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ABSTRACT. The concept of weak contraction is introduced and compared to some
known metrical contractive type maps and then two fixed point theorems for this class
of operators in complete metric spaces are proven. Our results extend well known fixed
point theorems due to Banach, Kannan, Chatterjea, Zamfirescu and many others. The
main merit of weak contractions is that they unify large classes of contractive type
operators, whose fixed points can be obtained by means of the Picard iteration and for
which both a priori and a posteriori error estimates are also available.

1. Introduction

The classical Banach’s contraction principle is one of the most useful results in
fixed point theory. In a metric space setting it can be briefly stated as follows.

Theorem B. Let (X,d) be a complete metric space and T : X — X a strict
contraction, i.e. a map satisfying

d(Tz,Ty) < ad(z,y), forallz,ye€ X, (1.1)

where 0 < a < 1 is constant. Then
(p1) T has a unique fixed point p in X;
(p2) The Picard iteration {z,}5, defined by

Try1 =Ty n=0,1,2;.- (1.2)
converges to p, for any zp € X.

Note. A map satisfying (pl) and (p2) is said to be a Picard operator, see Rus
29, 31].

Theorem B, together with its direct generalizations have many applications in
solving nonlinear equations, but suffer from one drawback - the contractive con-
dition (1.1) forces T' be continuous on X. It is then natural to ask if there exist
contractive conditions which do not imply the continuity of 7. This was answered in

Received Dec. 2003.

2000 Mathematics Subject Classification: 47TH10.

Key words and phrases: Metric space, weak contractionm fixed point, convergence theorem,
error estimate.



44 Vasile Berinde

the affirmative by R. Kannan [14] in 1968, who proved a fixed point theorem which
extends Theorem B to mappings that need not be continuous, by considering instead
of (1.1) the next condition: there exists b € (0, 3 ) such that

d(Tz,Ty) < bld(z,Tz) +d(y, Ty)], forallz,ye X. (1.3)

Following the Kannan's theorem, a lot of papers were devoted to obtaining fixed
point theorems for various classes of contractive type conditions that do not require
the continuity of T, see for example, Rus [29, 32], Taskovic [34], and references
therein.

One of them, actually a sort of dual of Kannan fixed point theorem, due to Chat-
terjea [5], is based on a condition similar to (1.3): there existsc € (0, 3 ) such that

d(Tz,Ty) < c[d(z,Ty) +d(y, Tz)], forallz,y€ X. (1.4)

It is well known, see Rhoades [24], that the contractive conditions (1.1) and (1.3),
as well as (1.1) and (1.4), are independent.

In 1972, Zamfirescu [35] obtained a very interesting fixed point theorem, by com-
bining (1.1), (1.3) and (1.4).

Theorem Z. Let (X,d) be a complete metric space and T : X — X a map for
which there exist real numbers a,b and c satisfying 0 < a < 1,0 < b, ¢ < 1/2 such
that for each pair x,y in X, at least one of the following is true:

(z1) d(Tz,Ty) < ad(z,y);

(z2) d(Tz,Ty) < bld(z, Tz) + d(y, Ty));

(23) d(Tz,Ty) < cld(z, Ty) + d(y, Tz)].

Then T is a Picard operator.

One of the most general contraction condition for which the map satisfying it is
still a Picard operator, has been obtained by Ciric [8] in 1974: there exists 0 < h < 1
such that

d(Tz,Ty)
< h-max{d(z,y),d(z,Tz),d(y, Ty),d(z,Ty),d(y, Tz)} forallz,y € X. W2

Remark. A map satisfying (1.5) is commonly called quasi contraction.

It is obvious that each of the conditions (1.3), (1.4) and (z1)-(23) implies (1.5);

There exist many other fixed theorems based on contractive conditions of this
type, see for example, Rhoades [24, 26] and the monographs Berinde [2], Rus [29],
Taskovic [34].

Motivated by the extensive literature devoted to the nonlinear contractive opera-
tors aforementioned, it is our main aim in this paper to obtain fixed point theorems
based on a contraction condition more general than (z1)-(z3) and that does not re-
quire the continuity of the map as well.
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2. Weak contractions

Definition 1. Let (X,d) be a metric space. A map T : X — X is called weak
contraction if there exist a constant § € (0,1) and some L > 0 such that

d(Tz,Ty) < 6-d(z,y) + Ld(y,Tz), forallz,ye X. (2.1)

Remark 1. Due to the symmetry of the distance, the weak contraction condition
(2.1) implicitly includes the following dual one

d(Tz,Ty) < 6-d(z,y)+ L-d(z,Ty), foralzye X, (2.2)

obtained from (2.1) by formally replacing d(Tz,Ty) and d(z,y) by d(Ty,Tz) and
d(y, z), respectively, and then interchanging z and y.

Consequently, in order to check the weak contractiveness of T, it is necessary to
check both (2.1) and (2.2).

Obviously, any strict contraction satisfies (2.1), with § = a and L = 0, and hence
is a weak contraction (that possesses a unique fixed point).

Other examples of weak contractions are given by the next propositions.

Proposition 1. Any Kannan map, i.e., any map satisfying the contractive con-
dition (1.3), is a weak contraction.

Proof. By condition (1.3) and triangle rule, we get

d(Tz,Ty) < bld(z, Tz) + d(y, Ty)]
< b{[d(z,y) + d(y, T'z)] + [d(y, Tz) + d(T'z, Ty)]},

which yields
(1-b)d(Tz,Ty) < bd(z,y) +2b-d(y, Tx)

and which implies

d(z,y) + —Zb— d(y,Tz), forallz,ye X,

d(Tz,Ty) < —3

b
1-b
i.e., in view of 0 < b < 1,(2.1) holds with § = t&; and L = 2.

Since (1.3) is symmetric with respect to z and y, (2.2) also holds.

Proposition 2. Any map T satisfying the contractive condition (1.4) is a weak
contraction.
Proof. Using d(z,Ty) < d(z,y) + d(y,Tz) + d(Tz,Ty) by (1.4) we get after
simple computations,
2¢c
1-c¢

d(Tz,Ty) < T— d(z,y) + T— d(v. Tx),

which is (2.1), with d = <=~ < 1 (since ¢ < 1/2) and L = 2 > (.

l—g Th =

The symmetry of (1.4) also implies (2.2).

An immediate consequence of Propositions 1 and 2 is the following
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Corollary 1. Any Zamfirescu map, i.e., any mapping satisfying the assumptions
in Theorem Z, is a weak contraction.

Proposition 3. Any quasi contraction with 0 < h < 1/2 is a weak contraction.

Proof. Let T : X — X be a quasi-contraction, i.e. a map for which there exists
0 < h < 1 such that

d(Tz,Ty) < h- M(z,y), forallz,ye X, (2.3)

where
M(z,y) = max {d(z,y), d(z, Tz),d(y, Ty), d(z, Ty),d(y, Tz)} .

Let z,y € X be arbitrary taken. We have to discuss five possible cases.

Case 1. M(z,y) = d(z,y), when, in virtue of (2.3), condition (2.1) and (2.2) are
obviously satisfied (with § = h and L = 0).

Note. Since M(z,y) = M(y, z), for Cases 2 and 3 and Cases 4 and 5, respectively,
it suffices to prove that at least one of the relations (2.1) and (2.2) holds. (We
sometimes however prove the both inequalities).

Case 2. M(z,y) = d(z,Tz), when by (2.3) and triangle rule

d(Tz,Ty) < hd(z,Tz) < hld(z,y) + d(y, Tz)],

and so (2.1) holds with § = h and L = h.
Since d(z,T'z) < d(z,Ty) + d(Ty, Tz), we get

d(Tz,Ty) <

~— d(z,Ty) < bd(z,y) + T d(z, T4),

1
1 1-h
for all § € (0,1). So (2.2) also holds.
Case 3. M(z,y) = d(y,Ty), when (2.1) and (2.2) follow by Case 2, in virtue of
the symmetry of M (z,y).
Case 4. M(z,y) = d(z,Ty), when (2.2) is obviously true and (2.1) is obtained

only if h < % . Indeed, since by (2.3), d(Tz,Ty) < h-d(z,Ty) and
d(z,Ty) < d(z,y) +d(y, Tz) + d(Tz, Ty),

one obtains

h h
d(TI! Ty) < m d(mt y) % m d(y| T:C)l

which is (2.1) with § = T—Lh < 1 (since h < %) and L = -l—f—h > 0.
Case 5. M(z,y) = d(y, T'z), which reduces to Case 4. The proof is complete.
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Remark 2. Proposition 3 shows that the quasi-contractions with 0 < h < 1/2 are
certainly weak contractions. However, there exists quasi-contractions with ¢ > % as
shown by Example 2, which are still weak contractions. It appears then that h < %
is not a necessary condition for a quasi-contraction to be a weak contraction, see
Problem 1.

There are many other examples of contractive conditions which implies the weak
contractiveness condition, see for example, Taskovic [34], Rus [30] and Berinde [2],
for some of them.

Having in view the fact that the class of weak contractions properly includes large
classes of quasi contractions and weak contractions and quasi contractions are inde-
pendent, on the one hand, and the extensive literature related to quasi contractions,
see for example [7-18, 22, 24-34], and references therein, on the other hand, it is
the aim of this paper to prove two fixed point theorems in the class of weak con-
tractions: an existence theorem (Theorem 1) as well as an existence and uniqueness
theorem (Theorem 2). Their merit is that extend Theorem Z and offer a method for
approximating fixed points, for which both a priori and a posteriori estimates are
available.

3. Two fixed point theorems
The main result of this paper is given by

Theorem 1. Let (X,d) be a complete metric space and T' : X — X a weak
contraction, i.e., a map satisfying (2.1) with é € (0,1) and some L > 0. Then
1) F{l)={zeX:Tz=z}#£¢;
2) For any o € X, the Picard iteration {z,}2>, given by (1.2) converges to
some z* € F(T);
3) The following estimates

6"

d(z,,z*) < T

d(IUvII)a n=0,12,--. {31)

)
d(mnsz.) S md(xn—hxn): n= 1121"' (32)
hold, where 6 is the constant appearing in (2.1).

Proof. We shall prove that T" has at least a fixed point in X. To this end, let
To € X be arbitrary and {z,}72, be the Picard iteration defined by (1.2).
Take z := z,_;, ¥ := =, in (2.1) to obtain

d(TIn—lsTﬂ:n) S 6 ) d(wn-—-lsxn)v

which shows that
d(zmxn-i—l) Sd'd(zn—lsrn)- (33)

Using (3.3) we obtain by induction

d(Iﬂ!‘rﬂ'l‘lJ S J"d(l'ﬂll'l), ﬂ,mﬂ' 1123"'
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and then

d(Tn, Tnp) < 6™ (1 + 6+ -+ + 67~ 1)d(z0,71)

§n . (3.4)
=1_5(1—5)'d($0,3:1), n!pENIP#O'

Since 0 < § < 1, (3.4) shows that {z,}3%, is a Cauchy sequence and hence is
convergent. Denote

= nangu A (3.5)

Then
d(z*,Tz*) < d(z*,Zn41) + d(Tn41,TZ*) = d(zp41,2%) + d(Tz,, T2").

By (2.1) we have :
d(Tz,,Tz*) < dd(zn,z*) + Ld(z*, Tx,)

and hence
d(z*,Tz*) < (14 L)Yd(z",zn41) + 6 - d(z,, T°), (3.6)

valid for all n > 0. Letting n — oo in (3.6) we obtain
d(z*,Tz") =0

i.e., z* is a fixed point of T.
The estimate (3.1) is obtained from (3.4) letting p — oo.
In order to obtain (3.2), observe that by (3.3) we inductively obtain

d(xn+kv zn-}-k-i—l) < Jk-!_l i d(mn—la In)s k, ne Nl

and hence, similarly to deriving (3.4) we obtain

5(1 - 67)

% d(zn_1,zn), n>1, peN*, (3.7)

d(xn: $n+p) S
Now letting p — oo in (3.7), (3.2) follows. The proof is complete.

Remark 3.

1) Theorem 1 is a significant extension of Theorem B, Theorem Z and many other
related results.

2) Note that, although the fixed point theorems mentioned at 1) actually forces
the uniqueness of the fixed point, the weak contractions need not have a unique fixed
point, as shown by Example 1.

3) However, the weak contractions possess other important properties, amongst
which we mention

a) In the class of weak contractions a method for constructing the fixed points
- i.e., the Picard iteration - is always available;

b) Moreover, for this method of approximating the fixed points, both a priori
and a posteriori error estimates are available. These are very important from a
practical point of view, since they provide stopping criteria for the iterative process;
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c) Last, but not least, the weak contractive condition (2.1) (and (2.2)) may be
easily be handled and checked in concrete applications.

4) The fixed point z* attained by the Picard iteration depends on the initial guess
zo € X. Therefore, the class of weak contractions provides a large class of weakly
Picard operators.

Recall, see Rus [31, 32|, that an operator T : X — X is said to be a weakly
Picard operator if the sequence {T"x}32, converges for all z; € X and the limits
are fixed points of T".

5) It is easy to see that condition (2.1) implies the so called Banach orbital con-
dition

d(Tz,T?z) < ad(z,Tz), forallz € X,

studied by various authors in the context of fixed point theorems, see for example
Hicks and Rhoades [12], Ivanov [13], Rus [29] and Taskovic [34].

It is possible to force the uniqueness of the fixed point of a weak contraction, by
imposing an additional contractive condition, quite similar to (2.1), as shown by the
next theorem.

Theorem 2. Let (X,d) be a complete metric space and T' : X — X a weak
contraction for which there exist 0 € (0,1) and some Ly > 0 such that

d(Tz,Ty) <6 -d(z,y)+ L, -d(z,Tz), forallz,yecX. (3.8)

Then
1) T has a unique fixed point, i.e., F(T) = {z*};
2) The Picard iteration {z,}22, given by (1.2) converges to =*, for any ¢ € X;
3) The a priori and a posteriori error estimates

5“

™Y s
d(By,2") < T=3
o [ <
d(zn,z*) < =%

d(Ival)) ﬂ=0,1, 2?'“

d(Iﬂ—lvxﬂ)! n= 1!21'“

hold.
4) The rate of convergence of the Picard iteration is given by

d(Inyxt) S Gd(mn—lix‘)i n= 112!”' (3‘9)
Proof. Assume T has two distinct fixed points z*,y* € X. Then by (3.8), with
=1z y:=y" we get
d(z*,y*) < 0-d(z*,y") & (1-0)d(z",y") <0,
so contradicting d(z*,y") > 0.

Letting y := z,,  := z* in (3.8), we obtain the estimate (3.9). The rest of proof
follows by Theorem 1.
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Remark 4.
1) Note that, by the symmetry of the distance, (3.8) is satisfied for all z,y € X if
and only if
d(Tz,Ty) < 0d(z,y) + Lid(y, Ty), (3.10)

also holds, for all z,y € X.

So, similarly to the case of the dual conditions (2.1) and (2.2), in concrete appli-
cations it is necessary to check that both conditions (3.8) and (3.10) are satisfied.

2) Note that condition (3.8) has been used by Osilike [19-21] to prove stability
results for certain fixed point iteration procedures.

3) It is known, see Osilike [19, 20], that condition (3.8) alone does not imply T'
has a fixed point. But if T satisfying (3.8) has a fixed point, it is certainly unique.

4) It is a simple task to prove that any operator T satisfying one of the condi-
tions (1.1), (1.3), (1.4), or the conditions in Theorem Z, also satisfies the uniqueness
conditions (3.8) and (3.10). Therefore, in view of Example 1, Theorem 2 (and also
Theorem 1) properly generalizes Theorem Z.

Moreover, any quasi contraction with 0 < A < ; also satisfies (3.8) and (3.10).
This shows that Theorem 2 unifies and generalizes the fixed point theorems of Ba-
nach, Kannan, Chatterjea and Zamfirescu and partially covers the Ciric’s fixed point
theorem.

The same Example 2 also shows that a quasi contraction generally does not satisfy
condition (3.8).

5) As it can be seen, Theorem 2 (as well as Theorem 1, except for the uniqueness
of the fixed point) preserves all conclusions in the Banach contraction principle in
its complete form, see for example Berinde [3], under significantly weaker contrac-
tive conditions. Indeed, the metrical contractive conditions known in literature (see
Rhoades [24] and Meszaros [18]) that involve in the right-hand size the displacements

d(z,y),d(z,Tz),d(y, Ty),d(z,Ty),d(y, Tz)
with the nonnegative coefficients
a(z,y), b(z,y), c(z,y),d(z,y), ez, y),
respectively, are commonly based on the restrictive assumption
0 < a(z,y) + b(z,y) + c(z,y) + d(z,y) + e(z,y) <1,

while, our condition (2.1) do not require é + L be less than 1, thus providing a large
class of contractive type maps.
The previous remarks raise the next open problems:

Problem 1. Is any quasi contraction a weak contraction ?

Problem 2. Find a contractive type condition different of (3.8), that ensures the
uniqueness of fixed points of weak contractions.
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4. Examples

We end this paper with some examples that have an illustrative purpose.
Let [0,1] be the unit interval with the usual norm.

Example 1. Let T : [0,1] — [0,1] be the identity map, i.e., Tz = z, for all

z € [0,1].
Then
1) T does not satisfy the Ciric’s contractive condition (1.5), since M(z,y) =
|z — y| and

-yl >h-|z—y|l, forallz#y and0<h<1.

2) T satisfies condition (2.1) with § € (0,1) arbitrary and L > 1 — 4. Indeed
conditions (2.1) and (2.2) lead to

|z -yl <dlz—y|l+L-|y—z|,

which is true for all z,y € [0, 1] if we take § € (0,1) arbitrary and L > 1 — 4.
3) The set of fixed points of T is the entire interval [0,1]. i.e., F(T) = [0,1].

Example 2. Let T : [0,1] — [0,1] be given by Tz = 2, for z € [0,1) and
71 =1
Then
1) T satisfies (1.5) with h € [2,1).
2) T satisfies (2.1) with § > 2and L > 4.
3) T has a unique fixed point, z* = %
4) T does not satisfy (3.8).

Example 3. Let T': [0,1] — [0,1] be given by Tz =  for z € [0,1) and T'1 = 1.
Then
1) T does not satisfy neither Ciric’s condition (1.5), nor Zamfirescu’s condition.
2) T has two fixed points, F(T) = {1,1}.
3) T does not satisfy (2.1).
Indeed, for z,y € [0,1) or z = y = 1, (2.1) is obvious. When z € [0,1) and
y =1, (2.1) reduces to

1 1
il 7 — s
=S8 e-1+L-5,

which is true for all § € (0,1), if L > 1. When z =1 and y € [0,1), then
(2.1) holds if and only if

B =

<6-1-yl+Lj1-yl

which is equivalent to (6§ + L)(1 — y) > 1/2, which could not be true if L is
constant, since 1 —y — 0, as y —+ 1, (y < 1). Note that, despite the fact that
T does not satisfies (2.1), any limit of the Picard iteration is a fixed point of
T and that T does not satisfy (3.8), as well.
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