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Abstract. A fixed point theorem for a class of nonself discontin-
uous mappings is extended to generalized nonself ϕ - contractions.
The approximation of the fixed point by means of the Picard iter-
ation is also discussed.
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1. Introduction

The Banach’s fixed point theorem is one of the most useful results
in fixed point theory. In a metric space setting it can be briefly stated
as follows.

Theorem B. Let (X, d) be a complete metric space and T : X −→ X
a strict contraction, i.e., a map satisfying

d(Tx, Ty) ≤ α · d(x, y), ∀ x, y ∈ X, (1.1)

where 0 < α < 1 is a constant. Then T has a unique fixed point in X.

Theorem B, together with its local variants, has many applications
in solving nonlinear functional equations, but has one drawback - the
contractive condition (1.1) forces T to be continuous throughout X.

In 1968, Kannan [8] obtained a fixed point theorem for mappings
T that need not be continuous:

Theorem K. Let (X, d) be a complete metric space and T : X −→ X

a mapping for which there exists a ∈
(

0,
1

2

)
such that

d(Tx, Ty) ≤ a [d(x, Tx) + d(y, Ty)] , for all x, y ∈ X . (1.2)

Then T has a unique fixed point in X.

Example 1. Let X = R be the set of reals with the usual norm and

T : X −→ X given by Tx = 0, if x ∈ (−∞, 2], and Tx = −
1

2
, if

x ∈ (2,∞). Then T satisfies (1.2) with a =
1

5
and T is not continuous.
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Following Kannan’s theorem, a lot of papers were devoted to ob-
taining fixed point theorems for various contractive conditions that do
not require the continuity of T , see, for example, Rus [13].

One of the most general contractive conditions obtained in this way
was given by Ciric [5].

Theorem C1. Let (X, d) be a complete metric space and T : X → X
a mapping that satisfies

d(Tx, Ty) ≤ h ·max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,
(1.3)

for all x, y ∈ X and for some constant 0 < h < 1.
Then T has a unique fixed point in X.

Remarks.
1) As shown by Rhoades ([12], Theorem 2), a contractive mapping

satisfying (1.3) is still continuous at the fixed point.
2) The fixed point theorems for contractive definitions of the form

(1.1) - (1.3) were unified by many authors, see for example Berinde [2],
Rus [13].

For any T : X → X and x, y ∈ X, where X is a metric space, let
us denote

B(x, y) = d(x, y);

K(x, y) =
1

2
[d(x, Tx) + d(y, Ty)] ;

C(x, y) = max {d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

The following theorem formally unifies Banach’s, Kannan’s and
Ciric’s fixed point theorems.

Theorem G. Let (X, d) be a complete metric space and T : X → X a
mapping satisfying

d(Tx, Ty) ≤ λ · E(x, y), for all x, y ∈ X , (1.4)

where λ is a constant, 0 < λ < 1, and E(x, y) is any of the expressions
B(x, y), K(x, y) and C(x, y).

Then T has a unique fixed point.

Remarks.
1) Theorem G above can be extended by considering a function

ϕ : R+ −→ R+ which preserves some essential properties of the function

ϕ(t) = λt, t ∈ R (0 < λ < 1) (1.5)

and replacing condition (1.4) by a more general one:

d(Tx, Ty) ≤ ϕ(E(x, y)), for all x, y ∈ X . (1.6)

2) One of the first results of this kind were obtained by Browder [4].
The function ϕ involved in such fixed point theorems is usually called
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comparison function and is supposed to satisfy at least the following
two conditions:

(iϕ) ϕ is nondecreasing, i.e., t1 < t2 ⇒ ϕ(t1) ≤ ϕ(t2);
(iiϕ) The sequence {ϕn(t)} converges to zero, for each t ∈ R+,

where ϕn stands for the n-th iterate of ϕ .

Example 2. It is easy to check that a comparison function ϕ needs to

be neither linear, nor continuous, by considering ϕ1(t) =
t

1 + t
, t ∈ R+

and ϕ2(t) =
1

2
t, if 0 ≤ t < 1 and ϕ2(t) = t−

1

3
, if t ≥ 1.

To prove our main result we shall need the following Lemma.

Lemma 1. If ϕ satisfies (iϕ), (iiϕ) and

t ≤ ϕ(t) , for a certain t ∈ R+, (1.7)

then t = 0.

Proof. Suppose the contrary, i.e., there exists t > 0 such that (1.7) is
satisfied. Then, by (iϕ) we inductively get

t ≤ ϕn(t) , n ≥ 1.

In view of (iiϕ) this implies

t ≤ ϕn(t) −→ 0 as n →∞ ,

a contradiction. �

2. Nonself discontinuous contractive type mappings

All fixed points theorems stated in the previous section involve self
mappings of a metric space. However, in many applications of the fixed
point theorems, a mapping of a closed subset K of X is not generally
a self mapping of K into K but into X, or to check the invariance
condition T (K) ⊂ K is very difficult.

Starting from Theorem C1, it was an open problem for more than
20 years to extend it from self maps T : K −→ K satisfying (1.3) to
corresponding nonself mappings T : K −→ X, K 6= X, satisfying (1.3).

Recently, Ciric [7] solved this problem by considering an additional
boundary condition, but limiting his results to a Banach space setting.

Theorem C2. Let E be a Banach space, K a nonempty closed subset
of E and ∂K the boundary of K. Let T : K −→ E be a nonself mapping
satisfying (1.3) for all x, y ∈ K. If

T (∂K) ⊂ K (2.1)

then T has a unique fixed point in K.

Such kind of theorems were obtained for other contractive type
conditions by Assad [1], Rhoades [11] and Ciric [6]. Very recently,
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Radovanovic [9] extended the previous quoted results to the following
general contractive type condition: there exists a constant h, 0 < h < 1,
such that for all x, y ∈ K

d(Tx, Ty) ≤ h ·R(x, y) (2.2)

where

R(x, y) = max

{
1

2
d(x, y), d(x, Tx), d(y, Ty), m(x, y),

1

2
M(x, y)

}
,

(2.3)
and

m(x, y) = min
{
d (x, Ty), d(y, Tx)

}
, (2.4)

M(x, y) = max
{
d (x, Ty), d(y, Tx)

}
. (2.5)

He also obtained the error estimate for the Picard iteration when ap-
proximating the fixed point of mappings satisfying (2.2).

The main aim of this paper is to extend the result of Radovanovic
[9] to a more general contractive condition. Finally we also point out
that (2.2) implies Ciric’s condition (1.3).

3. Main result

To prove our main result we shall make use of the following simple
property that holds in a linear normed space: if x ∈ K and y 6∈ K,
then there exists a point z ∈ ∂K (the boundary of K) such that

d(x, z) + d(z, y) = d(x, y) ,

which is equivalent to the fact that z ∈ ∂K ∩ seg [x, y].
We can state now our main result.

Theorem 1. Let E be a Banach space, K a nonempty closed subset
of E and T : K −→ E a mapping for which there exists a continuous
comparison function ϕ such that

d(Tx, Ty) ≤ ϕ
(
R(x, y)

)
, ∀ x, y ∈ K , (3.1)

where R(x, y) is given by (2.3).
If T satisfies the Rothe’s boundary condition (2.1) then T has a

unique fixed point in K.

Proof. Starting from x0 ∈ ∂K we shall construct a sequence {xn} as
follows.
Since , by (2.1), Tx0 ∈ K, we compute x1 = Tx0. Now, if Tx1 ∈ K,
then set x2 = Tx1. If Tx1 6∈ K, then choose x2 ∈ ∂K such that

d(x1, x2) + d(x2, Tx1) = d(x1, Tx1) .

Continuing in this manner, we obtain a sequence {xn} in K, having
the following property: if Txn ∈ K, then xn+1 = Txn, otherwise xn+1

is a certain point in ∂K for which

d(xn, xn+1) + d(xn+1, Txn) = d(xn, Txn) .
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This enables us to split se sequence {xn} into two disjoint sets A and
B, where

A =
{
xi ∈ {xn} : xi = Txi−1

}
,

B =
{
xi ∈ {xn} : xi 6= Txi−1, xi ∈ ∂K and

d(xi−1, xi) + d(xi, Txi−1) = d(xi−1, Txi−1)
}

.

Note that, in view of (2.1), if x1 ∈ B, then both xi+1 and xi−1

belong to A. Indeed, let suppose that xi−1 6∈ A. Then xi−1 ∈ B ⊂ ∂H
and hence Txi−1 ∈ K, by (2.1). By the rule of constructing {xn}, it
results xi = Txi−1, i.e., xi ∈ A, a contradiction.

We shall prove now that {xn} and {Txn} are Cauchy sequences.
Denote

S(n, k) = {xj, Txj : n ≤ j ≤ n + k}; b(n, k) = diam
(
S(n, k)

)
S(n) = {xj, Txj : n ≤ j}; b(n) = diam

(
S(n)

)
.

Then, it is immediately that: a) b(n, k) ↑ b(n), as k →∞;
b)

{
b(n)

}
is a decreasing sequence of positive terms and hence

b = lim
n→∞

b(n) exists .

To prove than {xn} and {Txn} are Cauchy sequences is suffices to show
that b = 0. We claim that

b(n, k) ≤ ϕ
(
b (n− 2, k + 2)

)
, n, k ≥ 2 . (3.2)

To prove (3.32) we consider three cases.
Case 1. b(n, k) = d(xi, Txj) with n ≤ i, j ≤ n + k.

If xi = Txi−1, that is, xi ∈ A, then

b(n, k) = d(Ti−1, Txj) ≤ ϕ
(
R(xi−1, xj)

)
≤ ϕ

(
b (n− 2, k + 2)

)
.

If xi 6= Txi−1, then xi−1 = Txi−2 and so xi ∈ ∂K and d(xi−1, Txi−1) =
d(xi−1, xi) + d(xi, Txi−1) or, equivalently, xi ∈ seg [xi−1, Txi−1].
Thus

b(n, k) = d(xi, Txj) ≤ max
{
d(Txi−2, Txi), d(Txi−1, Txi)

}
≤

≤ ϕ
(
max{R(xi−2, xi), R(xi−1, xi)}

)
≤ ϕ

(
b (n− 2, k + 2)

)
.

Case 2. b(n, k) = d(xi, xj), with n ≤ i, j ≤ n + k.
Now, if xj = Txj−1, then Case 2 reduces to Case 1.
If xj 6= Txj−1, then like in the Case 1 we have j ≥ 2, xj−1 = Txj−2 and

Txj ∈ ∂K ∩ seg [Txj−2, Txj−1] .

Hence

b(n, k) = d(xi, xj) ≤ max
{
d(xi, Txj−2), d(xi, Txj−1)

}
and so Case 2 also reduces to Case 1.

Case 3. b(n, k) = d(Txi, Txj), with n ≤ i, j ≤ k.
In view of the previous cases, this is trivial.
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Therefore, (3.2) is proved. Since ϕ is continuous by letting k → ∞ in
(3.2) we obtain

b(n) ≤ ϕ
(
b(n− 2)

)
, n ≥ 2 (3.3)

and then, letting n →∞ in (3.3) we obtain

b ≤ ϕ(b) .

In view of Lemma 1, the last inequality implies b = 0 and so, both
{xn} and {Txn} are Cauchy sequences.
Since xn ∈ K and K is a closed bounded subset of a Banach space, we
deduce that lim

n→∞
xn = p ∈ K.

Since
d(xn, Txn) ≤ bn −→ 0 , as n →∞

we also have lim
n→∞

Txn = p, which shows that

lim
n→∞

Txn = lim
n→∞

xn = p ∈ K .

To prove that p is a fixed point of T we use the triangle inequality

d(p, Tp) ≤ d(p, xn) + d(xn, Txn) + d(Tp, Txn) ≤
≤ d(p, xn) + d(xn, Txn) + ϕ

(
R(p, xn)

)
−→ 0, as n →∞ .

The uniqueness of p follows by (3.1). �

Remarks.
1) For ϕ(t) = h · t, t ∈ R+, 0 < h < 1, from Theorem 1 we obtain

Theorem 1 in Radovanic [9].

2) Theorem 1 gives information on the existence and uniqueness
of the fixed point of T , but does not provide an error estimate for
approximating this fixed point, like in the aforementioned paper, where
the following estimation is obtained

d(p, xn) ≤ an−1

a− 1
·max

{
d (x0, x1), d(x1, x2)

}
,

where a = h1/2, with h the contraction coefficient.

3) However, if we consider an additional condition on ϕ involved
in (3.1), that is

∞∑
k=0

ϕk(t) converges for all t ∈ R+ , (3.4)

then it is possible to obtain a similar error estimate for approximating
the fixed point of T .

A mapping satisfying a condition of the form (3.1) is said to be a
generalized ϕ-contraction, see Rus [13].

4) To approximate p, we may consider the subsequence {xi0+2n},
where xi0 ∈ A.
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5) Following exactly the same steps as in proving Theorem 1, we
can prove a more general result.

Theorem 2. Let E be a Banach space, K a nonempty closed subset
of E and ∂K the boundary of K. Let T : K −→ E, S : E −→ E and
S : K −→ K. Suppose ∂K 6= ∅, S is continuous and let assume that
S and T satisfy the following conditions:

(i) There exists a comparison function ϕ such that for every
x, y ∈ K

d(Tx, Ty) ≤ ϕ
(
R1(x, y)

)
,

where

R1(x, y) = max

{
1

2
d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), m(x, y),

1

2
M(x, y)

}
,

and
m(x, y) = min

{
d(Sx, Ty), d(Sy, Tx)

}
,

M(x, y) = max
{
d(Sx, Ty), d(Sy, Tx)

}
.

(ii) S and T are weakly commutative on K, i.e.

d(STx, TSx) ≤ d(Sx, Tx) , for every x ∈ K .

(iii) T (K) ∩K ⊂ S(K);

T (∂K) ⊂ K;

S(∂K) ⊃ ∂K .
Then S and T have a unique common fixed point in K.

Remarks.
1) It is obvious that in the particular case S = 1E (the identity map) ,

Theorem 2 reduces to Theorem 1.
2) The assumption ”S is continuous” in Theorem 2 can be weakened

to ”Sm is continuous, for some integer m > 0”, like in Theorem 3 of
Rakocevic [10].

Many other common fixed point theorems originating in Theorem
1 can be obtained, following the other results in Rakocevic [10].

3) In order to show that condition (3.1) implies Ciric’s condition
(1.3), it suffices to note that

R(x, y) ≤ C(x, y) .
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