
O METODĂ DE TIP PUNCT FIX PENTRU
REZOLVAREA SISTEMELOR CICLICE

VASILE BERINDE ŞI MĂDĂLINA PĂCURAR

Rezumat. The aim of this paper is to introduce and illustrate by
suitable examples a unifying technique for solving some classes of
nonlinear cyclic systems. The method is essentially based on some
fixed point theorems on product spaces. All notions and results
are established in the context of the real line, thus being fully
accessible to high school students and teachers.

1. Introducere

Un sistem cu n ecuaţii şi n necunoscute de forma
f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

. . .
fn(x1, x2, . . . , xn) = 0,

(1.1)

se numeşte ciclic sau circular dacă este invariant la orice permutare
circulară a necunoscutelor (x1, x2, . . . , xn), eventual cu excepţia unei
rearanjări a ecuaţiilor. Să observăm că, ı̂n cazul n = 2, un sistem ciclic
este de fapt un sistem simetric ı̂n sensul obişnuit.

Numeroase probleme care cer rezolvarea unor astfel de sisteme
neliniare au fost propuse de-a lungul anilor ı̂n Gazeta Matematică
[10] (dar şi ı̂n alte reviste de matematici elementare). O listă aproape
completă a acestora este prezentată ı̂n secţiunea finală a acestei note.
Două exemple tipice de astfel de sisteme, preluate din [3] şi [4], sunt
următoarele: 

x =
√
y + 45−

√
y + 5

y =
√
z + 45−

√
z + 5

z =
√
x+ 45−

√
x+ 5,

(1.2)

 3x + 4y = 5z

3y + 4z = 5x

3z + 4x = 5y.
(1.3)

Sistemele ciclice apărute de-a lungul anilor ı̂n Gazeta Matematică [10]
sunt de obicei rezolvate prin metode speciale, care exploatează expresi-
ile particulare ce apar ı̂n ecuaţiile sistemului, a se vedea spre exemplu
primele două metode de rezolvare a Problemei 10 din [3] şi [4].

Într-o lucrare din 1992, publicată ı̂ntr-o revistă de mai restrânsă
circulaţie [2], primul autor a introdus o metodă unitară de rezolvare a
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acelor sisteme circulare (1.1) care pot fi scrise echivalent sub forma
x1 = f(x2)
x2 = f(x3)

. . .
xn−1 = f(xn)
xn = f(x1),

(1.4)

tehnică ce a fost apoi preluată ı̂n [3] şi [4].
Este uşor de văzut că ı̂n categoria (1.4) intră sistemul (1.2) dar nu

şi sistemul (1.3). Metoda folosită acolo este bazată ı̂n esenţă pe noţiuni
şi rezultate elementare din teoria punctului fix, care sunt accesibile la
nivelul clasei a IX-a de liceu (dar a căror demonstraţie completă cere
cunoştinte de analiză din clasa a XI-a).

Să reamintim că dacă f : E ⊂ R → R este o funcţie dată, atunci
numărul a ∈ E se numeşte punct fix al lui f dacă f(a) = a iar a
se numeşte punct periodic de ordin k dacă este punct fix al iteratei
fk := f ◦ f ◦ · · · ◦ f , unde compunerea se face de k ori.

În general este foarte dificil sau chiar imposibil să calculăm direct
punctele periodice, chiar şi ı̂n cazul unor funcţii f foarte simple, a se
vedea Observaţia 3 şi exemplele din [2], [3] şi [4]. Metoda noastră
exploatează faptul că, pe de o parte, dacă (a1, a2, . . . , an) este o soluţie
a sistemului (1.4), atunci a1, a2, . . . , an sunt puncte periodice de ordinul
n ale lui f şi, pe de altă parte, faptul că, ı̂n anumite condiţii, o funcţie
f nu are alte puncte periodice ı̂n afară de punctele sale fixe.

În acest fel, problema se reduce la una semnificativ mai simplă -
aceea de a calcula punctele fixe ale lui f . Această proprietate o au spre
exemplu contracţiile, adică acele funcţii f : E → E pentru care există
o constantă 0 ≤ α < 1 astfel ı̂ncât

|f(x)− f(y)| ≤ α |x− y| , ∀x, y ∈ E. (1.5)

Binecunoscutul principiu de punct fix al lui Banach, a se vedea spre
exemplu [5], ne asigură că dacă E este ı̂nchisă şi f este o contracţie pe
E, atunci f are un singur punct fix x, care este şi unicul punct fix al
oricărei iterate fn (n > 1) a lui f .

Menţionăm faptul că metoda expusă şi folosită ı̂n [2], [3] şi [4]
pentru rezolvarea sistemelor ciclice de forma (1.4) nu este limitată doar
la situaţiile ı̂n care avem asigurată unicitatea punctului fix pentru f ,
a se vedea Problema 10b din [3] şi [4], caz ı̂n care f are de fapt trei
puncte fixe.

Pornind de la faptul că metoda din [2], [3] şi [4] se aplică numai
pentru sistemele circulare de forma (1.4), ı̂n lucrarea de faţă ne prop-
unem să extindem această metodă la cazul mai general al sistemelor
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ciclice (1.1) care pot fi rescrise echivalent sub forma
x1 = f(x2, x3, . . . , xk+1)
x2 = f(x3, x4, . . . , xk+2)

. . .
xn−1 = f(xn, x1, . . . , xk−1)
xn = f(x1, x2, . . . , xk),

(1.6)

unde f : Ek → R este o funcţie reală de k variabile reale, E ⊂ R şi k
este un număr natural satisfăcând condiţia 1 ≤ k < n.

Evident, ı̂n cazul particular k = 1 vom regăsi metoda din [2], [3] şi
[4], căci ı̂n acest caz sistemul (1.6) se reduce la (1.4).

2. Câteva rezultate din teoria punctului fix pe axa reală

Următorul rezultat este o variantă a teoremei de punct fix a lui
Prešić [15], enunţată aici ı̂n cazul particular al axei reale, şi va constitui
unul dintre intrumentele de bază folosite la rezolvarea sistemelor ciclice
ı̂n secţiunea următoare.

Teorema 1. Fie E ⊂ R o mulţime ı̂nchisă, k ∈ N∗ şi f : Ek → E o

funcţie pentru care există constantele α1, α2, . . . , αk ∈ R+, cu
k∑

i=1

αi =

α < 1 astfel ı̂ncât să avem

|f(x0, . . . , xk−1)− f(x1, . . . , xk)| ≤ α1 |x0 − x1|+ · · ·+ αk |xk−1 − xk| ,
(2.1)

pentru orice x0, . . . , xk ∈ E.
Atunci f are un punct fix unic x ı̂n E, adică avem f(x, . . . , x) = x

şi, ı̂n plus, x este unicul punct fix al oricărei iterate fn a lui f .

Demonstraţie. Considerăm funcţia asociată F : E → E, dată prin
F (x) = f(x, . . . , x), pentru orice x, y ∈ E. Avem:

|F (x)− F (y)| = |f(x, x, . . . , x)− f(y, y, . . . , y)| ≤
≤ |f(x, . . . , x)− f(x, . . . , x, y)|+ |f(x, . . . , x, y)− f(x, . . . , x, y, y)|+
. . . . . .

+ |f(x, x, y, . . . , y)− f(x, y, . . . , y)|+ |f(x, y, . . . , y)− f(y, . . . , y)| .

Atunci din (2.1) se obţine:

|F (x)− F (y)| ≤

≤ [α1 |x− x|+ α2 |x− x|+ . . .+ αk−1 |x− x|+ αk |x− y|] +

+ [α1 |x− x|+ α2 |x− x|+ . . .+ αk−1 |x− y|+ αk |y − y|] +

. . . . . .

+ [α1 |x− y|+ α2 |y − y|+ . . .+ αk−1 |y − y|+ αk |y − y|] ,
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şi, prin urmare, pentru orice x, y ∈ E avem inegalitatea

|F (x)− F (y)| ≤
k∑

i=1

αi |x− y| = α |x− y| , (2.2)

care arată că F este contracţie.
Fie acum x0 ∈ E fixat şi fie {xn}n≥0 şirul aproximaţiilor succesive

definit de F şi x0, adică,

xn+1 = F (xn), n ≥ 0. (2.3)

Luăm x := xn−1 şi y := xn ı̂n (2.2) şi obţinem

|xn − xn+1| ≤ α |xn−1 − xn| , n ≥ 1. (2.4)

Prin inducţie din (2.4) se obţine

|xn − xn+1| ≤ αn |x0 − x1| , n ≥ 1,

şi atunci

|xn − xn+p| ≤
(
αn + · · ·+ αn+p−1

)
|x0 − x1| , n ≥ 1, p ≥ 1. (2.5)

Cum 0 ≤ α < 1, rezultă că lim
n→∞

αn = 0 şi atunci ţinând seama că

αn + · · ·+ αn+p−1 =
αn(1− αp)

1− α
<

αn

1− α
,

din (2.5) deducem că ∀ε > 0, există r = r(ε) astfel ca

|xn − xn+p| < ε, ∀n ≥ r, ∀p ∈ N,
care arată că {xn}n≥0 este şir fundamental, deci convergent. Aşadar,
cum E este ı̂nchisă, există x ∈ E astfel ca

x = lim
n→∞

xn.

Pe de altă parte, din (2.4) rezultă că F este continuă pe E. Luând
acum n→∞ ı̂n (2.3) obţinem, pe baza continuităţii lui F că

x = F (x)⇔ x = f(x, . . . , x),

ceea ce arată că x este un punct fix al lui F .
Demonstrăm prin reducere la absurd că x este unicul punct fix al

lui F . Admitem existenţa unui y ∈ E, x 6= y astfel ca y = F (y).
Atunci din (2.2) rezultă că

|x− y| ≤ α |x− y| ,
ceea ce conduce la contradicţia |x− y| ≤ 0.

Pentru a demonstra partea a doua a teoremei, folosim faptul că din
(2.2) obţinem prin inducţie

|F n(x)− F n(y)| ≤ αn |x− y| , n ≥ 1, x, y ∈ E,
unde F n este a n-a iterată a lui F (x) = f(x, x, . . . , x).

�
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Observaţia 1. În cazul particular k = 1, din Teorema 1 obţinem exact
teorema de punct fix a lui Banach pomenită mai sus, ı̂ntrucât condiţia
(2.1) se reduce la condiţia de contracţie (1.5).

Este posibil să slăbim condiţia generalizată de contracţie (2.1), ca
şi ı̂n teorema următoare, care este o variantă particulară a unei teoreme
din [9].

Teorema 2. Fie E ⊂ R o mulţime ı̂nchisă, k ∈ N∗ şi f : Ek → E o
funcţie pentru care există λ ∈ [0, 1) astfel ı̂ncât

|f(x0, . . . , xk−1)− f(x1, . . . , xk)| ≤ λmax{|x0 − x1| , . . . , |xk−1 − xk|},
(2.6)

pentru orice x0, . . . , xk ∈ E.
Atunci există x ı̂n E pentru care f(x, . . . , x) = x.
Dacă, ı̂n plus, pentru orice x, y ∈ E, cu x 6= y, avem

|f(x, . . . , x)− f(y, . . . , y)| < |x− y| (2.7)

atunci x este unicul punct ı̂n E cu f(x, . . . , x) = x şi, mai mult, x este
unicul punct fix ı̂n E al oricărei iterate fn:

fn(x, . . . , x) = x, ∀n > 1. (2.8)

Să reţinem că, peste tot ı̂n această lucrare, dacă f : Ek → E este
o funcţie de k variabile (k ≥ 1), atunci iterata fn este definită doar pe
diagonala lui Ek, prin

fn(a, . . . , a) = fn−1(f(a, . . . , a), . . . , f(a, . . . , a)), ∀n > 1. (2.9)

Exemplul 1. ([9]) Fie X = [0, 1]∪ [2, 3] şi f : X2 → X definită astfel:
f(x, y) = x+y

4
, dacă (x, y) ∈ [0, 1] × [0, 1], f(x, y) = 1 + x+y

4
, dacă

(x, y) ∈ [2, 3] × [2, 3] şi f(x, y) = x+y
4
− 1

2
, dacă (x, y) ∈ [0, 1] × [2, 3]

sau (x, y) ∈ [2, 3] × [0, 1]. Atunci f satisface (2.6) cu λ = 1
2

dar nu

satisface (2.1), ceea rezultă luând x0 = 0, x1 = 2, x2 = 2. Într-adevăr,
admiţând că (2.1) ar fi satisfăcută, am obţine:

2 = |f(0, 0)− f(2, 2)| ≤ |f(0, 0)− f(0, 2)|+ |f(0, 2)− f(2, 2)| ≤
≤ α1 · 0 + α2 · 2 + α1 · 2 + α2 · 0 = (α1 + α2) · 2 < 2,

contradicţie. Deci f nu satisface (2.1). Să observăm că ı̂n acest caz,
condiţia (2.7) nu este satisfăcută, căci f(0, 0) = 0 şi f(2, 2) = 2.

Pot fi enunţate şi alte teoreme de punct fix, mult mai generale decât
Teoremele 1 şi 2, prin adaptarea la axa reală a unor rezultate recente
din [11]-[13] şi [16], deduse acolo pentru cazul general al unui spaţiu
metric complet.

De asemenea, este posibil să obţinem concluzia din Teoremele 1 şi
2 prin adaptarea la cazul f : Ek → E, a unor rezultate stabilite ı̂n [2]
pentru funcţii f : E → E.

Încheiem această secţiune prin enunţarea unui astfel de principiu
de punct fix care va fi folosit ı̂n secţiunea următoare a lucrării. Pentru a



6 Vasile Berinde şi Mădălina Păcurar

simplifica scrierea notăm cu Fix (f) mulţimea punctelor fixe ale funcţiei
f , adică

Fix (f) := {a ∈ E : f(a, a, . . . , a) = a}.

Propoziţia 1. Fie I ⊂ R un interval, k ∈ N∗ şi fie f : Ik → I o
funcţie pentru care F (x) := f(x, x, . . . , x) este crescătoare pe I. Dacă
Fix (f) = {x} atunci

Fix (fn) = {x} , ∀n > 1.

Demonstraţie. Fie b ∈ I, b 6= x. Demonstrăm că b /∈ Fix (fn)
pentru orice n > 1. Cum Fix (f) = {x} şi b 6= x urmează că, fie
f(b, b, . . . , b) > b, fie f(b, b, . . . , b) < b.

Considerăm primul caz. Atunci, deoarece F (x) = f(x, x, . . . , x)
este crescătoare, avem

fn(b, b, . . . , b) ≥ fn−1(b, b, . . . , b) ≥ · · · ≥ f(b, b, . . . , b) > b

şi prin urmare b /∈ Fix (fn). Dacă f(b, b, . . . , b) < b, demonstraţia este
asemănătoare.

Observaţia 2. În cazul particular k = 1, din Propoziţia 1 obţinem
tocmai Propoziţia 3 din [2].

Propoziţia 1 nu mai este valabilă dacă F (x) = f(x, x, . . . , x) este
descrescătoare, după cum arată următorul exemplu.

Exemplul 2. Fie f : R2 → R dată prin f(x1, x2) = −x1 + x2

2
. Atunci

Fix (f) = {0}, căci f(a, a) = −a, câtă vreme Fix (f 2) = R, căci
f 2(a, a) = f(f(a, a), f(a, a)) = a.

3. Rezolvarea unitară a sistemelor ciclice

Pentru simplificarea expunerii, vom face prezentarea metodei de
rezolvare a sistemelor ciclice doar pentru cazul particular n = 3 şi
k = 2, deşi ea se poate prezenta ı̂n toate detaliile pentru cazul general al
sistemelor (1.6), cu n şi k oarecare dar satisfăcând condiţia n > k ≥ 1.

Începem prin a prezenta metoda de rezolvare pentru un sistem de
forma (1.6), dedus din sistemul (1.2).

Problema 1. Rezolvaţi ı̂n R3 sistemul x =
√
y + 45−

√
z + 5

y =
√
z + 45−

√
x+ 5

z =
√
x+ 45−

√
y + 5.

(3.1)

Rezolvare. Sistemul (3.1) este de forma (1.6) cu n = 3, k = 2 şi

f(x1, x2) =
√
x1 + 45−

√
x2 + 5, (x1, x2) ∈ A,

unde A = {(x1, x2) ∈ E2 : x1 − x2 + 40 ≥ 0} şi E = [0,∞). E uşor
de stabilit că f satisface (2.6), adică pentru orice (x0, x1), (x1, x2) ∈ A
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avem,

|f(x0, x1)− f(x1, x2)| ≤ α1 |x0 − x1|+ α2 |x1 − x2| , (3.2)

unde α1 =
1

6
√

5
şi α2 =

1

2
√

5
satisfac condiţia α1 + α2 =

2

3
√

5
< 1.

Atunci, din Teorema 1 rezultă că F (x) := f(x, x) =
√
x+ 45 −√

x+ 5 are un singur punct fix x ı̂n E = [0,∞), care este şi unicul
punct fix a iteratelor fn(x, x), pentru n > 1.

Se observă că x = 4 este punctul fix căutat şi atunci, pe baza
Teoremei 1, x = 4 este unica soluţie a ecuaţiei

x = f 3(x, x), (3.3)

adică f nu are alte puncte periodice ı̂n afară de punctul său fix.
Arătăm acum că, dacă (a1, a2, a3) este o soluţie a sistemului (3.1),

atunci a1, a2, a3 sunt puncte periodice ale lui f adică sunt soluţii ale
ecuaţiei (3.3). Folosind condiţia (3.2) şi ecuaţiile sistemului obţinem,
pe rând,

|a1 − a2| = |f(a2, a3)− f(a3, a1)| ≤ α1 |a2 − a3|+ α2 |a3 − a1| ,
|a2 − a3| = |f(a3, a1)− f(a1, a2)| ≤ α1 |a3 − a1|+ α2 |a1 − a2| ,
|a3 − a1| = |f(a1, a2)− f(a2, a3)| ≤ α1 |a1 − a2|+ α2 |a2 − a3| ,

care, ı̂nsumate termen cu termen, ne conduc la concluzia că:

S ≤ (α1 + α2) · S,
unde am notat S = |a1 − a2|+ |a2 − a3|+ |a3 − a1|.

Deoarece α1 + α2 = α < 1, inegalitatea de mai sus impune ı̂n mod
necesar ca

|a1 − a2|+ |a2 − a3|+ |a3 − a1| = 0,

ceea ce ı̂nseamnă că a1 = a2 = a3 = a, adică a1, a2, a3 sunt puncte
periodice ale lui f .

Prin urmare (4, 4, 4) este unica soluţie a sistemului (3.1).

Observaţia 3. Pentru a arăta cât de complicat ar fi fost să rezolvăm
ecuaţia (3.3), transcriem aici doar ecuaţia x = f 2(x, x):

x =

√√
x+ 45−

√
x+ 5 + 45−

√√
x+ 45−

√
x+ 5 + 5.

Să mai observăm că funcţia F (x) din Problema 1 este descrescătoare,
astfel că nu putea fi folosită Propoziţia 1 pentru a rezolva sistemul (3.1).

Dăm ı̂n continuare un exemplu de sistem ciclic pentru care Propoziţia
1 este aplicabilă.

Problema 2. Rezolvaţi ı̂n R3 sistemul 2x3 − 7y2 + 5x+ 3y − 2 = z
2y3 − 7z2 + 5y + 3z − 2 = x
2z3 − 7x2 + 5z + 3x− 2 = y.

(3.4)
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Rezolvare. Sistemul (3.4) este de forma (1.6) cu k = 2, n = 3 şi

f(x1, x2) = 2x3
1 − 7x2

2 + 5x1 + 3x2 − 2,

şi, la prima vedere, nu pare uşor abordabil cu ajutorul metodei date de
Teorema 1. De aceea vom ı̂ncerca să exploatăm Propoziţia 1.

Deoarece funcţia F (x) := f(x, x) = 2x3 − 7x2 + 8x − 2 are trei
puncte fixe, şi anume, Fix (F ) = {1/2, 1, 2}, este clar că nu putem
aplica Propoziţia 1 pe ı̂ntreaga axă reală.

Vom proceda ı̂n felul următor. Considerăm mai ı̂ntâi restricţia
funcţiei F la intervalul I1 = (−∞, 1/2], notată tot cu F . Avem

F ′(x) = 6x2 − 14x+ 8 = 2(3x− 4)(x− 1),

prin urmare F ′(x) > 0 pe I1 ceea ce arată că F este strict crescătoare
pe I1.

Aceasta ı̂nseamnă că, pentru orice x ∈ I1, avem F (x) ≤ F (1
2
) = 1

2
,

adică F (I1) ⊂ I1 şi acum putem aplica Propoziţia 1 cu E = I1. Rezultă
că f nu are alte puncte periodice pe I1 ı̂n afară de punctul său fix 1

2
.

Mai trebuie demonstrat acum că dacă (a1, a2, a3) este o soluţie a
sistemului (3.4), atunci avem ı̂n mod necesar a1 = a2 = a3 şi deci
a1, a2, a3 sunt puncte periodice ale lui f . Tratăm efectiv doar cazul
a2 = a3 6= a1, celelalte cazuri fiind asemănătoare. Din ultimele două
ecuaţii ale sistemului (3.4) obţinem că

a2 = f(a2, a1), a2 = f(a1, a2),

ceea ce conduce la ecuaţia

(a1 − a2)
[
2
(
a2

1 + a1a2 + a2
2

)
+ 7 (a1 + a2 + 2)

]
= 0.

Expresia din paranteza dreaptă fiind ı̂ntotdeauna strict pozitivă, de-
ducem că a1 = a2, ceea ce contrazice presupunerea a1 6= a2. Aşadar nu
putem avea soluţii de forma (a1, a2, a2) cu a2 = a3 6= a1 etc.

Prin urmare tripletul
(

1
2
, 1

2
, 1

2

)
este unica soluţie a sistemului (3.4)

pe intervalul I1 = (−∞, 1/2].

În mod asemănător se deduce că (1, 1, 1) este unica soluţie a sis-

temului (3.4) pe I2 =

(
1

2
, 1

]
iar (2, 2, 2) este unica soluţie a sistemului

(3.4) pe I3 = [2,∞). Aceasta rezolvă complet problema.
Există sisteme ciclice pentru care nici măcar rezolvarea ecuaţiei

x = F (x) nu este simplă, aşa cum arată problema următoare, adaptată
după Problema 10e din [3].

Problema 3. Rezolvaţi ı̂n R∗+
3 sistemul

x
(

2x−1 + 2
1√
y

)
= 3z

y
(

2y−1 + 2
1√
z

)
= 3x

z
(

2z−1 + 2
1√
x

)
= 3y.

(3.5)
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Rezolvare. Funcţia F este aici dată prin

F (x) := f(x, x) =
1

3
x
(

2x−1 + 2
1√
x

)
, x > 0.

Este clar că g(x) := 1
3
x2x−1 este crescătoare pe (0,∞). Pentru a

determina un interval I ⊂ (0,∞) astfel ca funcţia h(x) := 1
3
x2

1√
x să fie

crescătoare pe I, calculăm mai ı̂ntâi derivata lui h:

h′(x) =
2

1√
x

6
√
x

(
2
√
x− ln 2

)
, x > 0.

Rezultă că h′ este pozitivă, şi prin urmare h este crescătoare, pe inter-

valul I = (a,+∞), unde a =
(

ln 2
2

)2
< 1.

Acum putem aplica Propoziţia 1 cu E = (a,+∞), deoarece F este
crescătoare pe E. Determinăm acum punctele fixe ale lui F , ceea ce
revine la a rezolva ecuaţia exponenţială

2x−1 + 2
1√
x = 3.

Folosind inegalitatea mediilor avem pe rând

2x−1 + 2
1√
x =

2x

2
+ 2

1√
x =

2x + 2 · 2
1√
x

2
=

=
2x + 2

1√
x + 2

1√
x

2
≥ 3

2

3

√
2

x+ 2√
x ,

cu egalitate dacă şi numai dacă 2x = 2
1√
x , adică x = 1. Pe de altă

parte

x+
2√
x
≥ 3, ∀x > 0,

ceea ce este echivalent cu inegalitatea evidentă (
√
x− 1)

2
(
√
x+ 2) ≥ 0,

cu egalitate dacă şi numai dacă x = 1.
Combinând cele două inegalităţi rezultă că

2x−1 + 2
1√
x ≥ 3, ∀x > 0,

cu egalitate dacă şi numai dacă x = 1. Aceasta arată că F are un
singur punct fix, x = 1, pe E = (a,+∞) etc.

Lăsăm pe seama cititorului să arate că, dacă (a1, a2, a3) este o
soluţie a sistemului (3.5), atunci avem ı̂n mod necesar a1 = a2 = a3

şi deci a1, a2, a3 sunt puncte periodice ale lui f , ceea ce ne asigură că
(1, 1, 1) este unica soluţie a sistemului (3.5).

Propunem, ı̂n ı̂ncheierea acestei secţiuni, rezolvarea unui sistem
ciclic care este o adaptare la cazul k = 2 a unui sistem de forma (1.4)
din [1] (Problema 58, pagina 137), abordat şi ı̂n [2], [3], [4] şi [7].

Problema 4. Rezolvaţi ı̂n R3 sistemul

2x = y +
2

z
; 2y = z +

2

x
; 2z = x+

2

y
. (3.6)
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4. Concluzii şi câteva comentarii bibliografice

Să observăm mai ı̂ntâi că modul ı̂n care am argumentat, la re-
zolvarea Problemei 1, faptul că dacă (a1, a2, a3) este o soluţie a sis-
temului (3.1) atunci avem ı̂n mod necesar a1 = a2 = a3, se constituie
de fapt ı̂ntr-o metodă de sine stătătoare de rezolvare a sistemului re-
spectiv, care nu apelează deloc la conceptul de punct fix.

Meritul principal al abordării noastre este ı̂nsă acela că atrage
atenţia asupra principiilor de bază care stau ı̂n spatele acestei metode.

În al doilea rând, trebuie spus că nu toate sistemele ciclice au pro-
prietatea menţionată mai sus. Spre exemplu, sistemul ciclic din prob-
lema C.O.: 4923 (Gazeta Matematică, nr. 3/2008, pag. 160, autor D.
Marinescu), adică sistemul

x2 + 2yz − 6x+ 3 = 0; y2 + 2zx− 6y + 3 = 0; z2 + 2xy − 6z + 3 = 0,

admite (a se vedea rezolvarea din Gazeta Matematică, nr. 9/2008,
pag. 456), pe lângă soluţia (1, 1, 1) şi următoarele soluţii (−1, 5,−1),
(5,−1,−1), (−1,−1, 5), care nu verifică condiţia a1 = a2 = a3.

Să mai notăm că sistemul (1.3) este inspirat de un sistem simetric
de aceeaşi formă (deci cu două necunoscute) care apare ca problema
17, pag. 129, ı̂n excelenta culegere de probleme [1], ı̂n care se mai
găsesc şi alte sisteme ciclice foarte interesante, multe preluate din re-
vista Matematica v şkole, ce pare a fi şi sursa originară de inspiraţie a
acestui tip de probleme pentru problemistica matematică românească.

Sugerăm cititorilor să ia ı̂n considerare toate sistemele care se obţin,
pornind de la sistemele din lista de mai jos dar şi a celor din lucrările
[2], [3], [4], [8] şi [14], prin acelaşi procedeu prin care sistemul (3.1) a
fost obţinut din (1.2).

O altă provocare este aceea de a căuta metode alternative de re-
zolvare pentru toate sistemele tratate anterior, dar şi pentru sistemele
din lista de mai jos, de a identifica acele situaţii ı̂n care metoda noastră
nu poate fi aplicată şi apoi să o perfecţioneze ı̂n aşa fel ı̂ncât să acopere
şi acele cazuri.

Dăm ı̂n ı̂ncheiere o listă a problemelor publicate ı̂n Gazeta Matem-
atică ı̂n ultimii 20 de ani, cu scopul declarat de a arăta interesul
propunătorilor de probleme pentru această temă, altfel destul de ı̂ngustă,
dar şi pentru a oferi o arie ı̂ntinsă de aplicabilitate pentru metoda ex-
pusă de noi ı̂n acest articol.

A. Probleme din rubricile de probleme propuse

• Problema 22 271, nr. 2/1991, pag. 71, autor: M. Bencze
• Problema 22244∗, nr. 9/1991, pag. 351, autor: M. Berindeanu
• Problema C:1182, nr. 9/1991, pag. 357, autor: C. Chiteş
• Problema E: 10 349, nr. 10/1991, pag. 387, autor: M. Berindeanu
• Problema E: 10 446, nr. 2-3/1992, pag. 99, autor: C. Pană
• Problema C: 1267, nr. 5/1992, pag. 196, autor: M. Bencze
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O metodă de tip punct fix pentru rezolvarea sistemelor ciclice 11

• Problema O.G.: 164, nr. 5-6/1993, pag. 211, autor: A. Boţan
• Problema 23 013, nr. 6/1994, pag. 285, autor: M. Burtea
• Problema C: 1662, nr. 4/1995, pag. 189, autor: M. Ganga
• Problema 23 524, nr. 4/1996, pag. 241, autor: T. Agnola
• Problema C: 1878, nr. 12/1996, pag. 641, autor: V. Berinde
• Problema O: 187, nr. 4/1998, pag. 187, autor: M. Bencze
• Problema 24 066, nr. 2/1999, pag. 85, autori: M. Opincariu şi

V. Rentea
• Problema C: 2131, nr. 2 / 1999, pag. 88, autor: D. Sitaru
• Problema 24 081, nr. 3/1999, pag. 135, autor: Gh. Szöllösy
• Problema O:910, nr. 5-6/1999, pag. 245, autor: ***
• Problema C: 2346, nr. 12/2000, pag. 499, autor: Gh. Szöllösy
• Problema C: 2408, nr. 5-6/2001, pag. 248, autor: N. Pavelescu
• Problema E: 12 421, nr. 10/2002, pag. 405, autor: Ioana Soare
• Problema E: 12 496, nr. 2/2003, pag. 86, autor: L. Pârşan
• Problema 25 122, nr. 7-8/2004, pag. 303, autor: N. Muşuroia
• Problema 25 123, nr. 7-8/2004, pag. 303, autor: Mihaela

Burduşel
• Problema E: 13 059, nr. 10/2005, pag. 552, autor: C. Nicolau
• Problema C: 2983, nr. 2/2006, pag. 106, autor: C. Andone
• Problema 25 541, nr. 5/2006, pag. 272, autor: M. Chirciu
• Problema O: 1124, nr. 6/2006, pag. 334, autor: N. Minculete
• Problema 25 702, nr. 1/2007, pag. 44, autor: N. Minculete
• Problema C: 3138, nr. 3/2007, pag. 158, autor: M. Chirciu
• Problema C: 3163, nr. 5/2007, pag. 274, autor: M. Bencze
• Problema 25 956, nr. 2/2008, pag. 104, autor: M. Chirciu
• Problema C.O.: 4923, nr. 3/2008, pag. 160, autor: D. Mari-

nescu
• Problema 26 176, nr. 7-8-9/2009, pag. 430, autor: I. Ucu

Crişan

B. Probleme din rubricile Concursuri de matematică

• Problema 3, cls. a IX-a, Etapa locală Prahova, nr. 9/1990,
autor C. Apostolescu
• Problema 1, cls. a X-a, Conc. interj. ”Gr. C. Moisil”, ediţia a

XVI-a, pag. 288 (Olimpiadă Israel)
• Problema 2, cls. a X-a, Etapa judeţeană 2002, nr. 2/2002, pag.

60, autor: M. Piticari
• Problema 1, cls. a IX-a, Conc. ”D. Barbilian” 2003, nr. 4/2004,

autor: M. Chirciu
• Problema 1, cls. VII-VIII, Concursul Gazetei 2006, nr. 9/2006,

pag. 481, autor: L. Pârşan
• Problema 1, cls. a IX-a, Conc. Modus Vivendi, nr. 1/2008,

pag. 13, autor: N. Pavelescu
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• Problema 2, cls. IX-X, Concursul Gazetei 2008, nr. 10/2008,
pag. 485, autor: M. Chirciu
• Problema 3, cls. a X-a, Conc. ”N. Coculescu” 2008, nr. 7-8-

9/2008, pag. 356, autor: M. Perianu
• Problema 1, cls. a IX-a, Conc. ”Al. Papiu-Ilarian” 2010, nr.

12/2010, pag. 593, autor: M. Pop
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[11] Păcurar, M., Iterative Methods for Fixed Point Approximation, Risoprint, Cluj-

Napoca, 2010
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[13] Păcurar, M., Fixed points of almost Presić operators by a k-step iterative
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