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Abstract. The concept of weak contraction is introduced and
compared to some known metrical contractive type mappings and
then two fixed point theorems for this class of operators in complete
metric spaces are proven. Our results extend well known fixed
point theorems due to Banach, Kannan, Chatterjea, Zamfirescu
and many others. The main merit of weak contractions is that they
unify large classes of contractive type operators, whose fixed points
can be obtained by means of the Picard iteration and for which
both a priori and a posteriori error estimates are also available.
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1. Introduction

The classical Banach’s contraction principle is one of the most use-
ful results in fixed point theory. In a metric space setting it can be
briefly stated as follows.

Theorem B. Let (X, d) be a complete metric space and T : X −→ X
a strict contraction, i.e. a map satisfying

d(Tx, Ty) ≤ a d(x, y) , for all x, y ∈ X , (1.1)

where 0 < a < 1 is constant. Then:
(p1) T has a unique fixed point p in X;
(p2) The Picard iteration {xn}∞n=0 defined by

xn+1 = Txn , n = 0, 1, 2, . . . (1.2)

converges to p, for any x0 ∈ X.

Note. A map satisfying (p1) and (p2) is said to be a Picard operator,
see Rus [29], [31].

Theorem B, together with its direct generalizations have many ap-
plications in solving nonlinear equations, but suffer from one drawback
- the contractive condition (1.1) forces T be continuous on X. It is
then natural to ask if there exist contractive conditions which do not
imply the continuity of T . This was answered in the affirmative by R.
Kannan [14] in 1968, who proved a fixed point theorem which extends
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Theorem B to mappings that need not be continuous, by considering

instead of (1.1) the next condition: there exists b ∈
(
0,

1

2

)
such that

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
, for all x, y ∈ X . (1.3)

Following the Kannan’s theorem, a lot of papers were devoted to
obtaining fixed point theorems for various classes of contractive type
conditions that do not require the continuity of T , see for example, Rus
[29], [32], Taskovic [34], and references therein.

One of them, actually a sort of dual of Kannan fixed point theorem,
due to Chatterjea [5], is based on a condition similar to (1.3): there

exists c ∈
(
0,

1

2

)
such that

d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
, for all x, y ∈ X (1.4)

It is well known, see Rhoades [24], that the contractive conditions
(1.1) and (1.3), as well as (1.1) and (1.4), are independent.

In 1972, Zamfirescu [35] obtained a very interesting fixed point
theorem, by combining (1.1), (1.3) and (1.4).

Theorem Z. Let (X, d) be a complete metric space and T : X −→ X
a map for which there exist the real numbers a, b and c satisfying 0 ≤
a < 1, 0 < b, c < 1/2 such that for each pair x, y in X, at least one of
the following is true:

(z1) d(Tx, Ty) ≤ a d(x, y);

(z2) d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
;

(z3) d(Tx, Ty) ≤ c
[
d(x, Ty) + d(y, Tx)

]
.

Then T is a Picard operator.
One of the most general contraction condition for which the map

satisfying it is still a Picard operator, has been obtained by Ciric [8] in
1974: there exists 0 < h < 1 such that

d(Tx, Ty) ≤ h ·max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
,

for all x, y ∈ X . (1.5)

Remark. A mapping satisfying (1.5) is commonly called quasi
contraction.

It is obvious that each of the conditions (1.3), (1.4) and (z1)-(z3)
implies (1.5);

There exist many other fixed theorems based on contractive con-
ditions of this type, see for example, Rhoades [24], [26] and the mono-
graphs Berinde [2], Rus [29], Taskovic [34].

Motivated by the extensive literature devoted to the nonlinear con-
tractive operators aforementioned, it is our main aim in this paper to
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obtain fixed point theorems based on a contraction condition more gen-
eral than (z1)-(z3) and that does not require the continuity of the map
as well.

2. Weak contractions

Definition 1. Let (X, d) be a metric space. A map T : X −→ X is
called weak contraction if there exist a constant δ ∈ (0, 1) and some
L ≥ 0 such that

d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) , for all x, y ∈ X . (2.1)

Remark 1. Due to the symmetry of the distance, the weak contraction
condition (2.1) implicitly includes the following dual one

d(Tx, Ty) ≤ δ · d(x, y) + L · d(x, Ty) , for all x, y ∈ X , (2.2)

obtained from (2.1) by formally replacing d(Tx, Ty) and d(x, y) by
d(Ty, Tx) and d(y, x), respectively, and then interchanging x and y.

Consequently, in order to check the weak contractiveness of T , it
is necessary to check both (2.1) and (2.2).

Obviously, any strict contraction satisfies (2.1), with δ = a and
L = 0, and hence is a weak contraction (that possesses a unique fixed
point).

Other examples of weak contractions are given by the next propo-
sitions.

Proposition 1. Any Kannan mapping, i.e. any mapping satisfying
the contractive condition (1.3), is a weak contraction.

Proof. By condition (1.3) and triangle rule, we get

d(Tx, Ty) ≤ b
[
d(x, Tx) + d(y, Ty)

]
≤

≤ b
{[

d(x, y) + d(y, Tx)
]
+

[
d(y, Tx) + d(Tx, Ty)

]}
which yields

(1− b)d(Tx, Ty) ≤ bd(x, y) + 2b · d(y, Tx)

and which implies

d(Tx, Ty) ≤ b

1− b
d(x, y) +

2b

1− b
d(y, Tx) , for all x, y ∈ X ,

i.e., in view of 0 < b <
1

2
, (2.1) holds with δ =

b

1− b
and L =

2b

1− b
.

Since (1.3) is symmetric with respect to x and y, (2.2) also holds.
�

Proposition 2. Any mapping T satisfying the contractive condition
(1.4) is a weak contraction.
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Proof. Using d(x, Ty) ≤ d(x, y) + d(y, Tx) + d(Tx, Ty) by (1.4) we get
after simple computations,

d(Tx, Ty) ≤ c

1− c
d(x, y) +

2 c

1− c
d(y, Tx) ,

which is (2.1), with δ =
c

1− c
< 1 (since c < 1/2) and L =

2 c

1− c
≥ 0.

The symmetry of (1.4) also implies (2.2). �

An immediate consequence of Propositions 1 and 2 is the following

Corollary 1. Any Zamfirescu mapping, i.e., any mapping satisfying
the assumptions in Theorem Z, is a weak contraction.

Proposition 3. Any quasi contraction with 0 < h < 1/2 is a weak
contraction.

Proof. Let T : X −→ X be a quasi-contraction, i.e. an operator for
which there exists 0 < h < 1 such that

d(Tx, Ty) ≤ h ·M(x, y), for allx, y ∈ X (2.2)

where

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

}
. (2.3)

Let x, y ∈ X be arbitrary taken. We have to discuss five possible cases.
Case 1. M(x, y) = d(x, y), when, in virtue of (2.3), condition (2.1)
and (2.2) are obviously satisfied (with δ = h and L = 0).

Note. Since M(x, y) = M(y, x), for Cases 2 and 3 and Cases 4 and 5,
respectively, it suffices to prove that at least one of the relations (2.1)
and (2.2) holds. (We sometimes however prove the both inequalities).

Case 2. M(x, y) = d(x, Tx), when by (2.3) and triangle rule

d(Tx, Ty) ≤ h d(x, Tx) ≤ h
[
d(x, y) + d(y, Tx)

]
,

and so (2.1) holds with δ = h and L = h.
Since d(x, Tx) ≤ d(x, Ty) + d(Ty, Tx), we get

d(Tx, Ty) ≤ h

1− h
d(x, Ty) ≤ δd(x, y) +

h

1− h
d(x, Ty) ,

for all δ ∈ (0, 1). So (2.2) also holds.

Case 3. M(x, y) = d(y, Ty), when (2.1) and (2.2) follow by Case 2, in
virtue of the symmetry of M(x, y).

Case 4. M(x, y) = d(x, Ty), when (2.2) is obviously true and (2.1) is

obtained only if h <
1

2
. Indeed, since by (2.3), d(Tx, Ty) ≤ h ·d(x, Ty)

and

d(x, Ty) ≤ d(x, y) + d(y, Tx) + d(Tx, Ty) ,
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one obtains

d(Tx, Ty) ≤ h

1− h
d(x, y) +

h

1− h
d(y, Tx) ,

which is (2.1) with δ =
h

1− h
< 1 (since h <

1

2
) and L =

h

1− h
> 0.

Case 5. M(x, y) = d(y, Tx), which reduces to Case 4.
The proof is complete. �

Remark 2. Proposition 3 shows that the quasi-contractions with 0 <
h < 1/2 are certainly weak contractions. However, there exists quasi-

contractions with q ≥
1

2
, as shown by Example 2, which are still weak

contractions. It appears then that h <
1

2
is not a necessary condition

for a quasi-contraction to be a weak contraction, see Problem 1.

There are many other examples of contractive conditions which
implies the weak contractiveness condition, see for example Taskovic
[34], Rus [ 30] and Berinde [2], for some of them.

Having in view the fact that the class of weak contractions properly
includes large classes of quasi contractions and weak contractions and
quasi contractions are independent, on the one hand, and the extensive
literature related to quasi contractions, see for example [7]-[18], [22],
[24]-[34], and references therein, on the other hand, it is the aim of this
paper to prove two fixed points theorems in the class of weak contrac-
tions: an existence theorem (Theorem 1) as well as an existence and
uniqueness theorem (Theorem 2). Their merit is that extend Theorem
Z and offer a method for approximating fixed points, for which both a
priori and a posteriori estimates are available.

3. Two fixed point theorems

The main result of this paper is given by

Theorem 1. Let (X, d) be a complete metric space and T : X −→ X
a weak contraction, i.e. a mapping satisfying (2.1) with δ ∈ (0, 1) and
some L ≥ 0. Then

1) F (T ) = {x ∈ X : Tx = x} 6= φ;
2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by (1.2)

converges to some x∗ ∈ F (T );
3) The following estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1) , n = 0, 1, 2, . . . (3.1)

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn) , n = 1, 2, . . . (3.2)

hold, where δ is the constant appearing in (2.1).
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Proof. We shall prove that T has at least a fixed point in X. To this
end, let x0 ∈ X be arbitrary and {xn}∞n=0 be the Picard iteration
defined by (1.2).
Take x := xn−1, y := xn in (2.1) to obtain

d(Txn−1, Txn) ≤ δ · d(xn−1, xn) ,

which shows that

d(xn, xn+1) ≤ δ · d(xn−1, xn) . (3.3)

Using (3.3) we obtain by induction

d(xn, xn+1) ≤ δnd(x0, x1) , n = 0, 1, 2, . . .

and then

d(xn, xn+p) ≤ δn
(
1 + δ + · · ·+ δp−1

)
d(x0, x1) =

=
δn

1− δ
(1− δp) · d(x0, x1) , n, p ∈ N, p 6= 0 . (3.4)

Since 0 < δ < 1, (3.4) shows that {xn}∞n=0 is a Cauchy sequence and
hence is convergent. Denote

x∗ = lim
n→∞

xn . (3.5)

Then

d(x∗, Tx∗) ≤ d(x∗, xn+1) + d(xn+1, Tx∗) = d(xn+1, x
∗) + d(Txn, Tx∗) .

By (2.1) we have

d(Txn, Tx∗) ≤ δ d(xn, x
∗) + L d(x∗, Txn)

and hence

d(x∗, Tx∗) ≤ (1 + L)d(x∗, xn+1) + δ · d(xn, x
∗) , (3.6)

valid for all n ≥ 0. Letting n →∞ in (3.6) we obtain

d(x∗, Tx∗) = 0

i.e. x∗ is a fixed point of T .
The estimate (3.1) is obtained from (3.4) letting p →∞.
In order to obtain (3.2), observe that by (3.3) we inductively obtain

d(xn+k, xn+k+1) ≤ δk+1 · d(xn−1, xn) , k, n ∈ N ,

and hence, similarly to deriving (3.4) we obtain

d(xn, xn+p) ≤
δ(1− δp)

1− δ
d(xn−1, xn) , n ≥ 1, p ∈ N∗ . (3.7)

Now letting p →∞ in (3.7), (3.2) follows.
The proof is complete. �
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Remark 3.
1) Theorem 1 is a significant extension of Theorem B, Theorem Z

and many other related results.
2) Note that, although the fixed point theorems mentioned at 1)

actually forces the uniqueness of the fixed point, the weak contractions
need not have a unique fixed point, as shown by Example 1.

3) However, the weak contractions possess other important prop-
erties, amongst which we mention

a) In the class of weak contractions a method for constructing
the fixed points - i.e. the Picard iteration - is always available;

b) Moreover, for this method of approximating the fixed points,
both a priori and a posteriori error estimates are available. These are
very important from a practical point of view, since they provide stop-
ping criteria for the iterative process;

c) Last, but not least, the weak contractive condition (2.1)
(and (2.2)) may be easily be handled and checked in concrete applica-
tions.

4) The fixed point x∗ attained by the Picard iteration depends on
the initial guess x0 ∈ X. Therefore, the class of weak contractions
provides a large class of weakly Picard operators.

Recall, see Rus [31], [32], that an operator T : X −→ X is said to
be a weakly Picard operator if the sequence {T nx0}∞n=0 converges for
all x0 ∈ X and the limits are fixed points of T .

5) It is easy to see that condition (2.1) implies the so called Banach
orbital condition

d(Tx, T 2x) ≤ a d(x, Tx) , for all x ∈ X ,

studied by various authors in the context of fixed point theorems, see
for example Hicks and Rhoades [12], Ivanov [13], Rus [29] and Taskovic
[34].

It is possible to force the uniqueness of the fixed point of a weak con-
traction, by imposing an additional contractive condition, quite similar
to (2.1), as shown by the next theorem.

Theorem 2. Let (X, d) be a complete metric space and T : X −→ X
a weak contraction for which there exist θ ∈ (0, 1) and some L1 ≥ 0
such that

d(Tx, Ty) ≤ θ · d(x, y) + L1 · d(x, Tx) , for all x, y ∈ X . (3.8)

Then
1) T has a unique fixed point, i.e. F (T ) = {x∗};
2) The Picard iteration {xn}∞n=0 given by (1.2) converges to x∗, for

any x0 ∈ X;
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3) The a priori and a posteriori error estimates

d(xn, x
∗) ≤ δn

1− δ
d(x0, x1) , n = 0, 1, 2, . . .

d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn) , n = 1, 2, . . .

hold.
4) The rate of convergence of the Picard iteration is given by

d(xn, x
∗) ≤ θ d(xn−1, x

∗) , n = 1, 2, . . . (3.9)

Proof. Assume T has two distinct fixed points x∗, y∗ ∈ X. Then by
(3.8), with x := x∗, y := y∗ we get

d(x∗, y∗) ≤ θ · d(x∗, y∗) ⇐⇒ (1− θ) d(x∗, y∗) ≤ 0 ,

so contradicting d(x∗, y∗) > 0.
Letting y := xn, x := x∗ in (3.8), we obtain the estimate (3.9).

The rest of proof follows by Theorem 1. �

Remark 4. 1) Note that, by the symmetry of the distance, (3.8) is
satisfied for all x, y ∈ X if and only if

d(Tx, Ty) ≤ θ d(x, y) + L1d(y, Ty) , (3.10)

also holds, for all x, y ∈ X.
So, similarly to the case of the dual conditions (2.1) and (2.2), in

concrete applications it is necessary to check that both conditions (3.8)
and (3.10) are satisfied.

2) Note that condition (3.8) has been used by Osilike [19]-[21] to
prove stability results for certain fixed point iteration procedures.

3) It is known, see Osilike [19], [20], that condition (3.8) alone does
not imply T has a fixed point. But if T satisfying (3.8) has a fixed
point, it is certainly unique.

4) It is a simple task to prove that any operator T satisfying one of
the conditions (1.1), (1.3), (1.4), or the conditions in Theorem Z, also
satisfies the uniqueness conditions (3.8) and (3.10). Therefore, in view
of Example 1, Theorem 2 (and also Theorem 1) properly generalizes
Theorem Z.

Moreover, any quasi contraction with 0 < h <
1

2
also satisfies (3.8)

and (3.10). This shows that Theorem 2 unifies and generalizes the
fixed point theorems of Banach, Kannan, Chatterjea and Zamfirescu
and partially covers the Ciric’s fixed point theorem.

The same Example 2 also shows that a quasi contraction generally
does not satisfy condition (3.8).

5) As it can be seen, Theorem 2 (as well as Theorem 1, except for
the uniqueness of the fixed point) preserves all conclusions in the Ba-
nach contraction principle in its complete form, see for example Berinde
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[3], under significantly weaker contractive conditions. Indeed, the met-
rical contractive conditions known in literature (see Rhoades [24] and
Meszaros [18]) that involve in the right-hand size the displacements

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

with the nonnegative coefficients

a(x, y), b(x, y), c(x, y), d(x, y), e(x, y),

respectively, are commonly based on the restrictive assumption

0 < a(x, y) + b(x, y) + c(x, y) + d(x, y) + e(x, y) < 1,

while, our condition (2.1) do not require δ + L be less than 1, thus
providing a large class of contractive type mappings.

The previous remarks raise the next open problems:

Problem 1. Is any quasi contraction a weak contraction ?

Problem 2. Find a contractive type condition different of (3.8), that
ensures the uniqueness of fixed points of weak contractions.

4. Examples

We end this paper with some examples that have an illustrative
purpose.

Let [0, 1] be the unit interval with the usual norm.

Example 1. Let T : [0, 1] −→ [0, 1] be the identity map, i.e., Tx = x,
for all x ∈ [0, 1].
Then

1) T does not satisfy the Ciric’s contractive condition (1.5), since
M(x, y) = |x− y| and

|x− y| > h · |x− y| , for all x 6= y and 0 < h < 1 .

2) T satisfies condition (2.1) with δ ∈ (0, 1) arbitrary and L ≥ 1−δ.
Indeed conditions (2.1) and (2.2) lead to

|x− y| ≤ δ|x− y|+ L · |y − x|
which is true for all x, y ∈ [0, 1] if we take δ ∈ (0, 1) arbitrary and
L ≥ 1− δ.

3) The set of fixed points of T is the entire interval [0, 1]. i.e.,
F (T ) = [0, 1].

Example 2. Let T : [0, 1] −→ [0, 1] be given by Tx =
2

3
, for x ∈ [0, 1)

and T1 = 0. Then: 1) T satisfies (1.5) with h ∈
[2

3
, 1

)
; 2) T satisfies

(2.1) with δ ≥
2

3
and L ≥ δ; 3) T has a unique fixed point, x∗ =

2

3
; 4)

T does not satisfy (3.8).
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Example 3. Let T : [0, 1] −→ [0, 1] be given by Tx =
1

2
for x ∈ [0, 1)

and T1 = 1. Then: 1) T does not satisfy neither Ciric’s condition (1.5),

nor Zamfirescu’s condition; 2) T has two fixed points, F (T ) =

{
1

2
, 1

}
;

3) T does not satisfy (2.1).
Indeed, for x, y ∈ [0, 1) or x = y = 1, (2.1) is obvious. When x ∈ [0, 1)
and y = 1, (2.1) reduces to

1

2
≤ δ · |x− 1|+ L · 1

2
,

which is true for all δ ∈ (0, 1), if L ≥ 1. When x = 1 and y ∈ [0, 1),
then (2.1) holds if and only if

1

2
≤ δ · |1− y|+ L|1− y|

which is equivalent to (δ + L)(1 − y) ≥ 1/2 , which could not be true
if L is constant, since 1− y → 0, as y → 1, (y < 1). Note that, despite
the fact that T does not satisfies (2.1), any limit of the Picard iteration
is a fixed point of T and that T does not satisfy (3.8), as well.
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