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Abstract. The aim of this paper is to establish new sequences which converge towards the Euler-

Mascheroni constant. Our results solve some open problems posed by Berinde [A new gener-

alization of Euler’s constant Creat. Math. Inform. 18 (2009) no. 2 123–128] and extend some

results of DeTemple, [A quicker convergence to Euler’s constant Amer. Math. Monthly 100

(1993) 468–470] and Sı̂ntămărian [A generalization of Euler’s constant, Numer. Algorithms 46

(2007), 141–151].

1. Introduction

One of the most important sequences in analysis of the form

γn = 1 +
1

2
+

1

3
+ ...+

1

n
− lnn,

considered by Leonhard Euler in 1735, is known to converge towards the limit γ =
0.577215..., which is now called the Euler-Mascheroni constant. First of all, we recall

that the sequence (γn)n>1 converges to its limit like n−1 , since

1

2n + 1
< γn − γ <

1

2n
, (1.1)

(see, e.g., Alzer [1], or Young [14]). Tóth [13] proved

1

2n + 2/5
< γn − γ 6

1

2n + 1/3
, n > 1, (1.2)

then Qiu and Vuorinen [11] showed the double inequality

1

2n
−

1

2n2
< γn − γ 6

1

2n
−

γ −1/2

n2
, n > 1. (1.3)

Questions on the fast approximations of the Euler-Mascheroni constant γ were also

discussed by Karatsuba [4] and the following inequalities were obtained

1

2n
−

1

12n2
+

1

120n4
−

1

126n6
6 γn − γ 6

1

2n
−

1

12n2
+

1

120n4
. (1.4)
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For every a > 0, the numbers of the form

γ(a) = lim
n→∞

(

1

a
+

1

a + 1
+ ...+

1

a + n−1
− ln

a + n−1

a

)

were introduced in the monograph by Knopp [5]. There are known now as the general-

ized Euler-Mascheroni constant, since γ(1) = γ. In the recent past, many authors were

preoccupied to give increasingly accurate estimates for γ (a) , similar to those given for

γ, like (1.1)–(1.4).

In this sense, we mention the following sequences

xn =
1

a
+

1

a + 1
+ ...+

1

a + n−1
− ln

a + n

a

and

yn =
1

a
+

1

a + 1
+ ...+

1

a + n−1
− ln

a + n−1

a

which converge to γ (a) like n−1, since Sı̂ntămărian [12] proved that for every integer

n > 1,
1

2(n + a)
< γ (a)− xn <

1

2(n + a)−2

and
1

2(n + a)
< yn − γ (a) <

1

2(n + a)−2
.

We give new better bounds for these sequences, showing the following

THEOREM 1. For every a > 0, and integer n > 2, we have

1

2(n + a)− 1
4

< γ (a)− xn <
1

2(n + a)− 1
3

(1.5)

and
1

2(n + a)− 4
3

< yn − γ (a) <
1

2(n + a)− 5
3

. (1.6)

In some sense, the constants 1
3

and 5
3

are sharp in (1.5)–(1.6), as we can see from

the following:

THEOREM 2. a) For every a > 13
30

and every integer n > 1, we have

1

2(n + a)− 1
3
+ 1

18n

< γ (a)− xn.

b) For every a > 17
30

and every integer n > 1, we have

1

2(n + a)− 5
3
+ 1

18n

< yn − γ (a) .
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Very recently, Berinde [2, Theorem 2.2] introduced the sequences

zn (a,b) =
1

a
+

1

a + 1
+ ...+

1

a + n−1
− ln

(

a + n

a
+ b

)

and

tn (a,b) =
1

a
+

1

a + 1
+ ...+

1

a + n−1
− ln

(

a + n−1

a
+ b

)

convergent to γ (a) , and proved that for every integer n > 1,

zn (a,b) < zn+1 (a,b) < γ (a) < tn (a,b) < tn+1 (a,b)

and

0 <
1

a
− ln

(

1 + b +
1

a

)

< γ (a) <
1

a
− lnb.

It is introduced in [7] the following general class of sequences

µn(a,b,c) =
1

a
+

1

a + 1
+ ...+

1

a + n−2
+

c

a + n−1
− ln

(

a + n−1

a
+ b

)

,

depending on parameters a,b,c, with a > 0 and b > −(a + 1)/a. Remark that

µn (a,b,1) = tn (a,b) . A particular case of [7, Theorem 2.1] solves an open problem

posed by Berinde [2] about the sequence (tn (a,b))n>1 . This answer is gathered in the

following

THEOREM 3. Let a, b ∈ R be given and satisfy a > 0 and b > −(a + 1)/a.
a) If b 6= 1

2a
, the speed of convergence of the sequence (tn (a,b))n>2 is equal to n−1,

since

lim
n→∞

n(tn (a,b)− γ(a)) =
1

2
−ab 6= 0.

b) If b = 1
2a

, the speed of convergence of the sequence

βn =
1

a
+

1

a + 1
+ ...+

1

a + n−2
+

1

a + n−1
− ln

(

a + n−1

a
+

1

2a

)

equals n−2, since

lim
n→∞

n2 (βn − γ(a)) =
1

24
.

The proof of this Theorem 3 is based on the following result, which was first used

in [6]–[10] to accelerate some convergences and to construct asymptotic expansions.

LEMMA 1. If (xn)n>1 is convergent to x and if there exists the limit

lim
n→∞

nk(xn − xn+1) = l ∈ R,

with k > 1, then there exists the limit

lim
n→∞

nk−1(xn − x) =
l

k−1
.
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For proof, see [9]. The following result gives a similar answer for the sequence

(zn)n>1 .

THEOREM 4. Let a, b ∈ R be given and satisfy a > 0 and b > −(a + 1)/a.
a) If b 6= − 1

2a
, the speed of convergence of the sequence (zn (a,b))n>2 is equal to n−1,

since

lim
n→∞

n(zn (a,b)− γ(a)) = −
1

2
−ab 6= 0.

b) If b = − 1
2a

, the speed of convergence of the sequence

δn =
1

a
+

1

a + 1
+ ...+

1

a + n−2
+

1

a + n−1
− ln

(

a + n

a
−

1

2a

)

equals n−2, since

lim
n→∞

n2 (δn − γ(a)) =
1

24
.

We have

zn (a,b)− zn+1 (a,b) = −
1

a + n
− ln

(

a + n

a
+ b

)

+ ln

(

a + n + 1

a
+ b

)

,

or, using a computer software, such as Maple,

zn (a,b)− zn+1 (a,b) =

(

−
1

2
−ab

)

1

n2
+

(

a + ab + 2a2b + a2b2 +
1

3

)

1

n3
+ O

(

1

n4

)

.

(1.7)

Now, we have

lim
n→∞

n2 (zn (a,b)− zn+1 (a,b)) = −
1

2
−ab,

and if ab = − 1
2
, then

lim
n→∞

n3 (zn (a,b)− zn+1 (a,b)) =
1

12
.

and Theorem 4 follows using Lemma 1.

Next we give some estimates of the sequences (βn)n>1 and (δn)n>1 .

THEOREM 5. a) For every integer n > 1, we have

1

24(n + a)2
< δn − γ (a) <

1

24(n + a−1)2

and
1

24(n + a)2
< βn − γ (a) <

1

24(n + a−1)2
.
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This result is an extension of DeTemple’s work [3] who defined the sequence

Rn = 1 +
1

2
+ ...+

1

n
− ln

(

n +
1

2

)

and proved
1

24(n + 1)2
< Rn − γ <

1

24n2
.

(case a = 1). Also Theorem 5 responses to an open problem posed by Berinde [2].

2. The proofs

Proof of Theorem 1. The sequences

x′n = xn +
1

2(n + a)− 1
4

, x′′n = xn +
1

2(n + a)− 1
3

are convergent to γ (a) . Our inequalities (1.5) follows, if we prove that the sequence

(x′n)n>1 is strictly increasing and the sequence (x′′n)n>1 is strictly decreasing. We have

x′n+1 − x′n = c(n) , where

c(x) =
1

a + x
− ln

a + x + 1

a
+ ln

a + x

a
+

1

2(x + 1 + a)− 1
4

−
1

2(x + a)− 1
4

,

with the derivative

c′ (x) = −
P(x)

(x + a + 1)(x + a)2 (8x + 8a−1)2 (8x + 8a + 7)2
,

where

P(x) = 512x3 +(1536a−128)x2 +
(

1536a2−256a−672
)

x

+512a3−128a2−672a + 49.

As the polynomial P(x + 2) has all coefficients positive, it results that P(n) > 0, for

every n > 2. Now, c(x) is strictly decreasing, with c(∞) = 0, so c > 0, on [2,∞).
Thus (x′n)n>2 is strictly increasing and consequently, x′n < γ (a) .

Let x′′n+1 − x′′n = d (n) , where

d (x) =
1

a + x
− ln

a + x + 1

a
+ ln

a + x

a
+

1

2(x + 1 + a)− 1
3

−
1

2(x + a)− 1
3

,

with the derivative

d′ (x) =
216x2 +(432a + 240)x + 240a + 216a2−25

(x + a + 1)(x + a)2 (6x + 6a−1)2 (6x + 6a + 5)2
> 0.

Now, d (x) is strictly increasing, with d (∞) = 0, so d < 0, on [2,∞). Thus (x′′n)n>2 is

strictly decreasing and consequently, x′′n > γ (a) .
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The sequences

y′n = yn −
1

2(n + a)− 4
3

, y′′n = yn −
1

2(n + a)− 5
3

are convergent to γ (a) . Our inequalities (1.6) follows, if we prove that the sequence

(y′n)n>1 is strictly decreasing and the sequence (y′′n)n>1 is strictly increasing. We have

y′n+1 − y′n = e(n) , where

e(x) =
1

a + x
− ln

a + x

a
+ ln

a + x−1

a
−

1

2(x + 1 + a)− 4
3

+
1

2(x + a)− 4
3

,

with the derivative

e′ (x) =
Q(x)

2(x + a−1)(x + a)2 (3x + 3a−2)2 (3x + 3a + 1)2
,

where

Q(x) = 81x3 +(243a−81)x2 +
(

243a2 −162a + 24
)

x + 24a−81a2+ 81a3 + 8.

As the polynomial Q(x + 2) has all coefficients positive, it results that Q(n) > 0, for

every n > 2. Now, e(x) is strictly increasing, with e(∞) = 0, so e < 0, on [2,∞). Thus

(y′n)n>2 is strictly decreasing and consequently, y′n > γ (a) .
Let y′′n+1 − y′′n = j (n) , where

j (x) =
1

a + x
− ln

a + x

a
+ ln

a + x−1

a
−

1

2(x + 1 + a)− 5
3

+
1

2(x + a)− 5
3

,

with the derivative

j′ (x) = −
216x2 +(432a−240)x + 216a2−240a−25

(x + a−1)(x + a)2 (6x + 6a−5)2 (6x + 6a + 1)2
< 0.

Now, j (x) is strictly decreasing, with j (∞) = 0, so j > 0, on [2,∞). Thus (y′′n)n>2 is

strictly increasing and consequently, y′′n < γ (a) . �

Proof of Theorem 2. As in the proof of Theorem 1, we define the sequences

un = xn +
1

2(n + a)− 1
3
+ 1

18n

, vn = yn −
1

2(n + a)− 5
3
+ 1

18n

and we prove that (un)n>1 is strictly increasing and (vn)n>1 is strictly decreasing.

First, we have un+1 −un = k (n) , and vn+1 − vn = l (n) , where

k (x) =
1

x + a
− ln

a + x + 1

a
+ ln

a + x

a
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+
1

2(x + 1 + a)− 1
3
+ 1

18(x+1)

−
1

2(x + a)− 1
3
+ 1

18x

and

l (x) =
1

x + a
− ln

a + x

a
+ ln

a + x−1

a

−
1

2(x + 1 + a)− 5
3
+ 1

18(x+1)

+
1

2(x + a)− 5
3
+ 1

18x

,

with the derivatives

k′ (x)=−
R(x)

(x + a + 1)(x + a)2 (36x2 −6x + 36ax + 1)2 (36x2 + 66x + 36ax + 36a+31)2
,

respective

l′ (x) =
S (x)

(x + a−1)(x + a)2 (36x2 −30x + 36ax + 1)
2
(36x2 + 42x + 36ax + 36a+7)

2
,

where

R(x) = 15552(30a−13)x5 +
(

653184a + 1166400a2−250128
)

x4

+
(

413424a + 1842912a2+ 979776a3 + 37800
)

x3

+
(

272808a + 1131408a2+ 1251936a3 + 326592a4 + 79200
)

x2

+
(

85248a + 349272a2+ 498960a3 + 287712a4 + 46656a5−7440
)

x

+2232a + 19224a2+ 58104a3 + 63504a4 + 23328a5 + 961

and

S (x) = 15552(30a−17)x5 +
(

1166400a2−653184a + 247536
)

x4

+
(

979776a3−116640a2−239760a + 360072
)

x3

+
(

267624a−501552a2+ 381024a3 + 326592a4 + 13104
)

x2

+
(

132192a4−26568a2−60912a3−26208a + 46656a5−2352
)

x

+504a−216a2−7560a3−14256a4 + 23328a5 + 49.

If we put a = 13
30

+ a′, with a′ > 0, then R(n) becomes a polynomial with all coeffi-

cients positive. If we put a = 17
30

+ a′′, with a′′ > 0, then S (n) becomes a polynomial

with all coefficients positive. In consequence, R > 0 and S > 0, for every positive

integer n and a > 13
30

, respective a > 17
30

.
Now, the function k is strictly decreasing, the function l is strictly increasing and

the conclusion follows using the same arguments of Theorem 1. �



276 V. BERINDE AND C. MORTICI

Proof of Theorem 5. Let us define the sequences

δ ′
n = δn −

1

24(n + a−1)2
, δ ′′

n = δn −
1

24(n + a)2
.

It suffices to show that (δ ′
n)n>1 is strictly increasing and (δ ′′

n )n>1 is strictly decreasing.

In this sense, let us put δ ′
n+1 − δ ′

n = m(n) and δ ′′
n+1 − δ ′′

n = p(n) , where

m(x) =
1

a + x
− ln

(

a + x + 1

a
−

1

2a

)

+ ln

(

a + x

a
−

1

2a

)

−
1

24(x + a)2
+

1

24(x + a−1)2

and

p(x) =
1

a + x
− ln

(

a + x + 1

a
−

1

2a

)

+ ln

(

a + x

a
−

1

2a

)

−
1

24(x + a + 1)2
+

1

24(x + a)2
,

with the derivatives

m′ (x) = −
24x3 +(72a−35)x2 +

(

72a2 −70a + 15
)

x + 15a−35a2+ 24a3−1

12(2x + 2a + 1)(2x + 2a−1)(x + a)3 (x + a−1)3
,

respective

p′ (x) =
24x3 +(72a + 35)x2 +

(

70a + 72a2 + 15
)

x +
(

70a + 72a2 + 15
)

+ 1

12(2x + 2a + 1)(2x + 2a−1)(x + a)3 (x + a + 1)3
.

Now, the function m is strictly decreasing, p is strictly increasing, with m(∞) =
p(∞) = 0, so m > 0 and p < 0. Consequently, (δ ′

n)n>1 is strictly increasing and

(δ ′′
n )n>1 is strictly decreasing.

Let us define the sequences

β ′
n = βn −

1

24(n + a−1)2
, β ′′

n = βn −
1

24(n + a)2
.

It suffices to show that (β ′
n)n>1 is strictly increasing and (β ′′

n )n>1 is strictly decreasing.

In this sense, let us put β ′
n+1 −β ′

n = q(n) and δ ′′
n+1 − δ ′′

n = r (n) , where

q(x) =
1

a + x
− ln

(

a + x

a
+

1

2a

)

+ ln

(

a + x−1

a
+

1

2a

)

−
1

24(x + a)2
+

1

24(x + a−1)2
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and

r (x) =
1

a + x
− ln

(

a + x

a
+

1

2a

)

+ ln

(

a + x−1

a
+

1

2a

)

−
1

24(x + a + 1)2
+

1

24(x + a)2
,

with the derivatives

q′ (x)=−
24x3 +(72a−35)x2 +

(

72a2 −70a + 15
)

x + 15a−35a2+ 24a3 + 24n3−1

12(2x + 2a−1)(2x + 2a + 1)(x + a)3 (x + a−1)3
,

respective

r′ (x) =
24x3 +(72a + 35)x2 +

(

70a + 72a2 + 15
)

x + 15a + 35a2+ 24a3 + 1

12(2x + 2a−1)(2x + 2a + 1)(x + a)3 (x + a−1)3
.

Now, the function q is strictly decreasing, r is strictly increasing, with q(∞) = r (∞) =
0, so q > 0 and r < 0. Consequently, (β ′

n)n>1 is strictly increasing and (β ′′
n )n>1 is

strictly decreasing. �

Finally, we are convinced that our new method is suitable for establishing other

new estimates for the gamma and polygamma functions, or for the generalized har-

monic sums.
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