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FIXED POINT ITERATIVE METHODS DEFINED AS

ADMISSIBLE PERTURBATIONS OF GENERALIZED

PSEUDOCONTRACTIVE OPERATORS

VASILE BERINDE, ABDUL RAHIM KHAN, AND HAFIZ FUKHAR-UD-DIN

Abstract. We establish convergence of a Krasnoselskij type fixed point iterative
method constructed as the admissible perturbation of a nonlinear Lipschitzian
and generalized pseudocontractive operator defined on a convex closed subset of
a Hilbert space. Both a priori and a posteriori error estimates are obtained for
the new algorithm. Our convergence theorem extends and unifies several related
results in the current literature.

1. Introduction

The fundamental problem of the iterative approximation of fixed points is to
solve the nonlinear fixed point equation

(1.1) x = Tx,

where X is a space, T : K → X is a given operator andK ⊂ X, i.e., to find sufficient
conditions on K, X and T that ensure that (1.1) has at least one solution in K
and also to construct the most suitable method to obtain such a solution (which is
usually called a fixed point of T ).

There exists a vast literature on this topic, see for example the recent monographs
[3], [9] and [22] and references therein, where most of the fundamental results on
the iterative approximation of fixed points are presented.

The most used iterative method, associated in a natural way to the fixed point
problem (1.1), is the well-known Picard algorithm or sequence of successive approx-
imations {xn}∞n=0, which is defined by x0 ∈ K and

(1.2) xn+1 = Txn, n ≥ 0.

But, Picard iteration (1.2) converges to a solution of (1.1) under strong conditions
on K, X and T , see the sample convergence theorems in [3], [9] and [22].

In order to solve (1.1) under weaker assumptions, more reliable and elaborative
fixed point iterative methods are needed, see [3] and [9].

We recall some of the most used such methods.
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Let E be a real vector space and T : E → E a given operator. Let x0 ∈ E be
arbitrary and {αn} ⊂ [0, 1] a sequence of real numbers.
The sequence {xn}∞n=0 ⊂ E defined by x0 ∈ E and

(1.3) xn+1 = (1− αn)xn + αnTxn , n = 0, 1, 2, . . .

is called Mann Algorithm [20]. The sequence {xn}∞n=0 ⊂ E defined by

(1.4)

{
xn+1 = (1− αn)xn + αnTyn , n = 0, 1, 2, . . .

yn = (1− βn)xn + βnTxn , n = 0, 1, 2, . . . ,

where {αn} and {βn} are sequences of positive numbers in [0, 1], and x0 ∈ E
arbitrary, is called Ishikawa algorithm [12].

Remark 1.1. For βn = 0, (1.4) reduces to (1.3), while, for αn = λ (constant), the
Mann algorithm process (1.3) reduces to the so called Krasnoselskij algorithm ([13])

(1.5) xn+1 = (1− λ)xn + λTxn , n = 0, 1, 2, . . .

Picard algorithm (1.2) is obtained from it with λ = 1.

In the iterative approximation of fixed points several classes of contractive type
mappings have been considered, see for example the recent monographs [3], [9] and
[22] and references therein. One of the most important classes of such mappings is
that of pseudocontractive type mappings. In fact, see for example [3], there exist
several concepts of pseudocontractive type mappings: pseudocontractive, strictly
pseudocontractive, strongly pseudocontractive, generalized pseudocontractive map-
pings etc.

In a normed space E, a mapping T : E → E is said to be a pseudocontraction if,
for all x, y in E,

∥ Tx− Ty∥2 ≤ ∥x− y ∥2 + ∥Tx− Ty − (x− y) ∥2 .
The generalized pseudocontractions, introduced in [34], are more general than the
pseudocontractions, introduced by Browder [8], and are different from other classes
of pseudocontractive type mappings, like strictly pseudocontractive or strongly
pseudocontractive mappings, see for example Chapter 3 in [3].

There is a continuous research interest on various aspects of generalized pseu-
docontractions and their applications. Indeed, in a recent paper [30], the authors
study existence and approximation of solutions of variational inequalities involving
generalized pseudocontractive mappings in Banach spaces.

There are many other papers dealing with: a) variational inequalities that in-
volve generalized pseudocontractive mappings ([15]-[18], [31], [35], [36]) or general-
ized successively pseudocontractions ([14]); b) variational-like inclusions involving
generalized pseudocontractive mappings ([19]); c) approximation of fixed point of
generalized pseudocontractive mappings through Mann algorithm ([32], [33]).

On the other hand, in a recent paper, I. A. Rus [28] considered a new approach
to fixed point iterative methods, based on the concept of admissible perturbation
of a self operator. The theory of admissible perturbations for nonself operators has
been studied in [6].

Berinde [4] continued the study of fixed point iterative methods by means of the
theory of admissible perturbations and obtained very general convergence theorems
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for Krasnoselskij type fixed point iterative methods defined as admissible pertur-
bations of a nonlinear operator for the class of nonexpansive operators on Hilbert
spaces.

As the class of generalized pseudocontractions includes, amongst other important
nonlinear operators, the class of nonexpansive operators, our aim in the present pa-
per is to establish a convergence theorem for Krasnoselskij type fixed point iterations
obtained as admissible perturbations of generalized pseudocontractive operators on
Hilbert spaces; thus obtaining general results that extend the corresponding results
in [2], [3] and [34].

2. Admissible perturbations of an operator

Definition 2.1 ([28]). Let X be a nonempty set. A mapping G : X ×X → X is
called admissible if it satisfies the following two conditions:
(A1) G(x, x) = x, for all x ∈ X;
(A2) G(x, y) = x implies y = x.

Definition 2.2 ([28]). Let X be a nonempty set. If f : X → X is a given mapping
and G : X × X → X is an admissible mapping, then the operator fG : X → X,
defined by

(2.1) fG(x) = G(x, f(x)), ∀x ∈ X,

is called the admissible perturbation of f .

Remark 2.3. The following property of admissible perturbations is fundamental
in the iterative approximation of fixed points: if f : X → X is a given mapping and
fG : X → X denotes its admissible perturbation, then

(2.2) Fix (fG) = Fix (f) := {x ∈ X|x = f(x)},

that is, the admissible perturbation fG of f has the same set of fixed points as the
mapping f itself.

Note that, in general,

(2.3) Fix (fn
G) ̸= Fix (fn), n ≥ 2.

Example 2.4 ([28]). Let (V,+,R) be a real vector space, X ⊂ V a convex subset,
λ ∈ (0, 1), f : X → X and G : X ×X → X be defined by

G(x, f(x)) := (1− λ)x+ λf(x), x ∈ X.

Then fG is an admissible perturbation of f . We shall denote fG by fλ and call it
the Krasnoselskij perturbation of f .

Example 2.5 ([28]). Let (V,+,R) be a real vector space, X ⊂ V a convex subset,
χ : X ×X → (0, 1), f : X → X and G(x, y) := (1− χ(x, y))x+ χ(x, y)y.

Then fG is an admissible perturbation of f which reduces to the Krasnoselskij
perturbation in the case χ(x, y) is a constant function.

For other important examples of admissible mappings and admissible perturba-
tions of nonlinear operators, see [28] (for the case of self mappings) and [6] (for the
case of nonself mappings).
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Definition 2.6 ([28]). Let f : X → X be a nonlinear mapping and G : X×X → X
an admissible mapping. Then the iterative algorithm {xn}∞n=0 given by x0 ∈ X and

(2.4) xn+1 = G(xn, f(xn)), n ≥ 0,

is called the Krasnoselskij algorithm corresponding to G which we denote by GK-
algorithm for simplicity.

Remark 2.7. For the particular case

(2.5) G(x, y) := (1− λ)x+ λy, x, y ∈ X,

the GK-algorithm (2.4) reduces to the classical Krasnoselskij algorithm (1.5).

Definition 2.8. Let G : E ×E → E be an admissible mapping on a normed space
E. We say that G is affine Lipschitzian if there exists a constant µ ∈ [0, 1] such that

(2.6) ∥G(x1, y1)−G(x2, y2)∥ ≤ ∥µ(x1 − x2) + (1− µ)(y1 − y2)∥ ,
for all x1, x2, y1, y2 ∈ E.

Note that the admissible mapping G : E × E → E given by (2.5) is affine
Lipschitzian.

Note also that in the very recent paper [4], Definition 3.7, we used a weaker
concept of affine Lipschitzianity. It is easy to show that, if G is affine Lipschitzian
in the sense of Definition 2.8 in the present paper, then it is also affine Lipschitzian
in the sense of Definition 3.7 in [4], but the converse is not true in general.

3. Generalized pseudocontractive operators

Definition 3.1 ([34]). Let H be a Hilbert space with inner product ⟨·, ·⟩ and norm
∥·∥. An operator T : H → H is said to be generalized pseudo-contractive if there
exists a constant r > 0 such that, for all x, y in H,

(3.1) ∥ Tx− Ty∥2 ≤ r2 ∥x− y ∥2 + ∥Tx− Ty − r(x− y) ∥2 .

Example 3.2. Let R denote the reals with the usual norm.

1) Let C = [0, 1] and define T : C → R by Tx =
1

2
x+1. Then T is a

1

2
-contraction

and hence is generalized pseudocontractive. T has no fixed point in C.
2) Let C = {1, 2} and define T : C → C by T (1) = 2, T (2) = 1. Then T is

generalized pseudocontractive, but T is not a contraction. T has no fixed point in
C.

Remark 3.3. (1) Condition (3.1) is equivalent to

(3.2) ⟨Tx− Ty, x− y⟩ ≤ r ∥ x− y∥2 , for all x, y ∈ H.

(2) Any contraction mapping with contraction coefficient r < 1 (and, in general,
any nonexpansive mapping) is a generalized pseudo-contraction but the reverse is
not true, as shown by Examples 3.2 and 3.4;

(3) By the Cauchy-Schwarz inequality

| ⟨Tx− Ty, x− y ⟩| ≤ ∥ Tx− Ty∥ · ∥ x− y∥ ,
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we obtain that any Lipschitzian operator T , that is, any operator for which there
exists s > 0 such that

(3.3) ∥ Tx− Ty∥ ≤ s · ∥ x− y∥ , x, y ∈ H,

is also a generalized pseudo-contractive operator, with r = s.

It is possible that a certain operator T is simultaneously Lipschitzian with con-
stant s, and generalized pseudo-contractive with constant r, and r < s, see Example
3.4;

Consequently, in the sequel, we shall assume that the Lipschitzian constant s and
the generalized pseudo-contractivity constant r of a Lipschitzian and generalized
pseudo-contractive operator T satisfy the conditions

(3.4) 0 < r < 1 and r ≤ s.

Example 3.4. Let H be the real line R endowed with the Euclidean inner product

and norm, C =

[
1

2
, 2

]
and T : C → C be the function given by Tx =

1

x
, for all x

in C.
Then T is Lipschitzian with constant s = 4 (so T is not a contraction but is

generalized pseudo-contractive with constant r = 4).
Actually, T is generalized pseudocontractive with any constant r > 0. It is easy

to see that T has a unique fixed point, Fix (T ) = {1}, and that, for any initial
choice x0 = a ̸= 1, Picard algorithm yields the oscillatory sequence

a,
1

a
, a,

1

a
, . . .

Hence, in order to approximate fixed points of Lipschitzian and generalized
pseudo-contractive mappings, it becomes essential to use a Krasnoselskij type algo-
rithm, see Theorem 3.6 in [3], in place of Picard algorithm which is not convergent
in general, .

The next result extends Theorem 3.6 in [3] from the case of Krasnoselskij algo-
rithm to the more general GK-algorithm introduced in Definition 2.6.

Theorem 3.5. Let C be a nonempty closed convex subset of a Hilbert space H and
let T : C → C be a generalized pseudocontractive and Lipschitzian operator with the
corresponding constants r and s, respectively, satisfying (3.4).

Then
(i) T has an unique fixed point p in C;
(ii) If G : C ×C → C is an affine Lipschitzian admissible mapping with constant

λ ∈ (0, 1), then the GK-algorithm {xn}∞n=0 given by x0 in C and

(3.5) xn+1 = G(xn, f(xn)), n ≥ 0,

converges (strongly) to p for all λ ∈ (0, 1) and satisfies

(3.6) 0 < λ < 2(1− r)/(1− 2r + s2).

(iii) The priori

(3.7) ∥ xn − p∥ ≤ θn

1− θ
· ∥ x1 − x0∥ , n = 1, 2, . . .
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and the posteriori

(3.8) ∥ xn − p∥ ≤ θ

1− θ
· ∥ xn − xn−1∥ , n = 1, 2, . . .

estimates hold, with

(3.9) θ =
(
(1− λ)2 + 2λ(1− λ) r + λ2s2

)1/2
.

Proof. We consider the admissible perturbation operator F associated with T,

(3.10) F (x) = G(x, Tx) , x ∈ C.

By the definition of G, we have that F (C) ⊂ C. As a closed subset of a Hilbert
space, C is a complete metric space. We claim that F is a θ−contraction with θ
given by (3.9).

Indeed, since G is affine Lipschitzian, we have

∥Fx− Fy∥2 = ∥G(x, Tx)−G(y, Ty)∥2 ≤ ∥ (1− λ)(x− y) + λ(Tx− Ty)∥2

= (1− λ)2 · ∥ x− y∥2 + 2λ(1− λ) · ⟨Tx− Ty, x− y⟩+ λ2 · ∥Tx− Ty∥2 .
Now, since T is generalized pseudo-contractive with constant r and Lipschitzian
with constant s, by (3.2) and (3.3) we obtain

∥Fx− Fy∥2 ≤
(
(1− λ)2 + 2λ(1− λ)r + λ2s2

)
· ∥ x− y∥2 ,

which yields

∥Fx− Fy∥ ≤ θ · ∥ x− y∥ , for all x, y ∈ C,

with θ given by (3.9).
In view of condition (3.6), it follows that 0 < θ < 1, so the self mapping F

is a θ−contraction. In order to get the conclusion we now apply the contraction
mapping principle ([3], Theorem 2.1) to the operator F defined on the complete
metric space C. �

Remark 3.6. (1) Note that, under assumption (3.4), the upper bound of λ in (3.6)
satisfies

2(1− r)/(1− 2r + s2) ≤ 1,

with equality in the case s = 1, that is, when T is a nonexpansive operator.
(2) If the admissible mapping G is given by (2.5), then by Theorem 3.5 we obtain

Theorem 3.6 in [3] as well as the main result in [34] (which is given there without
the error estimates (3.7) and (3.8)).

Example 3.7.
Let H, C and T be as in Example 3.4. Then s = 4 and r > 0 arbitrary. Taking,

for example, r = 0.5 we get

2(1− r)/(1− 2r + s2) = 1/16,

and so, by Theorem 3.5 with G defined by (2.5), we obtain that the sequence
{xn}∞n=0 given by

xn+1 = (1− λ) · xn + λ · 1

xn
, n = 0, 1, 2, . . .
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converges strongly to the fixed point p = 1 of T , for all values of λ in the interval(
0,

1

16

)
.

Remark 3.8. Theorem 3.5 actually provides a family of GK-algorithms, depending
on the parameter λ. The following question arises: amongst all GK-algorithms
{xn}∞n=0 in the family (3.5), obtained when λ ranges over the interval (0, a), with

a =
2(1− r)

(1− 2r + s2)
,

is there a certain algorithm to be the fastest one ?

We can answer this question, like in the case of classical Krasnoleslskij algorithm
([3]), if we adopt the concept of convergence rate used in ([3], Theorem 3.7).

Let {xn} and {yn} be two sequences that converge to p (as n → ∞), satisfying
the estimate (3.7) with θ = θ1 and θ = θ2, respectively, and such that θ1, θ2 ∈ (0, 1).
We shall say that {xn} converges faster than {yn} if

θ1 < θ2.

Our next theorem answers in the affirmative, the above posed question.

Theorem 3.9. Let all the assumptions in Theorem 3.5 be satisfied. Then the fastest
iteration {xn}∞n=0 in the family of GK-algorithms (3.5), with λ ∈ (0, 2(1− r)/(1−
2r + s2)), is the one obtained from

(3.11) λmin = (1− r) / (1− 2r + s2).

Proof. The proof is similar to that of Theorem 3.7 in [3]. We have to find the
minimum of the quadratic function

f(x) = (1− x)2 + 2x(1− x) r + x2s2,

with respect to x, that is, to minimize the quadratic function

f(x) = (1− 2r + s2)x2 − 2(1− r)x+ 1 , x ∈ (0, a),

with a given by

(3.12) a = 2(1− r)/(1− 2r + s2).

Since by (3.4)

1− 2r + s2 ≥ (1− r)2 > 0,

it follows that f does really admit a minimum, which is attained from

x = λmin,

where λmin is given by (3.11). �

Example 3.10. Let T and C be as in Examples 3.4 and 3.7, and G(x, y) = (1 −
λ)x + λy, x, y ∈ C. Fixing a certain r ∈ (0, 1), we obtain the fastest Krasnoselskij
algorithm for

λ = (1− r) / (1− 2r + 16).
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If we take r = 0.5, then (3.5) converges for each λ ∈
(
0,

1

16

)
. The fastest Kras-

noselskij algorithm {xn}∞n=0 in this family is then obtained for λ =
1

32
, and is given

by

xn+1 =
1

32

(
31xn +

1

xn

)
, n = 0, 1, 2, . . . .

Although T is not a contraction, the perturbed operator F associated with T ,

F (x) =
1

32

(
31x+

1

x

)
,

is a contraction with the contraction coefficient

θmin =

√
63

8
= 0.992.

Remark 3.11. Examples 3.5 and 3.6, reveal that study of generalized pseudocon-
tractive operators is notrivial indeed.

4. Concluding remarks and further study

(1) If s < 1, that is, T in Theorem 3.9 is s−contraction, then, for a given by
(3.12), we have a > 1 and hence λ = 1 ∈ (0, a). This shows that among all GK-
algorithms (3.5) that converge to the fixed point of T , we can find the Picard
algorithm associated to T from (3.5) when the admissible map is G(x, y) = y;

(2) For the Picard algorithm, we have a similar priori estimation, see Theorem
2.1 in [3], we can compare Picard algorithm to the fastest GK-algorithm in the
family (3.5), with λ ∈ (0, a) :

(a) If r = s2 < 1, then we have

θmin = s,

which means that the fastest Krasnoselskij algorithm in the family (3.5) coincides
with the Picard algorithm itself;

(b) If r ̸= s2, then it is easy to check that

θmin < s,

(since s < 1), which shows that the Krasnoselskij algorithm (3.5) with λ = λmin

converges faster than the Picard algorithm associated with T .
In this case, the fastest iteration from (3.5) may be regarded as an accelerating

procedure of the Picard algorithm.
Based on the results obtained in the present paper and in [4], we plan to con-

tinue our study of fixed point iterative methods defined as admissible permutations
of generalized pseudocontractions in other contexts to solve nonlinear variational
inequalities or variational-like inclusions or to solve nonlinear fixed point problems
for other classes of contractive or pseudocontractive type mappings like the ones
considered in [1], [5], [10], [11], [14], [15]-[19], [24], [29], [31]-[33], [35], [36].
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[6] V. Berinde, Şt. Măruşter and I. A. Rus, An abstract point of view on iterative approximation
of fixed points of nonself operators, J. Nonlinear Convex Anal. 15 (2014), 851–865.

[7] V. Berinde and G. Kovacs, Stabilizing discrete dynamical systems by monotone Krasnoselskij
type iterative schemes, Creat. Math. Inform. 17 (2008), 298–307.

[8] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in
Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.

[9] C. E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iteration, Springer,
Berlin Heidelberg New York, 2009.

[10] M. M. Choban, Fixed points for mappings defined on pseudometric spaces, Creat. Math. In-
form. 22 (2013), 173–184.

[11] J. Harjani, F. Sabetghadam and K. Sadarangani, Fixed point theorems for cyclic weak con-
tractions in partially ordered sets endowed with a complete metric, Carpathian J. Math., 29
(2013), 179–186.

[12] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147–
150.

[13] M. A. Krasnoselskij, Two remarks on the method of successive approximations (in Russian),
Uspehi Mat. Nauk. 10 (1955), 123–127.

[14] K. Kumar and B. K. Sharma, A generalized iterative algorithm for generalized successively
pseudocontractions, Appl. Math. E-Notes 6 (2006), 202–210 (electronic).

[15] Z. Liu and S. M. Kang, Generalized multivalued nonlinear quasivariational inclusions, Math.
Nachr. 253 (2003), 45–54.

[16] Z. Liu, L. Debnath, S.M. Kang and J. S. Ume, Sensitivity analysis for parametric completely
generalized nonlinear implicit quasivariational inclusions, J. Math. Anal. Appl. 277 (2003),
142–154.

[17] Z. Liu, S. M. Kang and J. S. Ume, Completely generalized multivalued strongly quasivariational
inequalities, Publ. Math. Debrecen 62 (2003), 187–204.

[18] Z. Liu and S. M. Kang, Convergence and stability of perturbed three-step iterative algorithm
for completely generalized nonlinear quasivariational inequalities, Appl. Math. Comput. 149
(2004), 245–258.

[19] Z. Liu, Z. Chen, S.H. Shim and S. M. Kang, On generalized nonlinear quasi-variational-like
inclusions dealing with (h,eta)-proximal mapping, J. Korean Math. Soc. 45 (2008), 1323–1339.

[20] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 44 (1953), 506–510.
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