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Abstract. By applying an appropriate fixed point technique, it is shown that a certain

Newton-type iterative method converges to the unique solution of the scalar nonlinear equa-

tion f(x) = 0, under weak smoothness conditions, involving only the function f and its first

derivative f ′. For this Newton-like method, an error estimate, better than the one known in

the case of the classical Newton method, is also established.
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1. Introduction

Newton’s method or Newton-Raphson method, as it is generally called in the
case of scalar equations f(x) = 0, is one of the most used iterative procedures
for solving nonlinear equations. It is defined by the iterative sequence

xn+1 = xn − f(xn)
f ′(xn)

, n ≥ 0, (1)

under appropriate assumptions on f and its first derivatives. Notice that there
is a close connection between Newton type iterative methods and fixed point
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theory, in the sense that (1) can be also viewed as the sequence of successive
approximations of the Newton iteration function

G(x) = x− f(x)
f ′(x)

,

and moreover, under appropriate conditions, α is a solution of the equation
f(x) = 0 if and only if α is a fixed point of the iteration function G.

There exist several convergence theorems in literature for the Newton’s
method, see for example [12], [13], [15], which, in order to ensure a quadratic
convergence for the iterative process (1), are requiring strong smoothness as-
sumptions, that involve f, f ′ and f ′′. These theorems usually also provide
appropriate error estimates.

Theorem 1. ([12]) Let f : [a, b] → R, a < b, be a function such that the
following conditions are satisfied
1) f(a) f(b) < 0; 2) f ∈ C2[a, b] and f ′(x) f ′′(x) 6= 0, x ∈ [a, b];

Then the sequence {xn}, defined by (1) and x0 ∈ [a, b], converges to α, the
unique solution of f(x) = 0 in [a, b], and the following estimation

|xn − α| ≤ M2

2m1
|xn − xn−1| , n ≥ 1, (2)

holds, where

m1 = min
x∈[a,b]

∣∣f ′(x)
∣∣ and M2 = max

x∈[a,b]

∣∣f ′′(x)
∣∣ .

For concrete applications, Theorem 1 is widely used but there exist more
general results, based on weaker smoothness conditions. We state here such
a result, due to Ostrowski ([14], Theorem 7.2, pp. 60), based on weaker
conditions on f but still involving the second derivative f ′′.

Theorem 2. ([14]) Let f(x) be a real function of the real variable x,
f(x0)f ′(x0) 6= 0, and put h0 = −f(x0)/f ′(x0), x1 = x0 + h0.

Consider the interval I0 = [x0, x0 +2h0] and assume that f ′′(x) exists in I0,
that max

x∈I0
|f ′′(x)| = M2 and

2 |h0|M2 ≤
∣∣f ′(x0)

∣∣ .

Then the sequence {xn} given by (1) lie in I0 and xn → α (n →∞), where α

is the unique zero of f in I0.
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The smoothness assumptions in Theorem 2 are still very sharp, as shown
by the next Example.

Example 1. ([2]) Let f : [−1, 1] → R be given by f(x) = −x2 + 2x, if
x ∈ [−1, 0), and f(x) = x2 + 2x, if x ∈ [0, 1]. The Newton iteration (1)
converges to the unique solution of f(x) = 0 in [−1, 1] but Theorem 2 cannot
be applied, because f ′′ does not exist at 0 ∈ I0 = [−1, 1].

In a series of papers [1] - [11], the first author obtained more general con-
vergence theorems for what was called there the extended Newton’s method,
for both scalar equations ([1] - [8], [10] - [11]) and n-dimensional equations
[9], theorems that can be applied to weakly smooth functions, including the
function in the previous example. The term extended Newton method was
adopted in view of the fact that the iterative process (1) has been extended
from [a, b] to the whole real axis R, in order to cover possible overflowing of
[a, b] at a certain step. A sample scalar variant of these results is contained in
the following theorem.

Theorem 3. ([4]-[5]) Let f : [a, b] → R, a < b, be a function such that the
following conditions are satisfied
(f1) f(a) f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) 6= 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

∣∣f ′(x)
∣∣ and M = max

x∈[a,b]

∣∣f ′(x)
∣∣ . (3)

Then the Newton iteration {xn}, defined by (1) and x0 ∈ [a, b], converges to
α, the unique solution of f(x) = 0 in [a, b], and the following estimation

|xn − α| ≤ M

m
|xn − xn+1| , n ≥ 0, (4)

holds.

A slightly more general variant of Theorem 3 has been obtained in ([4],
Theorem 5), by replacing condition (f3) by the next one

(f ′3) 2m ≥ M.

All proofs in [2], [4] - [7] are based on a rather classical technique, which
focuses on the behavior of the Newton sequence (1). In an other paper [3],
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without large circulation, the first author succeeded to prove Theorem 3 using
an elegant fixed point argument.

Very recently, Sen at all [16] have extended Theorem 3 to the case of a
Newton-like iteration of the form

xn+1 = xn − 2f(xn)
f ′(xn) + M1f(x)

, n ≥ 0, (5)

where M1f(x) = sgn f ′(x) ·M , with M defined by (3).
This result was then extended by Sen et all [17] to the n-dimensional case.

In both cases an extended Newton-like algorithm was used.
It is the main aim of this paper to obtain a convergence theorem for the

process (5), by means of a fixed point argument, under the same general
assumptions in Theorem 3, that involve only f and its first derivative f ′.
Finally, a numerical example is also discussed.

2. Quasi-contractive operators

We shall use the results in [3] to construct the main tool to be used in
Section 3 of this paper for proving a convergence theorem for the iterative
method (5). Let (X, d) be a metric space.

An operator F : X → X is called a quasi-contractive operator if there exist
y ∈ X and a constant a ∈ [0, 1) such that

d(F (x), F (y)) ≤ a · d(x, y), ∀x ∈ X. (6)

If y is a fixed point of F and F satisfies (6) with a = 1, then F is called a
quasi-nonexpansive operator, see for example [13]. We shall need the following
Lemma.

Lemma 1. Let (X, d) be a complete metric space and F : X → X be a quasi-
contractive operator with y a fixed point of F . Then y is the unique fixed point
of F and the sequence of successive approximations {Fn(x0)} converges to y,
for each x0 ∈ X.

Proof. Since y = F (y), by (6) we get

d(F (x), y) ≤ a · d(x, y), ∀x ∈ X. (7)

Let x0 ∈ X be arbitrary and {xn} be the sequence of successive approximations
starting from x0, that is, xn+1 = F (xn), n ≥ 0.
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Using (7) we get, by induction, that

d(xn, y) ≤ an · d(x0, y), n ≥ 0

which, based on the fact that 0 ≤ a < 1, yields

d(xn, y) → 0 as n →∞,

that is, {xn} converges to y.
To prove that the fixed point is unique, assume that there is an other fixed

point of F , say x. If x 6= y, then d(x, y) 6= 0 and then by (7) we get to the
contradiction

d(x, y) ≤ a · d(x, y).

¤

Remark 1. If X is a compact metric space, as in the case of X = [a, b], then
Lemma 1 remains true if we replace the quasi-contractiveness assumption by
the quasi-nonexpansiveness assumption. Note that a quasi-contractive (quasi-
nonexpansive) operator is not generally a contraction, that is, an operator
which, instead of (6), satisfies the classical contraction condition

d(F (x), F (y)) ≤ a · d(x, y), ∀x, y ∈ X,

with 0 ≤ a < 1.

3. The convergence theorem

Theorem 4. Let f : [a, b] → R (a, b ∈ R, a < b), be a function such that the
following conditions are satisfied
(f1) f(a) f(b) < 0;
(f2) f ∈ C1[a, b] and f ′(x) 6= 0, x ∈ [a, b];
(f3) 2m > M , where

m = min
x∈[a,b]

∣∣f ′(x)
∣∣ and M = max

x∈[a,b]

∣∣f ′(x)
∣∣ .

Then the Newton-like iteration {xn} defined by (5) and x0 ∈ [a, b], converges
to α, the unique solution of f(x) = 0 in [a, b], and the estimation

|xn − α| ≤ 2M

m + M
|xn − xn+1| , n ≥ 0, (4’)

holds.



240 VASILE BERINDE AND MĂDĂLINA PĂCURAR

Proof. By (f1) and (f2) it follows that the equation f(x) = 0 has a unique
solution α in (a, b).

Let F : [a, b] → R be the Newton-like iteration function associated to f ,
that is,

F (x) = x− 2f(x)
f ′(x) + M1f(x)

, x ∈ [a, b],

where M1(x) = sgn f ′(x) ·M and M is given by (3). Since f(α) = 0, we get

F (α) = α

and hence

F (x)− α = x− 2f(x)
f ′(x) + M1f(x)

− α = x− α− 2f(x)
f ′(x) + M1f(x)

.

As

f(x) = f(x)− 0 = f(x)− f(α),

by (f2) and the mean value theorem, we get

f(x) = f ′(y) · (x− α),

where y = α + λ(x− α), 0 < λ < 1. Then

F (x)− α = (x− α) ·
(

1− 2f ′(y)
f ′(x) + M1f(x)

)
, ∀x ∈ [a, b]. (8)

Using (f2), it results that f ′ preserves sign on [a, b]. Hence

2f ′(y)
f ′(x) + M1f(x)

> 0

which leads to the conclusion that

1− 2f ′(y)
f ′(x) + M1f(x)

< 1, ∀x ∈ [a, b] (9)

and for any y between α and x. On the other hand, by (f3) we obtain that,
∀x ∈ [a, b],

2f ′(y)
f ′(x) + M1f(x)

=
∣∣∣∣

2f ′(y)
f ′(x) + M1f(x)

∣∣∣∣ =
2 |f ′(y)|

|f ′(x) + M1f(x)| ≤
2M

m + M
< 2,

which shows that

1− 2f ′(y)
f ′(x) + M1f(x)

> −1, ∀x ∈ [a, b] (10)
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and for any y between α and x. Now, by (9), (10) and the continuity of f ′

one obtains that there exists

k = max
x,y∈[a,b]

∣∣∣∣1−
2f ′(y)

f ′(x) + M1f(x)

∣∣∣∣ < 1,

which, together with (8), yields the quasi-contractive condition

|F (x)− α| ≤ k · |x− α| ,∀x, y ∈ [a, b]. (11)

Note that we cannot apply Lemma 1 to F directly, because, under the weak
differentiability assumptions in Theorem 4, [a, b] is generally not an invariant
set under F . We shall prove, however, that there exists a certain iteration of
F , say FN , which satisfies

FN ([a, b]) ⊂ [a, b].

To this end, let us first note that, by (11) and the proof of Lemma 1, we have
that

Fn(x0) → α, as n →∞. (12)

for any x0 ∈ [a, b], providing that all terms of {Fn(x0)} lie in [a, b].
Because [a, b] is not an invariant set under F , then, by starting with the

Newton-like iteration {xn} from a given initial guess x0, it is possible to obtain
at a certain step, say p, xp = F p(x0) /∈ [a, b]. In order to send back the Newton-
like iteration into [a, b], we shall consider an extended algorithm, defined by
means of the prolongation by continuity and first order differentiability of f

to the whole real axis. Denote this function by f : f(x) = f ′(a) · (x−a)+f(a),
if x < a and f(x) = f ′(b) · (x− b) + f(b), if x > b.

Then, we will correspondingly define M1f(x) on a set A ⊂ R \ [a, b] by

M1f(x) = sgnf ′(x) ·max
x∈A

∣∣f ′(x)
∣∣ , x ∈ A.

Notice that, if x ∈ (−∞, a], then

M1f(x) = sgnf ′(x) · max
x∈(−∞,a]

∣∣f ′(x)
∣∣ = sgnf ′(a)

∣∣f ′(a)
∣∣ = f ′(a)

and similarly, if x ∈ [b, +∞), then

M1f(x) = sgnf ′(x) · max
x∈[b,+∞)

∣∣f ′(x)
∣∣ = sgnf ′(b)

∣∣f ′(b)∣∣ = f ′(b).
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Now, if some iterate xp of the Newton-like process (5) does not lie in [a, b], we
can have either xp < a or xp > b. In the first case,

xp+1 = xp − 2f(xp)
f ′(xp) + M1(f(xp))

= xp − 2 (f ′(a)(x− a) + f(a))
f ′(a) + f ′(a)

=

xp − 2 (f ′(a)(x− a) + f(a))
2f ′(a)

= xp − xp + a− f(a)
f ′(a)

= a− f(a)
f ′(a)

> a,

because, from (f1)− (f2), we get f(a)f ′(a) < 0.
If the second alternative occurs, that is, xp > b, then

xp+1 = xp − 2f(xp)
f ′(xp) + M1(f(xp))

= xp − 2 (f ′(b)(x− b) + f(b))
f ′(b) + f ′(b)

=

xp − 2 (f ′(b)(x− b) + f(b))
2f ′(b)

= xp − xp + b− f(b)
f ′(b)

= b− f(b)
f ′(b)

< b,

because, from (f1)− (f2), we get f(b)f ′(b) > 0.
Therefore, in both cases, any iteration that goes outside [a, b] will be sent

back to [a, b] at the next step and, since {xn} converges to α, with a < α < b,
it follows that, starting from a certain rank N > 0, we shall necessarily have

xn = Fn(x0) ∈ [a, b],

which means that FN ([a, b]) ⊂ [a, b], as claimed.
By an other hand, using (11) we obtain

|Fn(x)− α| ≤ kn |x− α| , ∀x ∈ [a, b], n ≥ 0,

and thus FN satisfies all requirements of Lemma 1.
This leads to the conclusion that α is the unique fixed point of FN , therefore
α is a fixed point of F , too.

To obtain the estimation (4’), we use (5) and the mean value theorem to
get

xn+1 − xn = −2
f ′(cn)

f ′(xn) + M1f(xn)
(xn − α),

where

cn = α + µ(xn − α), 0 < µ < 1,

which immediately yields the desired estimation. ¤
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Remark 2. Having in view the obvious inequality m ≤ M , it is clear that
the error estimate (4’) in Theorem 4 is better than the corresponding error
estimate (4) in Theorem 3.

4. Numerical examples and Conclusions

Note that, similarly to the case of Theorem 3, condition (f3) in Theorem 4
can be replaced by (f ′3) to obtain a convergence theorem that includes func-
tions like f in Example 1. In that case the equation f(x) = 0 has a unique
solution α = 0 situated in the interval [−1, 1] and m = 2, M = 4. Starting
from x0 = 0.5, the classical Newton’s method, that is, the iterative process

xn+1 =
x2

n

2xn + 2
, n ≥ 0,

yields the decreasing sequence x1 = 0.83333, x2 = 0.0032051, x3 = 0000129,
x4 = 0.0000001 and x5 = 0, while the Newton-like method considered on the
interval [0, 1], defined by

xn+1 =
xn

xn + 6
, n ≥ 0,

produces the decreasing sequence x1 = 0.076923, x2 = 0.012658, x3 =
0.002105, x4 = 0.000351 and x5 = 0.000058 which is slightly slower than
the Newton’s iteration. The Newton-like method studied in this paper could
be an alternative to the classical Newton’s method, if a better expression to
replace M1f(x) in (5) could be determined.
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