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APPROXIMATING FIXED POINTS OF WEAK
p-CONTRACTIONS USING THE PICARD ITERATION

VASILE BERINDE

ABSTRACT. Two fixed point theorems for weak contractions, es-
tablished in [4], are extended to the more general class of weak
p-contractions. These results also extend and improve several re-
sults in literature.

1. INTRODUCTION

In [4], the author introduced and studied the class of the so called
weak contractions.

Let (X,d) be a metric space and 7' : X — X a self operator. T’
is said to be a weak contraction if there exist a constant 6 € (0,1)
and some L > 0 such that

d(Tz,Ty) < dd(x,y) + Ld(y,Tz), forall z,ye X. (1.1)

Note that, due to the symmetry of the distance, the weak contraction
condition (1.1) implicitly includes the following dual inequality

d(Txz,Ty) <d-d(x,y)+ L-d(z,Ty), foral z,ye X, (1.2)

obtained from (1.1) by formally replacing d(Tx,Ty) and d(x,y) by
d(Ty,Tz) and d(y, x), respectively, and then interchanging = and y.
Therefore, in order to check the weak contractiveness of a given
operator, it is necessary to check both conditions (1.1) and (1.2).
The main results in [4] are the following two theorems.

Theorem 1. Let (X, d) be a complete metric space andT : X — X a
(0, L)-weak contraction, i.e., a mapping satisfying (1.1) with 6 € (0, 1)
and some L > 0. Then
1) F(T)={re X :Tx =z} # ¢;
2) For any xg € X, the Picard iteration {x,}>°, given by
Tpy1=Tx,, n=0,1,2,... (1.3)

converges to some x* € F(T);
3) The following estimates

n

1—9

d(x,,z") < d(zg, 1), n=0,1,2, ...

d(x,,z") < 1;;5 d(xp_1,2,), n=12...

hold, where § is the constant appearing in (1.1).
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Theorem 2. Let (X,d) be a complete metric space and T : X — X
a weak contraction for which there exist a constant 6 € (0,1) and some
L > 0 such that

d(Txz,Ty) < 0-d(z,y) + Ly - d(z,Tz), forall z,y € X. (1.4)

Then
1) T has a unique fized point, i.e. F(T) = {x*};
2) The Picard iteration {x,}>°, given by (1.3) converges to x*, for
any ro € X;
3) The a priori and a posteriori error estimates
6’)1
1-9
J

d(zy,z") < 1—_5d(xn_1,xn), n=12,...

d(x,,z*) <

d(xzg,z1), n=0,1,2,...

hold.
4) The rate of convergence of the Picard iteration is given by

d(xy, ") < 0d(rp_1,2"), n=1,2 ...

It was shown in [4] that any strict contraction, the Kannan [15] and
Zamfirescu [35] operators, as well as a large class of quasi-contractions
9], are all weak contractions.

A weak contraction has always at least one fixed point and there
exist weak contractions that have infinitely many fixed points, see Ex-
ample 4.

Note also that the weak contraction condition (1.1) implies the so
called Banach orbital condition

d(Tz, T?r) < 6d(z,Tz), foral z¢€ X,

studied by various authors in the context of fixed point theorems, see
for example Hicks and Rhoades [13], Ivanov [14], Rus [26], [27], [29]
and Taskovic [34].

Moreover, the class of weak contractions offers a large class of
weakly Picard operators. Recall, see Rus [31], [32], that in a metric
space setting, an operator 7' : X — X is said to be a weakly Picard
operator if the sequence {T"x(}>° , converges for all xy € X and the
limits are fixed points of T'.

Theorem 1 shows, in particular, that any weak contraction is a
weakly Picard operator.

Starting from the fact that ¢-contractions are natural generaliza-
tions of strict contractions, it is the aim of this paper to extend the
results in [4] from weak contractions to the more general class of weak
p-contractions. To this end, let us first remind some concepts from
Rus [30], [32] and Berinde [2].

A map ¢ : Ry — R, is called comparison function if it satisfies:

(i,) o is monotone increasing, i.e., t < ta = @(t1) < p(t2);
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(i,) the sequence {¢"(t)}>2, converges to zero, for all ¢ € Ry,

where " stands for the n'* iterate of ¢.
If ¢ satisfies (i,) and

(iii,) > ©*(t) converges for all t € R,
k=0

then ¢ is said to be a (c) - comparison function [2].

It was shown in [2] that ¢ satisfies (iii,) if and only if there exist
o0

0 < ¢ < 1 and a convergent series of positive terms, » u,, such that
n=0

O (t) < ep®(t) +uy, forall t e Ry and k> ko (fixed).

It is also known that if ¢ is a (¢) - comparison function, then the sum
of the comparison series, i.e.,

s(t) =Y _¢*(t), teRy, (1.5)

k=0

is monotone increasing and continuous at zero, and that any (c) - com-
parison function is a comparison function.
A prototype for comparison functions is

p(t)y=at, teRy (0<a<]l)

but, as shown by Example 1, the comparison functions need not be
neither linear, nor continuous.
Note however that any comparison function is continuous at zero.

t 1
Example 1. Let ¢(t) = T t € Ry and o) = §t, if 0<t<l1

1
and @ (t) :t—g, if ¢t > 1.

Then ¢; is a nonlinear comparison function, which is not a (¢) - com-
parison function, while ¢, is a discontinuous (¢) - comparison function.

By replacing the well known strict contractiveness condition ap-
pearing in Banach’s fixed point theorem, i.e.

d(Tz, Ty) < ad(x,y), forall z,ye X,
by a more general one
d(Tz, Ty) < p(d(z,y)), forall z,ye X, (1.6)

where ¢ is a certain comparison function, several fixed point theorems
have been obtained, see for example Taskovic [34], Rus [32] and Berinde
2], and references therein. One of the first fixed point theorems of this
type is due to Browder [5].

Recall that an operator 7" which satisfy a condition of the form
(1.6) is commonly named ¢ - contraction.
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Following the way in which the strict contractions were extended
to ¢ - contractions, it is the aim of this paper to extend Theorems 1
and 2 to weak ¢ - contractions.

Their merit is that, as in the case of weak contractions, they provide
a constructive method for approximating fixed points, i.e. the method
of successive approximations. Moreover, both a priori and a posteriori
error estimates are available for this method, also known as the Picard
iteration.

Our results extend, unify and improve numerous fixed points the-
orems in literature, see [1], [2], [6], [14], [15], [29], [30], [35].

2. WEAK ¢ - CONTRACTIONS

Definition 1. Let (X, d) be a metric space. A self operator 7' : X —
X is said to be a weak p-contraction or (p, L)-weak contraction, pro-

vided that there exist a comparison function ¢ and some L > 0, such
that

d(Tz, Ty) < p(d(z,y)) + Ld(y, Tz), forall z,y € X. (2.1)

Remark 1. Clearly, any weak contraction is a weak ¢ - contraction,
with ¢(t) =dt, t € Ry and 0 < 6 < 1.

There exist weak ¢ - contractions which are not weak contractions with
respect to the same metric, see Example 1.

Also, all ¢ - contractions are weak ¢ - contractions with L = 0 in (2.1).

Remark 2. Similar to the case of weak contractions, the fact that
T satisfies (2.1), for all z,y € X, does imply that the following dual
inequality

(T, Ty) < p(d(z,y)) + Ld(z,Ty), (2:2)

obtained from (2.1) by formally replacing d(Tx,Ty) and d(x,y) by
d(Ty,Tz) and d(y, x), respectively and then interchanging = and y, is
also satisfied.

Consequently, in order to prove that a certain operator 71" is a weak
¢ - contraction, we must check the both inequalities (2.1) and (2.2).

Remark 3. The class of weak ¢ - contractions includes not only con-
tractive type operators which have a unique fixed point, but also oper-
ators with more than one fixed point, see Example 4 below.

To illustrate de diversity of weak (¢) - contractions we give a few
examples.

Example 2. Any strict contraction, any operator satisfying the con-
ditions in either Chatterjea [6], Kannan [15] or Zamfirescu [34] fixed
point theorems, are weak contractions and hence weak ¢ - contractions.
See also Rhoades [22], [24] and Meszaros [19] for other contractive type
conditions that imply weak contractiveness.
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Example 3. ([4]) Any quasi contraction, i.e. any operator for which
there exists 0 < h < 1 such that
d(Tz,Ty) < h-max {d(z,y),d(z,Tx),d(y,Ty),d(z, Ty),d(y, Tx)}
(2.3)

for all x,y € X, is a weak contraction if h < >

All operators mentioned in Examples 2 and 3 have a unique fixed
point. The next example shows that a weak contraction may have
infinitely many fixed points.

Example 4. ([4]) Let [0,1] be the unit interval with the usual norm
and 7T : [0,1] — [0, 1] the identity map, i.e. Ta =z, for all = € [0, 1].
Then, taking ¢(t) =a-t,t e R,0<a<1l;d=aand L > 1—a,
condition (2.1) leads to

[z —yl <a-fe—yl+L-ly—z,

which is valid for all z,y € [0, 1].
Note that F(T) = {z € [0,1] : Tz =z} = [0, 1].

3. MAIN RESULTS

Theorem 3. Let (X,d) be a complete metric space and T : X — X
a weak ¢ - contraction with ¢ a (c) - comparison function. Then
1) F(T)={ze X :Tx=za} # ¢;
2) For any xo € X, the Picard iteration {x,}°°, defined by xy € X
and
Tpi1=Tx,, n=01,2... (3.1)
converges to a fized point x* of T';
3) The following estimate
d(x,,x") < s(d(xn, xnﬂ)) , n=0,1,2,... (3.2)
holds, where s(t) is given by (1.5).
Proof. We shall prove that T" has at least one fixed point in X. To

this end, let o € X be arbitrary and {z,}>, be the Picard iteration
defined by (3.1).

Since T is a weak ¢ - contraction, there exist a (¢) - comparison
function ¢ and some L > 0, such that

d(Tz, Ty) < p(d(z,y)) + L-d(y, Tx), (3.3)

holds, for all z,y € X.
Take © := z,,_1, y := x,, in (3.3). We get

d(@p, Tpy1) < @(d(Tp-1,2,)), forall n=1,2,... (3.4)
Since ¢ is not decreasing, by (3.4) we have

d(Tpi1, Tpio) < (d@na In+1))
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which inductively yields
d(@psks Trgs1) < O (d(@n, 20s1)), k=0,1,2,... (3.5)

By triangle rule we have

d(l’n, xn-{—p) S d([En7 xn—l—l) + d([L‘n+17 In+2) + -+ d(l‘n—&—p—ly xn—l—p)
< rA(r) Fe "), (3.6)

where we denoted r = d(z,, Tpi1)-
Again by (3.4) we find that

d(2p, Tpy1) < @"(d(wo, 1)), n=0,1,2,... (3.7)
which, by property (ii,) of a comparison function implies
lim d(x,,,1) = 0. (3.8)

As ¢ is positive, it is obvious that

r+o(r)+ -+ ") < s(r), (3.9)
where s(t) is the sum of the series > ©*(r).
k=0
Then by (3.6) and (3.9) we get
d(Tp, Tnip) < $(d(Tp, 2pt1)), neN, peN (3.10)

Since s is continuous at zero, (3.8) and (3.9) implies that {x,}2°, is a
Cauchy sequence.
As X is complete, {x,}52, is convergent.

Let z* = lim «z,.

n—o0

We shall prove that x* is a fixed point of T'. Indeed,
dz*,Tz*) < d(z",xp41) + d(Tps1, T2") =
= d(zpg1,2") +d(Tz,, Tx").
By (3.3) we have
d(Tz,, Tz") < p(d(zp,x*)) + Ld(z", Tx,)
and hence
d(z*, Tx*) < (1 + L) d(xps1, %) + p(d(x,, 7)), (3.11)

valid for all n > 0.
Now letting n — oo in (3.11) and using the continuity of ¢ at zero,
it results
d(z*,Tx*) =0,
i.e., ¥ is a fixed point of T'.

The estimate (3.2) is obtained by (3.6) letting p — oc.
The proof is complete. Il
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Remark 4. 1) Using the a posteriori error estimate (3.2) and (3.7)
we easily obtain

d(x,,x") < s(gpn(d(xo,xl))) , n=0,1,2,...

which is the a priori estimate for the Picard iteration {z,}>°,.

2) Note that a weak ¢ - contraction is not generally continuous, as
shown by Example 5.

3) If we take p(t) =0-t, t € Ry, 0 < § < 1, by Theorem 3 obtain
the corresponding result for weak contractions in [4], i.e. Theorem 1.

1
Example 5. ([4]). Let T": [0,1] — [0, 1] be given by Tx = 3 for

x €[0,1) and T1 = 0.
Then: 1) T is not a strict contraction;

2) T is a quasi contraction, i.e. satisfies (2.3) with h = 7

3) T is a weak contraction, hence a weak ¢ - contraction with

1
ga(t)zé -t,and L > 1.
4) T has a unique fixed point.

Remark 5. As shown by Example 4, a weak ¢ - contraction generally
possesses more than one fixed point. The fixed point x* determined by
the Picard iteration {z,}>%, in Theorem 3 generally depends on the
initial guess xg.

As in the case of weak contractions, in order to guarantee the
uniqueness of the fixed point of T, we have to consider an additional
weak contractive type condition, as in the next theorem.

Theorem 4. Let X and T as in Theorem 1. Suppose T' also satisfies
the following condition: there exist a comparison function 1 and some
L > 0 such that

d(Tz, Ty) < (d(z,y)) + Lid(z, Tz), (3.12)

holds, for all z,y € X.
Then
1) T has a unique fized point, i.e. F(T) = {x*};
2) The estimate (3.2) holds;
3) The rate of convergence of the Picard iteration is given by
d(zp, 2*) < o(d(zpo1,2%)), n=12,.... (3.13)

Proof. Assume there are two distinct fixed points z*, y* € X. Then by
(3.12) with z := z* and y := y*, it results
d(z",y") < ¥(d(z",y"))
which by induction yields
d(z*,y*) <¢™(d(z*,y"), n=1,2,... (3.14)
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Letting n — oo in (3.14) we get
dz*,y") =0

i.e. ¥ = y*, a contradiction.

Therefore, T' has a unique fixed point.

To obtain (3.13), we let = := z*, y := x,, in (3.12).

The proof is complete. O

Remark 6. 1) Similarly to the case of the pairs of dual conditions
(1.1) and (1.2), (2.1) and (2.2), condition (3.8) holds for all z,y € X if
and only if its dual

d(Tz, Ty) < (d(x,y)) + Lid(y, Ty),

is also satisfied, for all x,y € X.
2) Condition (3.12) is not necessary for the fixed point to be unique,
as shown by the function 7' in Example 5, which has a unique fixed

1
point z* = 5 and does not satisfy (3.12).

1
Indeed, if we take x = 3 Y= 1 in (3.12) we get

1 1
5”(5)

which is not true, since any comparison function satisfies
o(t)<t, for t>0.

3) However, if T has a unique fixed point z* and the Picard it-
eration {17z}, converges to z*, for all o € X, then by Bessaga
theorem, see [30], for any a € (0, 1), there exist a metric p on X such
that (X, p) is complete and 7' is an a-contraction with respect to the
metric p.

Therefore, condition (3.12) can be reformulated in terms of an other
metric, thus obtaining the following more general result.

Theorem 5. Let X be a nonempty set and d, p two metrics on X, such
that (X, d) is complete.
Let T : X — X be a self operator satisfying

(i) There exists a (c) - comparison function ¢ and L > 0 such that

d(Tz, Ty) < p(d(z,y)) + Ld(y,Tz), forall z,y € X.
(ii) There exists a comparison function b and Ly > 0 such that

p(Tx, Ty) <¥(p(x,y)) + Lip(x, Tx), forall z,ye X .

Then

1) T has a unique fized point x* ;

2) The Picard iteration {x,}2 o, Tpi1 = Tx,, n >0, converges to
x*, for all xg € X ;
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3) The a posteriori error estimate

d(zp, 2*) < s(d(zp, Tps1)), n=0,1,2,...

holds, where s(t) = > ©F(t) ;
k=0

4) The rate of convergence of the Picard iteration is given by

p(xn,l‘*) < @/)(p(:)?n_l,l‘*)) , o n=>1.

Particular case. If we set d = p, by Theoremb we obtain Theorem 4.
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