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AasrR^cT. Th€ corc€pt ol wak @rtreiion b itrircduced .Dd .onpar€d to $oe
knoM hetri.El contr*tiw t ?e mF lnd ihen rtu fx€d poiDr rh@eG for ibis clG
oroperatoB in coFplete e.r,ric spee m pD@D. Os r€ulrs .xr.Dd mtl kr(m 6x€d
point theoEro due io B&aat, Kamd, Charlsj€, Zanntwu dd ltey orheE. The
b.b m€rii of sat @ni.dtioE is rhat rhey lbity lsge clad€ of.on tuiiw tT,e
op€ratoF, wh@ tued points 6D tE obiai&d by m€s ot the Picltd ire.ation ed for
vhich both . prio.i &d a pGtsiori €mr Btimst€ e sLo .Eit.ble.

1. Introduction

The classical Banach's contraction principle is one of the most usetul results in
fixed point theory. ln a meiric space setting it can be briefly stated as follows.

Theor€m B. Let (X,d) be a amplete mettic spa.e andT: X -+ X ast ct
coDtraction, i.e. a map satislying

dgx,Ty) ! ad(x,g), for s0x,u € x,

wfrere0<a < l is corstart. Then
(p1) T bas a urique fxed point p itr X;
(p2) The Piczrd iteratiot' {r"}f=o defned by

( r .1)
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(1.2)

co,v?rges to p, lor eny xo e X.

Note. A map satisfying (pl) and (p2) is said to be a Picard ,?eruto', see Ru3
[2e ,3r ] .

Theorem B, together with its dlect geDeralizations have many applications in
solvilg nonlinear equstions, but suffer fron one drawback - th€ contractive con-
dition (1.1) forc€s ? b€ continuous on )(. It is then natural to ask if there exist
contractive conditions which do not iEply th€ continuity of f. This v,as ans"€r€d itr



the afrrmative by R. Kannan l14l in 1968, r"bo proved a fixed point theorcm which
ext€nds Th€oren B t mappings that ne€d trot be contitruous, by consid€ring inst€ad
of (1.1) the next condition: thele exists b € (0, + ) such that

d(T r ,T r )  <  b  [d (c ,T r )  rd (v ,TU) ] ,  f o rs l l " . J€x .

Following the K8nnan'6 theorcm, a lot of papers were devoted to obtaining fixed
point theorems for uarious classes of contractNe t}?e corditiols that do not require
the contiEuity of ?, see for example, Rus i29, 321, Taskovic [34], snd references
therein.

One of them, actually a sort of dual of KaruaD fixed point theor€E, due to Chat-
t€rjea [5], is based on a condition similar to (1.3): there existsc e (0, + ) such that

d.(Tr,Tv) <.!d,(a,Td + d(e, T.)1, for all c, e € x. (1.4)

It is well known, see Rioades 1241, that the contractil€ conditions (1.1) and (1.3),

as {'ell as (l.l) atrd (1.4), are ildepende .
In 1972, Zamtuescu [35] obtained a very interesting fixed point theorem, by com-

binitrs (r.1), (r.3) and (r.a).

Theorsn Z. Let (X,d) be a complete metric space NdT I X ----+ X a map lor
wiici there exrlst real rumbers a, b aftd c sati.&ing 0 t a < 1, 0 < h, c < 7 /2 such
thet for each pair E,u il X, st Ie st oae of the following is trae:

(a) d( ' Iz,Ty) !  ad(x,y);
(22\ d$qry) 3 b[d(t,ara) + d(y,T!)l;
(4) d(Tx,T!)  !  c ld@,Ts) + d(s,Tr) | .

Then T k a Piclrd operator.

ODe of ihe mo6t geDeral contBctioD condition for lrhich the map satisfyine it is
still a Picard operstor, has been obtaircd by Ciric [8] in lg?a: there exists 0 < h < I
such that

d(I:r.Ty)

3 h. n x {d(a,a), d.(t,1:a), d(s,Ta), dlr,Tu), d(u,1:r.)} fo. 
" l l ' ,g 

e x. 
(1 5)

Remark. A map satisfying (r.5) is commonly called qussi contra.tion.
It is obvious that each of the conditions (r.3), (r.a) and (zr)-(zt irnplies (1.5);

There exist msny other fixed theolems based on contra.tive conditions of this
type, se€ for example, Rload€s 124, 261 and the monosraphs Berinde [2i, Rus [29],
Taskovic 1341.

Motirated by the exteDsive literatue delot€d to the nonlirca. contractive op€ra-
tors aforementioned, it iE ou! main aim in tbis pap€I to obtain fixed point theorems
based on a contraction condition more general than (zl)-(23) and thst doe! not re-
quirc the continuity of the map as w€11.
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2. Weak contractioDE

DeffDition 1. I€t (X,d) be a netric space. A map ?: X ---r X is called ?rea.t
co4trtrction if there exist s constant d € (0,1) ad som€ , > 0 such tbst

d.(rT,:ru) < 6 d@,u) + Ld(s,.Ix), forattr,yeX. (2.D

R-emark 1. Due ta the symmetry of the distance, th€ w€ak coDtraction condition
(2.1) implicitly hcludes the following du6l one

d(Tx,Ty) < 5 d(E,u)+ L d@,try),  forelo,!€x, (2.2\

obtiin€d ftom (2.1) by formsly rcplacng d(T\Ts) and d(c,t) by d("y,"r) and
d(r,t), r€specth€ly, and then interchangilg r ard !',

Cons€quently, in order to check the weak contractiveness of ?, it is necessaly to
check both (2.1) ard (2.2).

Obviously, any sirict contractio! satisies (2.1), with d = o and t : 0, and herce
iE s weak contraciion (that poss€ss€s a unique fixed poht).

Other examples of weak codractions are given by the next propositions.

PfopositloE l. Any Ksnnao map, i.e., ^Dy map sati*fu8 the conftactive cob
dition (1.3), is a arcak cobcra.tion.

Prooi By condition (1.3) snd triangle nne, we get

d(T z, 7:u) I b Id(a,T x\ + d(s,Tu)l
< a{ld(c,s)+ d(u,"') + Id(s,TE) + d(Tx,r1t)l},

which yields
(1 - b)d(Tx,Tu) < bd(r,a) + 2b. d(a,Ts)

and which implie€

h tt1
d\Tr'Ta) < T-- bdj'u) r ;Td(u Tr) ror all r '  v c x.

i .e. ,  in view of 0 < d < +,(2.1) holds with d: r  r-L and,: . i? b!- .
Since (1.3) i6 s)'rnm€tric with respect to r and y, (2.2) also holds.

PropositioD 2, Any mspT satisfyine the contractive conalitioo (1.a) b s epa*

Proof. Usins dG,Tu) < d(t,u) + d(s,Trl + d(TE,Ty) by (1.4) w€ set aft€r
simple computatioDs,

d\rr,r < t'-op,o* 1o!.ra.
which is (2.1), with 6 : 1ft < r (since c < r/2) and.L = +: > 0.
The symmetry of (1.4) also implies (2.2).

An immediat€ corsequ€nc€ of Propositions 1 and 2 is the followins



Corollary 1, Any Zamfrrescu map, i.e., aay mappirrg sstis&ing tle asflmptior.s
in Theorcm Z, b s E'esk cont@Etion.

PropositioE 3, Any E a.ti coDtradton with 0 < h < | /2 is a wejJK contractioD.

Proof. L€t ? : X --r X be a quasi-contraction, i.e. s map for which there €xists
0 < / r < l s u c h t h a t ,

dlTx,ry) < h.M(z,y), for al l  a,s e X, (2.3)

M (x,s) = msx {d(",u),d(E,Tr),dfu ,r,dk,Td,d(y,rr)}.

Iat ?,y € X be arbitrary takbn. We have to discuss ffve possible cases.
Case r- M(8, = d(r, y), x/hen, iD virtue of (2.3), condition (2.1) aud (2.2) sle

obviously satbfed (with 6 : n and .L = 0).
Note. Since M(o, y) : I4(s, r), for Cas€s 2 and 3 snd Cases 4 ard 5, respectively,

it sufrces to prove tbat at least orc of the relation8 (2.1) and (2.2) holds. (We
sometimes hc'*€ver pro\ae the both ircqualities).

case 2. M(x,s\ = d(x, 
"r), 

when by (2.3) and triansle rule

d.(Tr,Ty) ! hd(x,trx) ! hld,(r,u) + d,(!,.rr\,

and so (2.1) holdE with d: h and , : ll
sirce d(r, ?'') < d(c, 

"s) 
+ d(.ru,Tx), we Eer

l l
d(I:r,Tul < l-rj',Te) < dd(r, ,) + 1 _ ,r- d(', ry) ,

for a[ d € (0, r). So (2.2) slso holds.
Case 3. M(s,?) = d(s,Tv), when (2.1) and (2.2) follow by Case 2, in vfttue of

the symmetry of M(r,y).
case a. M@, = d(a,Tv), when (2.2) ir obviously true and (2.1) is obtained

only if [ < ]. Indeed, since by (2.3), d(Tr,.Is) 3 h.d,(r,I:sl and,

d(',Ts) < d(a'!\ + d(s,Tr) + d(TE,T!),

i t
dtTt,Tu) < -::- dlx,ll + T:id(v,I:r),

shich is (2.1) wrch d = +; < I (since,r < ; ) and, = r-h--a- > 0.
c^se 5. M lr,!) = d.(u, 

"r), 
which reduces to CsE€ 4. The proor is complete.
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ReEark 2. Pmposition 3 sho$s that the quasi-contractions wiih 0 < /r < t/2 are
certainly weak contractions, However, there exists quasicodractions with q > +, as
shown by Exampl€ 2, *hich are stil weak coDtractions. It appeaB theD that h < +
is not a oeceissry coDdition for a quasi.coDtrarrion to be a weak contraction, sr;
Problcm l

There are many other exa&ples of contracth€ conditions which implies the scak
contnctiveness condition, s€e for example, Taskovic l3al, Rus l30l and Berinde [2],
for some of them.

Having in view the fact that the cla6s of weak contractioN prop€rly includes lsrge
clnsses of quasi contractions and w€ak contra{rtions and quasi contBctions are inde-
pendent, on the one hand, and the extensive literature related to quasi contractions,
s€e for example 17-18, 22, 24-34l, and referenc€s therein, on rhe other hand, it is
the Eim of thi! paper to prove two 6xed point theorems il] the ctass of wesk con-
iractions: an existence theorem (Theorem 1) as wall as sn exisience and uniqueness
th€orem (Theorem 2). Their merit is that extend Theorem Z and ofier a method for
approximating fixed points, for which both a priori and a posteriori estimstes &e
aiBilable.

3. Two ffxed point theorems

The main r€sult of this paper is g €n by

Theorem 1. Let (X,d) be a conplete metric space anil T I X ----+ X a weak
contnction, i.e., a map satbfyiDg (2.1) tith 6 e (0, r) and sone, > 0. Tnen

r )  F(T)  =  { rex :  r r= t }+0;
2) For any Eo e X, the Picatd iteatioD {r"}=o stver by (t.2) converg* to

some r' e F(T);
3) The following ""stimates

d !^ , x ' )< *d@o,q  ) ,  n  =  0 ,1 ,2 , . . .

d ( , - , , \  3 : j db^ - , , c " ) ,  n  =  r , 2 , . . .

iold, wh€re , ;s t}e corstant appea.liDg in (2.1).

Proof. We shsll prove that f has st least a fixed point in X. To this end, let
ro € X be arbitrary and {""}=o be the Picard iterstion defned by (r.2).
Take r:= 2.,r, , := r" in (2.r) to obtsin

(3.1)

(s.2)

which shows that

Using (3.3) we obtain by induction

d(Tr."-1,Tc") 3 d d(c"-r,r"),

dlE", t_+) < 6 . d(r"_1, r"). (3.3)

d(t^,c"+) !  6"d(xo,xr) ,  n = 0, r ,2,  .  .  .



and then

d(2",o"+r) t  d"(1 +d + . .  +r ' - l )d( 'o,rr)
J" (3.4)

-  -  ( 1 -  6 P ) . d ( r o , r , ) ,  n , p € N ,  p l 0 .

Since 0 < d < r, (3.4) shows thst {r"}:io is a Cauchy s€quence and herce ig
convergent. Denote

r '= l im r i .  (3.5)

Then

d(r' ,Tx') 3 d(z' , x-+r) + d(c"+r, ?r') = d('. n,r') + d(Ta 
",Tt'\ 

.

By (2.1) we hare
d(.rrn,Tt' ) < 6 d(a", a' ) + L a@',Tx")

snd hence
dtt ' ,Ta')  < (r  + L)d(r ' ,  c"+r) + d d( '" , r ' ) ,  (3.6)

valid for sll a > 0. t€tting 'r -) 6 in (3.6) we obtain

d(a' 'Tx') = 0

i.€., r' i! a fixed point of T.
The e3timate (3.1) k obtained from (3.4) letting p -+ c..
ln order to obhin (3.2), obsewe th8t by (3.3) we indtlctively obtain

d(c"+t,e"+r+r) S dt+r .  d( 'n-r ,  c.) ,  * ,n€N,

and hence, similarly to deriving (3.4) we obtain

I /1  -  ^P)\ ? - \ -  - t a t .  
. r , r , ) ,  n : L p c N . .  ( J . Z )

1 - d  " ' " "

Noc, lettins p J 6 in (3.7), (3.2) follows. The proof is compl€te.

R€Iaerk 3.
l) Theorem r is a sigtrifcsnt exteDsion of Theorem B, Theorem Z ad meny other

related results.
2) Not€ that, although the ffxed point tbeorems m€ntioned at l) actu8lly forces

the uiqueness of the fixed point, the w€ak contractions ne€d Dot have a unique 6x€d
point, as shor'It by Exarnple l-

3) However, the weak contractiom po€sess other important properties, amongst

a) ln the class of 
"€ak 

cootractioDs s method for constructing the fixed pointa
- i.e., ihe Picad iteration - is alvays srailable;

b) Moreover, for this method of approrimsting the fixed points, both a prton
^nd i posknon errcr €stimates are arailable. Thes€ are very important from a
practical point of view, since they provide stopping criteria for the iterative process;



AppunratiDs fif,ld points of kak coDtratioB uils th€ Picard iterAtion 49

c) Last, but not les.st, the weak coEtractive conditioD (2.1) (and (2.2)) may be
easily be handled and ch€cked in concrcte appli(ations.

4) The fixed point r' attaircd by the Picard it€ration depend.s on the idtial gu€ss
t0 € X. Therefore, the cl&ss of w€ak contlactions providB a large cl&ss of weakly
Picsrd operators.

Recall, see Ru6 {31, 32], that sD operstor ?: X --t X is said to be 6 uea&ly
Piurd opemtor if the quenc€ {?-ro}flo converges for all ca € X and the limiLs
ar€ 6xed points of ?.

5) It is elgy to s€e that coDdition (2.r) impli€s the so called Bsnsch orbital coD-
dition

d.(Tx,T't) < ad.(x,T'), for all o e X,

studied by rsdous autho$ in the cont€xt of 6xed point theor€m!, s€e for example
Iticks ard Rlrcad€s l12l, hsnov [13], Rus I29land Tf,skovic l3al.

It i.6 possible to force the uniquene$ of the fixed point of a weak cont.action, by
imposhg an additional contractire condition, quite similar to (2.r), as sho"n by the

TlreoreE 2. Let (X,d) be a complete metric space and T : X -+ X a we*
coDtraction fo! s'hich therc exr:st d e (0, l) and some Lr > 0 such that

d ( . h , . I y ) < 0 . d ( ' , y ) + \ . a @ , T x ) ,  t o t s I t , u e X .  ( 3 . 8 )

Then
l) ? las a uajgue dxed point, i.e., F(7:) = 1x'\;
2) The Pica itExation {r"}Po gil€n by(1.2) coaveryes to E ,forNtytoeX;
3) The a pio and a pEterioi e!rcr estimates

tn
d ( r ^ , 8  )  <  l : i d ( r o , r , ) ,  

n = 0 , 1 , 2 ,  . .

3
d ( . " , 8  )  <  T  : T d ( r " - r , r " ) ,  n = 1 , 2 ,  .

hold.
4) The nte of conwrgence of the Pic^rd iteBtion is Eiwn by

d(t",r ') <ed@"-t,r ' ), a = r,2, .. (3.9)

Proof, Assume ? has two distinct 6x€d points c',9" € X. Then by (3.8), a'ith
r t = x . t g t = U ' w e E e t

dlx '  ,y ' )  !  0 .d\a'  ,s ' )  +=+ ( l  -  , )d(r ' ,  e ' )  < 0,

so contradicting d(r', y') > 0.
I.eatinE u := t", t .: r' in (3-8), we obtain the estirnste (3.9). The le.st of proof

follows by Theorem 1.



Bemark 4.
1) Note that, by the symmetry of the distance, (3.8) is satisfied for al! r, y € X if

and only
d(Tr,Ts) <0d(r,v) + L\d(u,Tu), (3.10)

abo holds, for all r, y € X.
So, similarly to the cas€ of the dual conditioDs (2.1) snd (2.2), in corcret€ appli-

cations it is necessary to check that both conditions (3.8) and (3.10) sre satisfied.
2) Not€ that conditior (3.8) has been used by Osilike {r9-2rl to prov€ stabllity

results for certain fixed point iteration procedules.
3) It is known, se€ Osilike [19,20], that cordition (3.8) alone does not imply ?

has s 6r(€d point. But if 
" 

satisfying (3.8) has a fixed point, it is certsinly unique.
4) It is a simple task to pror,€ that ary operstor ? satisfying one of the condi-

tions (l.l), (1.3), (1.4), or the condition6 in Theoram Z, also satisfies lhe uniqueness
conditions (3.8) and (3.10). Therefore, in vi€w of Example 1, Theorem 2 (and also
Thdrem 1) properly seneralizes Theorem Z.

Mormver, any quasi contra.tion wiib 0 < h < ialso satisEes (3.8) 6Dd (3.r0).
This sho$,B that Theorem 2 utrifies and gen€ralizes the 6xed point theoreEs of Ba-
nach, Kannan, Chstterjea and Z&mire6cu and paftially covers the Ciric's fixed point

The same Example 2 also shows that a quasi contraction generally does not satisfy
condiiion (3.8).

5) As it car be seen, Theoren 2 (as well as Theorem 1, except for the udqueness
of the fixed point) preseri€s all conclusions in the Banach contraction p nciple in
its complete form, see for example Berinde I3l, under sienificantly wedker contmc-
tiv€ conditions. Ind€ed, the met cal contractive conditions known in literature (se€
Rhoades [24] and Meszaros I18l) that involve in the right-hand size the displacem€nts

d(a,y),  d(r ,Tx),  d(y,7:y) ,  d(r ,Ts) ,  d\y,Tx)

with the nonnesative coefficients

o.@,u),  b(r ,  y) ,  c(r  ,  s),  d(r ,  y),  e(x,  y) ,

r€spectir€ly, ar€ commonly based on the restrictive assumption

0 < a(x,a) + b@,v) + c(r,u) + d@, y) + e\r,e) < r,

while, our condition (2.1) do not require 6 +, be less than 1, thus prcviding a large
class of contractive type eaps.

The previous remarkr raise the next open problems:

Problem 1. Is any quasi coDtrsction a weak cont$ction ?

Problem 2. FiDd a coDttst:tiw type condjtion difercnt of (3.8), tlat eD.sures tle
unhueae-ts ol frxed points of s'eak contnl:tioI"s.
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4. Examplas

We €nd tbi6 paper with aome exampl€E that hsve an illustrstive purpo6€.
Let I0,1l be the unit hterval with the u6ual nom.

Example l. Iat T: [0,1] ---+ [0,r] b€ the ideotity map, i.e., ?s: r, for sll
r € I0,l l.

r) T do€l not satisfy the Ciric's contractive condition (f.5), siDce 1l4(r, g) =
lr - rl and

l " - V l > h  a - g l ,  I o t z I l x I g  a n d 0 < h < 1 .

2) ? sati66es condition (2.1) with d € (0, r) slbibary and -L > I - ,. Inde€d
corditions (2.1) and (2.2) lead to

lr - ul < 6lx - l l + L. la - xl,

$,hich is true fo. all c,9 € I0, rl lfwe take d e (0,1) arbitrary and ,L ) r - 6.
3) The 6ei of fixed poitrts of T i! tbe entire int€llrdl [0,ll. i.e., F(") = I0,4.

Exampte 2. Let 
" 

: [0,1] -J [0,r] be given by ?r = ;, for, € I0,1) and
?1  =0 .
Then

1) 
" 

satides (1.5) with n € [3, ]).
2 )  ?sa t i 6 f i es  (2 .1 )  w i thd> fand I )d .
3) ? has a unique fix€d point, c' : 3.
a) r does not satisfy (3.E).

Example 3. Let ?'| [0,1] ---+ [0,1] be given by ?r = | for o e [0, r) and ?1 = L

l) ? do€s not satisfy rcither Ciric's condition (1.5), Dor Zatnfrcscu'B conditioD.
2) ? hss two fixed points, r'(") = {},l}.
3) ? does not satisfy (2.1).

Indeed, for r, y € 10, l) or a = , = 1, (2.1) is obvious. When r € [0, l) and
I = l, (2.r) reduces to

t  , l
;<6. Ia-r t+L.r ,

which is true for aI d € (0,1), if .L 21. When c = I and y € [0,1), ther
(2.1) holds if and only il

I

;<5.1r-y l+Ll r -u l
which is €quivalent to (d + rxl - y) > 1/2, which could rct b€ true if I is
con6taDt, since I - V -+ 0, as y r 1, (y < r). Note thet, despite th€ fact th6t
? doe8 not sati.sfiei (2.1), any limit oftbe Picard iteration is a fixed poiDt of
? and that ? does lot satisfy (3.E), as we[.
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