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Abstract The purpose of this paper is 10 state a convergence theorem for the Newton's method under weak non-
Kantorovich assumptions. These assumptions may be appropriate for various nonlinear systems of difference equations
that we obtain by discretization in solving a system of ordinary differential equations.

For computational reasons a stopping criterion for the Newton's iterative scheme may be obtained from (6).
In order to ensure a well-defined ilerative process we use a natural prolongation of the function involved in the problem to
furnish the so-called extended Newton's method.

1. INTRODUCTION
At each step in applying the implicit Euler's discretization for solving a system of
ordinary differential equations we must solve an equation of the form

F(y) sy-y*-hf(y) =0, (1)

where y°€R®, h>0 isareal constant and f:DcR®-R®.
The Newton's iterations for equation (1) are

Fl(y*) (y*-y* =-P(y*), k=0,1,2,... ?)
that is

(I-nf'(yM)*-yH=-r*y°-k£f(y"), k=0,1,2,..., 2"
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Deuflhard (see [9]) gave sufficient conditions which provide that Newton's method can be
applied to equation (1).One of the basic assumptions in obtaining the convergence of the

Newton's iterations is that £/(.) is Lipschitz continuous, i.e.

1£/(u) =£/(v) |sL:Ju-v], forall u,veD. (3)
Recently, Pavaloiu [11] and Lazar [9] proved the convergence of the Newton's method under
more general conditions.

They only assume that £/(e) is Holder continuous, that is
1£/(u) -£/(v) |sL,Ju-vIP, forall u,veD, (4)
where pe(0,1]. isaconstant.
All these assumptions and results are in fact of Kantorovich type and, in particular, for
p=1 these results can be reduced to the Kantorovich theorem,
In our opinion,from a practical point of view it is useful to offer convergence theorems for the
Newton's method based on an alternative type of assumptions.Consequently, the main goal of this

paper is (o give a new result on the convergence of the Newton's method, stated in terms of non-
Kantorovich conditions,using some recent results [1 -7].

2. THE CONVERGENCE THEOREM

For the sake of simplicity of exposition, we restrict ourself to the one dimensional case, since
all results can be easily derived in the R® case by a simple component-wise extension. The
following theorem is proved in [4):

Theorem 2.1.Let F: [a,b] R be a real function defined on the interval 1=[a,b] satisfying
the following conditions

(F) F(a) F(b) <0;

(F) Fec'la,b] and F'(x) %0, foreach xe[a,b];

(F) 2ma>M, where

m=min|F/(x) |, M=max|F'(x) |, .
xer xET

EXTE

Then the Newton's iterations given ¢

I
X

ne1 = Xp

converges to «, the unique solution

|F’(x,) |
|x‘,-a|sT

Proof. By applying the mean value :

Filc
~3

Kpey—€=|1-— =

and respectively
F'lc,)
"m"‘n"‘m'
where ¢ ,=e+8(x,-a), 0<B<:

Now, from (F,) and the compac

k F(y)
=max f--—-
T F'(x)
which together with (7) and by an

| %,.,-a|<sk®|x

Therefore

foreach x,€[a,b].
However, condition (F.), whi
guarantee that I=[a,b] isani

possible to reach at a certain step p |
Due to these possible difficulties, we ¢
by convenience by F too and) define
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Then the Newton's iterations given by
Fix,)
Xpey =x,-m » 020 5)
converges to a, the unique solution of F(x)=0 in T, foreach X, €I, with

Fa"
lxn_'|sl_{mx_.J_leu_ nul’ nzo0. (6)

Proof. By applying the mean value theorem (see [3], [4], for a more detailed proof) we obtain

Fl(c,)
x,,i—as[l-r,(xn)]-{xu—u), n=o0 @)
and respectively
F'{c,)
Xp.y —x,-m:—) (x,-a), nz0, (8)

where c,=e+8(x,-a), 0<B<1,

Now. from (F,) and the compactness of T it results that

k=max -M <1,
X.yel F(x)

which together with (7) and by an induction process yields
| X, -&|<k?|x,-a|, n20.
Therefore
X,~& ,as n-e,
foreach x,€[a,b].
However, condition (F,), which is weaker than the corresponding one in [10],does not
guarantee that I= [a,b] is an invariant set with respect to the iteration (5),that is,it is

possible to reach at a certain step p to the situation x,€1.
Due to these possible difficulties,we consider a prolongation of F to the whole real axis (denoted

by convenience by F too and) defined as follows
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F'(a)-(x-a)+F(a), if x<a
Fix) ={ F{x), 1f xeI
(b) “(x-b) +F(b), if x>b.

Now,if for some iterate x, we have x,<a, then

Flx) _ _ F'(a) (x,-a) +F(a) R ()

BT Plix) ° F'(a) F’(a)

because from (F,)-(F,) itresults F(a)-F/(a) <o0.

For x,>b, we analogously deduce

oy o Px) __ P/(D) (x,-b) +F(b)
T iy F(a) ’
hence
—p. Fib)
Xp. =b F7(b) <b,

because F(b) F/(b) >0. Having in view that (x,) convergesto a and a<a<b, we
deduce that, beginning from a certain rank p, ,we necessarily shall have
x €I.
Finally, estimation (6) may be obtained from (8).
Remarks.  1)In the presence of Kantorovich type conditions as (3) or (4) the convergence of
the Newton's method is quadratic, while our estimation (6) however shows a linear convergence;
2)For the m-dimensional case, let

[a,b]l =[a,,b] x[a,,b,]x...x[a,.b,) and F=(F ,F,. ...,Fy).
The conditions (F,) -(F,) become respectively (condition (F,), which isa condition of
Miranda type, see [12], may be avoided for our purposes):

(F7) Fec!la:b], ,det [F/(x)]w0, foreach xela;b]

and [F/(a)]1-F(a) <0, [F/(b)-F(b)>0;

() 1ZI-[F Y {x)]1-F2(y) |s1,

EXTENI

for each xe[a;b] and ye(a:b
dimensional case 100.
For the proof of the correspond

refer 1o [8].

3)1t is easy 1o see that fr

f[
[1‘7

which is an equivalent form of (F,)

3. EXAMPLES AND CONCLUSIO

Let us consider a system of the form
"e)=£ Uy
fle)=£, (vl

{YEO)--l_fE

with the initial values

z(0)=-1/2,

and let us denote f=(f,f), D=

X(e)=(y(t), z(£))7, t>0 am
Then,problem (9) - (10) can be wrie:

ﬁ"(t) =f.’x':
(0)=q.
and the implicit Euler's discretization

difference equation
xnol = Xn .ba £

where X = and 0=t <t,<...
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for each xe[a;b]l and ye€(a;b), and an estimation similar to (6) holds for the m-

dimensional case too.

For the proof of the corresponding convergence theorem in the m-dimensional case, we

refer to [8].

3)It is easy to see that from (Fy") we obtain for m=1

|1~ f—,(y—-isl, x,y€ [a,b]

which is an equivalent form of (F,) in Theorem 2.1.

3. EXAMPLES AND CONCLUSIONS

Let us consider a system of the form
eY=£,(y(e) ,2(8))
"e)y=£,(y(e),z())
with the initial values
{Y(0)=-1/2
z(0)=-1/2,
and let us denote  £=(f,, £,), D=[-1,11x[-1.1],
X(t)=(y(t), z(&))7, t>0 and §=(-1/2,-1/2)7.
Then,problem (9) - (10) can be written as
E’(:)-f{x(cn, t20,
(0)=n,

and the implicit Euler's discretization for (11) on the interval [0, 7]
difference equation
X=X +h,f(X,.), n=0,1,....N-1

where X, =M and 0=t <t,<...<t,=T isa division of [0, 7]

9)

(10)

(11)

leads to the following

(12)

and



86 V. BERINDE

h=t .. —t, n=0,1,...,N1.
We shall approximate X{t,) by X, therefore at each step in (12),the Newton iterations
(according to (2') ) are the following
(I-h,f'(X*) (x*1-X*) =— (X*-X,-h,f(x*)), k=0,1,2, ..., (13)
where X°=X,. We shall approximate the exact solution X,,, of (12) by x*, fora

suitable k>0.
The difference equation (11) shows we need in fact to apply the Newton's method for the

equation F(X) =0, with F(X)=X-X°-hf(X), h>0,X°€D given.

For our present purposes let us consider the problem (9)-(10) with £(X) such that F(X)
defined on D is given by

F(u,v) =(-u?+u,-v?+v)%, for u,ve[-1,0)
Flu, v} =(-u?+u, v3®+v)T, for ue[-1,0) and ve[0,1) ,

Flu, v) =(u?+u, -v*+v)T, for ue([0,1] and ve[-1,0)
and

F(u, v) =(u?+u,v2+v)T, for u,ve[0,1].
It is easy to see that F(X) =0 has a unique solution X=(0,0)é€D.
Firstly, let us verify condition (Fy") inthecase wu, ve[-1,0) (the other three cases may

be analogously treated).
If X=(u,v), then

-2u+l o
’ =
Fix) [ 4] -2v+1]
and det F/(X)=(1-2u) (1-2v)»0, forall u,ve[-1,0), so the first condition in
(F) s true.

For the last two conditions in  (F”) , let us observe that a=(-1,-1) and b=(1,1),
so

ST o« MR e W - W s U s Y

EXTENDED

’ 5 o 3 0H-2}=
[F(a)]1F(a) [0 1|7]-2
and

e
[F/(b)17*F(b) [0 3l 121716

Let |-]| be the Euclidian norm and
Then

|I-[F/(X) ] 2P |=2 {—(

1

for (u,v), (s,¢t) E[-%,O)x(-é

Indeed
2|s-u|<1s|1-2u|, for
= 2 1
hence _':.S_E.}.._(—, and so on.
(1-2u)? 4

Therefore the Newton's iterations conve:
Due to the expression of F, it seems that

type (3) or (4) than our condition (F.) o2
So, we think our convergence the:
m-dimensional case may be useful in sol
A detailed treatment of these asp
by the author.
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[F(@) 1 F(a) -[;‘ ;’H_’:]-[:Hz] -0k

N 3 o.a_sl
o8 b

Let |+| be the Euclidian norm and X=(u,v), ¥Y=(s, t),

and

Then
1/2
I-[FI(0 ]2 -(y) I=2 | (8-0)2 , _(v-8)3 g
1I-[F/ (X0 ]2 F(1 |=2 T R T
for (u,v),(s.t) € [—%.O)x{-%,{}} eD.
indeed
2|s-u|<1s|1-2u|, for uel-3,0) and se(-3,0),
hence —8-W° (1 = an4soon.
(1-2u)? 4

Therefore the Newton's iterations converge to the unique solution of F(X) =0.
Due 10 the expression of F, it seems that is more difficult to verify a Kantorovoch condition of

tvpe (3) or (4) than our condition (F,) or (F,?).

So, we think our convergence theorem (Theorem 2.1) and its corresponding result in the
m-dimensional case may be useful in solving various nonlinear difference systems.

A detailed treatment of these aspects in the m-dimensional case will be soon published

by the author.
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