤ 1.

Then:

(a) T is an almost contraction with constants δ = 2
3 , L = 6 and Fix(T ) = {0;1};

(b) T does not satisfy any of the contraction conditions of Banach, Kannan,
Chatterjea and Zamfirescu, and is not a Ćirić quasi-contraction, as T has two
fixed points.

Proof. We have to discuss the following possible cases:

I. If x,y ∈ [0, 1
2), then T (x) = 2

3x and T (y) = 2
3 y. Then condition (2.2.8) becomes

∣∣∣∣
2
3

x− 2
3

y
∣∣∣∣≤ δ |x− y|+L

∣∣∣∣y−
2
3

x
∣∣∣∣ ,

which obviously holds for δ ≥ 2
3 and any L ≥0.
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II. If x,y ∈ [1
2 ,1], then T (x) = 2

3 x+ 1
3 and T (y) = 2

3 y+ 1
3 . Similarly to case I, this

holds for δ ≥ 2
3 and any L ≥0.

III. If x ∈ [0, 1
2) and y ∈ [1

2 ,1], then T (x) = 2
3 x and T (y) = 2

3 y+ 1
3 . Condition (2.2.8)

becomes ∣∣∣∣
2
3

x− 2
3

y− 1
3

∣∣∣∣≤ δ |x− y|+L
∣∣∣∣y−

2
3

x
∣∣∣∣ . (2.2.23)

On the left-hand side we have that:

−1 ≤ 2
3

x− 2
3

y− 1
3
<−1

3
⇒

∣∣∣∣
2
3

x− 2
3

y− 1
3

∣∣∣∣ ∈
(

1
3
,1
]
,

while on the right-hand side we have that:

1
6
< y− 2

3
x ≤ 1 ⇒

∣∣∣∣y−
2
3

x
∣∣∣∣ ∈

(
1
6
,1
]
.

Then (2.2.23) holds for δ ∈ [0,1) and L ≥6.

IV. If x ∈ [1
2 ,1] and y ∈ [0, 1

2), then f (x) = 2
3 x+ 1

3 and f (y) = 2
3 y.

Condition (2.2.8) becomes
∣∣∣∣
2
3

x− 2
3

y+
1
3

∣∣∣∣≤ δ |x− y|+L
∣∣∣∣y−

2
3

x− 1
3

∣∣∣∣ . (2.2.24)

On the left-hand side we have that:∣∣∣∣
2
3

x− 2
3

y− 1
3

∣∣∣∣ ∈
(

1
3
,1
]
,

while on the right-hand side we have that:

−1 < y− 2
3

x− 1
3
≤−1

6
⇒

∣∣∣∣y−
2
3

x− 1
3

∣∣∣∣ ∈
[

1
6
,1
)
.

Then (2.2.24) holds for δ ∈ [0,1) and L ≥6.

The conclusion is that T satisfies (2.2.8) for any x,y ∈ X if δ ∈ [2
3 ,1) and L≥6. Taking

δ = 2
3 and L = 6, notice that δ +L > 1. !

Example 2.2.3. Let [0,1] be the unit interval with the usual norm. Let T : [0,1]→ [0,1]
be the identity map, i.e., T x = x, for all x ∈ [0,1]. Then

(a) T does not satisfy Ciric’s contractive condition (2.2.12);

(b) T satisfies the almost contraction condition (2.2.8) with δ ∈ (0,1) arbitrary and
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L ≥1−δ . Indeed, conditions (2.2.8) and (2.2.9) lead to

|x− y|≤ δ |x− y|+L · |y− x|,

which is true for all x,y ∈ [0,1] if we take δ ∈ (0,1) arbitrary and L ≥1−δ .

(c) The set of fixed points of T is the interval [0,1], i.e., F(T ) = [0,1].

It is possible to force an almost contraction to be a Picard operator by imposing an
additional contractive condition, quite similar to (2.2.8), as shown by the next theorem.

Theorem 2.2.2 [55, Theorem 2.2]. Let (X ,d) be a complete metric space and T :
X → X be a (δ ,L)- almost contraction for which there exist δu ∈ (0,1) and Lu ≥0
such that

d(Tx,Ty)≤ δu ·d(x,y)+Lu ·d(x,Tx), for all x,y ∈ X . (2.2.25)

Then

(a) T has a unique fixed point, i.e., F(T ) = {x∗};

(b) The Picard iteration {xn}∞
n=0 given by (2.1.2) converges to x∗, for any x0 ∈ X;

(c) The following estimate holds:

d(xn+i−1,x∗)≤
δ i

1−δ d(xn,xn−1), n = 0,1,2, . . . ; i = 1,2, . . . ; (2.2.26)

(d) The rate of convergence of the Picard iteration is given by

d(xn,x∗)≤ δu d(xn−1,x∗), n = 1,2, . . . . (2.2.27)

Proof. Assume T has two distinct fixed points x∗,y∗ ∈ X . Then, by (2.2.25), with
x := x∗, y := y∗ we get

d(x∗,y∗)≤ δu ·d(x∗,y∗) ⇔ (1−δu)d(x∗,y∗)≤ 0,

so contradicting d(x∗,y∗)> 0.
Letting y := xn, x := x∗ in (2.2.25), we obtain the estimate (2.2.27).
The rest of the proof follows by Theorem 2.2.1. !

Remark 2.2.7. (a) Note that the uniqueness condition (2.2.25) has been used by
Osilike [190 – 192] to prove stability results for certain fixed point iteration pro-
cedures. It is shown there (see Refs. [190, 191]), that condition (2.2.25) alone
does not imply T has a fixed point. But if a mapping T satisfying (2.2.25) has a
fixed point, then this fixed point is certainly unique.
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(b) It is easy to check that any operator T satisfying one of the conditions (2.1.1),
(2.1.3), (2.1.4), or the conditions in Theorem 2.1.2, also satisfies the uniqueness
conditions (2.2.25). Therefore, in view of Examples 2.2.1–2.2.3, Theorem 2.2.1
and Theorem 2.2.2 properly generalize Theorem 2.1.1, Kannan’s fixed point the-
orem [149], Theorem 2.1.2, and many other related results.

(c) Rus [236] has shown that, if T is a weakly Picard operator, then there exists a
partition of X ,

X =
⋃

λ∈Λ
Xλ

such that T |Xλ is a Banach contraction. In the case of the almost contractions in
Examples 2.2.1–2.2.3, we have the following partitions.

For T in Example 2.2.1, we have

[0,1] = [0,2/3)∪ [2/3,1];

for T in Example 2.2.2, we have

[0,1] = [0,1/2)∪ [1/2,1];

while for T in Example 2.2.3, we have

[0,1] =
⋃

λ∈[0,1]
{λ}.

(d) As can easily be seen, Theorem 2.2.2 (as well as Theorem 2.2.1, except for the
uniqueness of the fixed point) preserves all conclusions in the Banach contrac-
tion principle in its complete form [60, Theorem 2.1] under significantly weaker
contractive conditions.

Indeed, the metrical contractive conditions known in the literature (see Ref.
[226]) that involve on the right-hand side the displacements

d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

with nonnegative coefficients, say

a(x,y),b(x,y),c(x,y),d(x,y),e(x,y),

respectively, are commonly based on the very restrictive assumption

0 < a(x,y)+b(x,y)+ c(x,y)+d(x,y)+ e(x,y)≤ 1,

while, in condition (2.2.8), which involves only the displacements

d(x,y),d(y,Tx)
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the constant coefficients δ and L are not required to satisfy

δ +L ≤ 1.

This is obvious for T in Example 2.2.2, where we have

δ +L = 2/3+6.

It is possible to extend significantly Theorems 2.2.1 and 2.2.2, by replacing
d(x,y) in (2.2.8) by a certain expression of the displacements d(x,y), d(x,Tx),
d(y,Ty), d(x,Ty), d(y,Tx), first used by Ćirić [95]:

M1(x,y) = max
{

d(x,y),d(x,Tx),d(y,Ty),
1
2
[d(x,Ty)+d(y,Tx)]

}
. (2.2.28)

We thus have the following result, taken from Ref. [64].

Theorem 2.2.3. Let (X ,d) be a complete metric space and let T : X → X be a strong
Ćirić almost contraction, that is, a mapping for which there exist two constants α ∈
[0,1) and L ≥0 such that

d(Tx,Ty)≤ α ·M1(x,y)+Ld(y,Tx), for all x,y ∈ X , (2.2.29)

where M1(x,y) is given by (2.2.28). Then

(a) Fix(T ) = {x ∈ X : T x = x} ! /0;

(b) For any x0 = x ∈ X, the Picard iteration {xn}∞
n=0 given by (2.1.2) converges to

some x∗ ∈ Fix(T );

(c) The following estimate holds:

d(xn+i−1,x∗)≤
α i

1−α d(xn,xn−1), n = 0,1,2, . . . ; i = 1,2, . . . . (2.2.30)

Proof. Let x ∈ X be arbitrary and let {xn}∞
n=0 be the Picard iteration defined by (2.1.2)

with x0 = x. By taking x := xn−1, y := xn in (2.2.29), we obtain

d(xn,xn+1) = d(Txn−1,T xn)≤ α ·M1(xn−1,xn),

that is,

d(xn,xn+1)≤ α max
{

d(xn−1,xn),d(xn,xn+1),
1
2
[d(xn−1,xn+1)+0]

}
,

since d(xn,T xn−1) = 0. Now, by the triangle inequality

d(xn−1,xn+1)≤ d(xn−1,xn)+d(xn,xn+1)
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and using the inequality a+b
2 ≤ max{a,b}, we deduce that either

max
{

d(xn−1,xn),d(xn,xn+1),
1
2

d(xn−1,xn+1)

}
= d(xn−1,xn) (2.2.31)

or

max
{

d(xn−1,xn),d(xn,xn+1),
1
2

d(xn−1,xn+1)

}
= d(xn,xn+1). (2.2.32)

The case (2.2.32) cannot hold because it would lead to the contradiction

d(xn,xn+1)≤ hd(xn,xn+1).

Hence, (2.2.31) must always hold, and this leads to

d(xn,xn+1)≤ hd(xn−1,xn).

The rest of the proof is similar to that of Theorem 2.2.1. !

Like in the case of Theorem 2.2.1, it is possible to force the uniqueness of the
fixed point of a Ćirić strong almost contraction by imposing an additional contractive
condition, quite similar to (2.2.29), as shown by the next theorem.

Theorem 2.2.4. Let (X ,d) be a complete metric space and let T : X → X be a Ćirić
strong almost contraction for which there exist θ ∈ [0,1) and some L1 ≥0 such that

d(Tx,Ty)≤ θ ·d(x,y)+L1 ·d(x,T x), for all x,y ∈ X . (2.2.33)

Then

(a) T has a unique fixed point, i.e., Fix(T ) = {x∗};

(b) The Picard iteration {xn}∞
n=0 given by (2.1.2) converges to x∗, for any x0 ∈ X;

(c) The error estimate (2.2.30) holds.

(d) The rate of convergence of the Picard iteration is given by

d(xn,x∗)≤ θ d(xn−1,x∗), n = 1,2, . . . . (2.2.34)

Proof. Assume T has two distinct fixed points, say x∗,y∗ ∈ X . Then by (2.2.25), with
x := x∗, y := y∗ we get

d(x∗,y∗)≤ θ ·d(x∗,y∗) ⇔ (1−θ )d(x∗,y∗)≤ 0,

so contradicting d(x∗,y∗)> 0.
Now letting y := xn, x := x∗ in (2.2.33), we obtain the estimate (2.2.34).
The rest of the proof follows by Theorem 2.2.3. !
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Remark 2.2.8. Note that M1(x,y) given by (2.2.28) cannot be replaced by M(x,y)
appearing on the right-hand side of quasi-contraction condition (2.2.12), i.e.,

M(x,y) = max
{

d(x,y), d(x,Tx), d(y,Ty),d(x,Ty), d(y,Tx)
}
.

This would lead to the contraction condition

d(Tx,Ty)≤ α ·M(x,y)+Ld(y,Tx), for all x,y ∈ X , (2.2.35)

with α ∈ [0,1) and L ≥0, which is too weak to ensure the existence of a fixed point
(see the next example, taken from Ref. [63]; see also Ref. [62]).

Example 2.2.4. Let X = N = {0,1,2, . . .} with the usual norm and let T be defined
by T (n) = n+ 1. Then T does satisfy (2.2.35) with α = 1

2 and L = 2 but T is fixed
point free. Indeed, if we take x = n, y = m, m > n, then d(Tx,Ty) = m−n, M(x,y) =
m−n+1, d(y,Tx) = m−n−1. Thus condition (2.2.35) reduces to

m−n ≤ α(m−n+1)+2(m−n−1) =
5
2
(m−n)− 3

2
,

which is true, since m−n ≥1.

An equivalent (see Ref. [199]) contractive condition that ensures the uniqueness of
the fixed point has been obtained by Babu et al. [48] for almost contractions.

We state the fixed point theorem corresponding to this uniqueness condition in the
case of Ćirić strong almost contractions.

Theorem 2.2.5. Let (X ,d) be a complete metric space and let T : X →X be a mapping
for which there exist α ∈ [0,1) and some L ≥0 such that for all x,y ∈ X

d(Tx,Ty)≤ α ·M1(x,y)+Lmin{d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)} . (2.2.36)

Then

(a) T has a unique fixed point, i.e., Fix(T ) = {x∗};

(b) The Picard iteration {xn}∞
n=0 given by (2.1.2) converges to x∗, for any x0 ∈ X;

(c) The error estimate (2.2.30) holds.

For more details and results on Ćirić strong almost contractions, see Refs. [62, 63].
Starting from the fact that ϕ-contractions are natural generalizations of Banach

contractions, we can extend the previous results from almost contractions to the more
general class of almost ϕ-contractions. The same extension can be done for Ćirić
strong almost contractions.
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To do this, the central concept is that of the comparison function (see Ref. [52] and
references therein for more details, results and proofs).

Definition 2.2.2. A map ϕ : R+ → R+ is called a comparison function if it satisfies:

(iϕ ) ϕ is monotone increasing, i.e., t1 < t2 ⇒ ϕ(t1)≤ ϕ(t2);

(iiϕ ) the sequence {ϕn(t)}∞
n=0 converges to zero, for all t ∈ R+, where ϕn stands for

the nth iterate of ϕ .

If ϕ satisfies (iϕ ) and

(iiiϕ )
∞
∑

k=0
ϕk(t) converges for all t ∈R+, then ϕ is said to be a (c)-comparison function.

It has been shown (see for example Ref. [60]), that ϕ satisfies (iiiϕ ) if and only if

there exist 0 < c < 1 and a convergent series of positive terms,
∞
∑

n=0
un, such that

ϕk+1(t)≤ cϕk(t)+uk, for all t ∈ R+ and k ≥k0 (fixed).

It is also known that if ϕ is a (c)-comparison function, then the sum of the comparison
series, i.e.,

s(t) =
∞

∑
k=0

ϕk(t), t ∈ R+, (2.2.37)

is monotone increasing and continuous at zero, and that any (c)-comparison function
is a comparison function.

A prototype for comparison functions is

ϕ(t) = at, t ∈ R+ (0 ≤ a < 1)

but, as shown by Example 2.2.5, the comparison functions need not be either linear or
continuous.

Note however that any comparison function is continuous at zero.

Example 2.2.5. Let ϕ1(t) = t
t+1 , t ∈R+ and ϕ2(t) = 1

2 t, if 0 ≤ t < 1 and ϕ2(t) = t− 1
3 ,

if t ≥1. Then ϕ1 is a nonlinear comparison function, which is not a (c)-comparison
function, while ϕ2 is a discontinuous (c)-comparison function.

By replacing the well-known strict contractive condition (2.1.1) appearing in Ba-
nach’s fixed point theorem, i.e.,

d(Tx,Ty)≤ ad(x,y), for all x,y ∈ X ,
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by a more general one

d(Tx,Ty)≤ ϕ
(
d(x,y)

)
, for all x,y ∈ X , (2.2.38)

where ϕ is a certain comparison function, several fixed point theorems have been
obtained (see Ref. [235] and references therein).

Recall that an operator T which satisfies a condition of the form (2.2.38) is com-
monly named a ϕ-contraction.

Following the way in which the Banach contractions were extended to
ϕ-contractions, in the following we would like to extend Theorems 2.2.1 and 2.2.2
from almost contractions to almost ϕ-contractions.

Definition 2.2.3. Let (X ,d) be a metric space. A mapping T : X → X is said to be
an almost ϕ-contraction or a (ϕ ,L)-almost contraction provided that there exist a
comparison function ϕ and some L ≥0, such that

d(Tx,Ty)≤ ϕ
(
d(x,y)

)
+Ld(y,T x), for all x,y ∈ X . (2.2.39)

Remark 2.2.9. Clearly, any almost contraction is an almost ϕ-contraction, with ϕ(t)=
δ t, t ∈ R+ and 0 < δ < 1. Also, all ϕ-contractions are almost ϕ-contractions with
L ≡ 0 in (2.2.39).

The next theorem, taken from Ref. [54], extends Theorem 2.2.1 from almost con-
tractions to almost ϕ-contractions.

Theorem 2.2.6. Let (X ,d) be a complete metric space and T : X → X an almost ϕ-
contraction with ϕ a (c)-comparison function. Then

(a) F(T ) = {x ∈ X : T x = x} ! φ ;

(b) For any x0 ∈ X, the Picard iteration {xn}∞
n=0 defined by x0 ∈ X and

xn+1 = Txn, n = 0,1,2, . . . , (2.2.40)

converges to a fixed point x∗ of T ;

(c) The following estimate:

d(xn,x∗)≤ s
(
d(xn,xn+1)

)
, n = 0,1,2, . . . , (2.2.41)

holds, where s(t) is given by (2.2.37).

Proof. We shall prove that T has at least one fixed point in X . To this end, let x0 ∈ X
be arbitrary and {xn}∞

n=0 be the Picard iteration defined by (2.2.40).
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Since T is an almost ϕ-contraction, there exist a (c)-comparison function ϕ and
some L ≥0, such that

d(Tx,Ty)≤ ϕ
(
d(x,y)

)
+L ·d(y,Tx) (2.2.42)

holds, for all x,y ∈ X .
Take x := xn−1, y := xn in (2.2.42). We get

d(xn,xn+1)≤ ϕ
(
d(xn−1,xn)

)
, for all n = 1,2, . . . . (2.2.43)

Since ϕ is not decreasing, by (2.2.43) we have

d(xn+1,xn+2)≤ ϕ
(
d(xn,xn+1)

)
,

which inductively yields

d(xn+k,xn+k+1)≤ ϕk(d(xn,xn+1)
)
, k = 0,1,2, . . . .

By the triangle rule, we have

d(xn,xn+p) ≤ d(xn,xn+1)+d(xn+1,xn+2)+ · · ·+d(xn+p−1,xn+p)

≤ r+ϕ(r)+ · · ·+ϕn+p−1(r), (2.2.44)

where r := d(xn,xn+1).
Again by (2.2.43), we find

d(xn,xn+1)≤ ϕn(d(x0,x1)
)
, n = 0,1,2, . . . , (2.2.45)

which, by property (iiϕ ) of a comparison function, implies

lim
n→∞

d(xn,xn+1) = 0. (2.2.46)

As ϕ is positive, it is obvious that

r+ϕ(r)+ · · ·+ϕn+p−1(r)< s(r), (2.2.47)

where s(r) is the sum of the series
∞
∑

k=0
ϕk(r).

Then by (2.2.44) and (2.2.47), we get

d(xn,xn+p)≤ s
(
d(xn,xn+1)

)
, n ∈ N, p ∈ N. (2.2.48)

Since s is continuous at zero, (2.2.46) and (2.2.47) imply that {xn}∞
n=0 is a Cauchy

sequence. As X is complete, {xn}∞
n=0 is convergent.

Let x∗ = lim
n→∞

xn. We shall prove that x∗ is a fixed point of T . Indeed,

d(x∗,T x∗)≤ d(x∗,xn+1)+d(xn+1,T x∗) = d(xn+1,x∗)+d(Txn,T x∗).
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By (2.2.42), we have

d(Txn,T x∗)≤ ϕ(d(xn,x∗))+Ld(x∗,T xn),

and hence

d(x∗,T x∗)≤ (1+L)d(xn+1,x∗)+ϕ(d(xn,x∗)), for all n ≥0. (2.2.49)

Now letting n → ∞ in (2.2.49) and using the continuity of ϕ at zero, we obtain

d(x∗,T x∗) = 0,

i.e., x∗ is a fixed point of T . The estimate (2.2.41) follows by (2.2.44) by letting
p → ∞. !

Remark 2.2.10. (a) Using the a posteriori error estimate (2.2.41) and (2.2.45) we
easily obtain

d(xn,x∗)≤ s
(

ϕn(d(x0,x1)
))

, n = 0,1,2, . . . ,

which is the a priori estimate for the Picard iteration {xn}∞
n=0.

(b) If we take ϕ(t) = δ · t, t ∈ R+, 0 < δ < 1, by Theorem 2.2.6 we obtain the
corresponding result for almost contractions, i.e., Theorem 2.2.1.

Like in the case of almost contractions, in order to guarantee the uniqueness of the
fixed point of T , we have to consider an additional contractive type condition, as in
the next theorem.

Theorem 2.2.7. Let X and T be as in Theorem 2.2.6. Suppose T also satisfies the
following condition: there exist a comparison function ψ and some L1 ≥0 such that

d(Tx,Ty)≤ ψ
(
d(x,y)

)
+L1d(x,Tx), for all x,y ∈ X . (2.2.50)

Then

(a) T has a unique fixed point, i.e., F(T ) = {x∗};

(b) The estimate (2.2.41) holds;

(c) The rate of convergence of the Picard iteration is expressed by

d(xn,x∗)≤ ϕ
(
d(xn−1,x∗)

)
, n = 1,2, . . . . (2.2.51)

Proof. Assume there exist two distinct fixed points x∗,y∗ ∈ X . Then by (2.2.50) with
x := x∗ and y := y∗, we get

d(x∗,y∗)≤ ψ
(
d(x∗,y∗)

)
,
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which by induction yields

d(x∗,y∗)≤ ψn(d(x∗,y∗)
)
, n = 1,2, . . . . (2.2.52)

Now, letting n → ∞ in (2.2.52) we get

d(x∗,y∗) = 0,

i.e., x∗ = y∗, a contradiction. Therefore, T has a unique fixed point.
To obtain (2.2.51), we let x := x∗, y := xn in (2.2.50). !

The next Maia type extension of Theorem 2.2.7 is very natural (see Ref. [54]).

Theorem 2.2.8. Let X be a nonempty set and d,ρ be two metrics on X such that (X ,d)
is complete. Let T : X → X be a self operator satisfying the following.

(i) There exists a (c)-comparison function ϕ and L ≥0 such that

d(Tx,Ty)≤ ϕ
(
d(x,y)

)
+Ld(y,Tx), for all x,y ∈ X .

(ii) There exists a comparison function ψ and L1 ≥0 such that

ρ(Tx,Ty)≤ ψ
(
ρ(x,y)

)
+L1ρ(x,T x), for all x,y ∈ X .

Then

(a) T has a unique fixed point x∗;

(b) The Picard iteration {xn}∞
n=0, xn+1 = T xn, n ≥0, converges to x∗, for all x0 ∈ X;

(c) The a posteriori error estimate

d(xn,x∗)≤ s
(
d(xn,xn+1)

)
, n = 0,1,2, . . . ,

holds, where s(t) =
∞
∑

k=0
ϕk(t);

(d) The rate of convergence of the Picard iteration is given by

ρ(xn,x∗)≤ ψ
(
ρ(xn−1,x∗)

)
, n ≥1.

For other extensions of single-valued almost contractions, see Refs. [6–9, 11, 12,
14, 18, 20, 22, 28, 30, 41, 42, 44, 45, 47, 51, 89, 91, 125, 128, 138, 140, 161, 169, 181,
198, 199, 202, 203, 208, 216, 217, 243–248, 251, 252, 254, 257, 260, 262–266, 271,
277].

Final note. In Ref. [261] the authors tried to prove that Theorems 2.2.1 and 2.2.2 are
false. Their claims were shown to be false and based on some wrong calculations (see
the reply paper [73]).
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Another attempt to diminish the merits of almost contractions is contained in a
series of two recent papers [274, 275], where the author claims that “the almost con-
traction condition is almost covered” by a contractive condition studied in Ref. [155].

To be more specific, we present the statement of the main result in the paper [157],
and then show that the above claim is not valid either. The authors of Ref. [157]
established the following result (Theorem 2).

Theorem 2.2.9. Let (X ,d) be a complete metric space, T a self map of X, and ϕ :
R+ → R+ an increasing and continuous function with the property ϕ(t) = 0 if and
only if t = 0. Furthermore, let a,b,c be three decreasing functions from R+ \{0} into
[0,1) such that a(t)+ 2b(t)+ c(t) < 1 for every t > 0. Suppose that T satisfies the
following condition:

ϕ(d(Tx,Ty)) ≤ a(x,y)ϕ(d(x,y)) (2.2.53)

+b(x,y)[ϕ(d(x,Tx))+ϕ(d(y,Ty))]

+c(d(x,y))min{ϕ(d(x,Ty)),ϕ(d(y,Tx))},

where x,y ∈ X and x ! y. Then T has a unique fixed point.

Because the coefficients a(t), b(t), c(t) are subject to the strong condition a(t)+
2b(t)+ c(t) < 1 (see Remark 2.2.7), the class of mappings satisfying (2.2.53) can-
not cover the class of almost contractions, for which the corresponding nonnegative
coefficient c(t) should be free of any restriction.

2.3. Implicit Almost Contractions

A simple and natural way to unify and prove in a simple manner several metrical fixed
point theorems is to consider an implicit contraction type condition instead of the usual
explicit contractive conditions.

It appears that Turinici [272] was the first to consider fixed point theorems for
contractions defined by implicit relations. If (X ,d) is a metric space, in Ref. [272]
there are considered mappings T : X → X , satisfying the implicit contraction condition

d(Tx,Ty)≤ f (d(x,y),d(x,Tx),d(y,Ty)), for all x,y ∈ X ,

where f : R3
+ → R+.

Later, Popa [211, 212], initiated a systematic study of the contractions defined by
implicit relations of the form:

F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx))≤ 0,

where F : R6
+ → R+.
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This direction of research led to a comprehensive literature (that cannot be
completely cited here) on fixed point, common fixed point and coincidence point the-
orems, both for single-valued and multivalued mappings, in various ambient spaces.

So, the aim of this section is to obtain general fixed point theorems for implicit
almost contractions, largely by following Ref. [69].

Let F be the set of all continuous real functions F : R6
+ → R+, for which we

consider the following conditions:
(F1a) F is nonincreasing in the fifth variable and F(u,v,v,u,u+v,0)≤ 0 for u,v ≥0

⇒ ∃h ∈ [0,1) such that u ≤ hv;
(F1b) F is nonincreasing in the fourth variable and F(u,v,0,u + v,u,v) ≤ 0 for

u,v ≥0 ⇒ ∃h ∈ [0,1) such that u ≤ hv;
(F1c) F is nonincreasing in the third variable and F(u,v,u+v,0,v,u)≤ 0 for u,v≥0

⇒ ∃h ∈ [0,1) such that u ≤ hv;
(F2) F(u,u,0,0,u,u) > 0, for all u > 0.
The following functions are related to well-known fixed point theorems and satisfy

most of the conditions (F1a)–(F2) above.

Example 2.3.1. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −at2,

where a ∈ [0,1), satisfies (F2) and (F1a)–(F1c), with h = a.

Example 2.3.2. Let b ∈
[
0, 1

2

)
. Then the function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −b(t3 + t4),

satisfies (F2) and (F1a)–(F1c), with h = b
1−b < 1.

Example 2.3.3. Let c ∈
[
0, 1

2

)
. Then the function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 − c(t5 + t6),

satisfies (F2) and (F1a)–(F1c), with h = c
1−c < 1.

Example 2.3.4. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −amax
{

t2,
t3 + t4

2
,
t5 + t6

2

}
,

where a ∈ [0,1), satisfies (F2) and (F1a)–(F1c), with h = a.

Example 2.3.5. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −at2 −b(t3 + t4)− c(t5+ t6),
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where a,b,c ∈ [0,1) and a+ 2b+ 2c < 1, satisfies (F2) and (F1a)–(F1c), with h =
a+b+c
1−b−c < 1.

Example 2.3.6. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −amax
{

t2,
t3 + t4

2
,t5,t6

}
,

where a∈ [0,1), satisfies (F2) and (F1b), (F1c), with h= a and (F1a), with h= a
1−a < 1,

if a < 1/2.

Example 2.3.7. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −at2 −Lt3,

where a ∈ [0,1) and L ≥0, satisfies (F2) and (F1b), with h = a, but, in general, does
not satisfy (F1a) and (F1c).

Example 2.3.8. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −at2 −Lt6,

where a ∈ [0,1) and L ≥0, satisfies (F1a), with h = a, but, in general, does not satisfy
(F1b), (F1c) and (F2).

The following theorem, which is an enriched version of Theorem 3 of Popa [211]
and unifies the most important metrical fixed point theorems for contractive mappings
in Rhoades’ classification [226], was given in Ref. [69].

Theorem 2.3.1. Let (X ,d) be a complete metric space, T : X → X a self mapping for
which there exists F ∈ F such that for all x,y ∈ X ,

F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx))≤ 0. (2.3.54)

If F satisfies (F1a) and (F2) then:

(p1) T has a unique fixed point x in X;

(p2) The Picard iteration {xn}∞
n=0 defined by

xn+1 = Txn, n = 0,1,2, . . . , (2.3.55)

converges to x, for any x0 ∈ X.
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(p3) The following estimate holds:

d(xn+i−1,x)≤
hi

1−h
d(xn,xn−1), n = 0,1,2, . . . ; i = 1,2, . . . , (2.3.56)

where h is the constant appearing in (F1a).

(p4) If, additionally, F satisfies (F1c), then the rate of convergence of Picard iteration
is given by:

d(xn+1,x)≤ hd(xn,x), n = 0,1,2, . . . . (2.3.57)

Remark 2.3.1. (a) If F is the function in Example 2.3.1, then by Theorem 2.3.1
we obtain the Banach contraction mapping principle, in its complete form (see
Theorem 2.1.1).

(b) If F is the function in Example 2.3.2, then by Theorem 2.3.1 we obtain Theorem
1 in Ref. [58], that extends the well-known Kannan fixed point theorem [149].

(c) If F is the function in Example 2.3.3, then by Theorem 2.3.1 we obtain a fixed
point theorem that extends the Chatterjea fixed point theorem [85].

(d) If F is the function in Example 2.3.4, then by Theorem 2.3.1 we obtain Theorem
2 in Ref. [58], that extends the well-known Zamfirescu fixed point theorem [280].

(e) If F is the function in Example 2.3.5, then by Theorem 2.3.1 we obtain a fixed
point theorem that extends the Reich-Rus fixed point theorem [239].

For other important particular cases of Theorem 2.3.1, see Refs. [53, 69] and the
references therein.

The first main result of this section extends Theorem 2.3.1 in such a way to also
include some known fixed point theorems for explicit almost contractions.

Theorem 2.3.2. Let (X ,d) be a complete metric space, T : X → X a self mapping for
which there exists F ∈ F , satisfying (F1a), such that for all x,y ∈ X,

F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx))≤ 0. (2.3.58)

Then

(p1) Fix(T ) ! /0;

(p2) For any x0 ∈ X, the Picard iteration {xn}∞
n=0 converges to a fixed point x of T .
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(p3) The following estimate holds:

d(xn+i−1,x)≤
hi

1−h
d(xn,xn−1), n = 0,1,2, . . . ; i = 1,2, . . . , (2.3.59)

where h is the constant appearing in (F1a).

(p4) If, additionally, F satisfies (F1c), then the rate of convergence of Picard iteration
is given by:

d(xn+1,x)≤ hd(xn,x), n = 0,1,2, . . . . (2.3.60)

Proof. (p1) Let x0 be an arbitrary point in X and xn+1 = Txn, n= 0,1, . . . , be the Picard
iteration. If we take x := xn−1 and y := xn in (2.3.58) and denote u := d(xn,xn+1),
v := d(xn−1,xn) we get

F (u,v,v,u,d(xn−1,xn+1),0)≤ 0.

By the triangle inequality, d(xn−1,xn+1)≤ d(xn−1,xn)+d(xn,xn+1) = u+v and, since
F is nonincreasing in the fifth variable, we have

F (u,v,v,u,u+ v,0) ≤ F (u,v,v,u,d(xn−1,xn+1),0)≤ 0

and hence, in view of assumption (F1a), there exists h ∈ [0,1) such that u ≤ hv, that is,

d(xn,xn+1)≤ hd(xn−1,xn), (2.3.61)

which, in a straightforward way, leads to the conclusion that {xn}∞
n=0 is a Cauchy

sequence.
Since (X ,d) is complete, there exists a x in X such that

lim
n→∞

xn = x. (2.3.62)

By taking x := xn and y := x in (2.3.58) we get

F (d(Txn,T x),d(xn,x),d(xn,T xn),d(x,T x),d(xn,T x),d(x,T xn))≤ 0. (2.3.63)

As F is continuous, by letting n → ∞ in (2.3.63), we obtain

F (d(x,T x),0,0,d(x,T x),d(x,T x),0))≤ 0,

which, by assumption (F1a), yields d(x,T x)≤ 0, that is, x = T x.

(p2) This follows by the proof of (p1).

(p3) This follows by a double inductive process by means of (2.3.61).

(p4) By taking x := xn and y := x in (2.3.58) we get

F (d(Txn,x),d(xn,x),d(xn,T xn),d(x,x),d(xn,x),d(x,T xn))≤ 0,
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that is,

F (d(xn+1,x),d(xn,x),d(xn,xn+1),0,d(xn,x),d(x,xn+1))≤ 0. (2.3.64)

Denote u := d(xn+1,x), v := d(xn,x). Then, by the triangle inequality we have
d(xn,xn+1) ≤ d(xn,x) + d(xn+1,x) = u+ v and hence, in view of assumption (F1c),
by (2.3.64) we obtain

F (u,v,u+ v,0,v,u)) ≤ F (u,v,d(xn,xn+1),0,v,u)≤ 0,

which again by (F1c) implies the existence of h ∈ [0,1) such that u ≤ hv, which is
exactly the desired estimate (2.3.60). !

Remark 2.3.2. (a) If F in Theorem 2.3.2 also satisfies (F2), then by Theorem 2.3.2
we obtain Theorem 2.3.1.

(b) If F is the function in Example 2.3.7, then by Theorem 2.3.2 (but not by Theorem
2.3.1) we obtain Theorem 2.2.1, i.e., the existence theorem [55, Theorem 2.1].

(c) If F is the function in Example 2.3.8, then by Theorem 2.3.2 (or by Theorem
2.3.1) we obtain Theorem 2.2.2, i.e., the existence and uniqueness theorem [55,
Theorem 2.2].

Remark 2.3.3. From the unifying error estimates (2.3.59), inspired by Ref. [278], we
get both the a priori estimate

d(xn,x)≤
hn

1−h
d(x0,x1), n = 0,1,2, . . . ,

and the a posteriori estimate

d(xn,x)≤
h

1−h
d(xn,xn−1), n = 1,2, . . . ,

which are extremely important in applications, especially when approximating the
solutions of nonlinear equations.

One can also obtain an existence and uniqueness fixed point theorem, correspond-
ing to Theorem 2.3.2.

Theorem 2.3.3. Let (X ,d) be a complete metric space, T : X → X a self mapping for
which there exists F ∈ F , satisfying (F1a), such that for all x,y ∈ X, (2.3.58) holds,
and there exists G ∈ F , satisfying (F2), such that for all x,y ∈ X,

G(d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx))≤ 0. (2.3.65)

Then
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(p1) T has a unique fixed point x in X;

(p2) For any x0 ∈ X, the Picard iteration {xn}∞
n=0 converges to x.

(p3) The error estimate (2.3.59) holds;

(p4) If, additionally, F or G satisfies (F1c), then the rate of convergence of the Picard
iteration is given by:

d(xn+1,x)≤ hd(xn,x), n = 0,1,2, . . . . (2.3.66)

Proof. The existence of the fixed point as well as the estimates (2.3.59) and (2.3.66)
follow as in the proof of Theorem 2.3.2.

In order to prove the uniqueness of x, assume the contrary, i.e., there exists y ∈
Fix(T ), x ! y. Then by taking x := x and y := y in (2.3.65) and by denoting δ :=
d(x,y)> 0 we get

G(δ ,δ ,0,0,δ ,δ ) ≤ 0,

which contradicts (F2).
This proves that T has a unique fixed point. !

Remark 2.3.4. (a) If F is the function in Example 2.3.8 and G is the function in
Example 2.3.7, then by Theorem 2.3.3 we obtain Theorem 2.2.2, i.e., Theorem
2.2 in Ref. [55].

(b) If F ≡ G is the function in Example 2.3.9, then by Theorem 2.3.3 one obtains
the main result (Theorem 2.3) in Ref. [47].

(c) If F is the function in Example 2.3.11, then by Theorem 2.3.3 one obtains the
second uniqueness result [63, Theorem 2.4].

Theorem 2.3.3 can now be significantly extended by considering two metrics on
the set X , similarly to Theorem 5 in Ref. [54].

Theorem 2.3.4. Let X be a nonempty set and d,ρ two metrics on X such that (X ,d)
is complete. Let T : X → X be a self operator for which

(i) there exists F ∈ F satisfying (F1a) such that for all x,y ∈ X,

F (d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx))≤ 0;

(ii) there exists G ∈ F satisfying (F1c) and (F2) such that for all x,y ∈ X,

G(ρ(Tx,Ty),ρ(x,y),ρ(x,Tx),ρ(y,Ty),ρ(x,Ty),ρ(y,Tx))≤ 0.
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Then

(a) T has a unique fixed point x;

(b) The Picard iteration {xn}∞
n=0, xn+1 = T xn, n ≥0, converges to x, for all x0 ∈ X;

(c) The error estimate (2.3.59) holds;

(d) The rate of convergence of the Picard iteration is given by

ρ(xn,x∗)≤ hρ(xn−1,x∗), n ≥1. (2.3.67)

Proof. The existence of the fixed point as well as the estimates (2.3.59) and (2.3.67)
follow as in the proof of Theorem 2.3.2.

In order to prove the uniqueness of x, assume the contrary, i.e., there exists y ∈
Fix(T ), x ! y. Then by taking x := x and y := y in (2.3.65) and by denoting δ :=
ρ(x,y)> 0 we get

G(δ ,δ ,0,0,δ ,δ ) ≤ 0,

which contradicts (F2). This proves that T has a unique fixed point. !

In order to illustrate the generality of Theorems 2.3.3 and 2.3.4, we consider three
more examples of functions F ∈ F .

Example 2.3.9. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −at2 −Lmin{t3,t4,t5,t6},

where a ∈ [0,1) and L ≥0, satisfies (F2) and (F1a)–(F1c), with h = a.

Example 2.3.10. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −amax
{

t2,t3,t4,
t5 + t6

2

}
−Lt6,

where a ∈ [0,1) and L ≥0, satisfies (F1a), with h = a, but, in general, does not satisfy
(F1b), (F1c) and (F2). To prove (F1a) let us observe that with F(u,v,v,u,u+ v,0) ≤ 0
one obtains

u−amax
{

v,v,u,
u+ v

2

}
≤ 0.

If one admits that u > v, then by the previous inequality one obtains u− au ≤ 0 ⇔
(1−a)u ≤ 0, a contradiction. Hence u ≤ v and thus (F1a) is satisfied with h = a.
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Example 2.3.11. The function F ∈ F , given by

F(t1,t2,t3,t4,t5,t6) = t1 −amax
{

t2,t3,t4,
t5 + t6

2

}
−Lmin{t3,t4,t5,t6},

where a ∈ [0,1) and L ≥0, satisfies (F2) and (F1a)–(F1c), with h = a.

Remark 2.3.5. (a) If we set d ≡ ρ, by Theorem 2.3.4 we obtain Theorem 2.3.3.

(b) If F is the function in Example 2.3.8 and G is the function in Example 2.3.7,
then by Theorem 2.3.3 we obtain Theorem 2.2.2, i.e., Theorem 2.2 in Ref. [55].

(c) If F is the function given by

F(t1,t2,t3,t4,t5,t6) = t1 −amax
{

t2,t3,t4,
t5 + t6

2

}
−Lt6,

where a ∈ [0,1) and L ≥0, and G is as in Example 2.3.7, then F satisfies (F2)
and (F1a)–(F1c), with h = a, and hence by Theorem 2.3.3 one obtains the first
uniqueness result [63, Theorem 2.3].

All contractive conditions considered in this chapter are defined by linear functions
F ∈ F (see Examples 2.3.1–2.3.11 and Remark 2.3.5), but generally, in Theorems
2.3.2, 2.3.3, and 2.3.4, neither F nor G is assumed to be linear.

This ensures a great generality to the results obtained in the present section. Several
nonlinear contractive conditions associated with similar fixed point theorems can be
found, for example, in Refs. [211, 212].

It is very important to note that, to our best knowledge, the contraction conditions
defined by the functions in Examples 2.3.7–2.3.11 in this chapter have not been con-
sidered in any other papers devoted to fixed point theorems for mappings defined by
implicit relations.

2.4. Common Fixed Point Theorems for Almost Contractions

The Banach contraction mapping principle (Theorem 2.1.1) has been extended in an-
other direction than the ones illustrated in the previous sections by Jungck [144] to
obtain the following common fixed point theorem.

Theorem 2.4.1 [144]. Let (X ,d) be a complete metric space. Let S be a continuous
self map on X and T be any self map on X that commutes with S. Further let S and T
satisfy T (X) ⊂ S(X) and there exists a constant λ ∈ (0,1) such that for every x,y ∈ X,

d(Tx,Ty)≤ λ d(Sx,Sy), for all x,y ∈ X . (2.4.68)

Then S and T have a unique common fixed point.
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Note that Theorem 2.4.1 reduces to Theorem 2.1.1 in the case S = I (the identity
map on X).

Other common fixed point results for the Kannan, Chatterjea and Zamfirescu con-
tractive conditions have been recently obtained in Refs. [1] and [63] respectively,
while the corresponding common fixed point result for Ciric’s fixed point theorem
has been derived by Das and Naik [105].

Theorem 2.4.2 [105]. Let (X ,d) be a complete metric space. Let S be a continuous
self map on X and T be any self map on X that commutes with S. Further let S and T
satisfy T (X) ⊂ S(X). If there exists a constant h ∈ (0,1) such that for every x,y ∈ X,

d(Tx,Ty)≤ hM(x,y), (2.4.69)

where

M(x,y) = max
{

d(Sx,Sy),d(Sx,Tx),d(Sy,Ty),d(Sx,Ty),d(Sy,Tx)
}
,

then S and T have a unique common fixed point.

Due to the fact that Theorem 2.4.2 requires S and T to be commuting mappings, an
extension of this result to weakly commuting generalized quasi-contractions has been
given in Ref. [56].

As all Banach, Kannan, Chatterjea and Zamfirescu contractive conditions imply
the almost contractive condition (2.2.8), it is the main purpose of the present section
to extend Theorem 1 in Ref. [56], and thus all its subsequent results, to the case of a
pair of mappings (S,T ) satisfying an almost contraction condition.

To this end we need some notions and results from Refs. [1] and [145].

Definition 2.4.1 [1]. Let S and T be self maps of a nonempty set X . If there exists x ∈
X such that Sx = Tx then x is called a coincidence point of S and T , while y = Sx = T x
is called a point of coincidence (or coincidence value) of S and T . If Sx = Tx = x, then
x is called a common fixed point of S and T .

Definition 2.4.2 [145]. Let S and T be self maps of a nonempty set X . The pair of
mappings S and T is said to be weakly compatible if they commute at their coincidence
points.

The next proposition will be needed to prove the last part in our main results.

Proposition 2.4.1 [1, Proposition 1.4]. Let S and T be weakly compatible self maps
of a nonempty set X. If S and T have a unique coincidence point x, then x is the unique
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common fixed point of S and T .

For some other recent related results, see Refs. [72, 146].
We start this section by presenting a coincidence point theorem for almost contrac-

tion type mappings.

Theorem 2.4.3 [63]. Let (X ,d) be a metric space and let T, S : X → X be two map-
pings for which there exist a constant δ ∈ (0,1) and some L ≥0 such that

d(Tx,Ty)≤ δ ·d(Sx,Sy)+Ld(Sy,Tx), for all x,y ∈ X . (2.4.70)

If the range of S contains the range of T and S(X) is a complete subspace of X,
then T and S have a coincidence point in X.

Moreover, for any x0 ∈ X, the iteration {Sxn} defined by (2.4.72) converges to some
coincidence point x∗ of T and S, with the following error estimate:

d(Sxn+i−1,x∗)≤
δ i

1−δ d(Sxn,Sxn−1), n = 0,1,2, . . . ; i = 1,2, . . . . (2.4.71)

Proof. Let x0 be an arbitrary point in X . Since T (X) ⊂ S(X), we can choose a point
x1 in X such that T x0 = Sx1. Continuing in this way, for a value xn in X , we can find
xn+1 ∈ X such that

Sxn+1 = T xn, n = 0,1, . . . . (2.4.72)

If x := xn, y := xn−1 are two successive terms of the sequence defined by (2.4.72),
then by (2.4.70) we have

d(Sxn,Sxn+1) = d(Txn−1,T xn)≤ L ·d(Sxn,T xn−1)+δ ·d(Sxn−1,Sxn),

which in view of (2.4.72) yields

d(Sxn+1,Sxn)≤ δ ·d(Sxn,Sxn−1), n = 0,1,2, . . . . (2.4.73)

Now by induction, from (2.4.73) we obtain

d(Sxn+k,Sxn+k−1)≤ δ k ·d(Sxn,Sxn−1), n,k = 0,1, . . . (k ! 0),

and then, for p > i, we get after straightforward calculations

d(Sxn+p,Sxn+i−1)≤
δ i(1−δ p−i+1)

1−δ ·d(Sxn,Sxn−1), n ≥0; i ≥1. (2.4.74)

Take i = 1 in (2.4.74) and then, by an inductive process, we get

d(Sxn+p,Sxn)≤
δ

1−δ ·d(Sxn,Sxn−1)≤
δ n

1−δ ·d(Sx1,Sx0), n = 0,1,2 . . . ,
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which shows that {Sxn} is a Cauchy sequence.
Since S(X) is complete, there exists a value of x∗ in S(X) such that

lim
n→∞

Sxn+1 = x∗. (2.4.75)

We can find p ∈ X such that Sp = x∗. By (2.4.72) and (2.4.73) we further have

d(Sxn,T p)≤ δd(Sxn−1,Sp)≤ δ n−1d(Sx1,Sp),

which shows that we also have

lim
n→∞

Sxn = T p. (2.4.76)

Now by (2.4.75) and (2.4.76) we find that T p = Sp, that is, p is a coincidence point of
T and S (or x∗ is a point of coincidence of T and S). The estimate (2.4.71) is obtained
from (2.4.74) by letting p → ∞. !

Remark 2.4.1. Let us note that the coincidence point ensured by Theorem 2.4.3 is not
generally unique (see Ref. [55, Example 1]).

In order to obtain a common fixed point theorem from the coincidence Theorem
2.4.3, we need the uniqueness of the coincidence point, which can be obtained by
imposing an additional contractive condition, similar to (2.4.70).

Theorem 2.4.4. Let (X ,d) be a metric space and let T, S : X → X be two mappings
satisfying (2.4.70) for which there exist a constant θ ∈ (0,1) and some L1 ≥0 such
that

d(Tx,Ty)≤ θ ·d(Sx,Sy)+L1d(Sx,Tx), for all x,y ∈ X . (2.4.77)

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

In both cases, for any x0 ∈ X, the iteration {Sxn} defined by (2.4.72) converges
to the unique common fixed point (coincidence point) x∗ of S and T , with the error
estimate (2.4.71).

The convergence rate of the iteration {Sxn} is given by

d(Sxn,x∗)≤ θ ·d(Sxn−1,x∗), n = 1,2, . . . . (2.4.78)

Proof. By the proof of Theorem 2.4.3, we have that T and S have at least one point of
coincidence. Now let us show that T and S actually have a unique point of coincidence.
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Assume there exists q ∈ X such that Tq = Sq. Then, by (2.4.77) we get

d(Sq,Sp) = d(Tq,T p)≤ 2δd(Sq,Tq)+δd(Sq,T p) = δd(Sq,Sp),

which shows that Sq= Sp= x∗, that is, T and S have a unique point of coincidence, x∗.
Now if T and S are weakly compatible, by Proposition 2.4.1 it follows that x∗ is

their unique common fixed point. The estimate (2.4.78) is obtained from (2.4.77) by
taking x = xn and y = x∗. !

An equivalent (see Ref. [199]) but simpler contractive condition that ensures the
uniqueness of the coincidence point and which actually unifies (2.4.70) and (2.4.77)
has been very recently obtained by Babu et al. [48]. We state in the following the
common fixed point theorem corresponding to this fixed point result.

Theorem 2.4.5. Let (X ,d) be a metric space and let T, S : X → X be two mappings
for which there exist a constant δ ∈ (0,1) and some L ≥0 such that

d(Tx,Ty)≤ δ ·d(Sx,Sy)

+Lmin{d(Sx,Tx)+d(Sy,Ty)+d(Sx,Ty)+d(Sy,Tx)} , (2.4.79)

for all x,y ∈ X. If the range of S contains the range of T and S(X) is a complete
subspace of X, then T and S have a unique coincidence point in X. Moreover, if T and
S are weakly compatible, then T and S have a unique common fixed point in X.

In both cases, for any x0 ∈ X, the iteration {Sxn} defined by (2.4.72) converges
to the unique common fixed point (coincidence point) x∗ of S and T , with the error
estimate (2.4.71) and convergence rate given by (2.4.78).

Proof. If x := xn, y := xn−1 are two successive terms of the sequence defined by
(2.4.72), then by (2.4.79) we have

d(Sxn,Sxn+1) = d(Txn−1,T xn)≤ δ ·d(Sxn−1,Sxn)+L ·M,

where

M = min{d(Sxn,T xn)+d(Sxn−1,T xn−1)+d(Sxn,T xn−1)+d(Sxn−1,T xn)}= 0,

since d(Sxn,T xn−1) = 0. The rest of the proof follows from that of Theorem 2.4.4. !

Remark 2.4.2. (a) If S = I (the identity map on X), then by Theorem 2.4.3 we ob-
tain the existence fixed point theorem given in Ref. [55] for almost contractions
(Theorem 2.2.1).

If S = I, then by Theorem 2.4.4 we obtain the existence and uniqueness fixed
point theorem given in Ref. [55] for almost contractions (Theorem 2.2.2).
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If S = I, then by Theorem 2.4.5 we obtain the existence and uniqueness fixed
point theorem given in Ref. [48] for strict almost contractions.

(b) If S = I and L = 0 in condition (2.4.70), then by Theorem 2.4.3 we obtain a
result that extends Jungck’s common fixed point theorem [144] from commuting
mappings to weakly compatible mappings.

Three other particular cases that are obtained from our main results are given in the
following as corollaries.

Corollary 2.4.1. Let (X ,d) be a metric space and let T, S : X → X be two mappings
for which there exist b ∈ [0, 1

2) such that, for all x,y ∈ X ,

(z2) d(Tx,Ty)≤ b
[
d(Sx,Tx)+d(Sy,Ty)

]
.

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

In both cases, the iteration {Sxn} defined by (2.4.72) converges to the unique (co-
incidence) common fixed point x∗ of S and T , for any x0 ∈ X, with the following error
estimate:

d(Sxn+i−1,x∗)≤
δ i

1−δ d(Sxn,Sxn−1), n, i = 0,1,2, . . . (i ! 0), (2.4.80)

where δ = b
1−b .

The convergence rate of the iteration {Sxn} is given by

d(Sxn,x∗)≤ δ ·d(Sxn−1,x∗), n = 1,2, . . . . (2.4.81)

Proof. By condition (z2) and the triangle rule, we get

d(Tx,Ty) ≤ b
[
d(x,T x)+d(y,Ty)

]
≤

≤ b
{ [

d(x,y)+d(y,Tx)
]
+
[
d(y,Tx)+d(Tx,Ty)

]}
,

which yields

(1−b)d(Tx,Ty)≤ bd(x,y)+2b ·d(y,Tx)

and which implies

d(Tx,Ty)≤ b
1−b

d(x,y)+
2b

1−b
d(y,Tx), for all x,y ∈ X .
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Now, in view of 0 < b < 1
2 , (2.4.70) holds with δ = b

1−b and L = 2b
1−b . The uniqueness

condition (2.4.81) follows similarly. To obtain the conclusion, apply Theorem 2.4.4.
!

Corollary 2.4.2. Let (X ,d) be a metric space and let T, S : X → X be two mappings
for which there exist c ∈ [0, 1

2) such that, for all x,y ∈ X ,

(z3) d(Tx,Ty)≤ c
[
d(Sx,Ty)+d(Sy,Tx)

]
.

If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

In both cases, the iteration {Sxn} defined by (2.4.72) converges to the unique (co-
incidence) common fixed point x∗ of S and T , for any x0 ∈ X, with the following error
estimate:

d(Sxn+i−1,x∗)≤
δ i

1−δ d(Sxn,Sxn−1), n, i = 0,1,2, . . . (i ! 0), (2.4.82)

where δ = c
1−c .

The convergence rate of the iteration {Sxn} is given by

d(Sxn,x∗)≤ δ ·d(Sxn−1,x∗), n = 1,2, . . . . (2.4.83)

Proof. By condition (z3) and the triangle rule, we get

d(Tx,Ty)≤ c
1− c

d(x,y)+
2c

1− c
d(y,Tx),

which is (2.4.70), with δ = c
1−c < 1 and L = 2c

1−c ≥0.
The uniqueness condition (2.4.81) follows similarly. Now apply Theorem 2.4.4 to

obtain the conclusion. !

Since any Banach contraction condition implies (2.4.70) (with L=0), by Corollaries
2.4.1 and 2.4.2 we obtain in particular the main result in Ref. [66].

Corollary 2.4.3. Let (X ,d) be a metric space and let T, S : X → X be two mappings
for which there exist a ∈ [0,1), b, c ∈ [0, 1

2) such that, for all x,y ∈ X , at least one of
the following conditions is true:

(z1) d(Tx,Ty)≤ ad(Sx,Sy);

(z2) d(Tx,Ty)≤ b
[
d(Sx,Tx)+d(Sy,Ty)

]
;

(z3) d(Tx,Ty)≤ c
[
d(Sx,Ty)+d(Sy,Tx)

]
.
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If the range of S contains the range of T and S(X) is a complete subspace of X, then
T and S have a unique coincidence point in X. Moreover, if T and S are weakly
compatible, then T and S have a unique common fixed point in X.

In both cases, the iteration {Sxn} defined by (2.4.72) converges to the unique (co-
incidence) common fixed point x∗ of S and T , for any x0 ∈ X, with the following error
estimate:

d(Sxn+i−1,x∗)≤
δ i

1−δ d(Sxn,Sxn−1), n = 0,1,2, . . . ; i = 1,2, . . . ,

where δ = max
{

a, b
1−b ,

c
1−c

}
.

The convergence rate of the iteration {Sxn} is given by

d(Sxn,x∗)≤ δ ·d(Sxn−1,x∗), n = 1,2, . . . .

Remark 2.4.3. It is important to note that all our results established here are impor-
tant from a computational point of view, due to the fact that they offer a method for
computing the common fixed points (the coincidence points, respectively).

Moreover, for the iterative method thus obtained, we have a priori and a posteriori
error estimates, both contained in the unified estimates of the form (2.4.71). Note
that in (2.2.19) and (2.4.70) we can have δ = 0, provided that in this case we also
have L = 0, which ensures that Theorems 2.2.1 and 2.4.3 also include the Banach
contraction mapping principle.

Several other fixed point results can be obtained as particular cases of our main
results in this section (see Refs. [85, 149]).

For common fixed point theorems of almost contractive mappings in cone metric
spaces, see Ref. [67].

For other developments concerning common fixed point theorems or coincidence
theorems for almost contractive type mappings, see Refs. [13, 46, 123, 137, 146, 166,
185, 196, 204, 222–224, 232, 253, 255, 256, 258, 268, 276], etc.

2.5. Almost Contractive type Mappings on Product Spaces

Banach’s contraction principle (Theorem 2.1.1) for a self mapping T : X → X has been
generalized by Prešić [218] to the case of self mappings defined on a product space,
f : Xk → X . This generalization has a direct connection with a dynamic field of re-
search devoted today to the study of nonlinear difference equations, with applications
in economics, biology, ecology, genetics, psychology, sociology, probability theory
and others (see for example Refs. [81, 86, 108, 127, 164, 165, 167, 193, 234, 264, 265]
and others). Some examples of such equations (see Refs. [234, 264] and the papers
referred to therein) are:
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• the generalized Beddington-Holt stock recruitment model:

xn+1 = axn +
bxn−1

1+ cxn−1 +dxn
, x0, x1 > 0, n ∈ N,

where a ∈ (0,1), b ∈ R∗+ and c,d ∈ R+, with c+d > 0;
• the delay model of a perennial grass:

xn+1 = axn +(b+ cxn−1)exn , n ∈ N,

where a,c ∈ (0,1) and b ∈ R+;
• the flour beetle population model:

xn+3 = axn+2 +bxne−(cxn+2+dxn), n ∈ N,

where a,b,c,d ≥0 and c+d > 0.
These suggest considering the following kth order nonlinear difference equation,

corresponding to a k-step iteration method:

xn+k = f (xn, . . . ,xn+k−1), n ∈ N, (2.5.84)

with the initial values x0, . . . ,xk ∈ X , where (X ,d) is a metric space, k ∈ N, k ≥1 and
f : Xk → X .

Equation (2.5.84) can be studied by means of fixed point theory in view of the fact
that x∗ ∈ X is a solution of (2.5.84) if and only if x∗ is a fixed point of f , that is,

x∗ = f (x∗, . . . ,x∗).

Remark 2.5.1. For any operator f : Xk → X , k a positive integer, we can define its
associate operator F : X → X (see Refs. [234, 249]) by

F(x) = f (x, . . . ,x), x ∈ X .

Obviously, x ∈ X is a fixed point of f : Xk → X if and only if it is a fixed point of its
associate operator F . This enables the study of f by means of the operator F .

One of the pioneering results in this direction is due to Prešić [218] (see Refs.
[279]). We begin by defining the following concept.

Definition 2.5.1. Let (X ,d) be a metric space, k a positive integer, α1,α2, . . . ,αk ∈R+,
k
∑

i=1
αi = α < 1 and f : Xk → X a mapping satisfying

d( f (x0, . . . ,xk−1), f (x1, . . . ,xk))≤
k

∑
i=1

αid(xi−1,xi), (2.5.85)
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for all x0, . . . ,xk ∈ X . Then f is called a Prešić operator.

It is obvious that for k = 1 the above definition reduces to the definition of classical
Banach contractions.

The result of Prešić [218], enriched with some quantitative information regarding
the rate of convergence of the k-step iterative method, is given below.

Theorem 2.5.1. Let (X ,d) be a complete metric space, k a positive integer and f :
Xk → X a Prešić operator. Then

(a) f has a unique fixed point x∗;

(b) the sequence {yn}n≥0,

yn+1 = f (yn,yn, . . . ,yn), n ≥0, (2.5.86)

converges to x∗;

(c) the sequence {xn}n≥0 with x0, . . . ,xk−1 ∈ X and

xn = f (xn−k,xn−k+1, . . . ,xn−1), n ≥k, (2.5.87)

also converges to x∗, with a rate estimated by

d(xn+1,x∗)≤ αd(xn,x∗)+M ·θ n, n ≥0, (2.5.88)

where M > 0 and θ ∈ (0,1) are constants.

As already said, Prešić’s result is a generalization of the contraction Banach prin-
ciple (Theorem 2.1.1), by considering contractions defined on product spaces. It was
then natural to search for similar Prešić type extensions also for other classes of gen-
eralized contractions. This has been done for Prešić-Rus operators in Ref. [233] (see
also Ref. [234]), for Ćirić-Prešić operators in Ref. [101], for Prešić-Kannan operators
in Ref. [201], for almost Prešić operators in Ref. [203] and so on. The study of Prešić
type results has been very dynamic lately, as the great number of very recent papers
on the topic shows (see references in Ref. [76] for a few of them).

In the following we shall briefly present only the results strictly related to almost
contractions, i.e., those concerning almost Prešić operators. The name of this class
suggests a Prešić type extension starting from the class of almost contractions. Ac-
tually only a subclass is referred to, namely that of strict almost contractions, by this
meaning those almost contractions, as defined in the first section of this chapter, which
satisfy the additional condition which ensures the uniqueness of the fixed point.
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Definition 2.5.2. Let (X ,d) be a metric space. An operator f : X → X is called a strict
almost contraction if it satisfies both conditions

d( f (x), f (y))≤ δ d(x,y)+Ld(y, f (x)), for any x,y ∈ X , (2.5.89)

and

d( f (x), f (y))≤ δu d(x,y)+Lu d(x, f (x)), for any x,y ∈ X , (2.5.90)

with some real constants δ ∈ [0,1), L ≥0 and δu ∈ [0,1), Lu ≥0, respectively.

Having in view Definition 2.5.2, we can restate (part of) Theorem 2.2.2 as follows
(see also Ref. [197]):

Theorem 2.5.2. Let (X ,d) be a complete metric space and f : X → X a strict almost
contraction with constants δ ∈ [0,1), L ≥0 and δu ∈ [0,1), Lu ≥0, respectively. Then
f has a unique fixed point, say x∗, that can be approximated by means of the Picard
iteration {xn}n≥0 of f , starting from any x0 ∈ X.

Remark 2.5.2. An equivalent definition of strict almost contractions, first introduced
in Ref. [47], is studied in Ref. [199], where it is shown that an operator f : X → X is a
strict almost contraction if and only if there exist two constants δB ∈ [0,1) and LB ≥0
such that

d( f (x), f (y))≤ δBd(x,y)

+LB min{d(x, f (x)),d(y, f (y)),d(x, f (y)),d(y, f (x))}, (2.5.91)

for any x,y ∈ X .

Having in view this equivalent definition of strict almost contractions, we intro-
duce:

Definition 2.5.3. Let (X ,d) be a metric space and k a positive integer. An operator

f : Xk →X for which there exist some real constants δ1, . . . ,δk ∈R+ with
k
∑

i=1
δi = δ < 1

and L ≥0 such that

d( f (x0, . . . ,xk−1), f (x1, . . . ,xk))≤
k

∑
i=1

δid(xi−1,xi)+M(x0,xk), (2.5.92)

where

M(x0,xk) = Lmin{d(x0, f (x0, . . . ,x0)),d(xk, f (xk, . . . ,xk)),

d(x0, f (xk, . . . ,xk)),d(xk, f (x0, . . . ,x0)),d(xk, f (x0,x1, . . . ,xk−1))},
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for any x0, . . . ,xk ∈ X , is called an almost Prešić operator.

It is easy to check that for k = 1 the terms d(xk, f (x0, . . . ,x0)) and d(xk, f (x0,x1, . . . ,
xk−1)) actually coincide, and Definition 2.5.3 reduces to the equivalent definition of
strict almost contractions mentioned above. Also for L = 0, from the above condition
(2.5.92), we obtain condition (2.5.85) which defines Prešić operators.

Remark 2.5.3. Considering f as in Definition 2.5.3 and its associate operator F , for
any x0, . . . ,xk ∈ X , we have

M(x0,xk) = Lmin{d(x0, f (x0, . . . ,x0)),d(xk, f (xk, . . . ,xk)),

d(x0, f (xk, . . . ,xk)),d(xk, f (x0, . . . ,x0)),d(xk, f (x0,x1, . . . ,xk−1))}
≤ Lmin{d(x0, f (x0, . . . ,x0)),d(xk, f (xk, . . . ,xk)),d(x0, f (xk, . . . ,xk)),

d(xk, f (x0, . . . ,x0))}
= Lmin{d(x0,F(x0)),d(xk,F(xk)),d(x0,F(xk)),d(xk,F(x0))}.

In order to prove our main result we shall also need the following lemmas:

Lemma 2.5.1 [218]. Let k ∈N,k ! 0 and α1,α2, . . . ,αk ∈R+ such that
k
∑

i=1
αi =α < 1.

If {∆n}n≥1 is a sequence of positive numbers satisfying

∆n+k ≤ α1∆n +α2∆n+1 + . . .+αk∆n+k−1, n ≥1, (2.5.93)

then there exist L > 0 and θ ∈ (0,1) such that ∆n ≤ L ·θ n for all n ≥1.

Lemma 2.5.2 [52]. Let {an}n≥0, {bn}n≥0 be two sequences of positive real numbers
and q ∈ (0,1) such that an+1 ≤ qan+bn,n≥0 and bn → 0 as n→ ∞. Then lim

n→∞
an = 0.

In the following we shall prove the convergence of the Prešić type method con-
structed by means of almost Prešić operators, also providing the rate of convergence
for this iterative procedure.

Theorem 2.5.3. Let (X ,d) be a complete metric space, k a positive integer and f :

Xk → X an almost Prešić operator with constants δ1, . . . ,δk ∈ R+,
k
∑

i=1
δi = δ < 1 and

L ≥0. Then

(a) f has a unique fixed point, say x∗ ∈ X;
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(b) the sequence {yn}n≥0 defined by

yn = f (yn−1, . . . ,yn−1), n ≥1,

converges to x∗ for any starting point y0 ∈ X;

(c) the sequence {xn}n≥0 defined by x0, . . . ,xk−1 ∈ X and (2.5.84) also converges to
x∗, with a rate estimated by

d(xn,x∗)≤ En−k +δd(xn−1,x∗), n ≥0, (2.5.94)

where

En−k := δ1d(xn−k,xn−k+1)+(δ1 +δ2)d(xn−k+1,xn−k+2)

+ · · ·+(δ1 + · · ·+δk−1)d(xn−2,xn−1). (2.5.95)

Proof. (a) and (b) We consider the associate operator F : X → X defined by F(x) =
f (x, . . . ,x), x ∈ X . For any x,y ∈ X we have that:

d(F(x),F(y)) = d( f (x, . . . ,x), f (y, . . . ,y))

≤ d( f (x, . . . ,x), f (x, . . . ,x,y))+ · · ·+d( f (x,y, . . . ,y), f (y, . . . ,y)).

By (2.5.92) and Remark 2.5.3, this implies:

d(F(x),F(y)) ≤ δkd(x,y)+Lmin{d(x,F(x)),d(y,F(y)),d(x,F(y)),d(y,F(x))

+ δk−1d(x,y)+Lmin{d(x,F(x)),d(y,F(y)),d(x,F(y)),d(y,F(x))

+ · · ·+
+ δ1d(x,y)+Lmin{d(x,F(x)),d(y,F(y)),d(x,F(y)),d(y,F(x)),

which is equivalent to

d(F(x),F(y))≤ δd(x,y)++kLmin{d(x,F(x)),d(y,F(y)),d(x,F(y)),d(y,F(x)),

that is, F satisfies condition (2.5.91) above, with constants δ ∈ [0,1) and kL ≥0, so
by Theorem 2.5.2 and Remark 2.5.2 above it has a unique fixed point, say x∗ ∈ X , that
can be obtained as the limit of the successive approximations of F starting from any
x ∈ X .

Having in view the definition of F and considering the sequence of successive
approximations of F , {yn}n≥0 defined by

yn = F(yn−1) = f (yn−1,yn−1, . . . ,yn−1), n ≥1,

this leads exactly to conclusions (a) and (b).

(c) Now let us prove that the k-step iterative method {xn}n≥0 given by (2.5.84)
converges to x∗ as well.
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Let x0, . . . ,xk−1 ∈ X and xn = f (xn−k, . . . ,xn−1), n ≥k. Then

d(xk,x∗) = d( f (x0, . . . ,xk−1), f (x∗, . . . ,x∗)) (2.5.96)

≤ d( f (x0, . . . ,xk−1), f (x1, . . . ,xk−1,x∗))

+ · · ·+d( f (xk−1,x∗, . . . ,x∗), f (x∗, . . . ,x∗)).

When applying (2.5.92) and Remark 2.5.3 for each term of the sum on the right-hand
side of (2.5.96), we get

d( f (x0, . . . ,xk−1), f (x1, . . . ,xk−1,x∗))

≤ δ1d(x0,x1)+ · · ·+δk−1d(xk−2,xk−1)+δkd(xk−1,x∗)

+Lmin{d(x0,F(x0)),d(x∗,F(x∗)),d(x0,F(x∗)),d(x∗,F(x0))}

and so on,

d( f (xk−2,xk−1,x∗, . . . ,x∗), f (xk−1,x∗, . . . ,x∗))

≤ δ1d(xk−2,xk−1)+δ2d(xk−1,x∗)+

+Lmin{d(xk−2,F(xk−2)),d(x∗,F(x∗)),d(xk−2,F(x∗)),d(x∗,F(xk−2))},

respectively

d( f (xk−1,x∗, . . . ,x∗), f (x∗, . . . ,x∗))≤ δ1d(xk−1,x∗)

+Lmin{d(xk−1,F(xk−1)),d(x∗,F(x∗)),d(xk−1,F(x∗)),d(x∗,F(xk−1))}. (2.5.97)

As d(x∗,F(x∗)) = 0, (2.5.96) finally leads to

d(xk,x∗)≤ δ1d(x0,x1)+(δ1+δ2)d(x1,x2)+ · · ·+
+(δ1 + · · ·+δk−1)d(xk−2,xk−1)+δd(xk−1,x∗). (2.5.98)

Since k is a fixed positive integer, so are the coefficients δ1, δ1+δ2, . . . , δ1+ · · ·+δk−1,
δ . Therefore we may denote

E0 := δ1d(x0,x1)+(δ1 +δ2)d(x1,x2)+ · · ·+(δ1 + · · ·+δk−1)d(xk−2,xk−1),

so (2.5.98) can be written as

d(xk,x∗)≤ E0 +δd(xk−1,x∗). (2.5.99)

Similarly, we get

d(xk+1,x∗)≤ δ1d(x1,x2)+(δ1 +δ2)d(x2,x3)+ · · ·+
+(δ1 + · · ·+δk−1)d(xk−1,xk)+δd(xk,x∗). (2.5.100)

Denoting

E1 := δ1d(x1,x2)+(δ1 +δ2)d(x2,x3)+ · · ·+(δ1 + · · ·+δk−1)d(xk−1,xk),
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inequality (2.5.100) can be written as

d(xk+1,x∗)≤ E1 +δd(xk,x∗). (2.5.101)

In this manner we obtain, for n ≥k, that

d(xn,x∗)≤ δ1d(xn−k,xn−k+1)+(δ1 +δ2)d(xn−k+1,xn−k+2)

+ · · ·+(δ1 + · · ·+δk−1)d(xn−2,xn−1)+δd(xn−1,x∗).

Denoting

En−k := δ1d(xn−k,xn−k+1)+(δ1 +δ2)d(xn−k+1,xn−k+2) (2.5.102)

+ · · ·+(δ1 + · · ·+δk−1)d(xn−2,xn−1),

inequality (2.5.98) becomes

d(xn,x∗)≤ En−k +δd(xn−1,x∗), for n ≥k. (2.5.103)

In order to apply Lemma 2.5.2, we still have to prove that the sequence {En}n≥0
given by

En = δ1d(xn,xn+1)+(δ1 +δ2)d(xn+1,xn+2)+ · · ·+
+(δ1 + · · ·+δk−1)d(xn+k−2,xn+k−1), n ≥0,

converges to 0 as n → ∞.
For n ≥k, we have

d(xn,xn+1) = d( f (xn−k, . . . ,xn−1), f (xn−k+1, . . . ,xn)). (2.5.104)

By (2.5.92) this yields

d(xn,xn+1)≤ δ1d(xn−k,xn−k+1)+ · · ·+δkd(xn−1,xn)+

+Lmin{d(xn−k,F(xn−k)),d(xn,F(xn)),d(xn−k,F(xn)),

d(xn,F(xn−k)),d(xn, f (xn−k, . . . ,xn−1))}. (2.5.105)

As d(xn, f (xn−k, . . . ,xn−1)) = 0, (2.5.104) finally leads to

d(xn,xn+1)≤ δ1d(xn−k,xn−k+1)+ · · ·+δkd(xn−1,xn), for n ≥k. (2.5.106)

According to Lemma 2.5.1, this implies the existence of θ ∈ (0,1) and K ≥0 such
that

d(xn,xn+1)≤ Kθ n+k,n ≥0.

Since k is fixed, it is evident that the sequence {En}n≥0 converges to 0 as n → ∞.
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Denoting En := En−k, (2.5.103) is written as:

d(xn,x∗)≤ En +δd(xn−1,x∗). (2.5.107)

Now taking an = d(xn,x∗), n ≥k and bn = En, n ≥k in Lemma 2.5.2, by (2.5.107)
it follows that d(xn,x∗)→ 0 as n → ∞, that is, the multistep iterative method {xn}n≥0
converges to x∗, the unique fixed point of f . !

Remark 2.5.4. Note that for L= 0, from Theorem 2.5.3, we get the result due to Prešić
[218], while for k = 1, Theorem 2.2.2 for strict almost contractions in metric spaces
is obtained. For k = 1 and L = 0, Theorem 2.5.3 reduces to the contraction mapping
principle (Theorem 2.1.1).

Other results and remarks concerning almost Presić operators can be found in
Ref. [203].

In Section 2.4 of this chapter the existence of coincindence points and common
fixed points for single-valued almost contractions was discussed. In the following we
shall present some common fixed point results for pairs of mappings where at least
one of them is an almost Prešić operator. These were introduced in Ref. [204].

We shall start with the case where only one of the mappings is defined on a product
space. In this respect the following extensions of classical notions and results, given
in Section 2.4 above (see also Ref. [204]), have to be considered:

Definition 2.5.4. Let X be a nonempty set, k a positive integer and f : Xk → X , g :
X → X two operators.

An element p ∈ X is called a coincidence point of f and g if it is a coincidence
point of F and g, where F is defined by F(x) = f (x,x, . . . ,x).

Similarly, s ∈ X is a coincidence value of f and g if it is a coincidence value of F
and g.

An element p ∈ X is a common fixed point of f and g if it is a common fixed point
of F and g.

Definition 2.5.5. Let X be a nonempty set, k a positive integer and f : Xk → X , g :
X → X . The operators f and g are said to be weakly compatible if F and g are weakly
compatible.

The following result is a generalization of Proposition 1.4 in Ref. [1], included in
the previous section as Proposition 2.4.1. For its proof see Ref. [204].

Lemma 2.5.3. Let X be a nonempty set, k a positive integer and f : Xk → X, g : X → X
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two weakly compatible operators. If f and g have a unique coincidence value x∗ =
f (p, . . . , p) = g(p), then x∗ is the unique common fixed point of f and g.

Definition 2.5.2 can be extended as follows:

Definition 2.5.6. Let (X ,d) be a metric space, k a positive integer, δ1, . . . , δk ∈ R+,

with
k
∑

i=1
δi = δ < 1 and L ≥0 constants and f : Xk → X , g : X → X two operators

satisfying:

d( f (x0, . . . ,xk−1), f (x1, . . . ,xk))≤
k

∑
i=1

δid(g(xi−1),g(xi))+Mg(x0,xk), (2.5.108)

for any x0,x1, . . . ,xk ∈ X , where

Mg(x0,xk) = Lmin{d(g(x0), f (x0, . . . ,x0)),d(g(xk)), f (xk, . . . ,xk),

d(g(xk)), f (x0, . . . ,x0)),d(g(x0), f (xk, . . . ,xk)),

d(g(xk), f (x0, . . . ,xk−1))}.

Then f is said to be an almost Prešić operator w. r. t. g.

Remark 2.5.5. For any x0,x1, . . . ,xk ∈ X we have that

Mg(x0,xk) ≤ Lmin{d(g(x0), f (x0, . . . ,x0)),d(g(xk)), f (xk, . . . ,xk),

d(g(xk)), f (x0, . . . ,x0)),d(g(x0), f (xk, . . . ,xk))},

that is,

Mg(x0,xk) ≤ Lmin{d(g(x0),F(x0)),d(g(xk)),F(xk)),

d(g(xk)),F(x0)),d(g(x0),F(xk))}.

Remark 2.5.6. Considering Remarks 2.5.2 and 2.5.5 above, it is easy to see that for
k = 1 Definition 2.5.6 reduces to the definition of strict almost contractions. Besides,
for g = 1X , f is an almost Prešić operator – see Ref. [197] for more results.

A general common fixed point result regarding almost Prešić operators is presented
below:

Theorem 2.5.4. Let (X ,d) be a metric space, k a positive integer and f : Xk → X,
g : X → X two operators such that:

(i) f is an almost Prešić operator with respect to g;
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(ii) there exists a complete subspace Y ⊆ X such that f (Xk) ⊆ Y ⊆ g(X).

Then

(a) f and g have a unique coincidence value, say x∗ ∈ X;

(b) the sequence {g(zn)}n≥0 defined by z0 ∈ X and

g(zn) = f (zn−1, . . . ,zn−1), n ≥1, (2.5.109)

converges to x∗;

(c) the sequence {g(xn)}n≥0 defined by x0, . . . ,xk−1 ∈ X and

g(xn) = f (xn−k, . . . ,xn−1), n ≥k, (2.5.110)

converges to x∗ as well, with a rate estimated by

d(g(xn),x∗)≤ En−k +δd(g(xn−1),x∗), (2.5.111)

where En−k is given by (2.5.127);

(d) if in addition f and g are weakly compatible, then x∗ is their unique common
fixed point.

Proof. (a) and (b) Let z0 ∈X . Then f (z0, . . . ,z0)∈ f (Xk) ⊂ g(X), so there exists z1 ∈X
such that

f (z0, . . . ,z0) = g(z1).

Similarly, f (z1, . . . ,z1) ∈ f (Xk) ⊂ g(X), so there exists z2 ∈ X such that

f (z1, . . . ,z1) = g(z2).

In this manner we construct the sequence {g(zn)}n≥0 with z0 ∈ X and

g(zn) = f (zn−1, . . . ,zn−1),n ≥1. (2.5.112)

Due to the manner {g(zn)}n≥0 was constructed, it is easy to recognize that

{g(zn)}n≥0 ⊆ f (Xk) ⊆ Y ⊆ g(X). (2.5.113)

For n ≥1, we have

d(g(zn),g(zn+1)) = d( f (zn−1, . . . ,zn−1), f (zn, . . . ,zn)) (2.5.114)

≤ d( f (zn−1, . . . ,zn−1), f (zn−1, . . . ,zn−1,zn))

+ · · ·+d( f (zn−1,zn, . . . ,zn), f (zn, . . . ,zn)).

Monther Alfuraidan, 978-0-12-804295-3

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.



“Book-AA-C02” — 2016/4/26 — 18:44 — page 76 — #48

76 Fixed Point Theory and Graph Theory: Foundations and Integrative Approaches

B978-0-12-804295-3.50002-4, 50002

Applying relation (2.5.108) and then Remark 2.5.5 to each of the distances on the
right-hand side of (2.5.114), we obtain

d( f (zn−1, . . . ,zn−1), f (zn−1, . . . ,zn−1,zn)) (2.5.115)

≤ δkd(g(zn−1),g(zn))+Lmin{d(g(zn−1),F(zn−1)),d(g(zn),F(zn)),

d(g(zn−1),F(zn)),d(g(zn),F(zn−1))}

and so on,

d( f (zn−1,zn, . . . ,zn), f (zn, . . . ,zn)) (2.5.116)

≤ δ1d(g(zn−1),g(zn))+Lmin{d(g(zn−1),F(zn−1)),d(g(zn),F(zn)),

d(g(zn−1),F(zn)),d(g(zn),F(zn−1))}.

As d(g(zn−1),F(zn)) = d(g(zn−1), f (zn, . . . ,zn)) = 0, (2.5.114) finally becomes

d(g(zn),g(zn+1))≤ δd(g(zn−1),g(zn)). (2.5.117)

By induction we get that

d(g(zn),g(zn+1))≤ δ nd(g(z0),g(z1)), n ≥0.

Using the triangle inequality, for p ≥1 we obtain that:

d(g(zn),g(zn+p))≤ δ n 1−δ p

1−δ d(g(z0),g(z1)), n ≥0, (2.5.118)

where δ ∈ [0,1).
Letting n→ ∞ in (2.5.118), we find that {g(zn)}n≥0 is a Cauchy sequence included,

by (2.5.113), in the complete subspace Y . Consequently, there exists x∗ ∈ Y such that
x∗ = lim

n−→∞
g(zn) and, since Y ⊂ g(X), there exists p ∈ X such that

g(p) = x∗ = lim
n−→∞

g(zn). (2.5.119)

Now we shall prove that f (p, . . . , p) = x∗. We have that

d(g(zn+1), f (p, . . . , p)) = d( f (zn, . . . ,zn), f (p, . . . , p))

≤ d( f (zn, . . . ,zn), f (zn, . . . ,zn, p))+ · · ·+d( f (zn, p, . . . , p), f (p, . . . , p)). (2.5.120)

It is obvious that the minimum among five quantities is less or equal to any of these
quantities, which we may conveniently choose.

Thus, when applying (2.5.108) to the distances on the right-hand side of (2.5.120),
each time we choose this quantity to be d(g(p), f (zn, . . . ,zn)). In this manner (2.5.120)
becomes:

d(g(zn+1), f (p, . . . , p))≤ δ d(g(zn),g(p))+ k Ld(g(p), f (zn, . . . ,zn)),
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i.e.,

d(g(zn+1), f (p, . . . , p))≤ δ d(g(zn),x∗)+ k Ld(x∗,g(zn+1)), n ≥0.

Letting n −→ ∞, by (2.5.119) it immediately follows that

f (p, . . . , p) = x∗ = g(p),

that is, x∗ is a coincidence value for f and g.
In order to prove its uniqueness, we suppose there would be some q ∈ X such that

f (q, . . . ,q) = g(q) ! x∗.

Then

d(g(p),g(q)) = d( f (p, . . . , p), f (q, . . . ,q))

≤ d( f (p, . . . , p), f (p, . . . , p,q))+ · · ·+d( f (p,q, . . . ,q), f (q, . . . ,q)). (2.5.121)

We now use a similar reasoning as before, applying (2.5.108) to each of the distances
on the right-hand side of inequality (2.5.121). This time we choose the minimum less
or equal to d(g(p), f (p, . . . , p)) = d(g(q), f (q, . . . ,q)) = 0. Thus (2.5.121) becomes:

d(g(p),g(q))≤ δ d(g(p),g(q)),

or

(1−δ )d(g(p),g(q))≤ 0.

As δ ∈ [0,1), this implies that d(g(p),g(q))= 0, so x∗ is the unique coincidence value
of f and g.

(c) Let x0, . . . ,xk−1 ∈ X . Then f (x0, . . . ,xk−1) ∈ f (Xk) ⊂ g(X), so there exists
xk ∈ X such that

f (x0, . . . ,xk−1) = g(xk).

Similarly, f (x1, . . . ,xk) ∈ f (Xk) ⊂ g(X), so there exists xk+1 ∈ X such that

f (x1, . . . ,xk) = g(xk+1).

In this manner we construct the sequence {g(xn)}n≥0 defined by x0, . . . ,xk−1 ∈ X and

g(xn) = f (xn−k, . . . ,xn−1), n ≥k.

Again we notice that, by construction,

{g(xn)}n≥0 ⊂ f (xk) ⊂ g(X). (2.5.122)
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We shall prove that {g(xn)}n≥0 converges to x∗ as well. We have that:

d(g(xk),x∗) = d( f (x0, . . . ,xk−1), f (p, . . . , p)) (2.5.123)

≤ d( f (x0, . . . ,xk−1), f (x1, . . . ,xk−1, p))+ · · ·+
+d( f (xk−1, p, . . . , p), f (p, . . . , p)).

As d(g(p), f (p, . . . , p)) = 0, by applying (2.5.108) to each of the distances on the
right-hand side of the above inequality (2.5.123), it follows that

d(g(xk),x∗)≤ δ1d(g(x0),g(x1))+(δ1+δ2)d(g(x1),g(x2))+ . . .+

+(δ1 + . . .+δk−1)d(g(xk−2),g(xk−1))+δd(g(xk−1),g(p)). (2.5.124)

Since k is a fixed positive integer, the coefficients δ1, δ1 + δ2, . . . , δ1 + · · ·+ δk−1, δ
are also fixed, so we may denote

E0 := δ1d(g(x0),g(x1))+(δ1 +δ2)d(g(x1),g(x2))+ . . .+

+(δ1 + . . .+δk−1)d(g(xk−2),g(xk−1)),

and (2.5.124) can be written as

d(g(xk),x∗)≤ E0 +δ d(g(xk−1),x∗). (2.5.125)

In the same manner, we obtain

d(g(xk+1),x∗)≤ E1 +δ d(g(xk),x∗),

where

E1 := δ1d(g(x1),g(x2))+(δ1 +δ2)d(g(x2),g(x3))+ . . .+

+(δ1 + . . .+δk−1)d(g(xk−1),g(xk)).

By induction, for n ≥k we obtain:

d(g(xn),x∗)≤ En−k +δ d(g(xn−1),x∗), (2.5.126)

where

En−k := δ1d(g(xn−k),g(xn−k+1))+(δ1+δ2)d(g(xn−k+1),g(xn−k+2))+

+ . . .+(δ1 + . . .+δk−1)d(g(xn−2),g(xn−1)), n ≥k. (2.5.127)

Inequality (2.5.126) leads us to the estimation of the rate of convergence (2.5.111).
In order to apply Lemma 2.5.2, we have to prove that {En}n≥0, defined by

En := δ1d(g(xn),g(xn+1))+(δ1+δ2)d(g(xn+1),g(xn+2))

+ . . .+(δ1 + . . .+δk−1)d(g(xn+k−2),g(xn+k−1)), n ≥0, (2.5.128)

Monther Alfuraidan, 978-0-12-804295-3

These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in
colour in all electronic versions of this book.



“Book-AA-C02” — 2016/4/26 — 18:44 — page 79 — #51

Iterative Approximation of Fixed Points of Single-Valued Almost Contractions 79

B978-0-12-804295-3.50002-4, 50002

converges to 0. For n ≥k we have that

d(g(xn),g(xn+1)) = d( f (xn−k, . . . ,xn−1), f (xn−k+1, . . . ,xn)),

which by (2.5.108) yields

d(g(xn),g(xn+1)) ≤ δ1d(g(xn−k),g(xn−k+1))+ · · ·+δkd(g(xn−1),g(xn))

+Lmin{d(g(xn−k), f (xn−k, . . . ,xn−k)),d(g(xn), f (xn, . . . ,xn)),

d(g(xn−k), f (xn, . . . ,xn)),d(g(xn), f (xn−k, . . . ,xn−k)),

d(g(xn), f (xn−k,xn−k+1 . . . ,xn−1))}.

Since d(g(xn), f (xn−k, . . . ,xn−1)) = 0, it follows that

d(g(xn),g(xn+1))≤ δ1d(g(xn−k),g(xn−k+1))+ · · ·+δkd(g(xn−1),g(xn)).

By Lemma 2.5.1 this implies the existence of θ ∈ (0,1) and K ≥0 such that

d(g(xn),g(xn+1))≤ Kθ n, n ≥k.

It is then immediate that the sequence {En}n≥0 converges to 0 as n → ∞. Denoting
En = En−k, from (2.5.126) we get:

d(g(xn),x∗)≤ En +δ d(g(xn−1),x∗). (2.5.129)

Now taking an = d(g(xn),x∗), n ≥k, and bn = En, n ≥k, by (2.5.129) and Lemma
2.5.2 it follows that

d(g(xn),x∗)→ 0, as n → ∞,

so {g(xn)}n≥0 converges to the unique coincidence value x∗ as well.

(d) If f and g are weakly compatible, then by Lemma 2.5.3 their unique coinci-
dence value is actually their unique common fixed point. !

Going further, we can establish common fixed point results for the more general
case f : Xk → X and g : Xl → X , with k and l positive integers. In this respect we have
to extend the notions mentioned above (see also Refs. [196, 200, 204]).

Definition 2.5.7. Let X be a metric space, k, l positive integers and f : Xk → X , g :
Xl → X two operators.

An element p∈X is called a coincidence point of f and g if it is a coincidence point
of F and G, where F,G : X → X are the associate operators of f and g respectively
(see Remark 2.5.1).

An element s ∈ X is called a coincidence value of f and g if it is a coincidence
value of F and G.

An element p ∈ X is called a common fixed point of f and g if it is a common fixed
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point of F and G.

Definition 2.5.8. Let (X ,d) be a metric space, k, l positive integers and f : Xk → X ,
g : Xl → X . The operators f and g are said to be weakly compatible if F and G are
weakly compatible.

The following extends Definition 2.5.6:

Definition 2.5.9. Let (X ,d) be a metric space, k, l positive integers and f : Xk → X ,
g : Xl → X two operators such that f is an almost Prešić operator w.r.t. G : X → X , the
associated operator of g. Then f is said to be an almost Prešić operator w.r.t. g.

Using this definition one can prove the following extension of Theorem 2.5.4:

Theorem 2.5.5. Let (X ,d) be a metric space, k and l positive integers and f : Xk → X,
g : Xl → X two operators such that:

(i) f is an almost Prešić operator with respect to g;

(ii) there exists a complete subspace Y ⊆ X such that f (Xk) ⊆ Y ⊆ G(X), where
G : X → X is the associated operator of g.

Then

(a) f and g have a unique coincidence value, say x∗, in X;

(b) the sequence {G(zn)}n≥0 defined by z0 ∈ X and

G(zn) = f (zn−1, . . . ,zn−1), n ≥1,

converges to x∗;

(c) the sequence {G(xn)}n≥0 defined by x0, . . . ,xk−1 ∈ X and

G(xn) = f (xn−k, . . . ,xn−1), n ≥k,

converges to x∗ as well, with a rate estimated by

d(G(xn),x∗)≤ En +δd(G(xn−1),x∗),

where

En := δ1d(G(xn−k),G(xn−k+1))+(δ1+δ2)d(G(xn−k+1),G(xn−k+2))

+ . . .+(δ1 + . . .+δk−1)d(G(xn−2),G(xn−1)), n ≥k;

(d) if in addition f and g are weakly compatible, then x∗ is their unique common
fixed point.
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For the study of stability of k-step fixed point iterative schemes associated with
contractive type mappings defined on product spaces, see Ref. [75]. For some other
developments on Prešić operators, see a partial list in Ref. [76].

2.6. Fixed Point Theorems for Single-valued Nonself Almost
Contractions

In a natural continuation and completion of the abundant fixed point theory for self
mappings, produced in the last five decades, it was also an important and challenging
research topic to obtain fixed point theorems for nonself mappings.

In 1972, Assad and Kirk [38] extended the Banach contraction mapping principle
to nonself multivalued contraction mappings T : K → P(X) in the case where (X ,d)
is a convex metric space in the sense of Menger and K is a nonempty closed subset of
X such that T maps ∂K (the boundary of K) into K. In 1976, by using an alternative
and weaker condition, i.e., T is metrically inward, Caristi [82] has shown that any
nonself single-valued contraction has a fixed point.

Next, in 1978, Rhoades [228] proved a fixed point result in Banach spaces for
single-valued nonself mapping satisfying the following contraction condition:

d(Tx,Ty)≤ λ max
{

d(x,y)
2

, d(x,T x), d(y,Ty),
d(x,Ty)+d(y,Tx)

1+2λ

}
, (2.6.130)

for all x,y ∈ K, where 0 < λ < 1.
Rhoades’ result [228] has been slightly extended by Ćirić [98]. Note that al-

though the class of mappings satisfying (2.6.130) is large enough to include some
discontinuous mappings, it does not include contraction mappings satisfying (2.1.1)
for 1

2 ≤ λ < 1.
A more general result, which also solved a very difficult problem that was open

for more than 20 years, has been obtained by Ćirić [99], who considered instead of
(2.6.130) the quasi-contraction condition that he previously introduced and studied in
Ref. [96]:

d(Tx,Ty)≤ λ max{d(x,y), d(x,Tx), d(y,Ty),d(x,Ty), d(y,Tx)} , (2.6.131)

for all x,y ∈ K, where 0 < λ < 1. More recently, Ćirić, Ume, Khan and Pathak [100]
have considered a contraction condition which is more general than (2.6.130) and
(2.6.131), i.e.,

d(Tx,Ty)≤ max{ϕ(d(x,y)), ϕ(d(x,Tx)), ϕ(d(y,Ty)),ϕ(d(x,Ty)),ϕ(d(y,Tx))} ,
(2.6.132)

for all x,y ∈ K, where ϕ : R+ → R+ is a certain comparison function.
For some other fixed point results for nonself mappings, see also Refs. [33–37, 71]

and Problem 5 in Ref. [238].
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As shown in Section 2.2, quasi-contractions and almost contractions are indepen-
dent classes of mappings as the latter have a unique fixed point, while the former do
not.

Starting from these facts, the aim of the present section is to obtain fixed point
theorems for nonself almost contractions. Thus, we shall give a solution to Problem
5 in Ref. [238] in the case of almost contractions. The material is adapted from Ref.
[74].

In order to do so, we first present some aspects and results related to self almost
contractions and then we extend them to nonself almost contractions.

Let X be a Banach space, K a nonempty closed subset of X and T : K → X a non-
self mapping. If x ∈ K is such that T x " K, then we can always choose an y ∈ ∂K (the
boundary of K) such that y = (1−λ)x+λT x(0 < λ < 1), which actually expresses
the fact that

d(x,Tx) = d(x,y)+d(y,Tx), for y ∈ ∂K, (2.6.133)

where we denoted d(x,y) = ∥x− y∥.
In general, the set Y of points y satisfying condition (2.6.133) above may contain

more than one element.
In this context we shall need the following concept.

Definition 2.6.1. Let X be a Banach space, K a nonempty closed subset of X and T :
K → X a nonself mapping. Let x ∈ K with T x "K and let y ∈ ∂K be the corresponding
elements given by (2.6.133). If, for any such elements x, we have

d(y,Ty)≤ d(x,Tx), (2.6.134)

for all corresponding y ∈ Y , then we say that T has property (M).

Very recently we found that a condition quite similar to (2.6.134) had been used in
Ref. [126] (see also Ref. [83]).

Note also that the nonself mapping T in the next example has property (M).

Example 2.6.1. Let X be the set of real numbers with the usual metric, K = [0,1], and
let T : K → X be defined (see Ref. [100, Remark 1.3]) by T x = −0.1 if x = 0.9 and
Tx = x

x+1 if x ! 0.9.
Then T satisfies condition (2.6.132), T is discontinuous, 0 is the unique fixed point

of T and T is continuous at 0, T has property (M) but T does not satisfy the almost
contraction condition (2.6.135) below. Indeed, the only x ∈ K with Tx " K is x = 0.9
and the corresponding y ∈ ∂K is y = 0. It is now easy to check that (2.6.134) holds.
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To prove the last claim take x ! 0.9 and y = x
1+x in (2.6.135) to get, for any x > 0,

1+ x
1+2x

≤ δ < 1, x > 0.

If we now let x → 0 in the previous double inequality, we get the contradiction

1 ≤ δ < 1.

We now state and prove our main result in this section, which is taken from
Ref. [74].

Theorem 2.6.1. Let X be a Banach space, K a nonempty closed subset of X and
T : K → X a nonself almost contraction, that is, a mapping for which there exist two
constants δ ∈ [0,1) and L ≥0 such that

d(Tx,Ty)≤ δ ·d(x,y)+Ld(y,Tx), for all x,y ∈ K. (2.6.135)

If T has property (M) and satisfies Rothe’s boundary condition

T (∂K) ⊂ K, (2.6.136)

then T has a fixed point in K.

Proof. If T (K) ⊂ K, then T is actually a self mapping on the closed set K and the
conclusion follows by Theorem 2.2.1 for X = K. Therefore, we consider the case
T (K) # K. Let x0 ∈ ∂K. By (2.6.136) we know that T x0 ∈ K. Denote x1 = T x0. Now,
if T x1 ∈ K, set x2 = T x1. If T x1 " K, we can choose an element x2 on the segment
[x1,T x1] which also belongs to ∂K, that is,

x2 = (1−λ)x1 +λT x1 (0 < λ < 1).

Continuing in this way we obtain a sequence {xn} whose terms satisfy one of the
following properties:

(i) xn = Txn−1, if Txn−1 ∈ K;

(ii) xn = (1−λ)xn−1+λT xn−1 ∈ ∂K (0 < λ < 1), if Txn−1 " K.

To simplify the argumentation in the proof, let us denote

P = {xk ∈ {xn} : xk = T xk−1}

and

Q = {xk ∈ {xn} : xk ! T xk−1}.

Note that {xn} ⊂ K and that, if xk ∈ Q, then both xk−1 and xk+1 belong to the set P.
Moreover, by virtue of (2.6.136), we cannot have two consecutive terms of {xn} in the
set Q (but we can have two consecutive terms of {xn} in the set P) .
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We claim that {xn} is a Cauchy sequence. To prove this, we must discuss three
different cases:

Case I. xn, xn+1 ∈ P;
Case II. xn ∈ P, xn+1 ∈ Q;
Case III. xn ∈ Q, xn+1 ∈ P.

Case I. xn, xn+1 ∈ P.
In this case we have xn = Txn−1, xn+1 = Txn and by (2.6.135), we get

d(xn+1,xn) = d(Txn,T xn−1)≤ δd(xn,xn−1)+Ld(xn,T xn−1),

that is,

d(xn+1,xn)≤ δd(xn,xn−1), (2.6.137)

since xn = Txn−1.
Case II. xn ∈ P, xn+1 ∈ Q.
In this case we have xn = Txn−1 but xn+1 ! T xn and

d(xn,xn+1)+d(xn+1,T xn) = d(xn,T xn).

Hence

d(xn,xn+1)≤ d(xn,T xn) = d(Txn−1,T xn)

and so by using (2.6.135), we get

d(xn,xn+1)≤ δd(xn,xn−1)+Ld(xn,T xn−1) = δd(xn,xn−1),

which yields again inequality (2.6.137).
Case III. xn ∈ Q, xn+1 ∈ P.
In this situation, we have xn−1 ∈ P. Having in view that T has property (M), it

follows that

d(xn,xn+1) = d(xn,T xn)≤ d(xn−1,T xn−1).

Since xn−1 ∈ P we have xn−1 = T xn−2 and by (2.6.135) we get

d(Txn−2,T xn−1)≤ δd(xn−2,xn−1)+Ld(xn−1,T xn−2) = δd(xn−2,xn−1),

which shows that

d(xn,xn+1)≤ δd(xn−2,xn−1). (2.6.138)

Therefore, by summarizing all three cases and using (2.6.137) and (2.6.138), it follows
that the sequence {xn} satisfies the inequality

d(xn,xn+1)≤ δ max{d(xn−2,xn−1), d(xn−1,xn)}, for all n ≥2. (2.6.139)
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Now, by induction for n ≥2, from (2.6.139) one obtains

d(xn,xn+1)≤ δ [n/2] max{d(x0,x1), d(x1,x2)},

where [n/2] denotes the greatest integer not exceeding n/2.
Further, for m > n > N,

d(xn,xm)≤
∞

∑
i=N

d(xi,xi−1)≤ 2
δ [N/2]

1−δ max{d(x0,x1), d(x1,x2)},

which shows that {xn} is a Cauchy sequence.
Since {xn} ⊂ K and K is closed, {xn} converges to some point in K.
Denote

x∗ = lim
n→∞

xn, (2.6.140)

and let {xnk} ⊂ P be an infinite subsequence of {xn} (such a subsequence always
exists) that we denote in the following for simplicity by {xn} too.

Then

d(x∗,T x∗)≤ d(x∗,xn+1)+d(xn+1,T x∗) = d(xn+1,x∗)+d(Txn,T x∗).

By (2.6.135), we have

d(Txn,T x∗)≤ δ d(xn,x∗)+Ld(x∗,T xn),

and hence

d(x∗,T x∗)≤ (1+L)d(x∗,xn+1)+δ ·d(xn,x∗), for all n ≥0. (2.6.141)

Letting n → ∞ in (2.6.141) we obtain

d(x∗,T x∗) = 0,

which shows that x∗ is a fixed point of T . !

Remark 2.6.1. Note that although T satisfying (2.6.135) may be discontinuous (see
Example 2.6.2), T is also continuous at the fixed point. Indeed, if {yn} is a sequence
in K convergent to x∗ = Tx∗, then by (2.6.135) we have

d(Tyn,x∗) = d(Tx∗,Tyn)≤ δd(x∗,yn)+Ld(yn,T x∗),

and letting n → ∞ in the previous inequality, we get exactly the continuity of T at the
fixed point x∗:

d(Tyn,x∗)→ 0 as n → ∞, that is, Tyn → x∗.

Example 2.6.2. Let X be the set of real numbers with the usual norm, K = [0,1] be the
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unit interval and let T : [0,1]→ R be given by Tx = 2
3 x for x ∈ [0,1/2), T

(1
2

)
= −1,

and Tx = 2
3 x+ 1

3 , for x ∈ (1/2,1].
As T has two fixed points, that is, Fix(T ) = {0 ,1}, it does not satisfy either of

Ćirić’s conditions (2.6.131) and (2.6.132), or the Banach, Kannan, Chatterjea, Zam-
firescu or Ćirić [94] contractive conditions in the corresponding nonself form, but T
satisfies the contraction condition (2.6.135).

Indeed, for the cases
(1) x ∈ [0,1/2), y ∈ (1/2,1];
(2) y ∈ [0,1/2), x ∈ (1/2,1];
(3) x,y ∈ [0,1/2); and
(4) x,y ∈ (1/2,1],

we have by Example 1.3.10 in Ref. [197, pp. 28–29] that (2.6.135) is satisfied with
δ = 2/3 and L ≥6.

We have to cover the remaining four cases:
(5) x = 1/2, y ∈ [0,1/2);
(6) x ∈ [0,1/2), y = 1/2;
(7) x = 1/2, y ∈ (1/2,1]; and
(8) x ∈ (1/2,1], y = 1/2.

Case (5), x = 1/2, y ∈ [0,1/2). In this case, (2.6.135) reduces to
∣∣∣∣−1− 2

3
y
∣∣∣∣≤ δ

∣∣∣∣
1
2
− y

∣∣∣∣+L|y+1|, y ∈ [0,1/2).

Since
∣∣−1− 2

3 y
∣∣≤ 4

3 and 1 ≤ |y+1|, in order to have the previous inequality satisfied,
we simply need to take L ≥ 4

3 .
Case (6), x ∈ [0,1/2), y = 1/2. In this case, (2.6.135) reduces to

∣∣∣∣
2
3

x+1
∣∣∣∣≤ δ

∣∣∣∣x−
1
2

∣∣∣∣+L|1
2
− 2

3
x|, x ∈ [0,1/2).

Since
∣∣ 2

3 x+1
∣∣ ≤ 4

3 and |1
2 −

2
3 x| ≥ 1

6 , to have the previous inequality satisfied, it is
enough to take L ≥8.

Case (7), x = 1/2, y ∈ (1/2,1]. In this case, (2.6.135) reduces to
∣∣∣∣−1− 2

3
y− 1

3

∣∣∣∣≤ δ
∣∣∣∣
1
2
− y

∣∣∣∣+L|y+1|, y ∈ (1/2,1].

Since
∣∣1+ 2

3 y+ 1
3

∣∣ ≤ 2 and |y+ 1| > 3
2 , to have the previous inequality satisfied, it is

enough to take L ≥4
3 .

Case (8), x ∈ (1/2,1], y = 1/2. Similarly, we find that (2.6.135) holds with L ≥8
and 0 < δ < 1 arbitrary.

By summarizing all possible cases, we conclude that T satisfies (2.6.135) with
δ = 2/3 and L = 8.
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As we have shown in Section 2.2, it is possible to force the uniqueness of the fixed
point of an almost contraction by imposing an additional contractive condition, quite
similar to (2.6.135), as shown by the next theorem.

Theorem 2.6.2. Let X be a Banach space, K a nonempty closed subset of X and
T : K → X a nonself almost contraction for which there exist θ ∈ (0,1) and some
L1 ≥0 such that

d(Tx,Ty)≤ θ ·d(x,y)+L1 ·d(x,T x), for all x,y ∈ K . (2.6.142)

If T has property (M) and satisfies Rothe’s boundary condition

T (∂K) ⊂ K,

then T has a unique fixed point in K.

Remark 2.6.2. By the considerations in the first part of this section we could immedi-
ately obtain various fixed point results as corollaries of Theorems 2.6.1 and 2.6.2, for
T satisfying one of the conditions of the type (2.6.130).
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Univ. Vest Timiş. Ser. Mat.-Inform. 2007;45:33–41.
62. Berinde V, General constructive fixed point theorems for Ćirić-type almost contractions in metric
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73. Berinde V, Păcurar M, A note on the paper ”Remarks on fixed point theorems of Berinde”. Nonlinear
Anal. Forum. 2009;14:119–124.
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87. Chifu C, Petruşel G, Generalized contractions in metric spaces endowed with a graph. Fixed Point

Theory Appl. 2012;2012:Article ID 161.
88. Cho SH, Fixed point theorems for weak α∗ − (Φ,L)-contractive set-valued maps in cone metric

spaces. Int. J. Math. Anal. 2013; 7:2967–2979.
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97. Ćirić LB, Convergence theorems for a sequence of Ishikawa iteration for nonlinear quasi-contractive

mappings. Indian J. Pure Appl. Appl. Math. 1999;30:425–433.
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applications. Adv. Difference Equ. 2012;2012:Article ID 38.

159. Khan MS, Jhade PK, On a fixed point theorem with PPF dependence in the Razumikhin class. Gazi
Univ. J. Sci . 2015;28:211–219.

160. Khan SH, Common fixed points of two quasi-contractive operators in normed spaces by iteration.
Int. J. Math. Anal. (Ruse) 2009;3:145–151.

161. Kikina L, Kikina K, Vardhami I, Fixed point theorems for almost contractions in generalized metric
spaces. Creat. Math. Inform. 2014;23:65–72.

162. Kiran Q, Kamran T, Nadler’s type principle with high order of convergence. Nonlinear Anal.
2008;69:4106–4120.

163. Klanarong C, Suantai S, Coincidence point theorems for some multi-valued mappings in complete
metric spaces endowed with a graph. Fixed Point Theory Appl. 2015;2015:Article ID 129.

164. Kocic VL, A note on the non-autonomous Beverton-Holt model. J. Difference Equ. Appl.
2005;11:415–422.

165. Kocic VL, Ladas G, Global Asymptotic Behavior of Nonlinear Difference Equations of Higher
Order with Applications. Dordrecht:Kluwer Academic Publishers; 1993.

166. Kumar A, Rathee S, Fixed point and common fixed point results in cone metric space and application
to invariant approximation. Fixed Point Theory Appl. 2015;2015:Article ID 1.

167. Kuruklis SA, The asymptotic stability of xn+1 − axn + bxn−k = 0. J. Math. Anal. Appl.
1994;188:719–731.

168. Kutbi MA, Sintunavarat W, On sufficient conditions for the existence of past-present-future depen-
dent fixed point in the Razumikhin class and application. Abstr. Appl. Anal. 2014;2014:Article ID
342687.

169. Latif A, Mongkolkeha C, Sintunavarat W, Fixed point theorems for generalized α − β-weakly
contraction mappings in metric spaces and applications. Scientific World J. 2014;2014:Article ID
784207.

170. Lin IJ, Chen TH, New existence theorems of coincidence points approach to generalizations of
Mizoguchi-Takahashi’s fixed point theorem. Fixed Point Theory Appl. 2012;2012:Article ID 156.

171. Lin IJ, Jian KR, New fixed point theorems for nonlinear multivalued maps and mt-functions in
complete metric spaces. Nonlinear Anal. Diff. Eq. 2013;1:29–41.

172. Lin IJ, Wang TY, New fixed point theorems for generalized distances. Int. J. Math. Anal.
2013;7:1843–1855.
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200. Păcurar M, A multi-step iterative method for approximating common fixed points of Prešić-Rus type
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Cie;Budapest:Akadémiai Kiadó;1967.
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