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340 ARTICOLE §1 NOTE MATEMATICE

Generalizarea 1. Daca f,g : [0.1] — R sunt functii integrabile
Riemann, atunci pentru orice sisteme de puncte intermediare £;, £ asoci-

1 2 “h b k1
ate diviziunii A, = (D e e i 1) &85 e [—. Ex ],
r n n n’ n

n—1
k=0,n-1, avem: '}Ln;la e Zf ( [f(z)g(::)d:z:

Observatie. In mod evldent, se putea generah.&a chiar pentru un gir oare-
care de diviziuni cu norma tinzand la 0, dar, pentru a simplifica prezentarea,
am preferat utilizarea girului de diviziuni echidistante.

Generalizarea 2. Prin inductie, putem extinde rezultatul pentrn p
functii si p sisteme de puncte intermediare, cu p € N, p > 2.
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Nota redactiei. Autorii notei de fata au solutionat, independent unul de
celalalt, problema in cauza. Solutiile fiind practic identice, redactia a optat pentru
varianta celui de-al doilea autor, fiind mai adecvata manualelor romanesti in vigoare,
desi, primul material primit la redactie a fost cel al primului autor.

ON A HOMOGENEOUS INEQUALITY
GIVEN AT THE 2004 J.B.M.O.
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Abstract. Starting from a homogeneous JBMO inequality, other inter-
esting related results are obtained.
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1. Introduction

The first problem given to the Junior Balkan Mathematical Olympiad
in 2004, proposed by Albania, see [2], [3], was the following:

Problem 1. Prove that the inequality:

T+y & 2y/2 1
22 —zy+12 = R "
holds for all real numbers © and y, not both equal to 0.

In the very recent book of S. Bilchev [2], two solutions of this problem
are given. We present here both of them, in view of some comments and
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developments?).

First Solution. If x +y < 0, the inequality obviously holds (the left
hand side is negative or zero, while the right hand side is positive).

It is also easy to check that for z = 0 or y = 0, the inequality in (1) is
strict.

Consider, therefore, only the case x+y > 0 and = # 0, y # 0. Then (1)
can be equivalently written under the form:

(@+1)- ZEL < I (0~ + ) @)

But
sty < VAR +2) (& -9 >0) (3)

and
x? + g 2 2 2 .
5 Sz —ay+y* (e e~y > 0). (4)

Now, in view of the fact that the numbers in both sides of (3) and (4) are
positive, by multiplying (3) and (4) side by side we get exactly (2).
Equality in (1) holds if and only if equality holds in (3) and (4), that
igs df =y
Second Solution. Similarly to the first solution, consider only the case
z+y > 0and z # 0, y # 0. By denoting S = 22 + 3> and P = a2y, the
inequality (1) can be equivalently written, after squaring both sides, as:
(S+2P)-S <8§(S—P)?
which reduces to 75% —18§P+8P> >0 < (S—2P)(7S—4P) > 0. But
S — 2P = (z —y)? > 0, with equality if and only if = = y. and

2
Bl P = A 72— 20 [7(3) —43—j+7} >0,
for all z,y € R,z # 0,y # 0.
2. Other similar inequalities

Now let us have a close look on the main argument in the second solution
presented above.

Basically, the key tool in proving inequality (1) was to reduce it to an
inequality of the form:

(S —2P)(aS +bP) > 0, (5)
where a and b were some constants for which aS +bP > 0, for all z,y € R,

z#0,y#0. As sgn(aS + bP) = sgn(at” 4 i bt +a), t € R, all that is needed
in order to have (5) satisfied is to have: at®+bt+a > 0, V¢t € R. But, in view

of the properties a the quadratic function, this happens if:
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1) a > 0 and 2) A=b—-4a®> <0,
that is, if @ > 0 and b € (—2a,2a). In that case (5) can be equivalently
written as:

(e+1)(S—P)P>(a+2b+1)P2+ 82— (b+2)SP. (6)
Now, in order to get the factor S in (6), we must have:
a+2b+1=0, @

which was satisfied in the original case of Problem 1, when we have had a = 7
and b= —4.
It is easy to see that if we would like to get:

52— (b+2)SP=5(S— (b+2)P)=5(S +2P),

then we must have —b+ 2 = 2, ie,, b = —4 and then a = 7, which gives
exactly the original inequality.

But even though, for other values of a and b, we are not able to obtain
precisely the expression S+ 2P, i.e., a perfect square, we still find interesting
and not trivial inequalities.

1. If we take @ = 5, then by by (7) we get b = —3 and obtain the
following new inequality:

Problem 2. Prove that the inequality:

JET T :
o2—zy+y? T a2 Fy? (8)
holds for all real numbers x and vy, not both equal to 0.
2. If we take a = 9, then by by (7) we get b = —5 and obtain the
following new inequality:
Problem 3. Prove that the inequality:

Va2 + 3xy + 2 = V10 g
—my+y? T a2+ y? (9)
holds for all real numbers x and y, not both equal to 0.
3. If we take a = 11, then by by (7) we get b = —6 and obtain the
following new inequality:
Problem 4. Prove that the inequality:

Vz? + da 2 2v/3

AR R (10)
T

holds for all real numbers x and y, not both equal to 0.

4. If we take a = 15, then by by (7) we get b = —8 and obtain the
following new inequality:
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Problem 5. Prove that the incquality:

Va2 + 6zy + 32 o 4
a?—ay+y> "~ a2 y?
holds for all real numbers = and y, not both equal to 0.

In the end of this note, notice that there is an essential difference be-
tween the first and the second solution of Problem 1: while the later opened
a door for further investigations, the former did not.

This is the reason why we can call a solution like the second one, as a
creative solution, see [1].
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Abstract. This article establishes formulae for the sine, the cosine and
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In prima parte a acestei note, ne-am propus sa generalizam formulele
de calcul a cosinusului §i sinusului sumei a doud numere reale, precum si
formulele de transformare a produsului de doua cosinusuri, respectiv doua
sinusuri In sume.
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