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O METODA DE TIP PUNCT FIX PENTRU
REZOLVAREA SISTEMELOR CICLICE

VASILE BERINDE SI MADALINA PACURAR

REZUMAT. The aim of this paper is to introduce and illustrate by
suitable examples a unifying technique for solving some classes of
nonlinear cyclic systems. The method is essentially based on some
fixed point theorems on product spaces. All notions and results
are established in the context of the real line, thus being fully
accessible to high school students and teachers.

1. INTRODUCERE
Un sistem cu n ecuatii i n necunoscute de forma

f1(1'1,l‘2, e ,[L’n) =0
fz(.Tl,xQ, e ,.Tn) = O (11)

o1, 29, .. 2,) =0,

se numeste ciclic sau circular daca este invariant la orice permutare
circulara a necunoscutelor (zq,xs,...,%,), eventual cu exceptia unei
rearanjari a ecuatiilor. Sa observam ca, in cazul n = 2, un sistem ciclic
este de fapt un sistem simetric in sensul obignuit.

Numeroase probleme care cer rezolvarea unor astfel de sisteme
neliniare au fost propuse de-a lungul anilor in Gazeta Matematica
[10] (dar si in alte reviste de matematici elementare). O lista aproape
completa a acestora este prezentata in sectiunea finala a acestei note.
Doua exemple tipice de astfel de sisteme, preluate din [3] si [4], sunt

urmatoarele:
r=y+45—y+5
y=+vz+45—+/2+5 (1.2)
2 =+/x +45 — /2 + 5,
37 +4Y = 5H*
3Y 4+ 4% = 5" (1.3)
3% 4+ 4% = bY.

Sistemele ciclice aparute de-a lungul anilor in Gazeta Matematica [10]
sunt de obicei rezolvate prin metode speciale, care exploateaza expresi-
ile particulare ce apar in ecuatiile sistemului, a se vedea spre exemplu
primele doua metode de rezolvare a Problemei 10 din [3] si [4].

Intr-o lucrare din 1992, publicata intr-o revista de mai restransa

circulatie [2], primul autor a introdus o metoda unitara de rezolvare a
1
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acelor sisteme circulare (1.1) care pot fi scrise echivalent sub forma

ry = f(12)
1y = f(x3)
(1.4)
Tno1 = f(xn)
Ty = f(x1>7

tehnica ce a fost apoi preluata in [3] si [4].

Este ugor de vazut ca in categoria (1.4) intra sistemul (1.2) dar nu
si sistemul (1.3). Metoda folosita acolo este bazata in esenta pe notiuni
si rezultate elementare din teoria punctului fix, care sunt accesibile la
nivelul clasei a IX-a de liceu (dar a caror demonstratie completa cere
cunostinte de analiza din clasa a XI-a).

Sa reamintim ca daca f : E C R — R este o functie data, atunci
numarul a € E se numeste punct fir al lui f daca f(a) = a iar a
se numeste punct periodic de ordin k daca este punct fix al iteratei
f¥:=fofo---of, unde compunerea se face de k ori.

In general este foarte dificil sau chiar imposibil s& calculim direct
punctele periodice, chiar gi in cazul unor functii f foarte simple, a se
vedea Observatia 3 si exemplele din [2], [3] si [4]. Metoda noastra
exploateaza faptul ca, pe de o parte, daca (ay, as, ..., a,) este o solutie
a sistemului (1.4), atunci ay, as, . . ., a, sunt puncte periodice de ordinul
n ale lui f si, pe de alta parte, faptul ca, in anumite conditii, o functie
f nu are alte puncte periodice in afara de punctele sale fixe.

In acest fel, problema se reduce la una semnificativ mai simpla -
aceea de a calcula punctele fixe ale lui f. Aceasta proprietate o au spre
exemplu contractiile, adica acele functii f : £ — FE pentru care exista
o constanta 0 < o < 1 astfel incat

|f(x) = fy)| < alz—yl|, Yo,y € E. (1.5)

Binecunoscutul principiu de punct fix al lui Banach, a se vedea spre
exemplu [5], ne asigura ca daca E este inchisa si f este o contractie pe
E atunci f are un singur punct fix ¥, care este gi unicul punct fix al
oricarei iterate " (n > 1) a lui f.

Mentionam faptul ca metoda expusa si folosita in [2], [3] si [4]
pentru rezolvarea sistemelor ciclice de forma (1.4) nu este limitata doar
la situatiile in care avem asigurata unicitatea punctului fix pentru f,
a se vedea Problema 10b din [3] si [4], caz in care f are de fapt trei
puncte fixe.

Pornind de la faptul ca metoda din [2], [3] si [4] se aplica numai
pentru sistemele circulare de forma (1.4), in lucrarea de fata ne prop-
unem sa extindem aceasta metoda la cazul mai general al sistemelor
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ciclice (1.1) care pot fi rescrise echivalent sub forma

Ty = f(ZL'Q, T3,... 7[Ek+1)
To = f(l'3, Ty .. 7$k+2)
(1.6)
Tono1 = f(xn, 21, .., Tk_1)
Lp = f(-z'bx?a SR ,[Ek),

unde f : E¥ — R este o functie reald de k variabile reale, £ C R si k
este un numar natural satisfacand conditia 1 < k < n.

Evident, in cazul particular k£ = 1 vom regasi metoda din [2], [3] si
[4], caci In acest caz sistemul (1.6) se reduce la (1.4).

2. CATEVA REZULTATE DIN TEORIA PUNCTULUI FIX PE AXA REALA

Urmatorul rezultat este o varianta a teoremei de punct fix a lui
Presi¢ [15], enuntata aici in cazul particular al axei reale, si va constitui
unul dintre intrumentele de baza folosite la rezolvarea sistemelor ciclice
in sectiunea urmatoare.

Teorema 1. Fie E C R o multime inchisd, k € N* si f : E¥ — FE o
k

functie pentru care exista constantele oy, g, ..., € Ry, cu Y a; =
i=1
a < 1 astfel incat sa avem
|f(x07...,l'k_1) _f(xh'”uxk” S aq |I0—ZL'1| + o |xk:—1 —$k|,
(2.1)
pentru orice To, ..., T € F.
Atunci f are un punct fix unic T in E, adica avem f(T,...,T) =7

st, in plus, T este unicul punct fix al oricarei iterate f™ a lui f.

Demonstratie. Consideram functia asociata F' : F — FE, data prin
F(z) = f(x,...,x), pentru orice z,y € E. Avem:

|F(z) = F(y)| = |f(z,z,....2) = f(y, 9, ., y)| <
<|flx,...,z) = f(z,...;x,y)| + | f(z,...,x,y) — fz,...,z,y,y)| +

+f @z oy = fley, )+ @y, y) = fly )l
Atunci din (2.1) se obtine:

[F(z) = F(y)] <
<lwmlr—z|+a|e—x|+... g |z — 2|+ |z —y|| +
tlole —al+agfe —al+. o v —yl+aly -yl +

+la |z —yl+aaly—yl+. .. Faraly—yl+anly—yl,
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si, prin urmare, pentru orice z,y € F avem inegalitatea

() = F)| <Y asle =yl = ale =y, (22

care arata ca I este contractie.
Fie acum xy € F fixat si fie {z,},>0 sirul aproximatiilor succesive
definit de F' &i g, adica,

Tpr1 = F(x,), n > 0. (2.3)
Luam x =z, si y := x, 1In (2.2) si obtinem
|zp — Tpa1| < alzp1 —xn|, n > 1. (2.4)
Prin inductie din (2.4) se obtine
|z — xpia]| < Q" xg — 21|, n > 1,
si atunci
2 = Tpapl < (" + -+ ") [zg— 2|, n>1,p>1.  (25)

Cum 0 < a < 1, rezulta ca lim «, = 0 si atunci tinand seama ca

a™(1 —aP) a™
1—« 1—ao’
din (2.5) deducem ca Ve > 0, exista r = r(e) astfel ca

a4+t =

| — Tpip| <€, Vn>1, VpeN,
care arata ca {z,},>0 este sir fundamental, deci convergent. Asadar,

cum F este inchisa, exista T € E astfel ca

T = lim z,.

Pe de alta parte, din (2.4) rezulta ca F' este continua pe E. Luand
acum n — oo in (2.3) obtinem, pe baza continuitatii lui F' ca
T=F@) ez=/fF. . .7,

ceea ce arata ca T este un punct fix al lui F.

Demonstram prin reducere la absurd ca T este unicul punct fix al
lui /. Admitem existenta unui § € E, T # 3 astfel ca y = F(7).
Atunci din (2.2) rezulta ca

T -yl <alz—7l,

ceea ce conduce la contradictia [z — 7| < 0.
Pentru a demonstra partea a doua a teoremei, folosim faptul ca din
(2.2) obtinem prin inductie

[F"(z) = F"(y)| < " |z —y[,n > 1, 2,y € E,

unde F™ este a n-a iterata a lui F(z) = f(z,x,...,z).
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Observatia 1. In cazul particular k = 1, din Teorema 1 obtinem ezxact
teorema de punct fix a lui Banach pomenita mai sus, intrucat conditia
(2.1) se reduce la conditia de contractie (1.5).

Este posibil sa slabim conditia generalizata de contractie (2.1), ca
si in teorema urmatoare, care este o varianta particulara a unei teoreme

din [9].

Teorema 2. Fie E C R o multime inchisd, k € N* si f : E¥ — E o
functie pentru care ezista X € [0,1) astfel incat

|f(zo,. .. xp1) — flxy, ..o ap)| < Amax{|zo — 21|, ..., |xp—1 — x|},
(2.6)
pentru orice xg, ..., T € F.
Atunci ezista T in E pentru care f(T,...,T) =T.
Daca, in plus, pentru orice x,y € E, cu x # y, avem
atunci T este unicul punct in E cu f(T,...,T) =T si, mai mult, T este
unicul punct fix in E al oricarei iterate f™:
f"(z,...,7) =7, Vn > 1. (2.8)

Sa retinem ca, peste tot in aceastd lucrare, daca f : E¥ — E este
o functie de k variabile (k > 1), atunci iterata f" este definita doar pe
diagonala lui E*, prin
f“(a,...,a)=f"Yf(a,...,a),...,f(a,...,a)), ¥Vn > 1. (2.9)
Exemplul 1. ([9]) Fie X = [0,1]U[2,3] si f : X* — X definitd astfel:
+

f(r.y) = 52, daca (r.y) € 0.1] x [0.1], f(r.y) = 1+ =2, daca
(z,y) € [2,3] x [2,3] si f(z,y) = ¥ — 5, dacd (z,y) € [0,1] x [2,3]
sau (z,y) € [2,3] x [0,1]. Atunci f satzsface (2.6) cu A = 3 dar nu
satisface (2.1), ceea rezulta luand xg = 0,27 = 2,20 = 2. fntr—adevdn

admitand ca (2.1) ar fi satisfacuta, am obtine:
) —

2= |f(0 0 f(272)| < |f(030) - f(072)| + |f(072) _f<2’2)| <
<o 0+as-24+a1-24as-0= (g +ag)-2<2,
contradictie. Deci f nu satisface (2.1). Sa observam cd in acest caz,
conditia (2.7) nu este satisfacuta, caci f(0,0) =0 gi f(2,2) = 2.

Pot fi enuntate si alte teoreme de punct fix, mult mai generale decat
Teoremele 1 si 2, prin adaptarea la axa reala a unor rezultate recente
din [11]-[13] si [16], deduse acolo pentru cazul general al unui spatiu
metric complet.

De asemenea, este posibil sa obtinem concluzia din Teoremele 1 si
2 prin adaptarea la cazul f : E¥ — E, a unor rezultate stabilite in [2]
pentru functii f: £ — E.

Incheiem aceasti sectiune prin enuntarea unui astfel de principiu
de punct fix care va fi folosit in sectiunea urmatoare a lucrarii. Pentru a



6 Vasile Berinde si Madalina Pacurar

simplifica scrierea notam cu Fix (f) multimea punctelor fixe ale functiei
f, adica
Fiz (f) ={a€ E: f(a,a,...,a) =a}.

Propozitia 1. Fie I C R un interval, k € N* si fie f : I¥ — I o
functie pentru care F(x) := f(x,x,...,x) este crescatoare pe I. Daca
Fix (f) ={Z} atunci

Fiz (f")={z}, Yn > 1.

Demonstratie. Fie b € I, b # Z. Demonstram ca b ¢ Fixz (f")
pentru orice n > 1. Cum Fiz (f) = {T} si b # T urmeaza ca, fie
F(b,b,...,b) > b, fie f(b,b,...,b) <b.

Consideram primul caz. Atunci, deoarece F(x) = f(z,z,...,x)
este crescatoare, avem

F0,b, .. b) > Db, b) > > f(byb, ..., b) > b

si prin urmare b ¢ Fiz (f™). Daca f(b,b,...,b) < b, demonstratia este
asemanatoare.

Observatia 2. In cazul particular k = 1, din Propozifia 1 obfinem
tocmai Propozitia 3 din [2].

Propozitia 1 nu mai este valabila daca F(x) = f(z,x,...,x) este
descrescatoare, dupa cum arata urmatorul exemplu.

T+ )
! 2 Atunci

Exemplul 2. Fie f : R? — R datd prin f(xy,25) = —
Fiz (f) = {0}, cdci f(a,a) = —a, cditd vreme Fiz (f*) = R, cdci
f2(a’a) = f(f(a7a)v f(a7 a)) = a.

3. REZOLVAREA UNITARA A SISTEMELOR CICLICE

Pentru simplificarea expunerii, vom face prezentarea metodei de
rezolvare a sistemelor ciclice doar pentru cazul particular n = 3 si
k = 2, desi ea se poate prezenta in toate detaliile pentru cazul general al
sistemelor (1.6), cu n i k oarecare dar satisfacand conditia n > k > 1.

Incepem prin a prezenta metoda de rezolvare pentru un sistem de
forma (1.6), dedus din sistemul (1.2).

Problema 1. Rezolvati in R? sistemul

r=+\y+45—vVz+5
y=+vz+45—+\x+5 (3.1)
z=+x+45 —/y +5.

Rezolvare. Sistemul (3.1) este de forma (1.6) cu n =3, k = 2 si
f(%l,.’ll'g) = \/1'1 +45 — \/iL‘Q =+ 5, (1’1,1’2) I~ A,

unde A = {(x1,22) € E? 121 — 25 +40 >0} si £ = [0,00). E usor
de stabilit ca f satisface (2.6), adica pentru orice (xq, 1), (z1,22) € A
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avem,

|f(zo, 21) — f(21,22)| < @1 |wo — 21| + 2 |21 — 22, (3.2)

6_\1/5 Sl ap = % satisfac conditia a; + ap = 3—\/5 < 1.
Atunci, din Teorema 1 rezulta ca F(z) := f(x,x) = Vx +45 —
Vv +5 are un singur punct fix T in £ = [0,00), care este si unicul
punct fix a iteratelor f"(x,x), pentru n > 1.
Se observa ca ¥ = 4 este punctul fix cautat gi atunci, pe baza
Teoremei 1, ¥ = 4 este unica solutie a ecuatiei

r = 3z, ), (3.3)
adica f nu are alte puncte periodice in afara de punctul sau fix.
Aratam acum ca, daca (aq, ag, as) este o solutie a sistemului (3.1),
atunci aq, as, az sunt puncte periodice ale lui f adica sunt solutii ale
ecuatiei (3.3). Folosind conditia (3.2) si ecuatiile sistemului obtinem,
pe rand,

unde oy =

lay — as| = |f(az,a3) — f(as,a1)| < oq |ag — as| + ag |as — aq],
lag — as| = | f(as, a1) — f(a1,a2)| < oqlag — ar| + o |ar — asf
las — a1| = | f(a1, a2) — f(ag, a3)| < oy lay — az| + ag |as — as),

care, insumate termen cu termen, ne conduc la concluzia ca:
SS (041+OZ2>'S,

unde am notat S = |a; — az| + |az — as| + |ag — a4].
Deoarece o + ap = a < 1, inegalitatea de mai sus impune in mod
necesar ca
‘(11 — CLQ’ + ’CLQ — CL3| + |CL3 — al\ = 0,
ceea ce Inseamna ca a; = as = a3 = a, adica aq,as, as sunt puncte
periodice ale lui f.
Prin urmare (4,4,4) este unica solutie a sistemului (3.1).

Observatia 3. Pentru a arata cat de complicat ar fi fost sa rezolvam
ecuatia (3.3), transcriem aici doar ecuatia x = f?(x,x):

:IZ'I\/\/33+45—\/x+5+45—\/\/x—|—45—\/:c—|—5—|—5.

Sa mai observam ca functia F'(z) din Problema 1 este descrescatoare,
astfel ca nu putea fi folosita Propozitia 1 pentru a rezolva sistemul (3.1).

Dam in continuare un exemplu de sistem ciclic pentru care Propozitia
1 este aplicabila.

Problema 2. Rezolvati in R? sistemul
203 —Ty? +5x + 3y —2 =2
203 — 722+ by+3z—2=ux (3.4)
223 — 722 + 52+ 30— 2 =y.
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Rezolvare. Sistemul (3.4) este de forma (1.6) cu k =2, n = 3 si
fzy, 20) = 22% — T3 + 51 + 329 — 2,

si, la prima vedere, nu pare usor abordabil cu ajutorul metodei date de
Teorema 1. De aceea vom incerca sa exploatam Propozitia 1.
Deoarece functia F(x) := f(z,z) = 223 — 72® + 8z — 2 are trei
puncte fixe, si anume, Fiz (F) = {1/2,1,2}, este clar ca nu putem
aplica Propozitia 1 pe intreaga axa reala.
Vom proceda in felul urmator. Consideram mai intai restrictia
functiei F' la intervalul I; = (—o0,1/2], notata tot cu F. Avem

F'(z) = 62* — 14z + 8 = 2(3x — 4) (v — 1),

prin urmare F'(x) > 0 pe [; ceea ce arata ca F' este strict crescatoare
pe 1.

Aceasta inseamna c&, pentru orice x € I, avem F(z) < F(3) = 1,
adica F'(I;) C I; i acum putem aplica Propozitia 1 cu E = I;. Rezulta
ca f nu are alte puncte periodice pe I in afara de punctul sau fix %

Mai trebuie demonstrat acum ca daca (a,as,a3) este o solutie a
sistemului (3.4), atunci avem in mod necesar a; = as = a3 si deci
ai, as,as sunt puncte periodice ale lui f. Tratam efectiv doar cazul
as = as # ap, celelalte cazuri fiind asemanatoare. Din ultimele doua
ecuatii ale sistemului (3.4) obtinem ca

az = f(ag,a1), ag = f(a,az),
ceea ce conduce la ecuatia
(a1 — CLQ) [2 (CL% + ajas + CL%) +7 (a1 + as + 2)} =0.

Expresia din paranteza dreapta fiind intotdeauna strict pozitiva, de-
ducem ca a; = ag, ceea ce contrazice presupunerea a; # ao. Asadar nu
putem avea solutii de forma (ay, as, as) cu as = ag # a; ete.

Prin urmare tripletul (%, %, %) este unica solutie a sistemului (3.4)
pe intervalul I; = (—o0, 1/2].

In mod asemanéator se deduce ca (1,1, 1) este unica solutie a sis-
1
temului (3.4) pe I, = (5, 1] iar (2,2, 2) este unica solutie a sistemului

(3.4) pe I3 = [2,00). Aceasta rezolva complet problema.

Exista sisteme ciclice pentru care nici macar rezolvarea ecuatiei
x = F(x) nu este simpla, aga cum arata problema urmatoare, adaptata
dupa Problema 10e din [3].

Problema 3. Rezolvati in R"f sistemul
x (277 + 2ﬁ> =3z
y (201 + 2%) — 3z (3.5)
z <2271 + 2%) = Jy.
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Rezolvare. Functia F' este aici data prin
1 B 1
F(z) = f(z,x) = 3% (29“ ! +2\/5> , x> 0.

Este clar ci g(z) := 522°7! este crescitoare pe (0,00). Pentru a

1
determina un interval I C (0, 00) astfel ca functia h(x) := 52277 si fie
crescatoare pe I, calculam mai intai derivata lui h:

\/_(2\/_—1112) x> 0.

Rezulta ca h' este pozitiva, si prin urmare h este crescatoare, pe inter-
valul I = (a,+00), unde a = (1“72)2 < 1.

Acum putem aplica Propozitia 1 cu E = (a,400), deoarece F este
crescatoare pe F. Determinam acum punctele fixe ale lui F', ceea ce

revine la a rezolva ecuatia exponentiala
1 1
27 4+ 2vF = 3.
Folosind inegalitatea mediilor avem pe rand

1
271 4 9V = 22 oV = —2 22

_2w+2lf+2f /I+

cu egalitate daca si numai daca 2% = Qﬁ, adica x = 1. Pe de alta
parte

W(x) =

T + v
\/E_’ ’

ceea ce este echivalent cu inegalitatea evidenta (v — 1) (VZ + 2) > 0
cu egalitate daca gi numai daca z = 1.
Combinand cele doua inegalitati rezulta ca

971 4 977 >3, Vu > 0,

cu egalitate daca si numai daca x = 1. Aceasta arata ca F are un
singur punct fix, T =1, pe E = (a, +00) etc.

Lasam pe seama cititorului sa arate ca, daca (aj,as,as) este o
solutie a sistemului (3.5), atunci avem in mod necesar a; = ay = a3
si deci aq, aq, az sunt puncte periodice ale lui f, ceea ce ne asigura ca
(1,1,1) este unica solutie a sistemului (3.5).

Propunem, in incheierea acestei sectiuni, rezolvarea unui sistem
ciclic care este o adaptare la cazul k = 2 a unui sistem de forma (1.4)
din [1] (Problema 58, pagina 137), abordat si in [2], [3], [4] si [7].

Problema 4. Rezolvati in R? sistemul
2 2 2
e =y+—2y=2+—;2z=x+—. (3.6)
z x Y
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4. CONCLUZII SI CATEVA COMENTARII BIBLIOGRAFICE

Sa observam mai intai ca modul in care am argumentat, la re-
zolvarea Problemei 1, faptul ca daca (aj,aq,as) este o solutie a sis-
temului (3.1) atunci avem in mod necesar a; = ay = ag, se constituie
de fapt intr-o metoda de sine statatoare de rezolvare a sistemului re-
spectiv, care nu apeleaza deloc la conceptul de punct fix.

Meritul principal al abordarii noastre este insa acela ca atrage
atentia asupra principiilor de baza care stau in spatele acestei metode.

In al doilea rand, trebuie spus ca nu toate sistemele ciclice au pro-
prietatea mentionata mai sus. Spre exemplu, sistemul ciclic din prob-
lema C.0O.: 4923 (Gazeta Matematica, nr. 3/2008, pag. 160, autor D.
Marinescu), adica sistemul

2?4+ 2yz — 62 +3 =09+ 220 — 6y +3=0;2>+22y — 62+ 3 =0,

admite (a se vedea rezolvarea din Gazeta Matematica, nr. 9/2008,
pag. 456), pe langa solutia (1,1, 1) si urmatoarele solutii (—1,5,—1),
(5,—1,—1), (=1, —1,5), care nu verifica conditia a; = as = as.

Sa mai notam ca sistemul (1.3) este inspirat de un sistem simetric
de aceeasi forma (deci cu doua necunoscute) care apare ca problema
17, pag. 129, in excelenta culegere de probleme [1], in care se mai
gasesc i alte sisteme ciclice foarte interesante, multe preluate din re-
vista Matematica v gskole, ce pare a fi gi sursa originara de inspiratie a
acestui tip de probleme pentru problemistica matematica romaneasca.

Sugeram cititorilor sa ia in considerare toate sistemele care se obtin,
pornind de la sistemele din lista de mai jos dar si a celor din lucrarile
2], [3], [4], [8] si [14], prin acelasi procedeu prin care sistemul (3.1) a
fost obtinut din (1.2).

O alta provocare este aceea de a cauta metode alternative de re-
zolvare pentru toate sistemele tratate anterior, dar si pentru sistemele
din lista de mai jos, de a identifica acele situatii in care metoda noastra
nu poate fi aplicata si apoi sa o perfectioneze in aga fel incat sa acopere
si acele cazuri.

Dam in incheiere o lista a problemelor publicate in Gazeta Matem-
atica in ultimii 20 de ani, cu scopul declarat de a arata interesul
propunatorilor de probleme pentru aceasta tema, altfel destul de ingusta,
dar si pentru a oferi o arie intinsa de aplicabilitate pentru metoda ex-
pusa de noi in acest articol.

A. Probleme din rubricile de probleme propuse

e Problema 22 271, nr. 2/1991, pag. 71, autor: M. Bencze

e Problema 22244* nr. 9/1991, pag. 351, autor: M. Berindeanu
e Problema C:1182, nr. 9/1991, pag. 357, autor: C. Chites

e Problema E: 10 349, nr. 10/1991, pag. 387, autor: M. Berindeanu
e Problema E: 10 446, nr. 2-3/1992, pag. 99, autor: C. Pana

e Problema C: 1267, nr. 5/1992, pag. 196, autor: M. Bencze
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e Problema 2, cls. IX-X, Concursul Gazetei 2008, nr. 10/2008,
pag. 485, autor: M. Chirciu

e Problema 3, cls. a X-a, Conc. ”"N. Coculescu” 2008, nr. 7-8-
9/2008, pag. 356, autor: M. Perianu

e Problema 1, cls. a IX-a, Conc. ”Al. Papiu-llarian” 2010, nr.
12/2010, pag. 593, autor: M. Pop
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