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a b s t r a c t

In a recent paper [H.K. Pathak, R.P. Agarwal, Y.J. Cho, Coincidence and fixed points for
multi-valued mappings and its application to nonconvex integral inclusions, J. Comput.
Appl. Math. 283 (2015) 201–217.], the authors have studied some problems on coincidence
points and fixed points of multi-valued mappings.

In order to illustrate the generality of their main result (Theorem 3.2) with respect to
older related results (Nadler’s, Berinde–Berinde,Mizoguchi–Takahashi andDu’s fixed point
theorem), the authors presented two examples, i.e., Examples 3.3 and 3.4.

The main aim of this note is to show that Example 3.3 fails in proving the generality of
Theorem 3.2 over Berinde–Berinde’s fixed point theorem.

1. Introduction

In [1], Pathak, Agarwal and Cho have studied some problems concerning the existence of coincidence points and fixed
points of multi-valued mappings.

By using some characterizations of P -functions, they established some new existence theorems for coincidence points
and fixed points ofmulti-valuedmappings, results that are distinct fromNadler’s fixed point theorem [2], Berinde–Berinde’s
fixed point theorem [3], Mizoguchi–Takahashi’s fixed point theorem [4] and Du’s fixed point theorem [5]. The new results
were then applied to some nonconvex integral inclusion problems.

To illustrate the generality of Theorem 3.2 over Berinde–Berinde’s fixed point theorem as well as over Mizoguchi–
Takahashi’s fixed point theorem and Du’s fixed point theorem, the authors give some appropriate examples (Examples 3.3
and 3.4).
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The main aim of this note is to show that Example 3.3 fails in proving the generality of Theorem 3.2 in [1] over
Berinde–Berinde’s fixed point theorem [3]. So, the problem whether Theorem 3.2 is more general than Berinde–Berinde’s
fixed point theorem remains open. Another open problem related to this topic is also stated.

To make this note as much as possible self-contained, we present in the next section some concepts and results needed
for our exposition.

2. Fixed point theorems for multi-valued mappings

Let (X, d)be ametric space.Wedenote byN (X) the class of all nonempty subsets ofX , byCB(X) the class of all nonempty
closed and bounded subsets of X and by K(X) the class of all nonempty compact subsets of X . For A, B ⊂ X , we consider

D(A, B) = inf{d(a, b) : a ∈ A, b ∈ B},
D(a, B) = D({a}, B) = inf{d(a, b) : b ∈ B},

and let

H(A, B) = max{sup{D(a, B) : a ∈ A}, sup{D(b, A) : b ∈ B}},

be the Pompeiu–Hausdorff metric on CB(X) induced by the metric d, see [6]. Let T : X → P (X) be a multivalued mapping.
An element x ∈ X such that x ∈ T (x) is called a fixed point of T . We denote by Fix(T ) the set of all fixed points of T , i.e.,

Fix(T ) = {x ∈ X : x ∈ T (x)}.

Let f , g : X → X be two self-mappings. A point x ∈ X is a coincidence point of f , g and T iff fx = gx ∈ Tx. The set of
coincidence points of f , g and T is denoted COP (f , g, T ).

The following ladder of fixed point theorems for multi-valued mappings has been considered in [1].

Theorem 1 ([2]). Let (X, d) be a complete metric space and T : X → CB(X) a set-valued α-contraction, i.e., a mapping for
which there exists a constant α ∈ (0, 1) such that

H(Tx, Ty) ≤ α d(x, y), for all x, y ∈ X . (2.1)

Then T has at least one fixed point.

Theorem 2 ([4]). Let (X, d) be a completemetric space and T : X → CB(X) a generalizedmultivalued (α, L)-weak contraction,
i.e., a mapping for which there exists a function α : [0, ∞) → [0, 1) satisfying lim supr→t+ α(r) < 1, for every t ∈ [0, ∞),
such that

H(Tx, Ty) ≤ α(d(x, y))d(x, y), for all x, y ∈ X .

Then Fix (T ) ≠ ∅.

A function α : [0, ∞) → [0, 1) satisfying lim supr→t+ α(r) < 1, for every t ∈ [0, ∞), is usually called an MT -function,
see [1].

Theorem 3 ([3]). Let (X, d) be a complete metric space and T : X → CB(X) a generalizedmultivalued (α, L)-weak contraction,
i.e., a mapping for which there exists MT -function α and L ≥ 0 such that

H(Tx, Ty) ≤ α(d(x, y))d(x, y) + LD(y, Tx), for all x, y ∈ X . (2.2)

Then Fix (T ) ≠ ∅.

Note that Theorem 3 is not correctly stated in [1]: condition (2.2) should be satisfied ‘‘for all x, y ∈ X ’’ and not ‘‘for all
x, y ∈ X with x ≠ y’’, as stated in [1].

The main result in [1] (Theorem 3.2) has been intended to generalize Theorem 1 [2], Theorem 2 [4], Theorem 3 [3] and
some other related results, see [5] and [7]. It can be restated as follows.

Theorem 4 ([1]). Let (X, d) be a complete metric space, T : X → CB(X) be a multi-valued mapping, f , g : X → X be
continuous self-mappings and α : [0, ∞) → [0, 1) a MT -function. Assume that

(a1) for each x ∈ X, {fy = gy : y ∈ Tx} ⊂ Tx;

(b1) there exist two mappingsh,k : X → [0, +∞) such that

H(Tx, Ty) ≤ α(d(x, y)) ·
D(x, Ty) + D(y, Tx)

2
+h(fy)D(fy, Tx) +k(gy)D(gy, Tx), for all x, y ∈ X . (2.3)

Then COP (f , g, T ) ∩ Fix (T ) ≠ ∅.
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In order to show the generality of Theorem 4 over Nadler’s fixed point theorem (Theorem 1) and over Berinde–Berinde’s
fixed point theorem (Theorem 3), the authors considered in [1] the following example.

Example 1 ([1], Example 3.3). Let X = {0, 3/4, 1} and d : X × X → R be the usual metric. Let T : X → CB(X) be a
multi-valued mapping defined by T (0) = {0}, T (3/4) = {0, 3/4}, T (1) = {0, 1} and f , g : X → X be given by f = g = IX
(:= the identity mapping on X).

Define the function α : [0, ∞) → [0, 1) by α(t) := 2/3, for all t ∈ [0, ∞) and let the two mappingsh,k : X → [0, ∞)
be given byh(x) := 1 andk(x) := 0, for all x ∈ X .

As shown in [1], T , and f , g as given in Example 1 satisfy all assumptions of Theorem 4. Since the inequality

H(T0, T1) = H({0}, {0, 1}) = 1 > α · d(0, 1) = α,

is true for any α ∈ (0, 1), we conclude that, indeed, Theorem 4 is more general than Nadler’s fixed point theorem
(Theorem 1).

But, in view of Example 3.3 [1], Theorem 4 is not more general than Berinde–Berinde’s fixed point theorem (Theorem 3),
because for L = 1/3 we have

H(T0, T1) = H({0}, {0, 1}) = 1 ≤ α · d(0, 1) + LD(1, T0) =
2
3

+
1
3
.

(Note that the restriction 0 ≤ L < 1/3 imposed by the authors in [1] is incorrect since, in the definition of a generalized
multivalued (α, L)-weak contraction, L may be any positive constant, see [3] for more details and examples.) So, it remains
an open problem whether or not Theorem 4 is more general than Theorem 3. For other very recent related results see also
[8–10].
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