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Abstract For a class of non homogeneous linear second order dif-
ference equations with non-constant coefficients, an elementary method
for obtaining the general solution is given.

The basic idea of our method is to reduce the solution of a second
order difference equation to the solution of two first order nonhomoge-
neous difference equations.

Two examples, taken from a recent monograph [1], are also treated
in order to illustrate the simplicity as well as the limits of our method
in comparison with the general method described and used in [2]. The
last one is based on the discrete Green functions and on the a priori
knowledge of two linearly independent solutions of the homogeneous
equation associated to the given difference equation.

Having in view the analogy between difference and differential equa-
tions our method may also be adopted to solve a special class of differ-
ential equations.

LINTRODUCTION

We are concerned with the non homogeneous second order linear dif-
ference equation

ay(n)u(n + 2) + ax(n)u(n + 1) + as(n)u(n) = ag(n), n > ng, (1)

where a;(n),7 = 1,2, 3,4 are given functions defined on N and
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ai(n)-as(n) #0  for each meN,n=n, (2)
If v1(n),v9(n) are two linearly independent solutions of the associated
homogeneous equation

ai(n)u(n + 2) + az(n)u(n + 1) + as(n)u(n) = 0, (3)
and G(k,1) is the Green’s function of (3) , that is

u(l) w) / vy (1) (1)
vi(k) (k) v(l+1) wo(l+1)|°

then (see[l], Section 2.10, pp. 71-75 ) the general solution of (1) is
given by

Gk,1) =

= -1
u(n) = cyva(n) + cova(n) + Y G(n, l)M, n>mng, (4)
i=ngt+1 as(l—1)
where ¢, c; are arbitrary constants.
Therefore, in order to apply formula (4) it is necessary to know two
linearly independent solutions of (2).

2. ON A CLASS OF DIFFERENCE EQUATIONS

The main goal of this paper is to show that, for a particular class
of second order linear difference equations, we can apply an elementary
method, without assuming the knowledge of particular solutions.

First of all, let us observe that, if (2) is fulfilled we can equivalently
write (1) in the form

u(n +2) —a(n)u(n +1) +b(n)u(n) = c(n), n>=ng ()

where

__ax(n) _az(n) _ ay(n)
a(n) = a1(n)’ b(n) = 21(n) and c(n)= an (5)
Let us take ng = 1 without any loss of generality and assume that a(n)
and b(n) are so that

d(n) = (a(n))* —4b(n) >0, Vn>1. (6)
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m=n
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form
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vin -

which can be directly solve
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“ = e quadratic equation (actually the characteristic equation of
#%uh plavs an important role in the case of difference equations

wi comszant coefficients):
r? —a(n)r+ b(n) =0, (7)

e swmsess real roots, let us denote these (generally different) roots
v and ry . Here ry, ry are functions,

o =g e =g
If at least one root, say ry, is a constant function, that is

ry = ri(const), (8)

hen we can always solve the difference equation (1). Indeed, if (5) and
7) are fulfilled, then we can write the difference equation (1°) in the

u(n+2) = (r1 + ra(n))u(n 4 1) + rire(n)u(n) = c(n),
w equivalently
u(n +2) — ru(n + 1) = ro(n) [u(n + 1) — riu(n)] = c(n).
vow , if we denote

v(n) = u(n + 1) — ryu(n), 9)

- results that v(n) is the solution of the linear first order difference
quation

v(n + 1) — ro(n)v(n) = c(n)

‘hich can be directly solved, see[2], and its general solution is given by

v(n) = 'i:f ra(k) - |v(ng) + Z—:l kc(k) = (10)
k9o k=no T r(i)

i=ng
w each n > ng,n € N.

Now, in order to obtain the general solution of (1°), and therefore of
/, we have to solve the difference equation (9) with respect to u(n),
at is to solve the difference equation
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u(n + 1) — ryu(n) = v(n).

Using (10) with r; and v(n) instead of r3(n) and ¢(n), respectively, we
obtain the general solution of (1°)

w0 = o+ £ :"_‘1:1;] 2w ()

where v(k) is given by (10).

Consequently , we have just proved

Theorem 1. If conditions (6) and (8) are satisfied, then the second
order linear difference equation (1’) may always be solved, its general
solution being given by (11).

Applications. Let us consider the two difference equations in Fx-
ample 2.10.1, pp. 72, Example 2.10.2 from[1], pp. 74, respectively.

Example 1. The difference equation

(2n+1)u(n+2)—4(n+1)u(n+1)+(2n+3)u(n) = (2n+1)(2n+3), neN

(12)
can be written as
4(n+1) 2n+3 .
u(n + 2) —2';—;—1*!1(714'1)"- 2n+lu(n) =2n+3.
Using the previous notations we have
4(n +1) 2n +3

_———e B —— ﬂd = 2 N-
A=l =g og o en)=2n+3, ne
Since

d(n) = (a(n))* —4b(n) =1 > 0, Vn € N,

condition (6) holds. Moreover,

2n+3

rn=1 and 'T'g(ﬁ) = m+1

are the two different roots of the characteristic equation (7). Therefore
, from (10) we have
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that is
v(n) = |

Then by (11) we obtain
u(n) =

which leads to the gener:

where «, 7 are arbitrary
Example 2. For the

((n+1)3—n3)u(n+2)—m

=[(n+1)® -
we have

aln) = 6n? + 12n + 8
T 3m2+3n+1°

Although condition (6) is

d(n} (Jr

the real roots of the char
O9r

1

n? -

‘r](n-) =1+

and condition (8) is not =
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tok+3 -
v(n) = ]| —/—— [v(
ko 2k +1 z—:o

that is
v(n) =(2n+1)[(0)+n], n2>0.

Then by (11) we obtain the general solution of (12)
u(n) = u(0) + E(ﬂ: + 1)[v(0) + k],
k=0

which leads to the general solution

n(n—1)(4n+1)
6 1

un)=a+p-n*+

where a, 7 are arbitrary constants.
Example 2. For the difference equation

(n41)*—=n®)u(n+2)—((n+2)>—n®)u(n+1)+((n+2)*— (n+1)*)u(n) =

=[n+1P-n*-[(n+2°-(n+1)’], n€N, (13)
we have
6n% + 12n + 8 3n?+9n+7 4

= —— = - = f
o) = it T rmn o =dting
Although condition (6) is satisfied,

3n+3 2
v N,
(3n’+3n+1) >0, ne

the real roots of the characteristic equation are

In+7 B 3n+3
) =1t g renrz W e e

and condition (8) is not satisfied.
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So, our method fails, while the general formula (4) can be applied
because it is possible to find two linearly independent solutions of the
homogeneous equation associated to (13), see[1]:

v(n) =1,  w(n) =nd

the general solution being
u(n) = a + Bk* + %(k —1)(3k +1).

3. ANALOGOUS DIFFERENTIAL EQUATIONS

The main merit of our method rests on its applicative feature: we
do not apply just a formula, as in the general case - but we follow the
steps of a practical algorithm.

We can solve by an analogous method a similar class of differential
equations as, for example, the following one:

2z + 1)y —4(z+ 1)y + 2z +3)y = (2z +1)(2z + 3),

which is the continuous analogous of (12).
We can write it on D = R\{—1} as

4(zx+1 2r+3 2x +3
= 2(z+1)9" il = 3= A (W -y = 243,

If we denote z = ¥/ — y we have to solve the first order linear equation

and, with z(z) so obtained, to solve again a first order differential equa-
tion

Y —y=z(z)
4. ANOTHER CLASS OF DIFFERENCE EQUATIONS

The method used in section 2 may be easily extended to the class
of difference equations (1°) for which there exist ry(n), ra(n) such that
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In this case (1') ma_v.h;

u(n +2) — (ry(n) =
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a(n) =ri(n) + rz(n)
{b(n.) =n (n -1)- 7'2(71) (14)

In this case (1’) may be written as
u(n + 2) — (r1(n) + reo(n))u(n + 1) + ri(n — 1)ra(n)u(n) = c(n)
and then
u(n +2) — (ra()u(n +1) = ra(n)fu(n + 1) — r1(n — Vu(n)] = c(n).
If we denote
v(n) = u(n+ 1) — ri(n — 1)u(n),
we are lead to a first order difference equation
v(n + 1) — ry(n)v(n) = ¢(n),

an so on.
Example 3.If we consider a slight modification of the difference
equation in Example 2, by putting

3n?4+9n -5
= g

(a(n) and c(n) being the same) we find that (12) holds with

_ 3?4 15n+7

_3n2+9n——5
3?2+ 3n+1

ad B = it

ri(n)

and thus our method does work.

Remarks. 1) For a(n),b(n) given, in order to obtain r;(n) and
ry(n) such that (14) holds, we have to solve generally a nonlinear second
order difference equation;

2) The same method does work for difference equations
of the form

u(n + 2q) — a(n)u(n + q) + b(n)u(n) = ¢(n),

and also for analogous differential equations.
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