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Introduction

The fixed point theory is a very reaching domain of nonlinear analysis, with an
expansive evolution in the last decades. There are many scientific papers in the
literature based on this important researching area.

The basic result from metrical fixed point theory is the Contraction Principle
of Picard-Banach-Caccioppoli [14] and it followed an important research on fixed
point theory and applications of this theory to functional equations, di�erential
equations, integral equations etc.

The problem of solving a nonlinear equation involves approximating fixed
points of a corresponding contractive type mapping. There exists several methods
for approximating fixed points: Picard iteration which is the most used for strict
contractive type operators, Krasnoselskij, Mann and Ishikawa iterations etc.

In practical applications, it is important to establish if these methods are nu-
merically stable or not. A fixed point iteration is numerically stable if small mod-
ifications due to approximation during computations, will produce small modifi-
cations on the approximate value of the fixed point computed by means of this
method.

The concept of stability is fundamental in various mathematical domains, such
as Di�erential Equations, Di�erence Equations, Dynamical Systems, Numerical
Analysis etc. Our interest is for stability theory in Discrete Dynamical Systems.

In this context, one of the concepts of stability that we use in the paper is
the one considered by Harder [60], Harder and Hicks [61], [62], who has been
systematically studied this problem.

Other stability results for several fixed point iteration procedures and for var-
ious classes of nonlinear operators were obtained by Berinde [26], [27], [28], [29],
Imoru and Olatinwo [69], Imoru, Olatinwo and Owojori [70], [104], Olatinwo [99],
Osilike [110], [111], Osilike and Udomene [114], Rhoades [132], [133] and many
others.
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4 0. INTRODUCTION

The subject of this paper treats the problem of stability of fixed point, common
fixed point, coincidence point and tripled fixed point iteration procedures, for
certain class of mappings. The study material has been organized on six chapters,
not including an introduction and a list of bibliographic resources, as follows:

The first chapter, Preliminaries, provides the terminology, basic concepts
and notations from fixed point theory used in this paper. Most of the material
in this chapter is taken from the monography named "Iterative Approximation of
Fixed Points" of Professor Berinde [27]. In writing of this chapter, I also used the
following bibliographical references [1], [7], [67], [77], [79], [146], [150].

The second chapter, Stability of fixed point, common fixed point and

coincidence point iterative procedures for mappings satisfying an ex-

plicit contractive condition, presents the concept of stability of fixed point
iteration procedures and surveys the most significant contributions to this area.

One of them was made by Berinde [27] who introduced a weaker and more
natural notion of stability, called weak stability, by adopting approximate sequences
instead of arbitrary sequences in the definition of stability. Following this concept,
we continued to study the problem of weak stability of common fixed point iterative
procedures for some classes of contractive type mappings.

The author’s original contributions in this chapter are: Definition 5.19, Theo-
rem 4.8, Theorem 4.9, Examples 6.8-6.10, Example 6.11, Example 6.12, Definition
7.22 and Theorem 7.12.

Most of them were published in [158] (Timi�, I., On the weak stability of fixed
point iterative methods, presented at ICAM7, Baia Mare, 1-4 Sept. 2010), [159]
(Timi�, I., On the weak stability of Picard iteration for some contractive type map-
pings, An. Univ. Craiova Ser. Mat. Inform. 37 (2) (2010), 106-114), [160]
(Timi�, I., On the weak stability of Picard iteration for some contractive type map-
pings and coincidence theorems, International Journal of Computer Applications
37 (4) (2012), 9-13) and [169] (Timi�, I. and Berinde, V., Weak stability of itera-
tive procedures for some coincidence theorems, Creative Math. Inform. 19 (2010),
85-95).

In the third chapter, Stability of fixed point, common fixed point and

coincidence point iterative procedures for contractive mappings defined
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by implicit relations, we study the stability of Picard iterative procedure and
also of Jungck iterative procedure for common fixed points and coincidence points,
for contractive mappings satisfying various implicit relations, with di�erent num-
ber of parameters.

Several classical fixed point theorems and common fixed point theorems have
been recently unified by considering general contractive conditions expressed by
an implicit relation. This development has been initiated by Popa [119], [120],
[121] and following this approach, a consistent part of the literature on fixed
point, common fixed point and coincidence theorems, both for single valued and
multi-valued mappings, in various ambient spaces have been accomplished.

For these new fixed point theorems did not exist corresponding stability results
and Berinde [19], [30] filled this gap and established corresponding stability results
for fixed point iterative procedures associated to contractive mappings defined by
an implicit relation.

We continue the study of stability and the results obtained in this chapter are
generalizations of fixed point theorems and stability theorems for Picard iteration
existing in literature: see Berinde [20], [24], [26] [27], [29], [31], Chatterjea [45],
Harder and Hicks [61], [62], Hardy and Rogers [63], Imoru and Olatinwo [69],
Jungck [78], Kannan [81], Olatinwo [100], Osilike [111], [110], Ostrowski [115],
Popa [120], Reich [127], Reich and Rus [154], Rhoades [130], [132], [133], Rus
[138], [139], Zamfirescu [173] and most of their references.

The author’s original contributions in this chapter are: Example 1.15, Theorem
1.14, Corollary 1.1, Corollary 1.2, Theorem 2.15, Examples 3.23-3.25, Examples
3.27-3.29, Theorem 3.16, Corollary 3.3 and Corollary 3.4.

Most of them were published in [161] (Timi�, I., Stability of Jungck-type iter-
ative procedure for some contractive type mappings via implicit relations, Miskolc
Math. Notes 13 (2) (2012), 555-567), [163] (Timi�, I., Stability of Jungck-type
iterative procedure for common fixed points and contractive mappings via implicit
relations, presented at ICAM8, Baia Mare, 27-30 Oct. 2011) and [164] (Timi�,
I., Stability of the Picard iterative procedure for mappings which satisfy implicit
relations, Comm. Appl. Nonlinear Anal. 19 (2012), no. 4, 37-44).



6 0. INTRODUCTION

The idea of the fourth chapter, A new point of view on the stability of

fixed point iterative procedures, is due to Professor I. A. Rus [136], who uni-
fied the notions of stability in di�erence equations, dynamical systems, di�erential
equations, operator theory and numerical analysis by new ones.

We consider these new notions in this chapter and study the stability of Picard
iteration for mappings which satisfy certain contractive conditions. We also give
some illustrative examples.

The author’s original contributions in this chapter are: Theorem 1.17, Propo-
sition 1.2, Corollary 1.5, Corollary 1.6, Corollary 1.7, Example 1.33, Corollary 1.8,
Theorem 2.18, Corollary 2.9, Example 2.34, Theorem 2.19, Corollary 2.10, Exam-
ples 3.35 - 3.42, Definition 4.26, Definition 4.27, Proposition 4.3, Theorem 4.20,
Theorem 4.21, Theorem 5.22.

Some of them are included in [156] (Timi�, I., New stability results of Picard
iteration for common fixed points and contractive type mappings, presented at
SYNASC 2012, Timi�oara, 26-29 Sept. 2012).

In the fifth chapter, Stability of tripled fixed point iteration procedures,
following the results of Berinde and Borcut [32], [38] who introduced the concept of
tripled fixed points, we introduce the notion of stability for tripled fixed point iter-
ative procedures and also establish stability results for mixed monotone mappings
and monotone mappings, satisfying various contractive conditions. An illustrative
example is also given.

The author’s original contributions in this chapter are: Definition 2.30, The-
orem 2.23, Corollary 2.11, Theorem 2.24, Theorem 2.25, Lemma 3.4, Definition
3.33, Theorem 3.26, Corollary 3.12, Theorem 3.27, Theorem 3.28, Example 4.43
and the contractive conditions (2.35)-(2.40), (3.46)-(3.51).

Most of them were published in [166] (Timi�, I., Stability of tripled fixed point
iteration procedures for monotone mappings, Ann. Univ. Ferrara (2012) DOI
10.1007/s11565-012-0171-7).

In the sixth chapter, Conclusions, we surveyed the original contributions
from this thesis and we mentioned the possible research directions by following
our results.
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CHAPTER 1

Preliminaries

The purpose of this chapter is to provide the terminology, basic concepts and
notations from fixed point theory used in this paper.

Most of the material in this chapter is taken from the monography named
"Iterative Approximation of Fixed Points" of Professor Berinde [27].

In writing of this chapter, I also used the following bibliographical references
[1], [7], [67], [77], [79], [146], [150].

1. The background of metrical fixed point theory

Let X be a nonempty set and T : X æ X be a selfmap. We say that x œ X is
a fixed point of T if

T (x) = x

and denote by FT or Fix(T ) the set of all fixed points of T .
For any given x œ X, we define T n(x) inductively by

T 0(x) = x, T n+1(x) = T (T n(x)) ,

and we call it the nth iterate of x under T . In order to simplify the notations, we
will often use Tx instead of T (x).

For any x0 œ X, the sequence {xn}nØ0 µ X given by

xn = Txn≠1 = T nx0, n = 1, 2, ...

is called the sequence of successive approximations with the initial value x0. It is
also known as the Picard iteration starting at x0.

For a given selfmap, the following properties obviously hold:

(1) FT µ FT n , for each n œ Nú;
(2) FT n = {x}, for some n œ Nú ∆ FT = {x}.

8



1. The background of metrical fixed point theory 9

The fixed point theory is concerned with finding conditions on the structure
that the set X must be endowed as well as on the properties of the operator
T : X æ X, in order to obtain results on:

(1) the existence and uniqueness of fixed points;
(2) the data dependence of fixed points;
(3) the construction of fixed points.

The ambient spaces X involved in fixed point theory cover a variety of spaces:
lattice, metric space, normed linear space, generalized metric space, uniform space,
linear topological space etc., while the conditions imposed on the operator T are
generally metrical or compactness type conditions.

Metric spaces

Definition 1.1. Let X be a nonempty set. A mapping d : X ◊ X æ R+ is called
a metric or a distance on X provided that

(1) d(x, y) = 0 … x = y ("separation axiom")
(2) d(x, y) = d(y, x), for all x, y œ X ("symmetry")
(3) d(x, z) Æ d(x, y) + d(y, z), for all x, y, z œ X ("the triangle inequality").

A set endowed with a metric d is called metric space and is denoted by (X, d).

Example 1.1.

Let X = R. Then d(x, y) = |x ≠ y|, ’x, y œ R, where |·| denotes the absolute
value, is a metric (a distance) on R.

Example 1.2.

(1) Let X = Rn. Then d(x, y) =
Ëqn

i=1 (xi ≠ yi)2È 1
2 , ’x = (x1, x2, ..., xn),

y = (y1, y2, ..., yn) œ Rn, is a metric on Rn, called the euclidean metric.
The next two mappings:

”(x, y) =
nÿ

i=1
|xi ≠ yi| , x, y œ Rn,

fl(x, y) = max
1ÆiÆn

|xi ≠ yi| , x, y œ Rn,

are also metrics on Rn;
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(2) Let X = {f : [a, b] æ R | f is continuous}. We define d : X ◊ X æ R+

by
d(f, g) = max

xœ[a,b]
|f(x) ≠ g(x)| , ’f, g œ X.

Then, d is a metric on X, called the Chebyshev metric and the metric
space (X, d) is usually denoted by C[a, b];

(3) Let X = {f : [a, b] æ R | f is continuous} and fl : X ◊X æ R+ be given
by

fl(f, g) = max
xœ[a,b]

1
|f(x) ≠ g(x)| e≠· |x≠x0|

2
, ’f, g œ X,

where · > 0 is a constant and x0 œ [a, b] is fixed.
Then, fl is a metric on X, called the Bielecki metric and the metric

space (X, fl) is usually denoted by B[a, b].

Definition 1.2. Let {xn}Œ
n=0 be a sequence in a metric space (X, d). We say

that the sequence {xn}Œ
n=0 is convergent to a œ X if, for any ‘ > 0, there exists

n0 = n0(‘) such that
d(xn, a) < ‘, ’n œ N, n Ø n0.

Definition 1.3. Let {xn}Œ
n=0 be a sequence in a metric space (X, d). We say that

the sequence {xn}Œ
n=0 is fundamental or Cauchy sequence if, for any ‘ > 0, there

exists n0 = n0(‘) such that

d(xn, xn+p) < ‘, ’n œ N, n Ø n0, ’p œ Nú.

Remark 1.1. In a metric space, any convergent sequence is a Cauchy sequence
too, but the reverse is not generally true.

Definition 1.4. A metric space (X, d) is called complete if any Cauchy sequence
in X is convergent.

Using the metrics given in Example 1.2, the following are complete metric
spaces: (R, |·|); (Rn, d); (Rn, ”); (Rn, fl); C[a, b]; B[a, b]. On the other hand, (Q, |·|)
is not a complete metric space.

Definition 1.5. Let (X, d) be a metric space. A mapping T : X æ X is called
(1) Lipschitzian if there exists L > 0 such that

d(Tx, Ty) Æ L · d(x, y), ’x, y œ X;

(2) (strict) contraction (or a-contraction) if T is a-Lipschitzian, with a œ
[0, 1);
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(3) nonexpansive, if T is 1-Lipschitzian;
(4) contractive, if d(Tx, Ty) < d(x, y), ’x, y œ X, x ”= y;
(5) isometry, if d(Tx, Ty) = d(x, y), ’x, y œ X.

Example 1.3. (1) T : R æ R, T (x) = x
2 + 3, x œ R, is a strict contraction

and FT = {6};
(2) The function T :

Ë
1
2 , 2

È
æ

Ë
1
2 , 2

È
, T (x) = 1

x , is 4-Lipschitzian with
FT = {1};

(3) T : [1, Œ] æ [1, Œ], T (x) = x + 1
x , is contractive and FT = ÿ.

The following theorem is the classical method of successive approximations
and is of fundamental importance in the metrical fixed point theory. It is called
contraction mapping theorem or Banach’s theorem or theorem of Picard-Banach
or theorem of Picard-Banach-Caccioppoli.

Theorem 1.1. (Contraction mapping principle) Let (X, d) be a complete
metric space and T : X æ X be a given contraction. Then T has an unique fixed
point p, and

T n(x) æ p ( as n æ Œ ), ’x œ X.

There are various generalizations of the contraction mapping principle, roughly
obtained in two ways:

(1) by weakening the contractive properties of the map and, possibly, by
simultaneously giving to the space a su�ciently rich structure, in order
to compensate the relaxation of the contractiveness assumptions;

(2) by extending the structure of the ambient space.
Several fixed point theorems have been also obtained by combining the two

ways previously described or by adding supplementary conditions.

Remark 1.2. The conclusion of Theorem 1.1 is not valid if we consider "T con-
tractive" instead of "T strict contraction" but if we ask that (X, d) is a compact
metric space, then the conclusion still holds.
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Normed spaces

Definition 1.6. Let E be a real (complex) vector space. A norm on E is a mapping
Î·Î : E ◊ E æ R+ having the following properties:

(1) ÎxÎ = 0 … x = 0, the null element of E;
(2) Î⁄xÎ = |⁄| · ÎxÎ, for any x œ E and any scalar ⁄;
(3) Îx + yÎ Æ ÎxÎ + ÎyÎ, for all x, y œ E ("the triangle inequality").

The pair (E, Î·Î) is called normed (linear) space.

Remark 1.3. If Î·Î is a norm on the (linear) vector space E, then d : E◊E æ R+

given by
d(x, y) = Îx ≠ yÎ , x, y œ E,

is a distance on E. This shows that any normed space can be always regarded as
a metric space with respect to the distance induced by the norm.

Remark 1.4. A Banach space is a normed space which is complete (as a metric
space).

Therefore, we deduce that all concepts related to the norm in a normed space
could be adapted from the metric space setting, including the contraction mapping
principle and all contractive type conditions.

Multivalued mappings

Let (X, d) be a metric space. We denote

P (X) = {A µ X | A ”= ÿ} , Pb,cl(X) = {A µ P (X) | A is closed and bounded}

and define the functional

D : P (X) ◊ P (X) æ R+, D(A, B) = inf {d(a, b) | a œ A, b œ B } .

We also consider the following generalized functionals:

fl : P (X) ◊ P (X) æ R+ fi {+Œ} , fl(A, B) = sup {D(a, B) | a œ A} ,

” : P (X) ◊ P (X) æ R+ fi {+Œ} , ”(Y, Z) = sup {d(y, z) | y œ Y, z œ Z } ,

Hd : P (X) ◊ P (X) æ R+ fi {+Œ} , Hd(A, B) = max {fl(A, B), fl(B, A)} .
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It is well known that Hd is a metric on Pb,cl(X), commonly called Hausdor�-
Pompeiu metric, and that, if (X, d) is complete, then (Pb,cl(X), Hd) is a complete
metric space, too.

Definition 1.7. Let T : X æ P (X) be a multivalued operator. An element xú œ X

is a fixed point of T if and only if xú œ T (xú).

Denote, as in the single-valued case, by FT or Fix(T ) the set of all fixed points
of T .

Definition 1.8. Let (X, d) be a metric space and T : X æ P (X) be a multivalued
operator. T is said to be a multivalued weakly Picard operator if and only if for
each x œ X and any y œ T (x), there exists a sequence {xn}Œ

n=0 such that:

(1) x0 = x, x1 = y;
(2) xn+1 œ T (xn), for all n = 0, 1, 2, ...;
(3) the sequence {xn}Œ

n=0 is convergent and its limit is a fixed point of T .

A sequence {xn}Œ
n=0 satisfying (1)-(2) is called sequence of successive approxima-

tions of a multivalued operator defined by the multivalued operator T and starting
values (x, y).

Definition 1.9. A map T : X æ Pb,cl(X) is called a multivalued contraction if
and only if there exists a positive number q < 1 such that

(1.1) Hd(Tx, Ty) Æ qd(x, y)

holds for all x, y œ X.

Proposition 1.1. For any A, B, C œ Pb,cl(X),

(1) D(x, B) Æ d(x, y), for any y œ B,
(2) D(A, B) Æ Hd(A, B),
(3) Hd(A, C) Æ Hd(A, B) + Hd(B, C).

Definition 1.10. A map T : X æ Pb,cl(X) is said to be a generalized multivalued
contraction if and only if there exists a positive number q < 1 such that

(1.2) Hd(Tx, Ty) Æ q max
I

d(x, y), D(x, Tx), D(y, Ty), D(x, Ty) + D(y, Tx)
2

J

holds for all x, y œ X.

The following result, usually referred as Nadler’s fixed point theorem, gives a
multi-valued version of the Contraction mapping principle, i.e., Theorem1.1.
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Theorem 1.2. Let (X, d) be a complete metric space and T : X æ Pb,cl(X) a
multi-valued a-contraction, i.e., there exists a constant a œ (0, 1) such that

Hd(Tx, Ty) Æ ad(x, y), ’x, y œ X.

Then T has at least one fixed point.

Di�erence inequalities

In order to prove several convergence theorems, we shall use various elementary
results concerning recurrent inequalities, as the following lemmas:

Lemma 1.1. Let {an}Œ
n=0, {bn}Œ

n=0 be sequences of nonnegative numbers and a
constant h, 0 Æ h < 1, so that

an+1 Æ han + bn, n Ø 0.

• If limnæŒ bn = 0, then limnæŒ an = 0.

• If qŒ
n=0 bn < Œ, then qŒ

n=0 an < Œ.

Lemma 1.2. Let {‘n}Œ
n=0 be a sequence of nonnegative real numbers. Then,

lim
næŒ

‘n = 0 … lim
næŒ

nÿ

i=0
kn≠i‘i = 0, k œ [0, 1) .

Commuting properties

Let X be a nonempty set and S, T : X æ X be two operators. By definition,
S and T are commuting, if S ¶ T = T ¶ S.

For this notion, in set-theoretic aspects and in order-theoretic aspects of the
fixed point theory, we mention S. C. Chu and J. B. Diaz [49], J. B. Diaz [56],
Z. Hedrlin [64] (see for example references in I. A. Rus, Teoria punctului fix în
structuri algebrice, Univ. Babe�-Bolyai, 1971 [141]), H. Cohen [54], J. P. Huneke
[66], W. M. Boyce [40], J. R. Jachymski (1971), A. A. Markov [90], S. Kakutani
[80] (see other references in I. A. Rus, Fixed point structure theory, Cluj Univ.
Press, 2006 [137])

As a generalization of this notion, Sessa [146] defined S and T to be weakly
commuting if

d(STx, TSx) Æ d(Sx, Tx), ’ x œ X.
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There are several other concepts that weaken the notion of commuting map-
pings that were used for establishing common fixed point theorems. Here, we need
the following concept, defined by Jungck [79].

Definition 1.11. Let (X, d) be a metric space and S, T : X æ X be two mappings.
We say that S and T are compatible, as a generalization of weakly commuting, if

lim
næŒ

d(STxn, TSxn) = 0,

whenever {xn}Œ
n=0 is a sequence in X such that

lim
næŒ

Sxn = lim
næŒ

Txn = t, t œ X.

Jungck [79] also showed that commuting implies weakly commuting which,
in turn, implies compatibility property but the converse property is not true in
general, as show the following illustrative example.

Example 1.4. Let the functions f(x) = x3 and g(x) = 2x3, with X = R. They
are compatible, since

|f(x) ≠ g(x)| =
---x3

--- æ 0 … |fg(x) ≠ gf(x)| = 6
---x9

--- æ 0,

but the pair (f, g) is not weakly commuting.

Definition 1.12. A point x œ X is called a coincidence point of a pair of self-
maps S, T , if there exists a point u œ X, usually called a point of coincidence in
X, such that u = Sx = Tx.

Moreover, Jungck [77] defined S and T to be weaky compatible if they commute
at their coincidence points, i.e., if

Sz = Tz ∆ STz = TSz, z œ X.

Jungck [79] established the inclusions between these notions, respectively that
the commuting property implies weakly commuting property which, in turn, implies
compatibility property that implies weakly compatibility property but the reverse is
not generally true.

Secondly, Aamri and Moutawakil [1] introduced a notion which is independent
of the notion of weakly compatibility.

Definition 1.13. S and T mappings satisfy (E.A) property if there exists a se-
quence {xn}Œ

n=0 œ X such that

lim
næŒ

Sxn = lim
næŒ

Txn = t, for some t œ X.
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The following example shows that a pair of mappings can satisfy the (E.A)
property without being weakly compatible.

Example 1.5. Let (R+, |·|) and define S and T by Sx = x2 and Tx = x + 2.
We have that Sx = Tx … x = 2. Let {xn}Œ

n=0 be a sequence in X, given by
xn = 2 + 1

n , n Ø 1. Then, limnæŒ Sxn = limnæŒ Txn = 4, so, S and T satisfy
property (E.A).

As ST (2) = S(4) = 16, and TS(2) = T (4) = 6, (S, T ) is not weakly compatible.

In general, a pair satisfying (E.A) property need not follow the pattern of
containment of range of one map into the range of other as it is generally utilized
in proving common fixed point considerations but still it relaxes such requirements.

Example 1.6.

Consider X = [≠1, 1] with the usual metric. Define S, T : X æ X, as follows:

T (x) =

Y
_______]

_______[

1
2 , x = ≠1,

x
4 , x œ (≠1, 1),

3
5 , x = 1,

and

S(x) =

Y
_______]

_______[

1
2 , x = ≠1,

x
2 , x œ (≠1, 1),

≠1
2 , x = 1.

Let the sequence {xn}n=0 Œ be given by xn = 1
n . Then,

lim
næŒ

Sxn = lim
næŒ

Txn = 0,

so the pair (S, T ) satisfies (E.A) property.
The mappings T and S are also weakly compatible because T (0) = S(0) = 0

and ST (0) = TS(0) = 0.
On the other hand, T (X) =

Ó
1
2 , 3

5

Ô
fi

1
≠1
4 , 1

4

2
and S(X) =

Ë
≠1
2 , 1

2

È
. Hence,

neither T (X) is contained in S(X) nor S(X) is contained in T (X).
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2. Fixed point iteration procedures

Let (X, d) be a metric space, D µ X a closed subset of X (we often have
D = X) and T : D æ D a selfmap possessing at least one fixed point p œ FT . For
a given x0 œ X we consider the sequence of iterates {xn}Œ

n=0 determined by the
successive iteration method

(2.3) xn = T (xn≠1) = T n(x0), n = 1, 2, ...

As we already mentioned, the sequence defined by (2.3) is known as the se-
quence of successive approximations or, simply, Picard iteration.

Picard iteration appears to have been introduced by Liouville [86] and used by
Cauchy. It was developed systematically for the first time by Picard [118] in his
classical and well-known proof of the existence and uniqueness of the solution of
initial value problems for ordinary di�erential equations, dating back in 1890.

When the contractive conditions imposed on the map T are slightly weaker,
then the Picard iteration need not converge to a fixed point of the operator T and
some other iteration procedures must be considered.

All the next fixed point iteration schemes are introduced in a real normed space
(E, Î·Î). Let T : E æ E be a selfmap, x0 œ E and ⁄ œ]0, 1[. The sequence {xn}Œ

n=0
given by

(2.4) xn+1 = (1 ≠ ⁄)xn + ⁄Txn, n = 0, 1, 2, ...

is called the Krasnoselskij iteration procedure or, simply, Krasnoselskij iteration.
It is easy to see that the Krasnoselskij iteration {xn}Œ

n=0 given by (2.4) is exactly
the Picard iteration corresponding to the averaged operator

T⁄ = (1 ≠ ⁄)I + ⁄T, I = the identity operator

and that for ⁄ = 1 the Krasnoselskij iteration reduces to Picard iteration. More-
over, we have

Fix(T ) = Fix(T⁄), ’⁄ œ (0, 1].

Krasnoselskij iteration, in the particular case ⁄ = 1
2 , was first introduced by

Krasnoselskij [84] in 1955 and in the general form by Schaefer [145] in 1957.
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The normal Mann iteration procedure or Mann iteration, starting from x0 œ E

is the sequence {xn}Œ
n=0 defined by

(2.5) xn+1 = (1 ≠ an)xn + anTxn, n = 0, 1, 2, ...

where {an}Œ
n=0 µ]0, 1[ satisfies certain appropriate conditions.

If we consider

Tn = (1 ≠ an)I + anT,

then we have Fix(T ) = Fix(Tn), for all an œ (0, 1].
If the sequence an = ⁄ (const), then the Mann iterative process obviously

reduces to the Krasnoselskij iteration.
The original Mann iteration was defined in a matrix formulation by Mann [89]

in 1953.

The Ishikawa iteration scheme or simply, Ishikawa iteration was introduced
by Ishikawa [71] in order to establish the strong convergence to a fixed point for
a Lipschitzian and pseudo-contractive selfmap of a convex compact subset of a
Hilbert space.

It is defined by x0 œ X and

(2.6) xn+1 = (1 ≠ an)xn + anT [(1 ≠ bn)xn + bnTxn] , n = 0, 1, 2, ...

where {an}Œ
n=0 , {bn}Œ

n=0 µ]0, 1[ satisfy certain appropriate conditions.
In the last three decades both Mann and Ishikawa schemes have been success-

fully used by various authors to approximate fixed points of di�erent classes of
operators in Banach spaces, see [27].

If we rewrite (2.6) in a system form
Y
_]

_[

yn = (1 ≠ bn)xn + bnTxn,

xn+1 = (1 ≠ an)xn + anTyn, n = 0, 1, 2, ...,

then we can regard the Ishikawa iteration as a sort of two-step Mann iteration,
with two di�erent parameter sequences.

Despite this apparent similarity and the fact that, for bn = 0, Ishikawa iter-
ation reduces to the Mann iteration, there is not a general dependence between
convergence results for Mann iteration and Ishikawa iteration, see [27].

Some authors considered the so called modified Mann iteration, respectively
modified Ishikawa iteration, by replacing the operator T by its n-th iterate T n.
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For example, the modified Ishikawa iteration is defined by
Y
_]

_[

yn = (1 ≠ bn)xn + bnT nxn,

xn+1 = (1 ≠ an)xn + anT nyn, n = 0, 1, 2, ....

Recently, the so called Ishikawa and Mann iteration procedures with errors, for
nonlinear mappings were introduced by Liu [87], [88] and by Xu [171], as follows:

(a) Let K be a nonempty subset of a Banach space E and T : K æ K be an
operator. The sequence {xn}Œ

n=0 defined by x0 œ K and

(2.7)

Y
_]

_[

yn = (1 ≠ bn)xn + bnT nxn + vn,

xn+1 = (1 ≠ an)xn + anT nyn + un, n = 0, 1, 2, ...,

where {an}Œ
n=0 and {bn}Œ

n=0 are some sequences in ]0, 1[ satisfying appropriate
conditions and {un}Œ

n=0 and {vn}Œ
n=0 are sequences in K such that

(2.8)
ÿ

ÎunÎ < Œ,
ÿ

ÎvnÎ < Œ,

is called Ishikawa iteration process with errors.
The Mann iteration with errors is similarly defined and could be obtained by

simply taking bn = 0 in (2.7).
We note from [27] that in spite of the fact that the fixed point iteration proce-

dures are designed for numerical proposes and hence the consideration of errors is
of both theoretical and practical importance, however it seems that the iteration
process with errors is not quite satisfactory from a practical point of view.

Indeed, the condition (2.8) imply, in particular, that the errors tend to zero,
which is not suitable for the randomness of the occurrence of errors in practical
computations.

(b) Let K be a nonempty convex subset of E and T : K æ K be a mapping.
For any given x0 œ K, the sequence {xn}Œ

n=0 defined iteratively by
Y
_]

_[

xn+1 = anxn + bnTyn + cnun,

yn = aÕ
nxn + bÕ

nTxn + cÕ
nvn, n = 0, 1, 2, ...,

where {an}Œ
n=0, {bn}Œ

n=0, {cn}Œ
n=0, {aÕ

n}Œ
n=0, {bÕ

n}Œ
n=0, {cÕ

n}Œ
n=0 are sequences in the

interval (0, 1) such that

an + bn + cn = 1 = aÕ
n + bÕ

n + cÕ
n

and {un}Œ
n=0, {vn}Œ

n=0 are bounded sequences in K, for all n = 0, 1, 2, ..., is called
the Ishikawa iteration with errors.



20 1. PRELIMINARIES

The Mann iteration with errors could be obtained by taking formally bn =
bÕ

n = 0, for all integers n Ø 0.

We also mention in the end other two fixed point iterations methods for which
some stability results have been obtained by Harder and Hicks [61], [62].

The Kirk’s iteration procedure was introduced by Kirk [83] and it is defined by
x0 œ E and

xn+1 = –0xn + –1Txn + –2T
2xn + ... + –kT kxn,

where k is a fixed integer, k Ø 1, –i Ø 0, for i = 0, 1, ..., k, –1 > 0 and

–1 + –2 + ... + –k = 1.

This scheme reduces to Picard iteration, for k = 0 and to Krasnoselskij itera-
tion, for k = 1.

The Kirk, Krasnoselskij, Mann and Ishikawa iteration procedures are mainly
used to generate iterative methods for approximating fixed points of various classes
of mappings in normed linear spaces, for which the Picard iteration does not
converge.

Let C be a closed, bounded and convex set. The sequence {xn}Œ
n=0 defined by

x0 œ C and
xn = T n2

n xn≠1, n = 1, 2, ...,

where Tnx = n
n+1Tx, n Ø 1, will be called the Figueiredo iteration procedure.

This iteration scheme is attributed to Figueiredo in Istratescu [72].
We note from [27] that the Figueiredo iteration converges strongly to a fixed

point of nonexpansive operators T : C æ C.



CHAPTER 2

Stability of fixed point, common fixed point and

coincidence point iterative procedures for mappings

satisfying an explicit contractive condition

This chapter presents the concept of stability of fixed point iteration procedures
and surveys the most significant contributions in this area.

The concept of stability is fundamental in various mathematical domains, such
as Di�erential Equations, Di�erence Equations, Dynamical Systems, Numerical
Analysis etc. Our interest is for stability theory in Discrete Dynamical Systems.

In this context, one of the concepts of stability that we use in the paper is
the one considered by Harder [60], Harder and Hicks [61], [62], who has been
systematically studied this problem.

The stability of Picard iterative procedure for a fixed point equation was first
studied by Ostrowski [115] on metric spaces. This subject was formally developed
by several authors.

One of the extensions was made by Berinde [27] who introduced a weaker and
more natural notion of stability, called weak stability, by adopting approximate
sequences instead of arbitrary sequences in the definition of stability. Following
this concept, we continued to study the problem of weak stability of common fixed
point iterative procedures for some classes of contractive type mappings.

The author’s original contributions in this chapter are: Definition 5.19, Theo-
rem 4.8, Theorem 4.9, Examples 6.8-6.10, Example 6.11, Example 6.12, Definition
7.22 and Theorem 7.12.

Most of them were published in [158] (Timi�, I., On the weak stability of fixed
point iterative methods, presented at ICAM7, Baia Mare, 1-4 Sept. 2010), [159]
(Timi�, I., On the weak stability of Picard iteration for some contractive type map-
pings, An. Univ. Craiova Ser. Mat. Inform. 37 (2) (2010), 106-114), [160]
(Timi�, I., On the weak stability of Picard iteration for some contractive type map-
pings and coincidence theorems, International Journal of Computer Applications

21
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37 (4) (2012), 9-13) and [169] (Timi�, I. and Berinde, V., Weak stability of itera-
tive procedures for some coincidence theorems, Creative Math. Inform. 19 (2010),
85-95).

1. Stability of fixed point iteration procedures

Intuitively, a fixed point iteration procedure is numerically stable if, "small"
modifications in the initial data or in the data that are involved in the computation
process will produce a "small" influence on the computed value of the fixed point.

Let (X, d) be a metric space and we define a fixed point iteration procedure by
a general relation of the form

xn+1 = f(T, xn), n = 0, 1, ...,

and considering that f(T, xn) does contain all parameters that define the fixed
point iteration procedure, where T : X æ X is an operator and x0 œ X, with
FT ”= ÿ and {xn}Œ

n=0 a sequence generated by a fixed point iteration procedure
that ensure its convergence to a fixed point p of T .

In practical applications, when calculating {xn}Œ
n=0, we usually follow the steps:

(1) We choose the initial approximation x0 œ X;
(2) We compute x1 = f (T, x0) but, due to various errors that occur during the

computations (rounding errors, numerical approximations of functions,
derivatives or integrals etc.), we do not get the exact value of x1, but a
di�erent one, say y1, which is however close enough to x1, i.e., y1 ¥ x1.

(3) Consequently, when computing x2 = f (T, x1), we will actually compute
x2 as x2 = f (T, y1) and so, instead of the theoretical value x2, we will
obtain in fact another value, say y2, again close enough but generally
di�erent of x2, i.e., y2 ¥ x2, ..., and so on.

In this way, instead of the theoretical sequence {xn}Œ
n=0, defined by the given

iterative method, we will practically obtain an approximate sequence {yn}Œ
n=0. We

shall consider the given fixed point iteration method to be numerically stable if
and only if, for yn close enough (in some sense) to xn at each stage, the approximate
sequence {yn}Œ

n=0 still converges to a fixed point of T .
Following basically this idea, the next concept of stability was introduced.
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Definition 1.14. [60] Let (X, d) be a metric space and T : X æ X a mapping,
x0 œ X and let assume that the sequence generated by the iteration procedure

(1.9) xn+1 = f (T, xn) , n = 0, 1, 2, ...,

converges to a fixed point p of T .
Let {yn}Œ

n=0 be an arbitrary sequence in X and set

‘n = d (yn+1, f (T, yn)) , n = 0, 1, 2, ...

We shall say that the fixed point iteration procedure (1.9) is T -stable or stable
with respect to T if and only if

lim
næŒ

‘n = 0 … lim
næŒ

yn = p.

Remark 1.5. We note from [27] that the Picard iteration is T -stable with respect
to any –-contraction T and also with respect to any Zamfirescu mapping T , both
of these results being established in the framework of a metric space setting.

Remark 1.6. It has also been shown in [27] that in a normed linear space setting,
certain Mann iterations are T -stable with respect to any Zamfirescu mapping.

In the same setting, a similar result was proved for Kirk’s iteration procedure,
in the class of c-contractions (0 Æ c < 1).

Remark 1.7. One of the most general contractive definition for which correspond-
ing stability results have been obtained in the case of Kirk, Mann and Ishikawa
iteration procedures in arbitrary Banach spaces appears to be the following class
of mappings: for (X, d) a metric space, T : X æ X is supposed to satisfy the
condition

(1.10) d (Tx, Ty) Æ ad(x, y) + Ld(x, Tx),

for some a œ [0, 1), L Ø 0 and for all x, y œ D µ X.

This condition appears in [110] and other related results may be found in [107],
[132], [133].

We note from [27] that any a-contractive and any Zamfirescu operator satisfy
(1.10).

However, if a mapping T satisfies only (1.10), it need not have a fixed point
in general. But, in the case of Zamfirescu mappings, Kannan mappings or weak
contractions, if T has a fixed point and satisfies (1.10), then the fixed point is
unique.
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We shall present in the following some general stability results for mappings
satisfying (1.10).

Theorem 1.3. [110] Let (X, d) be a metric space and T : X æ X a mapping
satisfying (1.10). Suppose T has a fixed point xú. Let x0 œ X and xn+1 = Txn,
n Ø 0.

Then {xn}Œ
n=0 converges strongly to xú and is stable with respect to T .

Theorem 1.4. [110] Let E be a normed linear space and T : E æ E a mapping
satisfying (1.10). Suppose T has a fixed point xú. Let x0 be arbitrary in E and
define

zn = (1 ≠ —n) xn + —nTxn, n Ø 0

and
xn+1 = (1 ≠ –n) xn + –nTzn, n Ø 0,

where {–n}Œ
n=0 and {—n}Œ

n=0 are sequences in [0, 1] such that 0 < – Æ –n, for some
–.

Let {yn}Œ
n=0 be a given sequence in E and define

sn = (1 ≠ —n) yn + —nTyn, n Ø 0

and
‘n = Îyn+1 ≠ (1 ≠ –n) yn ≠ –nTsnÎ , n Ø 0.

Then {xn}n=0 Œ converges strongly to xú and is stable with respect to T .

Similar results can be proved in a normed linear setting for Kirk’s iteration
procedure and for self-operator T satisfying (1.10).

On the other hand, there are several examples of fixed point iteration proce-
dures which are not stable with respect to certain operators.

Remark 1.8. Harder and Hicks [62] showed that neither Picard iteration, nor
Mann or Kirk’s iterations are T -stable with respect to a nonexpansive self-operator
of a closed convex bounded set in a Hilbert space, but the next theorem shows that
Figueiredo’s iteration is T -stable with respect to nonexpansive mappings.

Theorem 1.5. [62] Let K be a closed, bounded and convex subset of a Hilbert
space H containing 0. If T : K æ K is a nonexpansive mapping, then for any
x0 œ K, the sequence {xn}Œ

n=0, defined by

xn = T n2
n xn≠1, n = 1, 2, ...

and Tnx = n
n+1Tx, is T -stable.
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2. Stability of common fixed point iterative procedures

The concept of stability of common fixed point iterative procedures for a pair of
mappings (S, T ) with a coincidence fixed point was introduced by Singh, Bhatnagar
and Mishra [151].

Let X be an arbitrary nonempty set and (X, d) a metric space.
Let S, T : X æ X be two mappings, such that T (X) ™ S(X). For any x0 œ X,

consider the common fixed point iteration procedure

Sxn+1 = Txn, n = 0, 1, ...,

which is the iterative procedure introduced by Jungck [78].
The common fixed point iteration procedure becomes the Picard iterative pro-

cedure when S = I, the identity map on X.
Jungck [78] showed that the mappings S and T satisfying

(2.11) d(Tx, Ty) Æ kd(Sx, Sy), 0 Æ k < 1, ’x, y œ X,

have a common fixed point in X, provided that S and T are commuting, T (X) ™
S(X) and S is continuous.

The following significantly improved version of this result is generally called
the Jungck contraction principle, obtained by Singh and Prasad [152].

Theorem 2.6. [152] Let (X, d) be a metric space and let S, T : X æ X satisfying
(2.11). If T (X) ™ S(X) and S(X) or T (X) is a complete subspace of X, then S

and T have a coincidence point.
For any x0 œ X, there exists a sequence {xn}Œ

n=0 in X such that Sxn+1 = Txn,
n = 0, 1, 2, ..., and assume that {Sxn}Œ

n=0 converges to Sz for some z in X and
Sz = Tz = u, respectively the point of coincidence of S and T .

If S and T commute just at z, then S and T have an unique common fixed
point.

As concerns the construction of the sequences {Sxn}Œ
n=0 and {xn}Œ

n=0 under
the procedure Sxn+1 = Txn, n = 0, 1, 2, ..., we may calculate a1 = Tx0 and then
may proceed to solve the equation Sx1 = a1.

If the map S is not an injection, then we have multiple choices for x1, as
x1 œ S≠1a1. So, in practice, instead of getting an exact sequence {Sxn}Œ

n=0, we get
an approximative sequence {Syn}Œ

n=0 and this is the main problem that stability
plays a very important role in actual numerical computations.
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Definition 2.15. [152] Let (X, d) be a metric space and let S, T : X æ X. Let
z to be a coincidence point of T and S, that is, Sz = Tz = u.

For any x0 œ X, the sequence {Sxn}Œ
n=0 generated by the general iterative

procedure

(2.12) Sxn+1 = Txn, n = 1, 2, ...,

and suppose that it converges to u œ X. Let {Syn}Œ
n=0 µ X be an arbitrary

sequence and set
‘n = d(Syn+1, T yn), n = 0, 1, 2, ... .

Then the iterative procedure 2.12 is (S, T )-stable or stable with respect to (S, T )
if and only if

lim
næŒ

‘n = 0 =∆ lim
næŒ

Syn = u.

Some authors name (2.12) to be the Jungck common fixed point iteration
procedure.

Definition 2.15 reduces to that of the stability of the fixed point iterative pro-
cedure due to Harder and Hicks [61], [62] when S = I, the identity map on X.

For several examples discussing the practical aspect and theoretical importance
of the stability when S is the identity map on X in the above definition, see Berinde
[27].

3. Several studies about stability

As we mentioned in section 1, the first stability result for fixed point iteration
procedures has been obtained by Ostrowski[115].

Harder [60] introduced the concept of stability for general fixed point itera-
tion procedures and made a systematical study by obtaining stability results that
extend Ostrowski’s theorem to mappings satisfying more general contractive con-
ditions for various fixed point iteration procedures.

Harder and Hicks [62] showed that the function iteration, for mappings T

satisfying various contractive definitions is T -stable, as well as for several iteration
schemes other that function iteration. Rhoades [132] extended some of the results
of Harder and Hicks [62] to an independent contractive definition and also proved
stability theorems for additional iteration procedures.
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Moreover, Rhoades [133] continued the study of stability results by using a
more general contractive definition than the ones studied by Harder and Hicks
[62]: for (E, Î·Î) a normed linear space, T a selfmap of E, there exists a constant
C, 0 Æ C < 1 such that for each x, y œ E,

(3.13) ÎTx ≠ TyÎ Æ CM(x, y),

where

M(x, y) := max
I

Îx ≠ yÎ ,
Îx ≠ TxÎ + Îy ≠ TyÎ

2 ,

Îx ≠ TyÎ , Îy ≠ TxÎ} ,

and then proved several stability results which are generalizations and extensions
of most of the results of Harder and Hicks [62] and Rhoades [132]. Osilike [111]
continued the study of stability results of iteration procedures for mappings satis-
fying (3.13).

Osilike and Udomene [114] gave short proofs of several stability results for fixed
point iteration procedures established by Harder and Hicks [62], Rhoades [132],
[133], Osilike [111], [110]. This method of proof yielded both the convergence of
the sequence of iterates to the fixed point of the mappings as well as the stability
of the iteration procedure. These stability results have also been applied by Imoru
and Olatinwo [69], Imoru, Olatinwo and Owojori [70], [104] and some others.

Olatinwo [99] also proved stability results for two newly introduced hybrid
fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann type in normed
linear space, using certain contractive condition, in extension and improvement
of the results of Harder and Hicks [62], Rhoades [132], [133], Berinde [26], [27],
[28], [29] and Osilike [110].

Moreover, Olatinwo [100] made generalizations and obtained first stability re-
sults using the concepts of pointwise convergence of sequences of operators and
the fixed point iteration procedure was investigated for the case of two metrics.

The Ishikawa and Mann iteration processes have been studied extensively by
various authors and have been successfully employed to approximate fixed points
of several nonlinear operator equations in Banach spaces. Rhoades [131] compared
the performance of these two iteration schemes and showed that even though they
are similar, they may exhibit di�erent behaviors for di�erent classes of nonlinear
mappings.

In its original form, the Ishikawa procedure does not include the Mann process
as a special case because of the condition 0 Æ –n Æ —n Æ 1. In an e�ort to have
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an Ishikawa type iteration sheme which does include the Mann iteration process
as a special case, some authors (see for example Rhoades [131] and Osilike [111])
have modified the inequality condition to read 0 Æ –n, —n Æ 1.

In his study of stability of iteration procedures for mappings satisfying (3.13),
Rhoades [133] proved that Picard iteration, the Mann iteration and the iteration
method of Kirk are T -stable. Osilike [111] generalized and extended these results
and proved that the Ishikawa process is T -stable for a mapping satisfying (3.13).

For a contractive definition which is more general than the contractive defini-
tion (3.13), a mapping T is said to be quasi-contractive if there exists a k œ [0, 1)
such that

ÎTx ≠ TyÎ Æ k max {Îx ≠ yÎ , Îx ≠ TxÎ , Îy ≠ TyÎ ,

(3.14) Îx ≠ TyÎ , Îy ≠ TxÎ} ,

for all x, y œ E. Is is clear that condition (3.13) implies (3.14). Furthermore, it is
shown in Rhoades [130] that the contractive definition (3.14) is one of the most
general contractive-type definitions for which Picard iteration yields an unique
fixed point.

Osilike [107] proved that certain Mann iteration procedure is T -stable for quasi-
contractive maps in Banach spaces which are either q-uniformly smooth or p-
uniformly convex. These Banach spaces include all Hilbert spaces, Lp or lp spaces,
1 < p < Œ, and Sobolev spaces, W p

m, 1 < p < Œ. Moreover, Osilike [108]
extended these results to certain Ishikawa iteration method and included all the
results of Osilike [107] as special cases.

Osilike [113] established stability results for the important class of strongly
pseudo-contractive operators. Furthermore, he construct certain T -stable Mann
and Ishikawa iteration methods which converge strongly to the fixed point of T .
A related result dealt with the construction of stable iteration methods for the
iterative approximation of solutions of nonlinear operator equations of the ac-
cretive and strongly accretive types. These stability and convergence results are
improvements of several results that have appeared for fixed points of Lipschitz
strong pseudo-contractions (see, for example, Chidume [46] and Chidume [47]).
Furthermore, Osilike [112] extended all these results from real q-uniformly smooth
Banach spaces to arbitrary real Banach spaces.

Zhou [172] studied the stability of the Mann and Ishikawa iteration procedures
for strong pseudo-contractions without Lipschitz assumptions in real uniformly Ba-
nach spaces. Then, Fang [58] improved and extended the corresponding results
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of Osilike [113] and Zhou [172] by developing some new Ishikawa iteration proce-
dures with errors for approximating the fixed points of strong pseudo-contractions
and discussed the stability for the strong pseudocontractions without Lipschitz
assumptions in uniformly smooth Banach spaces.

Then, Zhou [174] examined the weak stability of the Ishikawa iteration pro-
cedures for Lipschitzian and „-hemicontractive mappings in real Banach spaces,
under a strict condition of the function „ defined in „-hemicontractive operators,
limnæŒ

„(t)
t > 0. This condition is not desirable because a lot of the strictly

increasing functions „ cannot satisfy the strict requirement.
Furthermore, Huang [65] proved the weak T -stability of the Mann and Ishikawa

iterative sequences with errors without the strict restriction limnæŒ
„(t)

t > 0 on
the Lipschitzian „-hemicontractive operators in arbitrary Banach spaces.

Jungck [78] generalized the Banach’s contraction principle, by replacing the
identity map with a continuous map, thus obtaining a common fixed point theo-
rem. Following the Jungck’s contraction principle, many authors proved general
common fixed points theorems and coincidence theorems (see Imdad and Ali [67],
Aamri and Moutawakil [1]).

Stability results of common fixed point iterative procedures and coincidence
points were obtained by some authors. Czerwik [55] extended Ostrowski’s classi-
cal theorem for the stability of iterative procedures to the setting of b-metric spaces.
Then, Singh, Bhatnagar and Mishra [151] discussed the stability of Jungck type
iterative procedures for the coincidence equation Sx = Tx, where Y is an arbitrary
nonempty set, S, T are maps on Y with values in a space X and T (Y ) ™ S(Y ).
They established some stability results for Jungck and Jungck-Mann iteration pro-
cedures by employing two contractive definitions which generalized those of Osilike
[110] but independent of that of Imoru and Olatinwo [69]. Furthermore, Singh
and Prasad [152] studied the problem of stability for this coincidence equation on
b-metric spaces.

Moreover, Olatinwo [97], [101] obtained some stability results for nonself map-
pings in normed linear spaces which are generalizations and extensions of Berinde
[29], Imoru and Olatinwo [69], Imoru, Olatinwo and Owojori[70]. Olatinwo and
Postolache [106] also studied the stability in convex metric spaces for nonself map-
pings satisfying certain general contractive definitions in the case of Jungck-Mann
and Jungck-Ishikawa iteration procedures.
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4. Stability results for common fixed point iteration procedures using

certain classes of contractive nonself mappings

Let (X, d) be a metric space, Y µ X and S, T : Y æ X two nonself mappings,
satisfying the following contraction condition: ÷q œ (0, 1) such that

(4.15) d(Tx, Ty) Æ qd(Sx, Sy), ’ x, y œ Y.

Goebel [59] proved that S and T have a coincidence point in X (see Buic�
[41]) and Jungck [77] showed that the maps S and T satisfying (4.15) have an
unique common fixed point in a complete space (X, d), provided that

(1) T (X) ™ S(X);
(2) S is continuous;
(3) S and T commute.

The next theorem is an improved version of the Jungck’s contraction principle
[77], which has been obtained by Singh and Prasad [152].

Theorem 4.7. [152] Let (X, d) be a metric space, Y a subset of X and let S, T :
Y æ X be two mappings satisfying (4.15).

If T (Y ) ™ S(Y ) and S(Y ) or T (Y ) is a complete subspace of X, then S and
T have a coincidence point (that is, there exists z œ Y , such that Sz = Tz).

Moreover, for any x0 œ Y , there exists a sequence {xn}Œ
n=0 in Y , such that

(1) Sxn+1 = Txn, n = 0, 1, 2, ...,
(2) {Sxn}Œ

n=0 converges to Sz for some coincidence point z in Y .
Further, if Y = X and S and T commute (just) at z, then S and T have an

unique common fixed point, that is, Sz = Tz = z.

Starting from the stability results of Singh and Prasad [152], we study the
problem of stability of common fixed point iterative procedures for some classes
of contractive type mappings.

As we have seen previously, the definition of (S, T )-stable iterative procedures
used in [152] is based on the choice of an arbitrary sequence {Syn}Œ

n=0. But, as
shown in the paper [27], it is not natural to consider an arbitrary sequence in
Definition 2.15, because in this way, we do not treat the problem of stability in its
general context.
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Our main result in this respect is given by the next theorem, which completes
Theorem 4.7 by the result regarding the (S, T )-stability of the Jungck type iteration
procedure.

Theorem 4.8. (Timi�, [169]) Let (X, d) be a metric space, Y a subset of X and
let S, T : Y æ X be two mappings satisfying

(4.16) d(Tx, Ty) Æ qd(Sx, Sy), ’x, y œ Y, q œ [0, 1).

If T (Y ) ™ S(Y ) and S(Y ) is a complete subspace of X, then S and T have an
unique coincidence point (that is, there exists z œ Y , such that Sz = Tz = u.).

Moreover, for any x0 œ Y , there exists a sequence {Sxn}Œ
n=0 œ Y such that

(i) Sxn+1 = Txn, n = 0, 1, 2, ...,
(ii) {Sxn}Œ

n=0 converges to u.
Let {Syn}Œ

n=0 µ Y be an approximate sequence of {Sxn}Œ
n=0 and define

‘n = d(Syn+1, T yn), n = 0, 1, 2, ....

Then,
(1) d(u, Syn+1) Æ d(u, Sxn+1) + qn+1d(Sx0, Sy0) + qn

r=0 qn≠r‘r;
(2) limnæŒ Syn = u, if and only if limnæŒ ‘n = 0, that is, the iterative

procedure is (S, T )-stable.

Proof. Let x0 to be an arbitrary point in Y . Since T (Y ) ™ S(Y ), we can
choose x1 œ Y , such that Tx0 = Sx1, in order to generate the sequence {Sxn}Œ

n=0,
defined by (i).

If x := xn and y := xn≠1 are two successive terms of the sequence {Sxn}Œ
n=0,

then, by (4.16), we have

(4.17) d(Sxn+1, Sxn) = d(Txn, Txn≠1) Æ qd(Sxn, Sxn≠1).

Now, by induction, we obtain

d(Sxn+k, Sxn+k≠1) Æ qkd(Sxn, Sxn≠1), n = 0, 1, ..., k = 1, 2, ...,

and then,

d(Sxn+p, Sxn) Æ d(Sxn+p, Sxn+p≠1) + . . . + d(Sxn+1, Sxn) Æ

Æ qpd(Sxn, Sxn≠1) + . . . + qd(Sxn, Sxn≠1) =

= q
1
1 + . . . + qp≠1

2
d(Sxn, Sxn≠1) = q · 1 ≠ qp

1 ≠ q
· d(Sxn, Sxn≠1) <

<
q

1 ≠ q
d(Sxn, Sxn≠1) Æ . . . Æ qn

1 ≠ q
d(Sx1, Sx0), n = 0, 1, ...,
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which shows that {Sxn}Œ
n=0 is a Cauchy sequence.

Since S(Y ) is a complete subspace of X, there exists u œ S(Y ) and z œ Y ,
such that

lim
næŒ

Sxn+1 = u = Sz.

Now, we shall prove that Sz = Tz. Indeed, from (4.17), we have

d(Sxn, T z) = d(Txn≠1, T z) Æ qd(Sxn≠1, Sz) Æ qn≠1d(Sx1, Sz). (ú)

Letting n æ Œ in (ú), we obtain

lim
næŒ

d(Sxn, T z) = 0,

which means that
lim

næŒ
Sxn+1 = Tz,

and hence, we get
Sz = Tz,

that is, z is a coincidence point of S and T .
Now let us show that T and S have a unique coincidence point. Assume there

exists zÕ œ Y such that TzÕ = SzÕ. Then, by (4.16), we get

d(SzÕ, Sz) = d(TzÕ, T z) Æ qd(SzÕ, Sz),

which shows that SzÕ = Sz = u, that is, T and S have a unique point of coinci-
dence, z.

Now, by the triangle inequality, we have

d(u, Syn+1) Æ d(u, Sxn+1) + qd(Sxn, Syn) + ‘n Æ

Æ d(u, Sxn+1) + q [d(Txn≠1, T yn≠1) + d(Tyn≠1, Syn)] + ‘n.

After iterating n ≠ 1 times this process, one yields (1).
To prove (2), first suppose that limnæŒ Syn = u. Then,

‘n = d(Syn+1, T yn) Æ d(Syn+1, Sxn+1) + d(Txn, T yn) Æ

Æ d(Syn+1, Sxn+1) + qd(Sxn, Syn) Æ

Æ d(Syn+1, u) + d(u, Sxn+1) + qd(Sxn, u) + qd(u, Syn) æ 0, as n æ Œ,

because {Sxn}Œ
n=0 converges to u and limnæŒ Syn = u.

Now, suppose that limnæŒ ‘n = 0 and prove that limnæŒ Syn = u.
Then,

d(Syn+1, u) Æ d(Syn+1, T yn) + d(Txn, T yn) + d(Txn, u) Æ
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Æ ‘n + qd(Sxn, Syn) + d(Sxn+1, u).

Because limnæŒ Sxn = u and applying Lemma 1.2, we get the conclusion,
limnæŒ d(u, Syn+1) = 0. ⇤

Remark 4.9. One can obtain the last part of the proof directly by inequality (i),
without using Lemma 1.2.

Remark 4.10. Particular cases of Theorem 4.8.

(1) If Y = X, then by Theorem 4.8, we obtain an improved result of stability
for the Jungck’s contraction principle, see Singh and Prasad [152].

(2) If f Y = X and S = I (the identity map on X), then by Theorem 4.8,
then we obtain an improved result of stability for Banach’s contraction
mapping principle, see Ostrowski [115] and Harder and Hicks [62].

Theorem 4.9. (Timi�, [169]) Let (X, d) be a metric space, Y a subset of X and
let S, T : Y æ X be two mappings satisfying

(4.18) d(Tx, Ty) Æ qd(Sx, Sy) + Ld(Sx, Tx), ’x, y œ Y, q œ (0, 1), L Ø 0.

If T (Y ) ™ S(Y ) and S(Y ) is a complete subspace of X, then S and T have an
unique coincidence point (that is, there exists z œ Y , such that Tz = Sz = u).

Moreover, for any x0 œ Y , there exists a sequence {Sxn}Œ
n=0 œ Y such that

(i) Sxn+1 = Txn, n = 0, 1, 2, ...,
(ii) {Sxn}Œ

n=0 converges to u.
Let {Syn}Œ

n=0 µ Y be an approximate sequence of {Sxn}Œ
n=0 and define

‘n = d(Syn+1, T yn), n = 0, 1, 2, ....

Then,

(1) d(u, Syn+1) Æ d(u, Sxn+1) + qn+1d(Sx0, Sy0) + L
qn

r=0 qn≠rd(Sxr, Txr) +
qn

r=0 qn≠r‘r;
(2) limnæŒ Syn = u if and only if limnæŒ ‘n = 0.

Proof. Let x0 to be an arbitrary point in Y . Since T (Y ) ™ S(Y ), we can
choose x1 œ Y , such that Tx0 = Sx1, in order to generate the sequence {Sxn}Œ

n=0,
defined by (i).

If x := xn and y := xn≠1 are two successive terms of the sequence {Sxn}Œ
n=0,

then, by (4.18), we have

d(Sxn+1, Sxn) = d(Txn, Txn≠1) Æ qd(Sxn, Sxn≠1) + Ld(Sxn, Txn) =
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= qd(Sxn, Sxn≠1) + Ld(Sxn, Sxn+1),

so, we obtain

(4.19) d(Sxn+1, Sxn) Æ q

1 ≠ L
d(Sxn, Sxn≠1).

Now, by induction, we obtain

d(Sxn+k, Sxn+k≠1) Æ
3

q

1 ≠ L

4k

d(Sxn, Sxn≠1), n = 0, 1, ..., k = 1, 2, ...,

and then,

d(Sxn+p, Sxn) Æ d(Sxn+p, Sxn+p≠1) + . . . + d(Sxn+1, Sxn) Æ

Æ
3

q

1 ≠ L

4p

d(Sxn, Sxn≠1) + . . . + q

1 ≠ L
d(Sxn, Sxn≠1) =

= q

1 ≠ L

C

1 + . . . +
3

q

1 ≠ L

4p≠1D

d(Sxn, Sxn≠1) =

= q

1 ≠ L
·

1 ≠
1

q
1≠L

2p

1 ≠ q
1≠L

· d(Sxn, Sxn≠1) =

= q

1 ≠ L ≠ q
·

5
1 ≠

3
q

1 ≠ L

4p6
· d(Sxn, Sxn≠1) <

<
q

1 ≠ L ≠ q
d(Sxn, Sxn≠1) Æ . . . Æ q

1 ≠ L ≠ q

3
q

1 ≠ L

4n≠1
d(Sx1, Sx0),

for n = 0, 1, ..., which shows that {Sxn}Œ
n=0 is a Cauchy sequence.

Since S(Y ) is a complete subspace of X, there exists u œ S(Y ) and z œ Y ,
such that

lim
næŒ

Sxn+1 = u = Sz.

Now, we shall prove that Sz = Tz. Indeed, from (4.19), we have

d(Sxn, T z) = d(Txn≠1, T z) Æ qd(Sxn≠1, Sz) + Ld(Sxn≠1, Txn≠1) =

= qd(Sxn≠1, Sz) + Ld(Sxn≠1, Sxn) Æ

Æ qd(Sxn≠1, u) + L ·
3

q

1 ≠ L

4n≠1
d(Sx1, Sx0). (úú)

Letting n æ Œ in (úú), we obtain

lim
næŒ

d(Sxn, T z) = 0,

which means that
lim

næŒ
Sxn+1 = Tz,

and hence, we get
Sz = Tz,

that is, z is a coincidence point of S and T .
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Now let us show that T and S have a unique coincidence point. Assume there
exists zÕ œ Y such that TzÕ = SzÕ. Then, by (4.18), we get

d(SzÕ, Sz) = d(TzÕ, T z) Æ qd(SzÕ, Sz) + Ld(SzÕ, T zÕ) = qd(SzÕ, Sz),

which shows that SzÕ = Sz = u, that is, T and S have an unique coincidence
point, z.

For any nonnegative integer n, we have

d(Sxn+1, Syn+1) = d(Tx, Syn+1) Æ d(Txn, T yn) + d(Tyn, Syn+1) Æ

Æ qd(Sxn, Syn) + Ld(Sxn, Txn) + ‘n Æ

Æ q2d(Sxn≠1, Syn≠1) + qLd(Sxn≠1, Txn≠1) + Ld(Sxn, Txn) + q‘n≠1 + ‘n.

After iterating n ≠ 1 times, we obtain

d(Sxn+1, Syn+1) Æ qn+1d(Sx0, Sy0) + L
nÿ

r=0
qn≠rd(Sxr, T yr) +

nÿ

r=0
qn≠r‘r.

Therefore,

d(u, Syn+1) Æ d(u, Sxn+1) + d(Sxn+1, Syn+1) Æ

Æ d(u, Sxn+1) + qn+1d(Sx0, Sy0) + L
nÿ

r=0
qn≠rd(Sxr, T yr) +

nÿ

r=0
qn≠r‘r.

This provides (1).
In order to prove (2), assume that limnæŒ Syn = u. Then,

‘n = d(Syn+1, T yn) Æ d(Syn+1, Sxn+1) + d(Txn, T yn) Æ

Æ d(Syn+1, Sxn+1) + qd(Sxn, Syn) + Ld(Sxn, Txn) Æ

Æ d(Syn+1, u) + d(u, Sxn+1) + qd(Sxn, u) + qd(u, Syn) + Ld(Sxn, Sxn+1).

For n æ Œ, we obtain that ‘n æ 0, since {Sxn}Œ
n=0 converges to u and

limnæŒ Syn = u.
Now, suppose that limnæŒ ‘n = 0.
Then,

d(Syn+1, u) Æ d(Syn+1, T yn) + d(Txn, T yn) + d(Txn, u) Æ

Æ ‘n + qd(Sxn, Syn) + Ld(Sxn, Txn) + d(Sxn+1, u).

We have d(Sxn, Txn) = d(Sxn, Sxn≠1) and since {Sxn}Œ
n=0 converges to u, we

get limnæŒ d(Sxn, Txn) = 0 and hence, applying Lemma 1.2, we get the conclu-
sion, limnæŒ d(u, Syn+1) = 0. ⇤
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Remark 4.11. One can obtain the last part of the proof directly by inequality (i),
without using Lemma 1.2.

Remark 4.12. Particular cases of Theorem 4.9.

(1) If Y = X, then by Theorem 4.9, we obtain an improved result of stability
for the Jungck’s contraction principle, see Singh and Prasad [152].

(2) If Y = X and S = I (the identity map on X), then by Theorem 4.9, we
obtain an improved result of stability for Banach’s contraction mapping
principle, see Ostrowski [115].

(3) If Y = X and S = I (the identity map on X), then by Theorem 4.9, we
obtain an improved result of stability for the Kannan’s fixed point theorem
[81], see Harder and Hicks [62].

(4) If Y = X and S = I (the identity map on X), then by Theorem 4.9,
we obtain an improved result of stability for the Zamfirescu’s fixed point
theorem, that is, Theorem 2 from Harder and Hicks [62].

(5) If Y = X and S = I (the identity map on X), then by Theorem 4.9,
we obtain an improved result of stability for the Chatterjea’s fixed point
theorem [45].

5. Weak stability concept of fixed point iteration procedures and

common fixed point iteration procedures

In this section, we review some existing results on the weak stability of fixed
point iteration procedures and we transpose this concept to a pair of mappings
with a coincidence point.

The concept of (almost) stability is slightly not very precise because of the
sequence {yn}Œ

n=0 which is arbitrary taken. From a numerical point of view, {yn}Œ
n=0

must be an approximate sequence of {xn}Œ
n=0.

By adopting a concept of such kind of approximate sequences, Berinde [27]
introduced a weaker and more natural concept of stability, called weak stability.
So, any stable iteration will be also weakly stable but the reverse is not generally
true.

Definition 5.16. [27] Let (X, d) be a metric space and {xn}Œ
x=0 µ X be a given

sequence. We shall say that {yn}Œ
n=0 œ X is an approximate sequence of {xn}Œ

n=0



5. Weak stability concept of fixed point iteration procedures and common fixed point iteration procedures 37

if, for any k œ N, there exists ÷ = ÷(k) such that

d(xn, yn) Æ ÷, for all n Ø k.

Remark 5.13. We can have approximate sequences of both convergent and diver-
gent sequences.

The following result will be useful in the sequel.

Lemma 5.3. [27] The sequence {yn}Œ
n=0 is an approximate sequence of {xn}Œ

n=0
if and only if there exists a decreasing sequence of positive numbers {÷n}Œ

n=0 con-
verging to some ÷ Ø 0 such that

d(xn, yn) Æ ÷n, for any n Ø k (fixed) .

Definition 5.17. [27] Let (X, d) be a metric space and T : X æ X be a map. Let
{xn}Œ

n=0 be an iteration procedure defined by x0 œ X and

xn+1 = f(T, xn), n Ø 0.

Suppose that {xn}Œ
n=0 converges to a fixed point p of T . If for any approximate

sequence {yn}Œ
n=0 µ X of {xn}Œ

n=0

lim
næŒ

d(yn+1, f(T, yn)) = 0 implies lim
næŒ

yn = p,

then we shall say that the iteration procedure is weakly T -stable or weakly stable
with respect to T .

Remark 5.14. It is obvious that any stable iteration procedure is also weakly
stable, but the reverse is generally not true.

Definition 5.18. [65] Let {–n}Œ
n=0 be a nonnegative real sequence in [0, 1]. Sup-

pose E is a real Banach space and T : E æ E a mapping, with FT ”= ÿ.
Let x0 œ E and let {xn}Œ

n=0 be an iteration procedure given by

xn+1 = f (T, –n, xn) , n = 0, 1, 2, ...,

that converges strongly to a fixed point xú œ FT .
Let {yn}Œ

n=0 be a sequence in E and {‘n}Œ
n=0 be a sequence of positive real

numbers given by
‘n = Îyn+1 ≠ f (T, –n, yn)Î .

If qŒ
n=1 ‘n < Œ implies that limnæŒ yn = xú, then the iteration procedure is

said to be almost T -stable or almost stable with respect to T .
If ‘n = o(–n) implies that limnæŒ yn = xú, then the iteration procedure is said

to be pseudo T -stable with respect to T or pseudo stable with respect to T .
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Remark 5.15. It is obvious that if an iteration {xn}Œ
n=1 is T -stable, then it is

weakly T -stable and if the iteration {xn}Œ
n=1 is weakly T -stable, then it is both

almost T -stable and pseudo T -stable.
Conversely, an iteration {xn}Œ

n=1 which is either almost T -stable and pseudo
T -stable may fail to be weakly T -stable. Accordingly, it is of important theoretical
interest to study the weak stability.

All examples given by various authors that have studied the stability of the
fixed point iteration procedures - examples intended to illustrate non stable fixed
point iteration procedures - do not consider approximate sequences of {xn}Œ

n=0.
Berinde [27] presented in detail some of the aforementioned examples, in order

to show how important and natural is to restrict the stability concept to approxi-
mate sequences {yn}Œ

n=0 of {xn}Œ
n=0.

Example 5.7. [27]

Let T : R æ R be given by Tx = 1
2x, where R is endowed with the usual

metric. T is an 1
2 -contraction, FT = {0}.

By Theorem 1.4, the Ishikawa iteration {xn}Œ
n=1 is T -stable, hence it is almost

T -stable and weakly T -stable, too.
However, Osilike [109] claimed that the Ishikawa iteration is not T -stable. To

show this, it was used the sequence {yn}Œ
n=1 given by

yn = n

1 + n
, n Ø 0.

But this is obviously nonsense, because xn æ 0, as n æ Œ, the unique fixed
point of T , while yn æ 1, as n æ Œ, so, by construction, {yn}Œ

n=1 would have to
be an approximate sequence of {xn} .

Hence, using arbitrary sequences, the Ishikawa iteration is not T -stable.

In the following, we transpose the concept of (S, T )-stability used by Singh and
Prasad [152] to (S, T )-weak stability in a metric space.

Definition 5.19. (Timi�, [169]) Let (X, d) be a metric space and two mappings
S, T : X æ X be such as T (X) ™ S(X) and let z is a coincidence point of S and
T , that is, a point for which we have Sz = Tz = u œ X.
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For any x0 œ X, let the sequence {Sxn}Œ
n=0 generated by the general iterative

procedure

(5.20) Sxn+1 = f(T, xn), n = 1, 2, ...,

and assume that it converges to u.
If for any approximate sequence {Syn}Œ

n=0 µ X of {Sxn}Œ
n=0, we have that

lim
næŒ

d(Syn+1, f(T, yn)) = 0 implies lim
næŒ

Syn = u,

then we shall say that (5.20) is weakly (S, T )-stable or weakly stable with respect
to (S, T ).

6. Examples of weak stable but not stable iterations

Harder and Hicks [62] presented some examples of mappings which satisfy
various contractive conditions for which the corresponding iteration procedures
are not stable.

In the following, we present some of these examples in order to study their
weak stability.

We also present some examples of mappings with a coincidence point which
satisfy certain contractive conditions in order to study their stability with respect
to (S, T ).

Example 6.8. (Timi�, [159])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
___]

___[

1
2 , x œ

5
0,

1
2

6

0, x œ
31

2 , 1
6 ,

where [0, 1] is endowed with the usual metric. T is continuous at each point of
[0, 1] except at 1

2 and T has an unique fixed point at 1
2 , see Harder and Hicks [62].

As shown in [62], T satisfies the condition

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} , ’ x, y œ X, x ”= y.

Indeed, first let x œ
Ë
0, 1

2

È
and y œ

1
1
2 , 1

È
.
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Then, |Tx ≠ Ty| = |1
2 ≠ 0| = 1

2 < max {|x ≠ Tx|, |y ≠ Ty|} =

= max
;

|12 ≠ x|, |y ≠ 0|
<

= max
;31

2 ≠ x
4

, y
<

= y.

Now, let x œ
Ë
0, 1

2

È
and y œ

Ë
0, 1

2

È
, with x ”= y.

Then, |Tx ≠ Ty| = 0 < max {|x ≠ Tx|, |y ≠ Ty|} =

= max
;

|12 ≠ x|, |12 ≠ y|
<

= max
;31

2 ≠ x
4

,
31

2 ≠ y
4<

.

If x œ
1

1
2 , 1

È
and y œ

1
1
2 , 1

È
, with x ”= y,

|Tx ≠ Ty| = 0 < max {|x ≠ Tx|, |y ≠ Ty|} = max {x, y} .

In order to study the T -stability, let x0 be any point in [0, 1] and xn+1 = Txn,

for n = 0, 1, 2, · · · be the Picard iteration procedure.
Then,

x1 = Tx0 =

Y
___]

___[

1
2 , x0 œ

5
0,

1
2

6

0, x0 œ
31

2 , 1
6 ,

and x2 = Tx1 = 1
2 for either case.

Furthermore, xn = 1
2 , ’n Ø 2 and hence, limnæŒ xn = 1

2 = T
1

1
2

2
.

Now, let {yn}Œ
n=0 = 1

2 , 1
4 , 1

2 + 1
42 , 1

43 , 1
2 + 1

44 , 1
45 , · · · . Observe that {yn}Œ

n=0 is a
divergent sequence.

If n is a positive even integer, then

‘n =
----

1
4n+1 ≠ T

31
2 + 1

4n

4---- =
----

1
4n+1 ≠ 0

---- = 1
4n+1 .

If n is a positive odd integer, then

‘n =
----

31
2 + 1

4n+1

4
≠ T

3 1
4n

4---- = 1
2 + 1

4n+1 ≠ 1
2 = 1

4n+1 .

Thus,
lim

næŒ
‘n = lim

næŒ

1
4n+1 = 0,

but {yn}Œ
n=0 does not converge to 1

2 . So, the Picard iteration is not T -stable.
In order to study the T -weak stability, we take an approximate sequence

{yn}Œ
n=0 of {xn}Œ

n=0. Then, there exists a decreasing sequence of nonnegative num-
bers {÷n} converging to some ÷ Ø 0 for n æ Œ such that

|xn ≠ yn| Æ ÷n, n Ø k, k fixed.

Then, ≠÷n Æ xn ≠ yn Æ ÷n and it results that 0 Æ yn Æ xn + ÷n, n Ø k.

Since xn = 1
2 , for n Ø 2, we obtain 0 Æ yn Æ 1

2 + ÷n, n Ø k1 = max{2, k}.
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For every choice of nonnegative ÷n we have that 0 Æ yn Æ 1, ’n Ø k1.
For example, take ÷n = 1

n , then yn = 1
2 + (≠1)n 1

n is an approximate sequence
of {xn}Œ

n=0.
Since Tyn = 0, if n is even, and Tyn = 1

2 , if n is odd, it follows that {yn}Œ
n=0

does not converge and hence, the Picard iteration is not T -weakly stable.

Example 6.9. (Timi�, [159])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

0, x œ
Ë
0, 1

2

È

1
2 , x œ

1
1
2 , 1

È ,

where [0, 1] is endowed with the usual metric. T is continuous at every point of
[0, 1] except at 1

2 and 0 is the only fixed point of T , see [62].
For each x, y œ [0, 1], x ”= y, T satisfies the condition

d (Tx, Ty) < max {d (x, Ty) , d (y, Tx)} .

Indeed, first let x œ
Ë
0, 1

2

È
, y œ

Ë
0, 1

2

È
and x ”= y. Then, |Tx ≠ Ty| = 0 <

max {x, y} = max {|x ≠ Ty| , |y ≠ Tx|} .

If x œ
1

1
2 , 1

È
, y œ

1
1
2 , 1

È
and x ”= y, then |Tx ≠ Ty| = 0 <

< max
;3

x ≠ 1
2

4
,
3

y ≠ 1
2

4<
= max {|x ≠ Ty| , |y ≠ Tx|} .

If x œ
Ë
0, 1

2

È
and y œ

1
1
2 , 1

È
, then |Tx ≠ Ty| =

---0 ≠ 1
2

--- = 1
2 <

< y = max
;31

2 ≠ x
4

, y
<

= max {|x ≠ Ty| , |y ≠ Tx|} .

We will show that the Picard iteration is not T -stable but it is T -weakly stable.
In order to prove the first claim, let {yn}Œ

n=0 be given by

yn = n + 2
2n

, n Ø 1.

Then,

‘n = |yn+1 ≠ f(T, yn)| = |yn+1 ≠ Tyn| =
-----

n + 3
2(n + 1) ≠ 1

2

----- ,

because yn Ø 1
2 , for n Ø 1.

Therefore, limnæŒ ‘n = 0 but limnæŒ yn = 1
2 , so the Picard iteration is not

T -stable.
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In order to show the T -weak stability, we take an approximate sequence {yn}Œ
n=0

of {xn}Œ
n=0. Then, there exists a decreasing sequence of nonnegative numbers

{÷n}Œ
n=0 converging to some ÷ Ø 0 for n æ Œ such that

|xn ≠ yn| Æ ÷n, n Ø k.

Then, ≠÷n Æ xn ≠ yn Æ ÷n and it results that 0 Æ yn Æ xn + ÷n, n Ø k.

Since xn = 0, for n Ø 2, we obtain 0 Æ yn Æ ÷n, n Ø k1 = max{2, k}.

We can choose {÷n} such that ÷n Æ 1
2 , n Ø k1 and therefore 0 Æ yn Æ 1

2 , ’n Ø
k1. So, Tyn = 0 and it results that ‘n = |yn+1 ≠ Tyn| = |yn+1| = yn+1.

Now, it is obvious that limnæŒ ‘n = 0 ∆ limnæŒ yn = 0, so the iteration
{yn}Œ

n=0 is T -weakly stable.

Example 6.10. (Timi�, [159])

Let T : R æ
Ó
0, 1

4 , 1
2

Ô
be defined by

Tx =

Y
_______]

_______[

1
2 , x < 0

1
4 , x œ

5
0,

1
2

6

0, x > 1
2

,

where R is endowed with the usual metric. T is continuous at every point in R
except at 0 and 1

2 . The only fixed point of T is 1
4 , see [62].

For each x, y œ R, x ”= y, T satisfies the condition

d(Tx, Ty) < max
I

d(x, y), d(x, Tx) + d(y, Ty)
2 ,

d(x, Ty) + d(y, Tx)
2

J

.

Indeed, first choose x < 0 and y œ
Ë
0, 1

2

È
.

Then, |Tx ≠ Ty| = |1
2 ≠ 1

4 | = 1
4 and |x≠T x|+|y≠T y|

2 Ø 1
2

---x ≠ 1
2

--- = 1
4 ≠ x

2 > 1
4 .

If x < 0 and y > 1
2 , then |Tx ≠ Ty| = |1

2 ≠ 0| = 1
2 and

|x ≠ Tx| + |y ≠ Ty|
2 =

|x ≠ 1
2 | + |y ≠ 0|

2 Ø 1
4 + y ≠ x

2 >
1
4 + 1

4 >
1
2 .

If x œ
Ë
0, 1

2

È
and y > 1

2 , then |Tx ≠ Ty| = |1
4 ≠ 0| = 1

4 and

|x ≠ Tx| + |y ≠ Ty|
2 =

|x ≠ 1
4 | + y

2 Ø y

2 >
1
4 .

If x < 0, y < 0 and x ”= y, then |Tx ≠ Ty| = 0 < |x ≠ y|.
If x > 1

2 , y > 1
2 and x ”= y, then |Tx ≠ Ty| = 0 < |x ≠ y|.

If x œ
Ë
0, 1

2

È
, y œ

Ë
0, 1

2

È
and x ”= y, then |Tx ≠ Ty| = 0 < |x ≠ y|.
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Thus, |Tx ≠ Ty| < max
Ó
|x ≠ y| , |x≠T x|+|y≠T y|

2 , |x≠T y|+|y≠T x|
2

Ô
, for each x, y œ R

such that x ”= y.

In order to study the T -stability of Picard iteration procedure associated to
T , let x0 be any real number and xn+1 = Txn, for n = 0, 1, 2, · · · , be the Picard
iteration procedure starting at x0.

Then,

x1 = Tx0 =

Y
_______]

_______[

1
2 , x0 < 0

1
4 , x0 œ

Ë
0, 1

2

È

0, x0 > 1
2

.

In either case, x2 = Tx1 = 1
4 and hence, xn = 1

4 , ’n Ø 2. So, limnæŒ xn = 1
4 =

T
1

1
4

2
.

To show that the Picard iteration is not T -stable, let {yn}Œ
n=0 be the sequence

of real numbers such that y0 = x0, yn = 1
2 + 1

n , for each positive odd integer and
yn = ≠ 1

n , for each positive even integer.
If n is a positive even integer, then

‘n =
----
1
2 + 1

n + 1 ≠ T
3

≠ 1
n

4---- =
----
1
2 + 1

n + 1 ≠ 1
2

---- = 1
n + 1 .

If n is a positive odd integer, then

‘n =
----

3
≠ 1

n + 1

4
≠ T

31
2 + 1

n

4---- =
----≠

1
n + 1 ≠ 0

---- = 1
n + 1 .

Thus,
lim

næŒ
‘n = lim

næŒ

1
n + 1 = 0,

but {yn}Œ
n=0 does not converge to 1

4 . So, the Picard iteration is not T -stable.
Now, in order to study the T -weak stability, we take an approximate sequence

{yn}Œ
n=0 of {xn}Œ

n=0.
Then, there exists a decreasing sequence of nonnegative numbers {÷n} converg-

ing to some ÷ Ø 0 for n æ Œ such that

|xn ≠ yn| Æ ÷n, n Ø k.

Then, ≠÷n Æ xn ≠ yn Æ ÷n and it results that 0 Æ yn Æ xn + ÷n, n Ø k.

Since xn = 1
4 , for n Ø 2, we obtain 0 Æ yn Æ 1

4 + ÷n, n Ø k1 = max{2, k}.

We can choose {÷n} such that ÷n Æ 1
4 , n Ø k1 and therefore 0 Æ yn Æ

1
2 , ’n Ø k1. So, Tyn = 1

4 and by limnæŒ |yn+1 ≠ Tyn| = 0 it results that
limnæŒ yn = 1

4 = T
1

1
4

2
.
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This shows that the Picard iteration is weakly T -stable.

Example 6.11. (Timi�, [160])

Let S, T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

0, x œ
Ë
0, 1

2

È

1
2 , x œ

1
1
2 , 1

È

and

Sx =

Y
__]

__[

1
2 ≠ x, x œ

Ë
0, 1

2

È

x ≠ 1
4 , x œ

1
1
2 , 1

È ,

where [0, 1] is endowed with the usual metric. S and T are continuous at every
point of [0, 1] except at 1

2 which is their coincidence point, i.e., T
1

1
2

2
= S

1
1
2

2
=

0 = u and T ([0, 1]) =
Ó
0, 1

2

Ô
™ S ([0, 1]) =

Ë
0, 1

2

È
fi

1
1
4 , 3

4

È
=

Ë
0, 3

4

È
.

For each x, y œ [0, 1], x ”= y, T and S satisfy the condition

d (Tx, Ty) < max {d (Sx, Ty) , d (Sy, Tx)} .

Indeed, first let x œ
Ë
0, 1

2

È
, y œ

Ë
0, 1

2

È
and x ”= y. Then,

|Tx ≠ Ty| = 0 < max
;----

1
2 ≠ x ≠ 0

---- ,
----
1
2 ≠ y ≠ 0

----

<
=

= max
;----

1
2 ≠ x

---- ,
----
1
2 ≠ y

----

<
”= 0,

since y ”= x.

If x œ
1

1
2 , 1

È
, y œ

1
1
2 , 1

È
and x ”= y, then

|Tx ≠ Ty| = 0 < max
;----x ≠ 1

4 ≠ 1
2

---- ,
----y ≠ 1

4 ≠ 1
2

----

<
=

= max
;----x ≠ 3

4

---- ,
----y ≠ 3

4

----

<
”= 0,

since y ”= x.

If x œ
Ë
0, 1

2

È
and y œ

1
1
2 , 1

È
, then

|Tx ≠ Ty| =
----0 ≠ 1

2

---- = 1
2 < max

;----
1
2 ≠ x ≠ 1

2

---- ,
----y ≠ 1

4 ≠ 0
----

<
=

max
Ó
|x| ,

---y ≠ 1
4

---
Ô

”= 0, since we cannot have simultaneously x = 0 and y = 1
4 .

We will show that the Picard iteration is not (S, T )-stable nor (S, T )-weakly
stable.
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In order to prove the first claim, let (Syn), with Syn = n+2
2n , n Ø 1.

Then
‘n = |Syn+1 ≠ Tyn| = | n + 3

2(n + 1) ≠ 1
4 ≠ 1

2 |,

because Syn > 1
2 , for n Ø 1.

According to Definition 2.15, assuming that limnæŒ ‘n = 0, we should obtain
that limnæŒ Syn = 3

4 but in fact, limnæŒ Syn = 1
2 , so the Picard iteration is not

(S, T )-stable.
Studying the (S, T )-weak stability, we take an approximate sequence {Syn}Œ

n=0
of Sxn. Then, there exists a decreasing sequence of nonnegative numbers {÷n}
converging to some ÷ Ø 0 for n æ Œ such that

|Sxn ≠ Syn| Æ ÷n, n Ø k.

Then, ≠÷n Æ Sxn ≠ Syn Æ ÷n and it results that 0 Æ Syn Æ Sxn + ÷n, n Ø k.

If x0 œ
Ë
0, 1

2

È
, then Sx1 = Tx0 = 0, therefore Sxn = 0, ’n Ø 1. On the other

hand, if x0 œ
1

1
2 , 1

È
, then Sx1 = Tx0 = 1

2 and Sx2 = Tx1 = 0, so Sxn = 0, ’n Ø 2.
If xn œ

Ë
0, 1

2

È
, then Sxn = 1

2 ≠ xn. So, 0 Æ xn Æ 1
2 … 0 Ø ≠xn Ø ≠1

2 …
1
2 Ø 1

2 ≠ xn Ø 0 … 0 Æ 1
2 ≠ xn = Sxn Æ 1

2 . Hence, in this situation, Sxn can
have the value of 0. If xn œ

1
1
2 , 1

È
, then Sxn = xn ≠ 1

4 . So, 1
2 < xn Æ 1 … 1

4 <

xn ≠ 1
4 = Sxn Æ 3

4 . In this case, Sxn can not be 0. Therefore, xn œ
Ë
0, 1

2

È
and

then, Txn = 0.

Since Sxn = 0, for n Ø 2, we obtain that 0 Æ Syn Æ ÷n, n Ø k1 = max{2, k}.

We can choose {÷n} such that ÷n Æ 1
2 , n Ø k1 and therefore 0 Æ Syn Æ 1

2 , ’n Ø k1.
If yn œ

Ë
0, 1

2

È
, then Syn = 1

2 ≠ yn, so 0 Æ yn Æ 1
2 … 0 Ø ≠yn Ø ≠1

2 … ≠1
2 Æ

≠yn Æ 0 … 0 Æ 1
2 ≠ yn = Syn Æ 1

2 , situation that can be possible. In this case,
for yn œ

Ë
0, 1

2

È
, we have that Tyn = 0.

If yn œ
1

1
4 , 3

4

È
fl

1
1
2 , 1

È
=

1
1
2 , 3

4

È
, then Syn = yn ≠ 1

4 , so 1
2 < yn Æ 3

4 … 1
4 <

yn ≠ 1
4 = Syn Æ 1

2 and this can be possible, too. Hence, for yn œ
1

1
2 , 3

4

È
, we have

that Tyn = 1
2 .

According to Definition 5.19, if d (Syn+1, T yn) æ 0, as n æ Œ, implies that
d (Syn, u) æ 0, for n æ Œ, the (S, T )-weak stability should be obtained.

But, if yn œ
1

1
2 , 3

4

È
, then from d (Syn+1, T yn) = d

1
Syn+1,

1
2

2
æ 0, as n æ Œ,

we obtain that Syn+1 æ 1
2 , so Syn æ 1

2 . Therefore, the Picard iteration is not
(S, T )-weakly stable.
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Example 6.12. (Timi�, [160])

Let S, T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

x+1
2 , x œ

Ë
0, 1

2

È

1
2 , x œ

1
1
2 , 1

È

and

Sx =

Y
__]

__[

1
2 ≠ x, x œ

Ë
0, 1

2

È

x ≠ 1
4 , x œ

1
1
2 , 1

È ,

where [0, 1] is endowed with the usual metric. S and T have a two coincidence
points, i.e., T (0) = S (0) = T

1
3
4

2
= S

1
3
4

2
= 1

2 = u and T ([0, 1]) =
5

1
2 ,

1
2 +1

2

6
fi

Ó
1
2

Ô
=

Ë
1
2 , 3

4

È
™ S ([0, 1]) =

Ë
0, 1

2

È
fi

1
1
4 , 3

4

È
=

Ë
0, 3

4

È
.

For each x, y œ [0, 1], x ”= y, T and S satisfy the condition

d (Tx, Ty) < max {d (Sx, Ty) , d (Sy, Tx)} .

Indeed, first let x, y œ
Ë
0, 1

2

È
, with x ”= y. Then,

|Tx ≠ Ty| =
----
x

2 + 1
2 ≠ y

2 ≠ 1
2

---- = 1
2 |x ≠ y| =

5
0,

1
4

6
<

< max
;----

1
2 ≠ x ≠ y

2 ≠ 1
2

---- ,
----
1
2 ≠ y ≠ x

2 ≠ 1
2

----

<
=

= max
Ó---x + y

2

--- ,
---y + x

2 ,
---
Ô

= max
ÓË

0, 1
2

È
+

Ë
0, 1

4

È
,
Ë
0, 1

2

È
+

Ë
0, 1

4

ÈÔ
=

= max
ÓË

0, 3
4

È
,
Ë
0, 3

4

ÈÔ
=

Ë
0, 3

4

È
.

If x, y œ
1

1
2 , 1

È
and x ”= y, then |Tx ≠ Ty| = 0 <

< max
;----x ≠ 1

4 ≠ 1
2

---- ,
----y ≠ 1

4 ≠ 1
2

----

<
=

= max
;----x ≠ 3

4

---- ,
----y ≠ 3

4

----

<
=

5
0,

1
4

6
.

If x œ
Ë
0, 1

2

È
and y œ

1
1
2 , 1

È
, then |Tx ≠ Ty| =

---x
2 + 1

2 ≠ 1
2

--- = 1
2 |x| =

Ë
0, 1

4

È
<

max
Ó---1

2 ≠ x ≠ 1
2

--- ,
---y ≠ 1

4 ≠ x
2 ≠ 1

2

---
Ô

= max
Ó
|x| ,

---y ≠ x
2 ≠ 3

4

---
Ô

=
= max

ÓË
0, 1

2

È
,
1

1
2 , 1

È
≠

Ë
0, 1

4

È
≠ 3

4 =
Ë
0, 1

4

ÈÔ
=

Ë
0, 1

2

È
.

We will show that the Picard iteration is not (S, T )-stable nor (S, T )-weakly
stable.

In order to prove the first claim, let (Syn), with Syn = n+2
2n , n Ø 1.
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Then
‘n = |Syn+1 ≠ Tyn| = | n + 3

2(n + 1) ≠ 1
4 ≠ 1

2 |,

because Syn > 1
2 , for n Ø 1.

According to Definition 2.15, assuming that limnæŒ ‘n = 0, we should obtain
that limnæŒ Syn = 3

4 but in fact, limnæŒ Syn = 1
2 , so the Picard iteration is not

(S, T )-stable.
Studying the (S, T )-weak stability, according to Definition 5.19, for any x0 œ

[0, 1], the sequence {Sxn}Œ
n=0 generated by the iterative procedure Sxn+1 = Txn, n >

0, converges to u = 1
2 .

Indeed, if x0 œ
Ë
0, 1

2

È
, then Sx1 = Tx0 = x0+1

2 œ [0, 1
2 ]+1
2 = [1, 3

2 ]
2 =

Ë
1
2 , 3

4

È
. Now,

if x1 œ
Ë
0, 1

2

È
, then Sx1 = 1

2 ≠ x1 œ 1
2 ≠

Ë
0, 1

2

È
=

Ë
0, 1

2

È
. Only for x1 = 0, we have

that Sx1 = 1
2 œ

Ë
1
2 , 3

4

È
. Hence, Sx2 = Tx1 = 1

2 , so Sxn = Txn = 1
2 , ’n Ø 2. On

the other hand, if x1 œ
1

1
2 , 1

È
, then Sx1 = x1 ≠ 1

4 œ
1

1
2 , 1

È
≠ 1

4 =
1

1
4 , 3

4

È
. Only

for x1 œ
1

3
4 , 1

È
, we have that Sx1 œ

1
1
2 , 3

4

È
œ

Ë
1
2 , 3

4

È
. Hence, Sx2 = Tx1 = 1

2 , so
Sxn = Txn = 1

2 , ’n Ø 2.

If x0 œ
1

1
2 , 1

È
, then Sx1 = Tx0 = 1

2 , so Sxn = Txn = 1
2 , ’n Ø 1.

We take an approximate sequence {Syn}Œ
n=0 of Sxn. Then, there exists a

decreasing sequence of nonnegative numbers {÷n} converging to some ÷ Ø 0 for
n æ Œ such that

|Sxn ≠ Syn| Æ ÷n, n Ø k.

Then, ≠÷n Æ Sxn ≠ Syn Æ ÷n and it results that 0 Æ Syn Æ Sxn + ÷n, n Ø k.

Since Sxn = 1
2 , for n Ø 2, we obtain that 0 Æ Syn Æ 1

2 + ÷n, n Ø k1 = max{2, k}.

We can choose {÷n} such that ÷n Æ 1
4 , n Ø k1 and therefore 0 Æ Syn Æ 3

4 , ’n Ø k1.
According to Definition 5.19, if d (Syn+1, T yn) æ 0, as n æ Œ, implies that

d (Syn, u) æ 0, for n æ Œ, the (S, T )-weak stability should be obtained.
If yn œ

Ë
0, 1

2

È
, then Syn = 1

2 ≠ yn = 1
2 ≠

Ë
0, 1

2

È
=

Ë
0, 1

2

È
œ

Ë
0, 3

4

È
and Tyn =

yn+1
2 œ 1

2

Ë
1, 3

2

È
=

Ë
1
2 , 3

4

È
. Therefore, d (Syn+1, T yn) =

---
Ë
0, 1

2

È
≠

Ë
1
2 , 3

4

È--- =
Ë

1
4 , 1

2

È
and

then limnæŒ d (Syn+1, T yn) can not be 0. So, in this situation, the Picard iteration
is not (S, T )-weak stable.
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7. Stability and weak stability of fixed point iterative procedures for

multivalued mappings

By extending the contraction mapping principle form single-valued mappings
to multivalued mappings, Nadler [94] proved that a multivalued contraction on
a complete metric space has a fixed point. Ciric [52] extended this result for
generalized multivalued contractions on metric spaces.

The concept of weak contraction from the case of single-valued mappings was
extended to multi-valued mappings and then corresponding convergence theorems
for the Picard iteration associated to a multi-valued weak contraction are obtained.
M. Berinde and V. Berinde [15] extended, improved and unified a multitude of
classical results in the fixed point theory of single and multi-valued contractive
mappings.

On the other hand, Singh and Chadha [153] extended Ostrowski’s stability
theorem (Theorem 7.10, in this paper) to multivalued contractions using Nadler’s
theorem and introduced the following definition of stability of iterative procedures
for multivalued maps.

Definition 7.20. [153] Let X be a metric space and T : X æ Pb,cl(X). Let x0 œ X

and xn+1 œ Txn denote the Picard iterative procedure for T .
Let {xn}Œ

n=0 be convergent to a fixed point u of T and {yn}Œ
n=0 be an arbitrary

sequence.
Set ‘n = H (yn+1, T yn), n = 0, 1, 2, ....
The iterative procedure Txn is said to be T -stable provided that

lim
næŒ

‘n = 0 implies lim
næŒ

yn = u.

The first result on the stability of Picard iterative procedure for multivalued
mappings is due to Singh and Chadha [153] and it is stated as follows.

Theorem 7.10. [153] Let X be a complete metric space and T : X æ Pb,cl(X).
Suppose there exists a positive number q < 1 such that T satisfies the condition

Hd(Tx, Ty) Æ qd(x, y), ’x, y œ X.

Let x0 be an arbitrary point in X and assume that {xn}Œ
n=0 is a sequence which

converges to a fixed point u of T .
Let {yn}Œ

n=0 be a sequence in X and set ‘n = Hd(yn+1, T yn), n = 0, 1, 2, ....

If Tu is singleton then limnæŒ yn = u if and only if limnæŒ ‘n = 0.
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Afterwards, Czerwik, Dlutek and Singh [55] studied the stability of Picard it-
erative procedures for multivalued maps in b-metric spaces. Furthermore, Singh,
Bhatnagar and Mishra [150] obtained a fixed point theorem for generalized mul-
tivalued contractions in b-metric spaces and further studied the stability of Picard
iterative procedures for such maps.

Definition 7.21. [143] Let X be a nonempty set. If T : X æ P (X) is a multi-
valued operator, then an element x œ X is called a fixed point for T , if and only if
x œ T (x).

On the other hand, a strict fixed point for T is an element x œ X with the
property {x} = T (x). The set of all strict fixed points of T is denoted by SFix(T ).

Theorem 7.11. [140] Let (X, d) be a complete metric space and T : X æ Pb(X)
be a multivalued operator. We suppose that

i) x œ Tx, ’x œ X;
ii) there exists a comparison function Ï : R+ æ R+ and a Picard sequence

xn+1 œ Txn, n œ N, such that

”(Txn+1) Æ Ï(”(Txn)), n œ N.

Then, xn æ xú, as n æ Œ and xú œ SFix(T ).

In the following, we give a stability result for multivalued mappings satisfying
an almost contraction condition.

Theorem 7.12. (Timi�, [168]) Let (X, d) be a complete metric space and T :
X æ Pb,cl(X) a mapping with SFix(T ) ”= „, satisfying

Hd(Tx, Ty) Æ q · d(x, y) + L · D(x, Tx),

for all x, y œ X, q œ [0, 1) and L Ø 0.
Let {xn}Œ

n=0 an iterative procedure defined by x0 œ X and xn+1 œ Txn, for all
n Ø 0 and assume that the sequence {xn}Œ

n=0 converges to xú, the unique strict
fixed point of T.

Then, the Picard iteration is T -stable.

Proof. Consider {yn}Œ
n=0 to be an arbitrary sequence. Then, according to

Definition 7.20, if limnæŒ Hd(yn+1, T yn) = 0 implies that limnæŒ yn = xú, then
the Picard iteration is T -stable.

In order to prove this, we suppose that limnæŒ Hd(yn+1, T yn) = 0. Therefore,
’‘ > 0, ÷n0 = n(‘) such that Hd (yn+1, T yn) < ‘, ’n Ø n0.
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So,
d (yn+1, xú) = Hd({yn+1} , {xú}) Æ

Æ Hd ({yn+1} , T yn) + Hd (Tyn, Txn) + Hd (Txn, {xú}) Æ

Æ Hd (yn+1, T yn) + q · d(xn, yn) + L · D(xn, Txn) + Hd (Txn, xú) Æ

Æ Hd (yn+1, T yn) + q · d(yn, xú) + q · d(xú, xn) + L · D(xn, Txn) + Hd (Txn, xú) .

From the hypothesis, by xn æ xú, as n æ Œ, we have that Hd (xú, Txn) æ 0
and Hd(yn+1, T yn) æ 0, as n æ Œ.

Also,
D (xn, Txn) Æ d (xn, xn+1) æ 0, n æ Œ.

Then applying Lemma 1.1, for

‘n := Hd (yn+1, T yn) + q · d(xú, xn) + L · d(xn, xn+1) + Hd (Txn, xú) ,

where limnæŒ ‘n = 0 and by taking to the limit, we obtain that Hd (yn+1, xú) æ 0,
as n æ Œ, and this shows that the Picard iteration is stable with respect to T . ⇤

Remark 7.16. Theorem 7.12 extends Theorem 7.10 of Singh and Chadha [153].
If we take L = 0 in Theorem 7.12, we get the stability result from Theorem 7.10.

As argued in Section 2 of this Chapter, from a numerical point of view, the
concept of weak stability is more natural than the one of usual stability considered
in [55], [150], [153] etc., because of the arbitrary sequence taken. So, any stable
iteration will be also weakly stable but the reverse is not generally true.

In the sequel, we give the transposition to multivalued mapping of Definition
5.17 of the weak stability with respect to T .

Definition 7.22. (Timi�, [168]) Let (X, d) be a metric space and T : X æ
Pb,cl(X) be a multivalued mapping. Let {xn}Œ

n=0 be an iteration procedure defined
by x0 œ X and

xn+1 = f(T, xn), n Ø 0.

Suppose that {xn}Œ
n=0 converges to a strict fixed point p of T . If for any

approximate sequence {yn}Œ
n=0 µ X of {xn}Œ

n=0,

lim
næŒ

Hd(yn+1, f(T, yn)) = 0 implies lim
næŒ

yn = p,

then we shall say that the iteration procedure {xn}Œ
n=0 is weakly T -stable or weakly

stable with respect to T .



CHAPTER 3

Stability of fixed point, common fixed point and

coincidence point iterative procedures for contractive

mappings defined by implicit relations

Several classical fixed point theorems and common fixed point theorems have
been recently unified by considering general contractive conditions expressed by
an implicit relation. This development has been initiated by Popa [119], [120],
[121] and following this approach, a consistent part of the literature on fixed
point, common fixed point and coincidence theorems, both for single valued and
multi-valued mappings, in various ambient spaces have been accomplished.

Bouhadjera and Djoudi [39] proved a common fixed point theorem for four
weakly compatible mappings satisfying an implicit relation without need of conti-
nuity. This theorem generalizes some results on compatible continuous mappings
of Popa [121].

Aliouche [7] proved common fixed point theorems for weakly compatible map-
pings in metric spaces satisfying an implicit relation using (E.A) property and a
common (E.A) property, which generalizes the results of Aamri and Moutawakil
[1].

Aliouche [8] also proved common fixed point theorems for weakly compatible
mappings satisfying implicit relations without the condition that the map to be
decreasing in any variable. These theorems improve results of Ali and Imdad [5],
Jeong and Rhoades [75] and Popa [122].

On the other hand, Pathak and Verma [117] proved some coincidence and com-
mon fixed point results by using an implicit relation for four weakly compatible
mappings which satisfy (E.A) property in symmetric spaces. These are general-
izations of related results of symmetric spaces and they also improve the results
of Imdad, Ali and Khan [68].

For these new fixed point theorems did not exist corresponding stability results
and Berinde [19], [30] filled this gap and established corresponding stability results
for fixed point iterative procedures associated to contractive mappings defined by
an implicit relation.

51
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We continue to study the stability of Picard iterative procedure and also of
Jungck iterative procedure for common fixed points and coincidence points, for
contractive mappings satisfying various implicit relations, with di�erent number
of parameters.

Since a metrical common fixed point theorem generally involves conditions of
commutativity, a lot of researches in this domain are aimed at weakening these
conditions. The evolution of weak commutativity of Sessa [146] and compatibility
of Jungck [79] developed weak conditions in order to improve common fixed points
theorems. We also give a general stability result for the common fixed point
iteration procedure of Jungck-type in the class of weakly compatible mappings
defined by means of an implicit contraction condition.

The results obtained in this chapter are generalizations of fixed point theorems
and stability theorems for Picard iteration existing in literature: see Berinde [20],
[24], [27], [29], [31], Chatterjea [45], Harder and Hicks [61], [62], Hardy and
Rogers [63], Imoru and Olatinwo [69], Jungck [78], Kannan [81], Olatinwo [100],
Osilike [111], [110], Ostrowski [115], Popa [120], Reich [127], Reich and Rus
[154], Rhoades [130], [132], [133], Rus [138], [139], Zamfirescu [173] and most
of their references.

The author’s original contributions in this chapter are: Example 1.15, Theorem
1.14, Corollary 1.1, Corollary 1.2, Theorem 2.15, Examples 3.23-3.25, Examples
3.27-3.29, Theorem 3.16, Corollary 3.3 and Corollary 3.4.

Most of them were published in [161] (Timi�, I., Stability of Jungck-type iter-
ative procedure for some contractive type mappings via implicit relations, Miskolc
Math. Notes 13 (2) (2012), 555-567), [163] (Timi�, I., Stability of Jungck-type
iterative procedure for common fixed points and contractive mappings via implicit
relations, presented at ICAM8, Baia Mare, 27-30 Oct. 2011) and [164] (Timi�,
I., Stability of the Picard iterative procedure for mappings which satisfy implicit
relations, Comm. Appl. Nonlinear Anal. 19 (2012), no. 4, 37-44).
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1. Stability of fixed point iterative procedure for contractive mappings

satisfying implicit relations

Berinde [30] gave a general stability result of the Picard iteration for mappings
satisfying an implicit relation with six parameters, using the set of all continuous
real functions F : R6

+ æ R+ introduced by Popa [120], [121], with the following
conditions:

(F1a) F is non-increasing in the fifth variable and F (u, v, v, u, u + v, 0) Æ 0 for
u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(F1b) F is non-increasing in the fourth variable and F (u, v, 0, u + v, u, v) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(F1c) F is non-increasing in the third variable and F (u, v, u + v, 0, v, u) Æ 0 for
u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(F2) F (u, u, 0, 0, u, u) > 0, for all u > 0.

Theorem 1.13. [30] Let (X, d) be a complete metric space, T : X æ X a self
mapping for which there exists F œ F such that for all x, y œ X

F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) Æ 0.

If F satisfies (F1a) and (F2), then T has an unique fixed point.
If, additionally, F satisfies (F1b), then Picard iteration is: a) T -stable; b)

summable almost T -stable.

In the following, we study the stability of the Picard iterative procedure for
mappings satisfying an implicit relation but we reduce the number of parameters
to five.

Popa [119] introduced F to be the set of all continuous real functions F : R5
+ æ

R with the following conditions:
(1) F is continuous in each coordinate variable,
(2) there exists h œ [0, 1) such that, for all u, v, w Ø 0 satisfying

• (2a) F (u, v, u, v, w) Æ 0 or
• (2b) F (u, v, v, u, w) Æ 0,

we have that u Æ h max {v, w} .

In the following, there are some examples of functions that satisfy some of the
above conditions:

Example 1.13. [119] Define F (t1, t2, t3, t4, t5) : R5
+ æ R as
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(1) F (t1, ..., t5) = t1 ≠ c max {t2, t3, t4, t5} , c œ [0, 1);
(2) F (t1, ..., t5) = t2

1 ≠ c max {t2t3, t2t4, t3t4, t2
5} , c œ [0, 1);

(3) F (t1, ..., t5) = t2
1 ≠ (at1t2 + bt1t3 + ct1t4 + dt2

5), where a, b, c, d > 0 and
0 < a + b + c + d < 1.

Example 1.14. [27] Define F (t1, t2, t3, t4, t5) : R5
+ æ R as

(1) F (t1, ..., t5) = t1 ≠ at2, a œ [0, 1);
(2) F (t1, ..., t5) = a max {t1, t2, t3, t4, t5} , a œ [0, 1);
(3) F (t1, ..., t5) = a max

Ó
t1, t2, t3, t4,

t4+t5
2

Ô
, a œ [0, 1);

(4) F (t1, ..., t5) = a(t2 + t3), a œ
Ë
0, 1

2

2
;

(5) F (t1, ..., t5) = at1 + b(t2 + t3), a, b œ R+, a + 2b < 1;
(6) F (t1, ..., t5) = a max {t2, t3}, a œ (0, 1);
(7) F (t1, ..., t5) =

1q5
i=1 ait

p
i

2 1
p , ai œ R+, q5

i=1 ai < 1, p Ø 1;
(8) F (t1, ..., t5) = max {at1, b(t2 + t4), c(t3 + t5)}, where

a œ [0, 1), b, c œ
Ë
0, 1

2

2
.

Example 1.15. (Timi�, [164]) Define F (t1, t2, t3, t4, t5) : R5
+ æ R as

F (t1, ..., t5) = t1 ≠ ct2 ≠ t5, c œ [0,
1
2).

We establish the following general stability theorem for the Picard iteration
procedure:

Theorem 1.14. (Timi�, [164]) Let (X, d) be a complete metric space, T : X æ
X a map with Fix(X) ”= ÿ for which there exists F œ F such that for all x, y œ X,

(1.21) F

A

d(Tx, Ty), d(x, y), d(x, Ty), d(y, Tx), d(x, Tx) + d(y, Ty)
2

B

Æ 0.

If F satisfyes (2a) then
(1) the fixed point p is unique in X;
(2) the Picard iteration is T -stable.

Proof. (1) Suppose that there exists p1, p2 œ FX , such that p1 ”= p2. Then,
by taking x := p1 and y := p2 in (1.21) and by denoting ” := d(p1, p2) > 0 we get
F (”, ”, ”, ”, 0) Æ 0.

By (2a), there exists h œ [0, 1) such that ” Æ h max {”, 0} … ” Æ h” and this
is a contradiction, as long as h œ [0, 1). So, we have an unique fixed point p.

(2) Let {xn}Œ
n=0 be the associated Picard iteration of T with the general form

xn+1 = Txn, converging to the fixed point p of T , which exists and it is unique by
(1).
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Let {yn}Œ
n=0 be an arbitrary sequence in X and define {‘n}Œ

n=0 by

‘n = d(yn+1, T yn), n = 0, 1, 2, ...

In order to prove that the Picard iteration is T -stable, we need to prove that

lim
næŒ

‘n = 0 ∆ lim
næŒ

yn = p.

Assume that limnæŒ ‘n = 0. We have

d(yn+1, p) Æ d(yn+1, T yn) + d(Tyn, p) = ‘n + d(Tyn, p).

By taking x := p and y := yn in (1.21) and denoting

u := d(Tyn, p), v := d(yn, p), w := d(yn, T yn)
2 ,

we obtain that
F (u, v, u, v, w) Æ 0.

Now, since F satisfies (2a), there exists h œ [0, 1) such that u Æ h max {v, w},
respectively d(Tyn, p) Æ h max

Ó
d(yn, p), d(yn,T yn)

2

Ô
. We discuss two cases.

In the first case, when max = d(yn, p), it yields that d(Tyn, p) Æ hd(yn, p), and
then

d(yn+1, p) Æ ‘n + hd(yn, p)

and applying Lemma 1.1 we get the conclusion.
For the second case, if max = d(yn,T yn)

2 , we have that

d(Tyn, p) Æ h

2d(Tyn, yn) Æ h

2d(Tyn, p) + h

2d(p, yn).

Then,

(1 ≠ h

2 )d(Tyn, p) Æ h

2d(p, yn),

so,

d(Tyn, p) Æ
h
2

1 ≠ h
2

d(yn, p).

We denote q :=
h
2

1≠ h
2

œ [0, 1), because h œ [0, 1) and then we get

d(Tyn, p) Æ qd(yn, p),

so,
d(yn+1, p) Æ qd(yn, p) + ‘n.

Consequently, the conclusion follow by applying Lemma 1.1. ⇤
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Corollary 1.1. (Timi�, [164]) Let (X, d) be a complete metric space, T : X æ X

a map with Fix(X) ”= ÿ for which there exists F œ F such that for all x, y œ X,

F

A

d(Tx, Ty), d(x, y), d(x, Ty), d(y, Tx), d(x, Tx) + d(y, Ty)
2

B

Æ 0.

If F satisfies (2a) then

(1) the fixed point p is unique in X;
(2) the Picard iteration corresponding to the fixed point theorem obtained by

Reich [128] and Rus [139] (see Taskovic [154]) is T -stable.

Proof. We use Theorem 1.14 for F given by Example 1.14 (5). ⇤

Corollary 1.2. (Timi�, [164]) Let (X, d) be a complete metric space, T : X æ X

a map with Fix(X) ”= ÿ for which there exists F œ F such that for all x, y œ X,

F

A

d(Tx, Ty), d(x, y), d(x, Ty), d(y, Tx), d(x, Tx) + d(y, Ty)
2

B

Æ 0.

If F satisfies (2a) then

(1) the fixed point p is unique in X;
(2) the Picard iteration corresponding to the fixed point theorem obtained by

Bianchini [34] and Dugundij (1976) (see Rus [139]) is T -stable.

Proof. We use Theorem 1.14 for F given by Example 1.14 (6). ⇤

Remark 1.17. Some other important particular cases:

(1) If F is given by Example 1.14 (1), then we obtain a stability result for
Banach’s contraction mapping principle, see Ostrowski [115].

(2) If F is given by Example 1.14 (2), then we obtain a stability result for the
Ciric’s fixed point theorem [50], see Harder and Hicks [62].

(3) If F is given by Example 1.14 (4), then we obtain a stability result for the
Kannan’s fixed point theorem [81], see Harder and Hicks [62].

(4) If F is given by Example 1.14 (8), then we obtain a stability result for
Zamfirescu’s fixed point theorem, that is, Theorem 2 from Harder and
Hicks [62].

(5) If F is given by Example 1.15, then we obtain a stability result for Reich’s
fixed point theorem, that is, for Theorem 3 from Reich [129].

Remark 1.18. The contractive conditions obtained from (1.21) with F as in Ex-
amples 1-2 imply the contraction condition used by Rhoades in [130], [132], [133]
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and furthermore, they involve stability results for other well-known fixed point the-
orems.

2. Stability of fixed point iterative procedure for common fixed points

and coincidence points and contractive mappings satisfying implicit

relations with six parameters

Popa [120], [121] also introduced F to be the set of all continuous real functions
F : R6

+ æ R+ with the following conditions:

(1) (a) F is non-increasing in the fifth variable and F (u, v, v, u, u + v, 0) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(b) F is non-increasing in the fourth variable and F (u, v, 0, u+v, u, v) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(c) F is non-increasing in the third variable and F (u, v, u+v, 0, v, u) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(2) F (u, u, 0, 0, u, u) > 0, for all u > 0.

The following examples of such functions appearing in Popa [121] correspond
to well-known fixed point theorems and satisfy the above conditions.

Example 2.16. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t1 ≠ k max{t2, t3, t4,
1
2 (t5 + t6)}, k œ (0, 1).

Example 2.17. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t1 ≠ b (t3 + t4) , b œ
5
0,

1
2

4
.

Example 2.18. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t1 ≠ c (t5 + t6) , c œ
5
0,

1
2

4
.

Example 2.19. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t2
1 ≠ c1 max{t2

2, t2
3, t2

4} ≠ c2 max{t3t5, t4t6} ≠ c3t5t6,

where c1 > 0, c2, c3 Ø 0, c1 + 2c2 < 1 and c1 + c3 < 1.
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Example 2.20. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t2
1 ≠ t1 (at2 + bt3 + ct4) ≠ dt5t6,

where a > 0, b, c, d Ø 0, a + b + c < 1 and a + d < 1.

Example 2.21. [121] Define F (t1, t2, t3, t4, t5, t6) : R6
+ æ R+ as

F (t1, t2, t3, t4, t5, t6) = t3
1 ≠ at2

1t2 ≠ bt1t3t4 ≠ ct2
5t6 ≠ dt5t

2
6,

where a > 0, b, c, d Ø 0, a + c + d < 1 and a + b < 1.

Imdad and Ali [67] proved a general common fixed point theorem for a pair of
mappings using implicit functions due to Popa [120], [121].

In the following, using the results obtained in [67], we give a stability result
for the common fixed point iterative procedure.

Theorem 2.15. (Timi�, [162]) Let (X, d) be a complete metric space and S, T :
X æ X two mappings such that

• T and S satisfy (E.A) property;
• ’x, y œ X, there exists F œ F,

(2.22) F (d(Tx, Ty), d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)) Æ 0,

• S(X) is a complete subspace of X.

Then
(i) the pair (T, S) has a point of coincidence;
(ii) the pair (T, S) has a unique common fixed point, as long as the pair (T, S)

is also weakly compatible;
(iii) if, additionally, F satisfies (1b), then the associated iterative procedure is

(S, T )-stable.

Proof. Since T and S satisfy (E.A) property, then there exists a sequence
{xn}Œ

n=0 in X such that

lim
næŒ

Txn = lim
næŒ

Sxn = t, t œ X.

As long as S(X) is a complete subspace of X, every convergent sequence of
points of S(X) has a limit in S(X). Therefore,

lim
næŒ

Sxn = t = Sa = lim
næŒ

Txn = t, a œ X
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which in turn yields that t = Sa œ S(X). Now assert that Sa = Ta. If it is not,
then d(Ta, Sa) > 0. Using (2.22), we have that

F (d(Ta, Txn), d(Sa, Sxn), d(Sa, Ta), d(Sxn, Txn), d(Sa, Txn), d(Sxn, Ta)) Æ 0

which on letting n æ Œ reduces to

F (d(Ta, t), d(Sa, t), d(Sa, Ta), d(t, t), d(Sa, t), d(t, Ta)) Æ 0

or
F (d(Ta, Sa), 0, d(Sa, Ta), 0, 0, d(Sa, Ta)) Æ 0

and according to (1b), d(Ta, Sa) Æ 0.
Hence, Ta = Sa, which shows that a is a coincidence point of T and S.
Since S and T are weakly compatible, we have

St = STa = TSa = Tt.

Now assert that Tt = t. If not, then d(Tt, t) > 0. Again, using (2.22), we get

F (d(Tt, Ta), d(Sa, St), d(St, T t), d(Sa, Ta), d(St, Ta), d(Sa, T t)) Æ 0

or
F (d(Tt, t), d(Tt, t), 0, 0, d(Tt, t), d(t, T t)) Æ 0,

which contradicts (2).
Hence, Tt = t which shows that t is a common fixed point of T and S.
Now, we shall prove the uniqueness of t. Assume the contrary, respectively,

there exists tÕ œ Fix(T ), such that t ”= tÕ. Then, by taking x := t and y := tÕ in
(2.22) and by denoting ” := d(t, tÕ) > 0, we get

F (”, ”, 0, 0, ”, ”) Æ 0,

which contradicts (2), and this proves that the pair (S, T ) has a unique common
fixed point.

In order to prove the (S, T )-stability, we take the sequence {Sxn}Œ
n=0 generated

by the general iterative procedure Sxn+1 = Txn, n = 1, 2, ..., for any x0 œ X,
which converges to a œ X, the coincidence point of the iterative procedure.

Let {Syn}Œ
n=0 µ X be an arbitrary sequence and set

‘n = d(Syn+1, T yn), n = 0, 1, 2, ... .

Then, in order to show that the iterative procedure is (S, T )-stable or stable
with respect to (S, T ), we have to prove the implication:

lim
næŒ

‘n = 0 =∆ lim
næŒ

Syn = a.
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Assume that limnæŒ ‘n = 0. Then

(2.23) d(Syn+1, a) Æ d(Syn+1, T yn) + d(Tyn, a) = ‘n + d(Tyn, a).

If we take x := a and y := yn in (2.22), then we obtain F (u, v, 0, w, u, v) Æ 0,
where u := d(Tyn, a), v := d(Syn, a), w := d(Syn, T yn). By the triangle inequality,
d(Syn, T yn) Æ d(Tyn, a) + d(Syn, a), that is, w Æ u + v.

Now, according to (1b), since F is non-increasing in the fourth variable, we
have that

F (u, v, 0, u + v, u, v) Æ F (u, v, 0, w, u, v) Æ 0.

Then, by the same assumption (1b), there exists h œ [0, 1) such that u Æ hv,
that is, d(Tyn, a) Æ hd(Syn, a), which, by (3.25) yields d(Syn+1, a) Æ hd(Syn, a) +
‘n and applying Lemma 1.1, we get the conclusion. ⇤

Remark 2.19. Particular cases:

(1) In the case of F given in Example 2.16, from Theorem 2.15 we obtain a
stability result for the Ciric’s fixed point theorem [51].

(2) In the case of F given in Example 2.17, from Theorem 2.15 we obtain a
stability result for the Kannan’s fixed point theorem [81].

(3) In the case of F given in Example 2.18, from Theorem 2.15 we obtain a
stability result for the Chatterjea’s fixed point theorem [45].

Remark 2.20. Theorem 2.15 gives a stability result for the common fixed point
iteration procedure corresponding to Theorem 3.1 in [67].

3. Stability of fixed point iterative procedure for common fixed points

and coincidence points for contractive mappings satisfying implicit

relations with five parameters

From the class of implicit functions due to Popa [119], [120], [121], now let
F be the set of all continuous real functions F : R5

+ æ R, satisfying the following
conditions:

(1) F is continuous in each coordinate variable,
(2) there exists h œ [0, 1) such that, ’u, v, w Ø 0 satisfying

• (2a) F (u, v, u, v, w) Æ 0 or
• (2b) F (u, v, v, u, w) Æ 0
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then we have that u Æ h max {v, w} .

(3) F (u, u, u, u, 0) > 0, for all u > 0.

In the sequel, we present some examples of functions depending on five param-
eters, satisfying some of the conditions above.

Example 3.22. [119] The function F (t1, t2, t3, t4, t5) : R5
+ æ R given by

F (t1, ..., t5) = t1 ≠ at2,

where a œ [0, 1), satisfies (1),(2a),(2b) and (3), with h = a.

Example 3.23. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by one of the following:

(1) F (t1, ..., t5) = t1 ≠ at2,

(2) F (t1, ..., t5) = t1 ≠ bt5,

(3) F (t1, ..., t5) = t1 ≠ c(t3 + t4),

where a, b œ [0, 1), c œ
Ë
0, 1

2

2
, satisfies (1),(2a),(2b) and (3), with h = a, b,

respectively b
1≠b < 1.

Example 3.24. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by
F (t1, ..., t5) = t1 ≠ kt5,

where k œ (0, 1), satisfies (1),(2a),(2b) and (3), with h = k.

Example 3.25. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by
F (t1, ..., t5) = t1 ≠ at2 ≠ bt5,

where a, b œ (0, 1), with a + 2b < 1, satisfies (1), (2a), (2b) and (3), with h = a,
if max {v, w} = v and h = b, if max {v, w} = w.

Example 3.26. [119] The function F (t1, t2, t3, t4, t5) : R5
+ æ R given by

F (t1, ..., t5) = t1 ≠ a(t3 + t4),

where a œ
1
0, 1

2

2
, satisfies (1), (2a), (2b) and (3), with h = a

1≠a œ (0, 1).

Example 3.27. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by
F (t1, ..., t5) = t1 ≠ h max {t3, t4} ,

where h œ [0, 1), satisfies (1), (2a), (2b) and (3).
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Example 3.28. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by
F (t1, ..., t5) = t1 ≠ at2 ≠ bt3 ≠ ct4,

where a, b, c œ [0, 1), with a + b + c < 1, satisfies (1), (2a) with h = a+c
1≠b œ [0, 1),

(2b) with h = a+b
1≠c œ [0, 1), and (3).

Example 3.29. (Timi�, [161]) The function F (t1, t2, t3, t4, t5) : R5
+ æ R given

by
F (t1, ..., t5) = t1 ≠ at2 ≠ bt3 ≠ ct4 ≠ dt5,

where a, b, c, d œ [0, 1), with a + b + c + 2d < 1, satisfies (1), (2a) with h = a+c
1≠b œ

[0, 1), (2b) with h = a+b
1≠c œ [0, 1), and (3), where h = a+c

1≠b œ [0, 1), if max {v, w} = v

and h = a+b
1≠c œ [0, 1), if max {v, w} = w.

Example 3.30. [117] The function F (t1, t2, t3, t4, t5) : R5
+ æ R given by

F (t1, ..., t5) = t1 ≠ a max
;

t2,
t3 + t4

2 , t5

<
,

where a œ [0, 1), satisfies (1), (2a), (2b) and (3), respectively when max = t2 or
max = t5, then h = a, when max = t3+t4

2 , then h =
a
2

1≠ a
2
.

Example 3.31. [119] The function F (t1, t2, t3, t4, t5) : R5
+ æ R given by

F (t1, ..., t5) = t1 ≠ c max {t2, t3, t4, t5} ,

where h = c œ [0, 1), satisfies (1), (3), when max = t2, max = t4 or max = t5 is
satisfied (2a) and when max = t3 is satisfied (2b).

Example 3.32. [119] The function F (t1, t2, t3, t4, t5) : R5
+ æ R given by

F (t1, ..., t5) = t2
1 ≠ c max

Ó
t2t3, t2t4, t3t4, t2

5
Ô

,

where c œ [0, 1), satisfies (1), (2a) and (3), with h = c.

Using the common fixed point theorem of Imdad and Ali [67], we give the
following general stability result for the common fixed point iteration procedure
of Jungck-type using weakly compatible mappings satisfying (E.A) property and
defined by an implicit contraction condition.

Theorem 3.16. (Timi�, [161]) Let (X, d) be a complete metric space and S, T :
X æ X be two mappings, such that T and S satisfy (E.A) property and S(X) is
a complete subspace of X.
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Assume there exists F œ F such that
(3.24)

F

A

d(Tx, Ty), d(Sx, Sy), d(Sx, Ty), d(Sy, Tx), d(Sx, Tx) + d(Sy, Ty)
2

B

Æ 0,

for all x, y œ X. Then

(1) if F satisfies (2b), then the pair (T, S) has a point of coincidence;
(2) if F satisfies (3), the pair (T, S) has a unique common fixed point as long

as the pair (T, S) is also weakly compatible;
(3) if, additionally, F satisfies (2a), then the associated iterative procedure is

(S, T )-stable.

Proof. Since T and S satisfy (E.A) property, there exists a sequence {xn}Œ
n=0

in X such that
lim

næŒ
Txn = lim

næŒ
Sxn = t, t œ X.

Since S(X) is a complete subspace of X, every convergent sequence of points
of S(X) has a limit in S(X). Therefore,

lim
næŒ

Sxn = t = Sz = lim
næŒ

Txn = t, z œ X

which in turn yields that t = Sz œ S(X).
Assert that Sz = Tz. If not, then d(Tz, Sz) > 0 and using (3.24), we have

F

A

d(Tz, Txn), d(Sz, Sxn), d(Sz, Txn), d(Sxn, T z), d(Sz, Tz) + d(Sxn, Txn)
2

B

Æ 0

which by letting n æ Œ reduces to

F

A

d(Tz, t), d(Sz, t), d(Sz, t), d(t, T z), d(Sz, Tz) + d(t, t)
2

B

Æ 0

or to

F

A

d(Tz, Sz), 0, 0, d(Sz, Tz), d(Sz, Tz) + 0
2

B

Æ 0. (ú)

By (ú) and according to (2b), there exists h œ [0, 1) such that

d(Tz, Sz) Æ h max
I

0,
d(Sz, Tz)

2

J

= h
d(Sz, Tz)

2 < d(Sz, Tz),

a contradiction.
Hence Tz = Sz, so z is a coincidence point of T and S.
Since S and T are weakly compatible, then

St = STz = TSz = Tt.
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Now, assert that Tt = t. If not, then d(Tt, t) > 0. Again, using (3.24),

F

A

d(Tt, Tz), d(Sz, St), d(St, Tz), d(Sz, T t), d(St, T t) + d(Sz, Tz)
2

B

Æ 0

or
F (d(Tt, t), d(Tt, t), d(Tt, t), d(Tt, t), 0) Æ 0

which contradicts property (3). Hence, Tt = t which shows that t is a common
fixed point of T and S.

Now, we shall prove the uniqueness of t. Assume the contrary, respectively,
there exists tÕ œ Fix(T ), such that t ”= tÕ. Then, by taking x := t and y := tÕ in
(3.24) and by denoting ” := d(t, tÕ) > 0, we get

F (”, ”, ”, ”, 0) Æ 0,

which contradicts (2), and this proves that the pair (S, T ) has a unique common
fixed point.

In order to prove the (S, T )-stability of Jungck type iteration procedure, we
take the sequence {Sxn}Œ

n=0 generated by Sxn+1 = Txn, n = 1, 2, ..., for any
x0 œ X, which converges to t, the common fixed point of the iterative procedure,
as long as the pair (S, T ) has an unique common fixed point.

Let {Syn}Œ
n=0 µ X be an arbitrary sequence and set

‘n = d(Syn+1, T yn), n = 0, 1, 2, ... .

By definition, the iterative procedure is (S, T )-stable if and only if

lim
næŒ

‘n = 0 =∆ lim
næŒ

Syn = t.

Assume that limnæŒ ‘n = 0. Then

(3.25) d(Syn+1, t) Æ d(Syn+1, T yn) + d(Tyn, t) = ‘n + d(Tyn, t).

If we take x := t and y := yn in (3.24), then we obtain F (u, v, u, v, w) Æ 0,
where u := d(Tyn, t), v := d(Syn, t), w := 1

2d(Syn, T yn). Now, since F satisfies
(2a), there exists h œ [0, 1) such that u Æ h max {v, w}, respectively d(Tyn, t) Æ
h max

Ó
d(Syn, t), d(Syn,T yn)

2

Ô
. We discuss two cases.

Case 1. We take max
Ó
d(Syn, t), d(Syn,T yn)

2

Ô
= d(Syn, t) and it yields that

d(Tyn, t) Æ hd(Syn, t), and then

d(Syn+1, t) Æ hd(Syn, t) + ‘n

and applying Lemma 1.1 we get the conclusion, i.e., limnæŒ Syn+1 = t.
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Case 2. If max
Ó
d(Syn, t), d(Syn,T yn)

2

Ô
= d(Syn,T yn)

2 , we have

d(Tyn, t) Æ h

2d(Tyn, Syn) Æ h

2d(Tyn, t) + h

2d(t, Syn).

Then,

(1 ≠ h

2 )d(Tyn, t) Æ h

2d(t, Syn), so,

d(Tyn, t) Æ
h
2

1 ≠ h
2

d(Syn, p).

We denote q :=
h
2

1≠ h
2

œ [0, 1), because h œ [0, 1) and then we get

d(Tyn, t) Æ qd(Syn, t).

So,

d(Syn+1, t) Æ qd(Syn, t) + ‘n,

and again, the conclusion follows by applying Lemma 1.1. ⇤

Remark 3.21. Theorem 3.16 completes Theorem 3.1 in Imdad and Ali [67] with
the information about the stability of the Jungck-type iterative procedure with re-
spect to the mappings S and T , provided that the function F satisfies an additional
condition.

Corollary 3.3. (Timi�, [161]) Let (X, d) be a complete metric space and S, T :
X æ X be two mappings, such that T and S satisfy (E.A) property and S(X) is
a complete subspace of X.

Suppose there exists F œ F such that S and T satisfy (3.24), for all x, y œ X.

Then, the Jungck-type iterative procedure is (S, T )-stable.

Proof. We apply Theorem 3.16, with F given by Example 3.22 which satisfies
all conditions (1)-(3) and then we obtain a stability result for Jungck’s contraction
principle given in [78]. ⇤

Corollary 3.4. (Timi�, [161]) Let (X, d) be a complete metric space and S, T :
X æ X be two mappings, such that T and S satisfy (E.A) property and S(X) is
a complete subspace of X.

Suppose there exists F œ F such that S and T satisfy (3.24), for all x, y œ X.

Then, in the case of the contraction conditions of Zamfirescu’s type, the asso-
ciated common fixed point iterative procedure is (S, T )-stable.
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Proof. We apply Theorem 3.16, for S = I, the identity map on X, and with
F given by Example 3.23 and then we obtain a stability result for the Zamfirescu’s
fixed point theorem, see [173], corresponding to a pair of mappings with a common
fixed point. ⇤

Remark 3.22. Other particular cases.

(1) If F is given by Example 3.24 and S = I, the identity map on X, then
we obtain a stability result for the Kannan’s fixed point theorem, see [81],
corresponding to a pair of mappings with a common fixed point;

(2) If F is given by Example 3.25 and S = I, the identity map on X, then we
obtain a stability result for a fixed point theorem obtained by Reich (1971)
and Rus (1971), see [154], corresponding to a pair of mappings with a
common fixed point;

(3) If F is given by Example 3.26 and S = I, the identity map on X, then we
obtain a stability result for the Chatterjea’s fixed point theorem, see [45],
corresponding to a pair of mappings with a common fixed point;

(4) If F is given by Example 3.29 and S = I, the identity map on X, then we
obtain a stability result for the Hardy and Rogers’s fixed point theorem,
see [63], corresponding to a pair of mappings with a common fixed point;

(5) If F is given by Example 3.30 and S = I, the identity map on X, then we
obtain a stability result for the Pathak and Verma’s fixed point theorem,
see [117], corresponding to a pair of mappings with a common fixed point
in symmetric spaces;

(6) If F is given by Examples 3.31, 3.32 and S = I, the identity map on
X, then we obtain stability results for the Popa’s fixed point theorem, see
[119], corresponding to two pairs of mappings on two metric spaces.

Remark 3.23. The contractive conditions obtained from (3.24) with F as in above
examples also imply contractive conditions used by Rhoades in [130], [132], [133],
[134].
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Conclusions:

Because of the inclusions between the commutativity definitions, the weakly
compatible pair of mappings is the most general type from the mentioned notions
and it includes the others. The above theorem use this kind of weakly compatible
mappings and it follows that it holds also for compatible, commuting and weakly
commuting pair of mappings.

In order to extend and generalize all the mentioned common fixed point theo-
rems, it can be established corresponding stability results for fixed point iteration
procedures associated to contractive mappings defined by a suitable implicit rela-
tion.



CHAPTER 4

A new point of view on the stability of fixed point

iterative procedures

By taking account of the notions of stability in di�erence equations, dynamical
systems, di�erential equations, operator theory and numerical analysis, Rus [136]
unified these notions by new ones.

We consider these new notions in this chapter and study the stability of Picard
iteration for mappings which satisfy certain contractive conditions. We also give
some illustrative examples.

The author’s original contributions in this chapter are: Theorem 1.17, Propo-
sition 1.2, Corollary 1.5, Corollary 1.6, Corollary 1.7, Example 1.33, Corollary 1.8,
Theorem 2.18, Corollary 2.9, Example 2.34, Theorem 2.19, Corollary 2.10, Exam-
ples 3.35 - 3.42, Definition 4.26, Definition 4.27, Proposition 4.3, Theorem 4.20,
Theorem 4.21, Theorem 5.22.

Some of them are included in [156] (Timi�, I., New stability results of Picard
iteration for common fixed points and contractive type mappings, presented at
SYNASC 2012, Timi�oara, 26-29 Sept. 2012).

1. New stability concept for Picard iterative procedures

Eirola, Nevanlinna and Pilyugin [57] introduced the notion of limit shadowing
property and Rus [136] adopted it, in order to introduce a new concept of stability
for fixed point iteration procedures which appears to be more general than the
notion of stability introduced by Harder [60].

Definition 1.23. (Rus,[136]) On the metric space (X, d), the operator T : X æ X

has stable Picard iterates at x0 œ X, if for every ‘ > 0, there exists ”(‘) > 0, such
that

x œ X, d(x, x0) < ”(‘) ∆ d (T nx, T nx0) < ‘, ’n œ N.

The operator T Y µ X, if it has stable Picard iterates at all x0 œ Y.

68
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Definition 1.24. [57] The operator T has the limit shadowing property with re-
spect to Picard iteration, if

yn œ X, n œ N, d(yn+1, T yn) æ 0 as n æ Œ

imply that there exists x0 œ X, such that

d(yn, T nx0) æ 0 as n æ Œ.

Definition 1.25. [136] Picard iteration is stable with respect to an operator T

if it is convergent with respect to T and the operator T has the limit shadowing
property with respect to this iterative procedure.

Theorem 1.17. (Timi�, [157]) Let (X, d) be a metric space and T : X æ X be
an a-contraction, i.e., T satisfies

d(Tx, Ty) Æ ad(x, y), ’x, y œ X,

with a œ [0, 1) fixed.
Then, T has stable Picard iterates on X.

Proof. When a = 0, the operator T is constant and we have nothing to prove.
When a œ (0, 1), for x0 œ X and ‘ > 0 arbitrarily chosen, we are looking for an
”(‘) > 0, such that

(1.26) d(x, x0) < ”(‘) ∆ d (T nx, T nx0) < ‘, ’n œ N.

Since T is an a-contraction, d (T nx, T nx0) Æ and(x, x0) Æ ad(x, x0), ’n Ø 1.
It su�ces to impose the condition a” < ‘. So, (1.26) holds, as soon as ”(‘) is an
arbitrary number in the interval

1
0, a

2

2
.

According to Definition 1.23, T has stable Picard iterates at x0 œ X, and
because x0 was arbitrary taken, then T has stable Picard iterates on X. ⇤

In the following, we study the relationship between the two stability definitions,
the one of Harder [60] and the other one due to Rus [136].

Proposition 1.2. (Timi�, [157])
Let (X, d) be a metric space and T : X æ X be a mapping. Let x0 œ X

and let use assume that the Picard iteration procedure xn+1 = Txn, n = 0, 1, 2, ...,

converges to a fixed point p of T .
Suppose that Picard iteration is stable in the sense of Harder. Then, it is also

stable in the sense of Rus. (Definition 1.23)
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Proof. Let (X, d) be a metric space and T : X æ X a mapping, x0 œ X and
let us assume that the iteration procedure xn+1 = Txn, n = 0, 1, 2, ..., converges
to a fixed point p of T .

Let {yn}Œ
n=0 be an arbitrary sequence in X, such that ‘n = d (yn+1, T yn) æ 0, as

n æ Œ. As the Picard iteration is T -stable in the sense of Harder, limnæŒ yn = p.

Then, x0 = p satisfies the condition from Definition 1.25, because,

d(yn, T nx0) = d(yn, xn) Æ d(yn, p) + d(p, xn) æ 0,

so the Picard iteration is also T -stable in the sense of Rus. ⇤

Corollary 1.5. (Timi�, [157]) Let (X, d) be a metric space and T : X æ X be
a mapping satisfying the contraction condition of Zamfirescu, i.e., there exists real
numbers –, —, “, satisfying 0 Æ – < 1, 0 Æ —, “ < 1

2 , such that, for each x, y œ X,
at least one of the following is true:

(1) d(Tx, Ty) Æ –d(x, y);
(2) d(Tx, Ty) Æ — [d(x, Tx) + d(y, Ty)] ;
(3) d(Tx, Ty) Æ “ [d(x, Ty) + d(y, Tx)] .

Let x0 œ X and let use assume that the Picard iteration procedure xn+1 = Txn,
n = 0, 1, 2, ..., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it is also
stable in the sense of Rus (Definition 1.23).

Remark 1.24. Corollary 1.5 gives a stability result corresponding to the fixed
point theorem of Zamfirescu [173].

Corollary 1.6. (Timi�, [157]) Let (X, d) be a metric space and T : X æ X be
a mapping satisfying Kannan’s contraction condition, i.e., there exists a œ [0, 1)
such that for all x, y œ X,

d (Tx, Ty) Æ a [d(x, Tx) + d(y, Ty)] .

Let x0 œ X and let use assume that the Picard iteration procedure xn+1 = Txn,
n = 0, 1, 2, ..., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it is also
stable in the sense of Rus (Definition 1.23).

Remark 1.25. Corollary 1.6 gives a stability result corresponding to the fixed
point theorem of Kannan [81].
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Corollary 1.7. (Timi�, [157]) Let (X, d) be a metric space and T : X æ X be a
mapping satisfying Chatterjea’s contraction condition, i.e., there exists a œ

Ë
0, 1

2

2

such that for all x, y œ X,

d (Tx, Ty) Æ a [d(x, Ty) + d(y, Tx)] .

Let x0 œ X and let use assume that the Picard iteration procedure xn+1 = Txn,
n = 0, 1, 2, ..., converges to a fixed point p of T .

Suppose that Picard iteration is stable in the sense of Harder. Then, it is also
stable in the sense of Rus (Definition 1.23).

Remark 1.26. Corollary 1.7 gives a stability result corresponding to the fixed
point theorem of Chatterjea [45].

Remark 1.27. The converse of Proposition 1.2 is not generally true, as shown by
the following example.

Example 1.33. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be identity mapping on [0, 1], that is, Tx = x, for each
x œ [0, 1], where [0, 1] is endowed with the usual metric. Every point in [0, 1] is a
fixed point of T and T is nonexpansive, but not a contraction.

Harder [62] showed in this case that Picard iteration is not T -stable. Let now
study the stability in sense of Rus. For any yn œ X, with n œ N, we have to
prove that limnæŒ d(yn+1, T yn) = 0 implies that there exists x0 œ X, such that
limnæŒ d(yn, T nx0) = 0.

Indeed, for any yn œ [0, 1], we get Tyn = yn, and suppose that

lim
næŒ

d(yn+1, T yn) = lim
næŒ

d(yn+1, yn) = 0.

Now, there exists x0 œ X, where x0 = l := limnæŒ yn such that

lim
næŒ

d(yn, T nx0) = lim
næŒ

d(yn, x0) = 0.

Hence, Picard iteration is stable in the sense of Rus.

Corollary 1.8. (Timi�, [157])
Let (X, d) be a metric space and T : X æ X a mapping, x0 œ X and let us

assume that the sequence {xn}Œ
n=1 converges to a fixed point p of T .

If Picard iteration procedure is stable in the sense of Harder, then the fixed
point is unique.
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Proof. Suppose that Fix(T ) = {p, q}, with p ”= q.
For the sequence {yn}Œ

n=0, yn = q, with Tyn = q, we have that
limnæŒ d (yn+1, T yn) = 0, but limnæŒ yn = q ”= p.

So, Picard iteration procedure is stable in the sense of Harder if and only if
Fix(T ) = {p}. ⇤

Remark 1.28. Corollary 1.8 has been suggested by Professor I. A. Rus (private
communication).

2. Stability results of Picard iteration for mappings satisfying certain

contractive conditions

According to above stability definitions of Rus [136], in the following we study
the stability of Picard iterative procedure as well as the stability of Picard iterates
at x0 œ X, with respect to T .

A generalized contraction condition introduced by Berinde [20], named almost
contraction condition has some surprising properties: it ensures the convergence
of Picard iteration to a fixed point and under adequate conditions, an unique fixed
point, but it does not require the sum of the coe�cients on the right side of the
contractive condition to be less than 1.

In a metric space (X, d), a self mapping T : X æ X is called an almost
contraction if there exists two constants ” œ [0, 1) and L Ø 0 such that

d (Tx, Ty) Æ ”d(x, y) + Ld(y, Tx),

for any x, y œ X. Here, ” + L is not restricted to be less than 1.
Almost contractions have a very similar behavior to that of Banach contrac-

tions, which explains their name, except for the fact that the fixed point is generally
not unique.

In order to ensure this uniqueness, Berinde [20] considered another condition,
similar to the above one, namely

(2.27) d (Tx, Ty) Æ ”ud(x, y) + Lud(x, Tx),

for any x, y œ X, where ”u œ [0, 1) and Lu Ø 0 are constants.
Note that (2.27) has been used by Osilike [108], [110], Osilike and Udomene

[114] in order to establish several stability results.
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Berinde [21] also proved the existence of coincidence points and common fixed
points for a large class of almost contractions in cone metric spaces.

Moreover, Berinde [18] proved the existence of coincidence points and common
fixed points of noncommuting almost contractions in metric spaces and a method
for approximating the coincidence points or the common fixed points is also con-
structed, for which both a priori and a posteriori error estimates are obtained.

Using this condition, we obtain the following stability result:

Theorem 2.18. (Timi�, [157]) Let (X, d) be a metric space and T : X æ X be
a self mapping satisfying the contraction condition (2.27), i.e., for some ”u œ [0, 1)
and Lu Ø 0. For all x, y œ X, we have

d (Tx, Ty) Æ ”ud(x, y) + Lud(x, Tx).

Then, the associated Picard iteration is T -stable in the sense of Definition 1.25.

Proof. Osilike [110] established the stability in the sense of Harder for Picard
iteration and using a mapping satisfying (2.27).

Further, by Proposition 1.2, stability in the sense of Harder involve stability in
the sense of Rus, so, we get the conclusion. ⇤

Remark 2.29. For a metric space (X, d) and a self mapping T satisfying the
almost contraction condition (2.27), the associated Picard iteration is T -stable in
the sense of Rus, provided it is T -stable in the sense of Harder.

Corollary 2.9. (Timi�, [157]) Let (X, d) be a metric space and a mapping T :
X æ X, satisfying Banach’s contraction condition, i.e., there exists a œ [0, 1) and
for all x, y œ X, we have that T satisfy the contraction condition

d (Tx, Ty) Æ ad(x, y).

Then, the associated Picard iteration is T -stable in the sense of Definition 1.25.

Proof. Applying Theorem 2.18 for L = 0, we obtain a stability result for
Banach’s contraction principle [14]. ⇤

Example 2.34. (Timi�, [157])

Let X =
Ó
0, 1

2 , 1
22 , ...

Ô
with the usual metric. Define T : X æ X by T (0) = 1

2 ,
T

1
1

2n

2
= 1

2n+1 , n = 1, 2, 3, ...

Babu, Sandhya and Kameswari [13] proved that T satisfies the almost contrac-
tion condition (2.27), with ” = 1

2 , L = 1, and ” + L = 3
4 > 1.
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Because T has no fixed points, Picard iteration is not stable in the sense of
Harder. Now, we study the stability in the sense of Rus.

For an arbitrary sequence {yn}Œ
n=0 œ X, with limnæŒ d(yn+1, T yn) = 0, where

limnæŒ yn := l, there obviously exists x0 œ X, with limnæŒ xn = l, such that
limnæŒ d(yn, xn) = 0.

Because Picard iteration is also convergent with respect to T , then it is stable
in the sense of Rus.

Babu, Sandhya and Kameswari [13] found a di�erent contractive condition
that ensures the uniqueness of fixed points of almost contractions: if there exists
” œ (0, 1) and L Ø 0, such that for all x, y œ X,

(2.28) d (Tx, Ty) Æ ”d(x, y) + L min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

Using this condition, we obtain the following stability result:

Theorem 2.19. (Timi�, [157]) Let (X, d) be a metric space and a self mapping
T : X æ X, satisfying the almost contraction condition (2.28), i.e., there exists
” œ (0, 1) and L Ø 0, such that

d (Tx, Ty) Æ ”d(x, y) + L min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for all x, y œ X.

Then, the associated Picard iteration is T -stable in the sense of Harder.

Proof. Let the Picard iteration with the initial value x0 œ X, {xn}Œ
n=1, which

converges to a fixed point p of T , see [13].
Let {yn}Œ

n=0 be an arbitrary sequence in X, satisfying condition

lim
næŒ

d(yn+1, T yn) = 0.

The fixed point iteration is T -stable in the sense of Harder, if this implies

lim
næŒ

d(yn, p) = 0.

We have

d(yn+1, p) Æ d(yn+1, T yn) + d(Tyn, Txn) + d(Txn, p) Æ d(yn+1, T yn)+

+”d(xn, yn) + L min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} + d(Txn, p).

We discuss four cases.
Case 1.

min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} := d(xn, Txn).
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Then, d(yn+1, p) Æ ‘n + ”d(xn, yn), where ‘n := d(yn+1, T yn) + Ld(xn, Txn) +
d(Txn, p) æ 0, as n æ Œ, and applying Lemma 1.1 for ” œ (0, 1), we get the
conclusion.

Case 2.

min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} := d(yn, T yn).

As d(yn, T yn) Æ d(xn, Txn), then, d(yn+1, xn+1) Æ d(yn+1, T yn) + ”d(xn, yn) +
Ld(yn, T yn) + d(Txn, p) Æ d(yn+1, T yn) + ”d(xn, yn) + Ld(xn, Txn) + d(Txn, p) Æ
‘Õ

n+”d(xn, yn), where ‘Õ
n := d(yn+1, T yn)+Ld(xn, Txn)+d(Txn, p) æ 0, as n æ Œ,

and applying again Lemma 1.1 for ” œ (0, 1), we get the conclusion.
Case 3.

min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} := d(xn, T yn).

As d(xn, T yn) Æ d(xn, Txn), we follow the same steps as in above case in order
to get the conclusion.

Case 4.

min {d(xn, Txn), d(yn, T yn), d(xn, T yn), d(yn, Txn)} := d(yn, Txn).

As d(yn, Txn) Æ d(xn, Txn), we follow the same steps as in above case in order
to get the conclusion.

In a similar way, we treat the last two cases.
Therefore, the fixed point iteration procedure is stable with respect to T , in

the sense of Harder. ⇤

Corollary 2.10. (Timi�, [157]) Let (X, d) be a metric space and a self mapping
T : X æ X, satisfying the almost contraction condition (2.28), i.e., there exists
” œ (0, 1) and L Ø 0, such that

d (Tx, Ty) Æ ”d(x, y) + L min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

for all x, y œ X.

Then, the associated Picard iteration is T -stable in the sense of Rus, provided
it is T -stable in the sense of Harder.
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Conclusions:

1. A fixed point iteration procedure which is stable in the sense of Harder
is also stable in the sense of Rus. But the reverse is not generally true, because
Harder stability implies the uniqueness of fixed point, while the new one of Rus
does not.

2. The stability of a fixed point iteration procedure in the sense of Rus may im-
ply stability in the sense of Harder, if and only if the iterative procedure converges
to the fixed point.

3. On the other hand, there are many examples of mappings that satisfy certain
contractive conditions and for which the associated Picard iteration is not stable
in the sense of Harder but it is actually stable in the sense of Rus.

In the following examples, we will present some nonexpansive mappings and
almost contractions for which the associated Picard iteration is stable in the sense
of Rus but it is not stable in the sense of Harder.

Open problem: Study the stability in the sense of Rus for general nonex-
pansive mappings as well as for general almost contractions (that do not satisfy a
certain uniqueness condition).
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3. Examples

In the following, we give some examples of mappings satisfying certain con-
tractive conditions for which the associated Picard iteration is not stable in the
sense of Harder but it is actually stable in the sense of Rus.

Example 3.35. (Timi�, [157])

Let T : [0, 2] æ [0, 2] be given by

Tx =

Y
__]

__[

x
2 , x œ [0, 1)

2, x œ [1, 2] ,

where [0, 2] is endowed with the usual metric. T has two fixed points, Fix(T ) =
{0, 2}.

P�curar [116] showed that T is an almost contraction, i.e., there exists the
constants ” = 1

2 œ [0, 1) and L = 3 Ø 0, such that, for any x, y œ [0, 2], we have
that

d(Tx, Ty) Æ ”d(x, y) + Ld(y, Tx).

Note that ” + L = 7
2 > 1.

In the following, we show that Picard iteration is not T -stable in sense of
Harder but it is T -stable in sense of Rus.

Let x0 œ X and assume that Picard iteration procedure {xn}Œ
n=1, given by

xn+1 = Txn, n = 0, 1, 2, ..., converges to a fixed point p of T .
According to Definition 1.14 of Harder, the fixed point iteration procedure is

T -stable if and only if for every sequence {yn}Œ
n=0 in X,

lim
næŒ

d (yn+1, T yn) = 0 … lim
næŒ

yn = p.

Let x0 œ [0, 1), so xn = 1
2n x0, with limnæŒ xn = 0 = p. Then, Txn = 1

2n+1 x0.
Let us consider the sequence {yn}Œ

n=0 in X, defined by y0 = 1 and yn = 2n≠1
n ,

for n Ø 1.
Then, Tyn = 2 and

lim
næŒ

d (yn+1, T yn) = lim
næŒ

d
32n + 1

n + 1 , 2
4

= 0.
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On the other hand, limnæŒ d
1

2n≠1
n , 0

2
= 2 ”= 0, so the Picard iteration is not

T -stable in sense of Harder.
Now, according to Definition 1.25 of Rus, Picard iteration is Rus-stable if

yn œ X, n œ N, d(yn+1, T yn) æ 0 as n æ Œ implies that there exists x0 œ X,
such that d(yn, T nx0) æ 0 as n æ Œ. We discuss two cases.

Case 1. If yn œ [0, 1), then yn = 1
2n y0, with Tyn = 1

2n+1 y0.
So, limnæŒ d(yn+1, T yn) = limnæŒ d

1
1

2n+1 y0,
1

2n+1 y0
2

= 0 and therefore, there
exists x0 œ X such that

lim
næŒ

d(yn, xn) = lim
næŒ

d
3 1

2n+1 y0,
1

2n+1 x0

4
= lim

næŒ

1
2n+1 d (y0, x0) = 0.

Case 2. If yn œ [1, 2], then yn = 2 = Tyn.
So, d(yn+1, T yn) = d(yn+1, 2) and from limnæŒ d(yn+1, T yn) = 0 we obtain that

{yn}Œ
n=0 converges to 2. Now, just take x0 œ [1, 2] arbitrary, to get xn = 2, n Ø 0,

and hence, limnæŒ d(yn, xn) = 0. as required.
Therefore, the Picard iteration is T -stable in sense of Rus.

Example 3.36. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

2
3x, x œ

Ë
0, 1

2

2

2
3x + 1

3 , x œ
Ë

1
2 , 1

È
,

where [0, 1] is endowed with the usual metric.
T has two fixed points, Fix(T ) = {0, 1}.
P�curar [116] showed that T is an almost contraction, i.e., there exists the

constants ” = 2
3 œ [0, 1) and L = 6 Ø 0, such that, for any x, y œ [0, 1], we have

that
d(Tx, Ty) Æ ”d(x, y) + Ld(y, Tx).

Note that ” + L = 6 + 2
3 > 1.

In the following, we show that Picard iteration is not T -stable in sense of
Harder but it is T -stable in sense of Rus.

Let x0 œ X and assume that Picard iteration procedure {xn}Œ
n=1, given by

xn+1 = Txn, n = 0, 1, 2, ..., converges to a fixed point p of T .
Let x0 œ

Ë
0, 1

2

2
, so xn =

1
2
3

2n
x0, with limnæŒ xn = 0 = p.

Let us consider the sequence {yn}Œ
n=1 in X, defined by yn = n≠1

n œ [1
2 , 1], for

n Ø 1, and limnæŒ yn = 1.
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Then, Tyn = 2
3yn + 1

3 and

lim
næŒ

d (yn+1, T yn) = lim
næŒ

d
3

n

n + 1 ,
2
3yn + 1

3

4
= lim

næŒ
d

3
n

n + 1 ,
2
3 · n ≠ 1

n
+ 1

3

4
= 0.

On the other hand, limnæŒ d
1

n≠1
n , 0

2
= 1 ”= 0, so the Picard iteration is not

T -stable in sense of Harder.
Now, according to Definition 1.25 of Rus, if yn œ X, n œ N, d(yn+1, T yn) æ

0 as n æ Œ implies that there exists x0 œ X, such that d(yn, T nx0) æ 0 as n æ
Œ. We discuss two cases.

Case 1. If yn œ
Ë
0, 1

2

2
, then Tyn = 2

3yn and by

lim
næŒ

d(yn+1, T yn) = lim
næŒ

d
3

yn+1,
2
3yn

4
= 0,

we obtain that limnæŒ yn = 0.
Indeed, by

---yn+1 ≠ 2
3yn

--- æ 0, as n æ Œ, we have yn+1 ≠ 2
3yn = –n, with

–n æ 0, as n æ Œ. Then, yn+1 = 2
3yn + –n, so yn+1 Æ 2

3yn + –n, and applying
Lemma 1.1, we get limnæŒ yn = 0.

There exists x0 œ
Ë
0, 1

2

2
, such that

lim
næŒ

d(yn, xn) = lim
næŒ

d
332

3

4n

y0,
32

3

4n

x0

4
= lim

næŒ

32
3

4n

d (y0, x0) = 0.

Case 2. If yn œ
Ë

1
2 , 1

È
, then Tyn = 2

3yn + 1
3 .

So, from limnæŒ d(yn+1, T yn) = limnæŒ d(yn+1,
2
3yn + 1

3) = 0 it results that
limnæŒ yn = 1 and therefore, there exists x0 œ

Ë
1
2 , 1

È
, with limnæŒ xn = 1, such

that limnæŒ d(yn, xn) =

= lim
næŒ

d
332

3

4n

y0 + 1 ≠
32

3

4n

,
32

3

4n

x0 + 1 ≠
32

3

4n4
= 0,

so, the Picard iteration is T -stable in sense of Rus.

Example 3.37. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

x2, x œ
Ë
0, 1

4

2

0, x œ
Ë

1
4 , 1

È
,

where [0, 1] is endowed with the usual metric. T has a fixed point at 0.
P�curar [116] showed that T is an almost contraction, i.e., there exists the

constants ” = 1
2 œ [0, 1) and L = 1

3 Ø 0, such that, for any x, y œ [0, 1], we have
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that
d(Tx, Ty) Æ ”d(x, y) + Ld(y, Tx).

Note that in this case ” + L = 5
6 < 11.

In the following, we show that Picard iteration is T -stable in sense of Harder
and it is also T -stable in sense of Rus.

Let x0 œ X and assume that Picard iteration procedure {xn}Œ
n=1, given by

xn+1 = Txn, n = 0, 1, 2, ..., converges to a fixed point p of T .
Let x0 œ

Ë
0, 1

4

2
, so xn = (x0)2n, with limnæŒ xn = 0 = p.

Now, for an arbitary {yn}Œ
n=0, we discuss two cases.

Case 1. If yn œ
Ë

1
4 , 1

È
, then Tyn = 0 and from limnæŒ d (yn+1, T yn) = 0, it

results that limnæŒ yn = 0 and this is a contradiction, as long as yn œ
Ë

1
4 , 1

È
.

Case 2. If yn œ
Ë
0, 1

4

2
, then Tyn = y2

n and from limnæŒ d (yn+1, T yn) =
= limnæŒ d (yn+1, y2

n) = 0, we obtain that limnæŒ yn = 0.
Indeed, from |yn+1 ≠ y2

n| æ 0, as n æ Œ, we have that

yn+1 = y2
n + –n, (ú)

with –n æ 0, as n æ Œ. Denote limnæŒ yn := l and by taking to the limit in (ú),
we get l = l2, so l = 0, or l = 1.

Because yn œ
Ë
0, 1

4

2
, we have l = 0, so limnæŒ yn = 0.

Then, limnæŒ d (yn, p) = 0, so the Picard iteration is T -stable in sense of
Harder.

According to Proposition 1.2, if Picard iteration is T -stable in the sense of
Harder, it is also stable in the sense of Rus.

Example 3.38. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

2
3 , x œ [0, 1)

0, x = 1,

where [0, 1] is endowed with the usual metric.
T has one fixed point at 2

3 , Fix(T ) =
Ó

2
3

Ô
.

P�curar [116] showed that T is an almost contraction, i.e., there exists the
constants ” = 2

3 œ [0, 1) and L Ø ” Ø 0, such that, for any x, y œ [0, 1], we have
that

d(Tx, Ty) Æ ”d(x, y) + Ld(y, Tx).
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Note that in this case ” + L Ø 4
3 > 1.

In the following, we show that Picard iteration is T -stable in sense of Harder
and hence it is also T -stable in sense of Rus.

Let x0 œ X and assume that Picard iteration procedure {xn}Œ
n=1, given by

xn+1 = Txn, n = 0, 1, 2, ..., converges to a fixed point p of T .
For any x0 œ [0, 1], xn = 2

3 , so limnæŒ xn = 2
3 = p.

Now, for an arbitary {yn}Œ
n=0, we discuss two cases.

Case 1. If yn = 1, then Tyn = 0 and then limnæŒ d(yn+1, T yn) = 1 ”= 0 and it
is a contradiction.

Case 2. If yn œ [0, 1), then Tyn = 2
3 and from limnæŒ d (yn+1, T yn) = 0, it

results that limnæŒ yn = 2
3 .

Then, limnæŒ d (yn, p) = 0, so the Picard iteration is T -stable in sense of
Harder.

According to Proposition 1.2, if Picard iteration is T -stable in the sense of
Harder, it is also stable in the sense of Rus.

Example 3.39. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

0, x œ
Ë
0, 1

2

È

x
2 , x œ

1
1
2 , 1

È
,

where [0, 1] is endowed with the usual metric.
T has one fixed point at 1

2 , Fix(T ) =
Ó

1
2

Ô
.

P�curar [116] showed that T is an almost contraction, i.e., there exists two
constants ”u = 1

2 œ [0, 1) and Lu = 1 Ø 0, such that, for any x, y œ [0, 1], we have
that

d(Tx, Ty) Æ ”ud(x, y) + Lud(x, Tx).

Note that in this case ” + L = 3
2 > 1.

In the following, we show that Picard iteration is T -stable in sense of Harder
and it is also T -stable in sense of Rus.

Let x0 œ X and assume that Picard iteration procedure {xn}Œ
n=1, given by

xn+1 = Txn, n = 0, 1, 2, ..., converges to a fixed point p of T .
For any x0 œ [0, 1], we have that limnæŒ xn = 0 = p.

Now, for an arbitary {yn}Œ
n=0, we discuss two cases.
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Case 1. If yn œ
1

1
2 , 1

È
, then Tyn = yn

2 and by limnæŒ d (yn+1, T yn) = 0, it
results that limnæŒ yn = 0 and it is a contradiction, as long as yn œ

1
1
2 , 1

È
.

Case 2. If yn œ
Ë
0, 1

2

È
, then Tyn = 0 and by limnæŒ d(yn+1, T yn) = 0, we

obtain that limnæŒ yn = 0.
Hence, limnæŒ d (yn, p) = 0, so the Picard iteration is T -stable in sense of

Harder.
According to Proposition 1.2, if Picard iteration is T -stable in the sense of

Harder, it is also stable in the sense of Rus.

Example 3.40. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
___]

___[

1
2 , x œ

5
0,

1
2

6

0, x œ
31

2 , 1
6 ,

where [0, 1] is endowed with the usual metric. T is continuous at each point of
[0, 1] except at 1

2 .
T has an unique fixed point at 1

2 , Fix(T ) =
Ó

1
2

Ô
.

We already showed in Example 6.8 that for each x, y œ [0, 1], with x ”= y, T

satisfies the condition

d(Tx, Ty) < max {d(x, Tx), d(y, Ty)} ,

and also we showed that the associated Picard iteration is not T -stable in the sense
of Harder, by using a divergent sequence {yn}Œ

n=0 = 1
2 , 1

4 , 1
2 + 1

42 , 1
43 , 1

2 + 1
44 , 1

45 , · · · .

In the following, we prove that it is stable in the sense of Rus.
By Definition 1.25 of Rus, for any yn œ [0, 1], we have that limnæŒ d(yn+1, T yn) =

0 and it implies that there exists x0 œ X, such that limnæŒ d(yn, T nx0) = 0.

From limnæŒ d(yn+1, T yn) = 0, it results that yn œ
Ë
0, 1

2

È
and hence, Tyn = 1

2
and limnæŒ yn = 1

2 .
Now, for any x0 œ [0, 1], we have xn = 1

2 , n Ø 2, and so limnæŒ xn = 1
2 .

Hence,
lim

næŒ
d(yn, T nx0) = lim

næŒ
d(yn, xn) = 0,

so, Picard iteration is T -stable in the sense of Rus.
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Example 3.41. (Timi�, [157])

Let T : [0, 1] æ [0, 1] be given by

Tx =

Y
__]

__[

0, x œ
Ë
0, 1

2

È

1
2 , x œ

1
1
2 , 1

È ,

where [0, 1] is endowed with the usual metric. T is continuous at every point of
[0, 1] except at 1

2 .
T has an unique fixed point at 0, Fix(T ) = {0}.
We already showed in Example 6.9 that for each x, y œ [0, 1], with x ”= y, T

satisfies the condition

d (Tx, Ty) < max {d (x, Ty) , d (y, Tx)} ,

and also showed that the associated Picard iteration is not T -stable in the sense
of Harder, using {yn}Œ

n=0, with yn = n+2
2n , n Ø 1.

In the following, we prove that it is stable in the sense of Rus.
According to Definition 1.25 of Rus, for any yn œ [0, 1], we have to prove that

limnæŒ d(yn+1, T yn) = 0 implies that there exists x0 œ X, such that

lim
næŒ

d(yn, T nx0) = 0.

We discuss two cases.
Case 1. If yn œ

Ë
0, 1

2

È
, then Tyn = 0, and hence from limnæŒ d(yn+1, T yn) = 0,

it results that limnæŒ yn = 0.
Case 2. If yn œ

1
1
2 , 1

È
, then Tyn = 1

2 , and hence from limnæŒ d(yn+1, T yn) = 0,
it results that limnæŒ yn = 1

2 .
Now, definitely, there exists x0 œ [0, 1], such that

lim
næŒ

d(yn, T nx0) = lim
næŒ

d(yn, xn) = 0,

so, Picard iteration is T -stable in the sense of Rus.

Example 3.42. (Timi�, [157])

Let T : R æ
Ó
0, 1

4 , 1
2

Ô
be defined by

Tx =

Y
_______]

_______[

1
2 , x < 0

1
4 , x œ

5
0,

1
2

6

0, x > 1
2

,



84 4. A NEW POINT OF VIEW ON THE STABILITY OF FIXED POINT ITERATIVE PROCEDURES

where R is endowed with the usual metric. T is continuous at every point in R
except at 0 and 1

2 .
The only fixed point of T is 1

4 , Fix(T ).
We already showed in Example 6.10 that for each x, y œ R, with x ”= y, T

satisfies the condition

d(Tx, Ty) < max
I

d(x, y), d(x, Tx) + d(y, Ty)
2 ,

d(x, Ty) + d(y, Tx)
2

J

,

and also showed that the associated Picard iteration is not T -stable in the sense
of Harder by using the sequence {yn}Œ

n=0 of real numbers yn = 1
2 + 1

n , for each
positive odd integer and yn = ≠ 1

n , for each positive even integer.
In the following, we prove that it is stable in the sense of Rus.
According to Definition 1.25 of Rus, for any yn œ R, we have that

limnæŒ d(yn+1, T yn) = 0 and it implies that there exists x0 œ R, such that
limnæŒ d(yn, T nx0) = 0. We discuss three cases.

Case 1. If yn < 0, then Tyn = 1
2 , so, from d(yn+1, T yn) = d(yn+1,

1
2) æ 0,

as n æ Œ, it results that limnæŒ yn = 1
2 , and this is a contradiction, as long as

yn < 0.
Case 2. If yn > 1

2 , then Tyn = 0, so, from d(yn+1, T yn) = d(yn+1, 0) æ 0, as
n æ Œ, it results that limnæŒ yn = 0, and this is another contradiction, as long
as yn > 1

2 .

Case 3. If yn œ
5
0,

1
2

6
, then Tyn = 1

4 , so, from d(yn+1, T yn) = d(yn+1,
1
4) æ 0,

as n æ Œ, it results that limnæŒ yn = 1
4 .

Now, definitely, there exists x0 œ R, such that limnæŒ xn = 1
4 and

limnæŒ d(yn, T nx0) = limnæŒ d(yn, xn) = 0, so, Picard iteration is T -stable in
the sense of Rus.
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4. New stability concepts of fixed point iteration for common fixed

points and contractive type mappings

By adapting Definition 1.24 of limit shadowing property of Eirola, Nevanlinna
and Pilyugin [57] to common fixed points, we introduce the following:

Definition 4.26. (Timi�, [156]) Let (X, d) be a metric space and S, T : X æ X

be two mappings such that T (X) ™ S(X). Let u be a common fixed point of S and
T , that is, Tu = Su = u.

For any x0 œ X, let the sequence {Sxn}Œ
n=0 be generated by the Jungck type

iterative procedure

(4.29) Sxn+1 = Txn, n = 0, 1, 2, ...,

and assume that it converges to u.
Then, we say that the mappings T and S have the limit shadowing property

with respect to Jungck type iteration procedure, if

Syn œ X, n œ N, d(Syn+1, T yn) æ 0 as n æ Œ

imply that there exists x0 œ X, such that

d(Syn, T nx0) æ 0 as n æ Œ.

Remark 4.30. If S = I, the identity map on X, then, by Definition 4.26, we get
Definition 1.24 of the limit shadowing property introduced by Eirola, Nevanlinna
and Pilyugin [57].

The notion of stability introduced by Rus [136] in Definition 1.25 will be trans-
posed to common fixed points, as follows:

Definition 4.27. (Timi�, [156]) Let (X, d) be a metric space and S, T : X æ X

be two mappings such that T (X) ™ S(X). Let u be a common fixed point of S and
T , that is, Tu = Su = u.

For any x0 œ X, let the sequence {Sxn}Œ
n=0 be generated by the Jungck type

iterative procedure Sxn+1 = Txn, n = 0, 1, 2, ..., and assume that it converges to u.
Then, the Jungck type iteration procedure is stable with respect to the mappings

T and S if it is convergent with respect to T and S and the mappings T and S

have the limit shadowing property with respect to this iterative procedure.
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In the following, we study the relationship between the stability concept intro-
duced by Singh and Prasad [152] in Definition 2.15 which is given for a pair of
mappings (S, T ) with a coincidence point and our new stability concept introduced
by Definition 4.27.

Proposition 4.3. (Timi�, [156])
Let (X, d) be a metric space and let S, T : X æ X, where T (X) ™ S(X) and

the mappings S and T have a common fixed point, that is, Su = Tu = u.
For any x0 œ X, let the sequence {Sxn}Œ

n=0 be defined by (4.29) and assume
that it converges to u œ X.

Suppose that the Jungck type iteration procedure is stable in the sense of Singh
and Prasad [152], by Definition 2.15.

Then, the Jungck type iteration procedure is also stable in the sense of Defini-
tion 4.27..

Proof. Let {Syn}Œ
n=0 be an arbitrary sequence in X and set

lim
næŒ

‘n = lim
næŒ

d (Syn+1, T yn) = 0.

According to Definition 2.15, fixed point iteration procedure is (S, T )-stable if
and only if

lim
næŒ

‘n = 0 … lim
næŒ

Syn = u.

Now, according to Definition 4.27, we take Syn œ X, with d(Syn+1, T yn) æ 0,
as n æ Œ.

So, there exists x0 = u œ X, such that T nx0 = T nu = u, and hence,
limnæŒ d (Syn, T nx0) = limnæŒ d (Syn, u) = 0, and we get the conclusion. ⇤

Remark 4.31. If If S = I, the identity map on X, Proposition 4.3 reduces to
Proposition 1.2.

In the following, we give some stability results for the iteration procedure
defined by (4.29), with respect to two mappings which satisfy various contractive
conditions.

Theorem 4.20. (Timi�, [156]) Let (X, d) be a complete metric space and S, T :
X æ X be two mappings, satisfying

(4.30) d(Tx, Ty) Æ ad(Sx, Sy),

for each x, y œ X and some constant a œ [0, 1).
S and T have an unique common fixed point u, with Tu = Su = u, if
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i) T (X) ™ S(X);
ii) S is continuous;
iii) S and T commute.
For any x0 œ X, let the sequence {Sxn}Œ

n=0 be generated by (4.29) which is
assumed to converge to u.

Then, the Jungck type iteration procedure is stable with respect to the mappings
T and S, in the sense of Definition 4.27;

Proof. By Definition 4.27, iteration procedure defined by (4.29) iteration is
stable with respect to S and T if it is convergent with respect to S and T , and
mappings S and T have the limit shadowing property with respect to this iterative
procedure.

Let {Syn}Œ
n=0 an arbitrary sequence in X and if

Syn œ X, n œ N, d(Syn+1, T yn) æ 0 as n æ Œ,

imply that there exists x0 œ X, such that

d(Syn, T nx0) æ 0 as n æ Œ.

Assume that limnæŒ d(Syn+1, T yn) = 0.
Therefore, there exists x0 = u œ X, such that T nx0 = T nu = u. Then,

d(Syn+1, u) Æ d(Syn+1, T yn) + d(Tyn, Txn) + d(Txn, u).

From the contraction condition,

d(Tyn, Txn) Æ ad(Syn, Sxn), a œ [0, 1),

so it yields that
d(Syn+1, u) Æ ad(Syn, u) + ‘n,

where
‘n := d(Syn+1, T yn) + d(Txn, u) æ 0,

so, applying Lemma 1.1, we obtain that limnæŒ d(Syn, u) = 0.
Therefore, S and T have the limit shadowing property with respect to iteration

procedure defined by (4.29) and because it is convergent with respect to S and T ,
we get the conclusion. ⇤

Remark 4.32. If S = I, the identity map on X, the stability result in the case of
Jungck type iteration procedure in the sense of Rus, i.e., Theorem 4.20, reduces to
the stability result of Picard iteration procedure, i.e., Theorem 2.18.
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Theorem 4.21. (Timi�, [156]) Let (X, d) be a metric space and S, T : X æ X

be two mappings. Suppose there exists h œ [0, 1) such that, for every x, y œ X,

(4.31) d(Tx, Ty) Æ h max {d(Sx, Ty), d(Sy, Tx)} .

S and T have an unique common fixed point u, with Tu = Su = u, if
i) T (X) ™ S(X);
ii) S is continuous;
iii) S and T commute.
For any x0 œ X, let the sequence {Sxn}Œ

n=0 be generated by (4.31) which is
assumed to converge to u.

Then, iteration procedure defined by (4.31) is stable with respect to the mappings
T and S, in the sense of Definition 4.27.

Proof. By Definition 4.27, iteration procedure defined by (4.29) is stable with
respect to S and T if it is convergent with respect to S and T , and mappings S

and T have the limit shadowing property with respect to this iterative procedure.
Let {Syn}Œ

n=0 to be an arbitrary sequence in X and if

Syn œ X, n œ N, d(Syn+1, T yn) æ 0 as n æ Œ,

imply that there exists x0 œ X, such that

d(Syn, T nx0) æ 0 as n æ Œ.

Therefore, suppose that ÷x0 = u œ X and then, T nx0 = T nu = u.
Assume that limnæŒ d(Syn+1, T yn) = 0. Then

d(Syn+1, u) Æ d(Syn+1, T yn) + d(Tyn, u).

From the contraction condition,

d(Tyn, Tu) Æ h max {d(Syn, u), d(Tyn, u)} , h œ [0, 1),

so it yields that

d(Syn+1, u) Æ h max {d(Syn, u), d(Tyn, u)} + ‘n,

where
‘n := d(Syn+1, T yn) æ 0.

We discuss two cases. First, let max {d(Syn, u), d(Tyn, u)} = d(Syn, u).
We obtain

d(Syn+1, u) Æ hd(Syn, u) + ‘n,

and applying Lemma 1.1, we get limnæŒ d(Syn, u) = 0.
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In the second case, let max {d(Syn, u), d(Tyn, u)} = d(Tyn, u). Then, we have

d(Syn+1, u) Æ d(Tyn, u) + ‘n Æ hd(Tyn, u) + ‘n,

which is a contradiction, since h œ [0, 1).
Therefore, S and T have the limit shadowing property with respect to iteration

procedure defined by (4.29 and because it is convergent with respect to S and T ,
we get the conclusion. ⇤

5. New stability of Picard iteration for mappings defined by implicit

relations

We recommence the set of all continuous real functions F, introduced by Popa
[120], [121] and used in Chapter 3, Section 2, i.e., F : R6

+ æ R+ for which we
consider the following conditions:

(1) (a) F is non-increasing in the fifth variable and F (u, v, v, u, u + v, 0) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(b) F is non-increasing in the fourth variable and F (u, v, 0, u+v, u, v) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(c) F is non-increasing in the third variable and F (u, v, u+v, 0, v, u) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(2) F (u, u, 0, 0, u, u) > 0, for all u > 0.

For the complete metric space (X, d) and T : X æ X a self mapping for which
there exists F œ F such that for all x, y œ X,

(5.32) F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) Æ 0,

Berinde [30] proved that if F satisfies (1a) and (2), then

• T has an unique fixed point xú in X;
• The Picard iteration {xn}Œ

n=0 defined by xn+1 = Txn, n = 0, 1, 2, ... con-
verges to xú, for any x0 œ X.

In the following, using the above assumptions, we study the stability of Picard
iteration in the sense of Definition 1.25.

Theorem 5.22. (Timi�, [155]) Let (X, d) be a complete metric space and T :
X æ X a self mapping for which there exists F œ F such that for all x, y œ X, F
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satisfies (5.32), i.e.

F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)) Æ 0.

If F satisfies (1a), (1b) and (2), then the Picard iteration is T -stable in the
sense of Definition 1.25.

Proof. By Definition 1.25, Picard iteration is stable with respect to T if it is
convergent with respect to T and T has the limit shadowing property with respect
to this iterative procedure.

Let {xn}Œ
n=0 be the Picard iteration associated to T and defined by xn+1 = Txn,

n = 0, 1, 2, ..., converging to the fixed point xú of T , which exists and is unique,
according to Theorem 3.3 of Berinde [30], since F satisfies (1a) and (2).

In order to prove that T has the limit shadowing property with respect to
Picard iteration, by Definition 1.24, let {yn}Œ

n=0 be an arbitrary sequence in X and
if

d(yn+1, T yn) æ 0, as n æ Œ,

we have that there exists x0 œ X, such that

d(yn, T nx0) æ 0, as n æ Œ.

Therefore, suppose that ÷x0 œ X and from the definition of Picard iterative
procedure,

x1 = Tx0, x2 = Tx1 = T 2x0, . . . , xn = T nx0.

Assume that limnæŒ d(yn+1, T yn) = 0. Then

(5.33) d(yn+1, xn) Æ d(yn+1, T yn) + d(Tyn, xn).

If we take x := xn and y := yn in (5.32), then we obtain F (u, v, 0, w, u, v) Æ
0, where u := d(Tyn, xn), v := d(yn, Txn), w := d(yn, T yn). By the triangle
inequality, d(yn, T yn) Æ d(yn, Txn)+d(xn, T yn), that is, w Æ u+v. Now, according
to (1b), since F is non-increasing in the fourth variable, we have that

F (u, v, 0, u + v, u, v) Æ F (u, v, 0, w, u, v) Æ 0

and by the same assumption (1b), there exists h œ [0, 1) such that u Æ hv, that
is, d(xn, T yn) Æ hd(yn, Txn), which, by (5.33) yields

d(yn+1, xn) Æ hd(yn, xn) + d(yn+1, T yn)

and applying Lemma 1.1, we get the conclusion. ⇤



CHAPTER 5

Stability of tripled fixed point iteration procedures

In this chapter we introduce the concept of stability for tripled fixed point
iterative procedures and also establish some stability results for mixed monotone
mappings and monotone mappings, satisfying various contractive conditions. An
illustrative example is also given.

The author’s original contributions in this chapter are: Definition 2.30, The-
orem 2.23, Corollary 2.11, Theorem 2.24, Theorem 2.25, Lemma 3.4, Definition
3.33, Theorem 3.26, Corollary 3.12, Theorem 3.27, Theorem 3.28, Example 4.43
and the contractive conditions (2.35)-(2.40), (3.46)-(3.51).

Most of them were published in [166] (Timi�, I., Stability of tripled fixed point
iteration procedures for monotone mappings, Ann. Univ. Ferrara (2012) DOI
10.1007/s11565-012-0171-7).

1. Tripled fixed point iterative procedures

Banach-Caccioppoli-Picard Principle has been generalized by enriching the
metric space structure with a partial order. The first result of this kind for mono-
tone mappings in ordered metric spaces was obtained by Ran and Reurings [126].

Following the same approach, Bhaskar and Laksmikantham [33] obtained some
coupled fixed point results for mixed-monotone operators of Picard type, obtaining
results involving the existence, the existence and the uniqueness of the coincidence
points for mixed-monotone operators T : X2 æ X in the presence of a contraction
type condition, in a partially ordered metric space.

This concept of coupled fixed points in partially ordered metric spaces and cone
metric spaces have been studied by several authors, including Abbas, Ali Khan
and Radenovic [2], Berinde [22], [23], [25], Choudhury and Kundu [48], Ciric and
Lakshmikantham [53], Karapinar [82], Lakshmikantham and Ciric [85], Olatinwo
[96], Sabetghadam, Masiha and Sanatpour [144].

91
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Recently, Berinde and Borcut [32], [38] obtained extensions to the concept of
tripled fixed points and tripled coincidence fixed points and also obtained tripled
fixed points theorems and tripled coincidence fixed points theorems for contractive
type mappings in partially ordered metric spaces.

The research on tripled fixed point was continued by Abbas, Aydi and Karap-
inar [3], Aydi and Karapinar [10], Aydi, Karapinar and Vetro [11], Amini-Harandi
[9], Borcut [35], [36], [37], Charoensawan [44], Rao and Kishore [126].

By adapting the concept of stability from fixed point iterative procedures,
Olatinwo [102] studied the stability of the coupled fixed point iterative procedures
using some contractive conditions for which the existence of a unique coupled fixed
point has been established by Sabetghadam, Masiha and Sanatpour [144].

In the following, we introduce the concept of stability for tripled fixed point
iterative procedures and establish stability results for mixed monotone mappings
and monotone mappings, satisfying various contractive conditions by extension
from coupled fixed points to tripled fixed points of contractive conditions employed
by Olatinwo [102].

2. Stability of tripled fixed point iteration procedures for monotone

mappings

Let (X, Æ) be a partially ordered set and d be a metric on X such that (X, d)
is a complete metric space. Borcut [37] endowed the product space X3 with the
following partial order:

(x, y, z), (u, v, w) œ X3, (u, v, w) Æ (x, y, z) … x Ø u, y Æ v, z Ø w.

Definition 2.28. [37] Let (X, Æ) be a partially ordered set and T : X3 æ X

a mapping. We say that T has the monotone property if T (x, y, z) is monotone
nondecreasing in x, y and z, that is, for any x, y, z œ X,

x1, x2 œ X, x1 Æ x2 ∆ T (x1, y, z) Æ T (x2, y, z),

y1, y2 œ X, y1 Æ y2 ∆ T (x, y1, , z) Æ T (x, y2, z),

z1, z2 œ X, z1 Æ z2 ∆ T (x, y, z1) Æ T (x, y, z2).

Definition 2.29. [37] An element (x, y, z) œ X3 is called tripled fixed point of
T : X3 æ X, if T (x, y, z) = x, T (y, x, z) = y, T (z, y, x) = z.
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A mapping T : X3 æ X is said to be a (k, µ, fl)-contraction, if and only
if there exists the constants k Ø 0, µ Ø 0, fl Ø 0, k + µ + fl < 1, such that
’x, y, z, u, v, w œ X,

(2.34) d(T (x, y, z), T (u, v, w)) Æ kd(x, u) + µd(y, v) + fld(z, w).

In relation to (2.34), we introduce some new contractive conditions.
Let (X, d) be a metric space. For a mapping T : X3 æ X, suppose there

exists a1, a2, a3, b1, b2, b3 Ø 0, with a1 + a2 + a3 < 1, b1 + b2 + b3 < 1, such that
’x, y, z, u, v, w œ X,

(2.35) (i) d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), x) + b1d (T (u, v, w), u) ;

(2.36) d (T (y, x, z), T (v, u, w)) Æ a2d (T (y, x, z), y) + b2d (T (v, u, w), v) ;

(2.37) d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), z) + b3d (T (w, v, u), w) ;

(2.38) (ii) d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), u) + b1d (T (u, v, w), x) ;

(2.39) d (T (y, x, z), T (v, u, w)) Æ a2d (T (y, x, z), v) + b2d (T (v, u, w), y) ;

(2.40) d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), w) + b3d (T (w, v, u), z) .

Let (X, d) be a metric space and T : X3 æ X a mapping. For (x0, y0, z0) œ X3,
the sequence {(xn, yn, zn)}Œ

n=0 µ X3 defined by

(2.41) xn+1 = T (xn, yn, zn), yn+1 = T (yn, xn, zn), zn+1 = T (zn, yn, xn),

with n = 0, 1, 2, ..., is said to be a tripled fixed point iterative procedure.
We give the following definition of stability with respect tho T , in metric spaces,

relative to tripled fixed points iterative procedures:

Definition 2.30. (Timi�, [166]) Let (X, d) be a complete metric space and a
maping T : X3 æ X, with

Fixt(T ) =
Ó
(xú, yú, zú) œ X3 | T (xú, yú, zú) = xú, T (yú, xú, zú) = yú,

T (zú, yú, xú) = zú }, the set of tripled fixed points of T .
Let {(xn, yn, zn)}Œ

n=0 µ X3 be the sequence generated by the iterative procedure
defined by (2.41), where (x0, y0, z0) œ X3 is the initial value, which converges to a
tripled fixed point (xú, yú, zú) of T .

Let {(un, vn, wn)}Œ
n=0 µ X3 an arbitrary sequence and set

‘n = d (un+1, T (un, vn, wn)) , ”n = d (vn+1, T (vn, un, wn)) ,
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“n = d (wn+1, T (wn, vn, un)) , n = 0, 1, 2, ....

Then, the tripled fixed point iterative procedure defined by (2.41) is T -stable or
stable with respect to T , if and only if

lim
næŒ

(‘n, ”n, “n) = 0R3 implies that lim
næŒ

(un, vn, wn) = (xú, yú, zú).

Theorem 2.23. (Timi�, [166]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the monotone property on X

and satisfying (2.34).
If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Æ T (y0, x0, z0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, zú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (2.41).

Then, the tripled fixed point iterative procedure is T -stable.

Proof. From the suppositions of the hypothesis, Borcut [37] proved the ex-
istence and uniqueness of the tripled fixed point and now, using these results, we
can study the stability of the tripled fixed point iterative procedures.

Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, ‘n = d (un+1, T (un, vn, wn)), ”n =

d (vn+1, T (vn, un, wn)) and “n = d (wn+1, T (wn, vn, un)). Assume also that limnæŒ ‘n =
limnæŒ ”n = limnæŒ “n = 0 in order to establish that limnæŒ un = xú, limnæŒ vn =
yú and limnæŒ wn = zú.

Therefore, using (2.34), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

(2.42) Æ kd(un, xú) + µd(vn, yú) + fld(wn, zú) + ‘n.

d(vn+1, yú) Æ d(vn+1, T (vn, un, wn)) + d(T (vn, un, wn) , yú) =

= d(T (vn, un, wn) , T (yú, xú, zú)) + ”n Æ

(2.43) Æ kd(vn, yú) + µd(un, xú) + fld(wn, zú) + ”n.
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d(wn+1, zú) Æ d(wn+1, T (wn, vn, un)) + d(T (wn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

(2.44) Æ kd(wn, zú) + µd(vn, yú) + fld(un, xú) + “n.

From (2.42), (2.43) and (2.44), we obtain

d(un+1, xú) + d(vn+1, yú) + d(wn+1, zú) Æ

Æ (k + µ + fl) (d(un, xú) + d(vn, yú) + d(wn, zú)) + (‘n + ”n + “n) .

Hence, applying Lemma 1.1, for an := d(un+1, xú) + d(vn+1, yú) + d(wn+1, zú)
and h := k + µ + fl œ [0, 1), we get the conclusion. ⇤

Remark 2.33. Theorem 2.23 completes the existence theorem of tripled fixed
points of Borcut [37] with the stability result for the tripled fixed point iterative
procedures, using monotone operators.

Corollary 2.11. (Timi�, [166]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the monotone property on
X.

Assume that there exists Ÿ œ [0, 1), such that for each x, y, z, u, v, w œ X, T

satisfies the following contraction condition:

d(T (x, y, z), T (u, v, w)) Æ Ÿ

3 {d(x, u) + d(y, v) + d(z, w)} .

If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, zú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (2.41).

Then, the tripled fixed point iterative procedure is T -stable.

Proof. We apply Theorem 2.23, for k = µ = fl := Ÿ
3 . ⇤
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Remark 2.34. Corollary 2.11 completes the existence theorem of tripled fixed
points of Borcut [37] with the stability result for the tripled fixed point iterative
procedures, using monotone operators.

Theorem 2.24. (Timi�, [166]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the monotone property on X

and satisfying (2.35), (2.36) and (2.37).
If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, zú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (2.41).

Then, the tripled fixed point iterative procedure is T -stable.

Proof. Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, ‘n = d (un+1, T (un, vn, wn)),

”n = d (vn+1, T (vn, un, wn)) and “n = d (wn+1, T (wn, vn, un)). Assume also that
limnæŒ ‘n = limnæŒ ”n = limnæŒ “n = 0 in order to establish that limnæŒ un =
xú, limnæŒ vn = yú and limnæŒ wn = zú.

Therefore, using the contraction condition (2.35), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

Æ a1d (T (xú, yú, zú), xú) + b1d (T (un, vn, wn), un) + ‘n Æ

Æ a1d(xú, xú) + b1d (T (un, vn, wn), un+1) + b1d(un+1, xú) + b1d(xú, un) + ‘n =

= a1d(xú, xú) + b1d(un+1, xú) + b1d(xú, un) + (b1 + 1)‘n.

Hence, (1≠b1)d(un+1, xú) Æ b1d(xú, un)+‘Õ
n, where ‘Õ

n := (b1+1)‘n+a1d(xú, xú).
Passing it to the limit and applying Lemma 1.1 for b1

1≠b1
œ [0, 1), we obtain that

limnæŒ un = xú.

Now, using the contraction condition (2.36), we obtain

d(vn+1, yú) Æ d(vn+1, T (vn, un, wn)) + d(T (vn, un, wn) , yú) =
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= d(T (vn, un, wn) , T (yú, xú, zú)) + ”n Æ

Æ a2d (T (yú, xú, zú), yú) + b2d (T (vn, un, wn), vn) + ”n Æ

Æ a2d(yú, yú) + b2d (T (vn, un, wn), vn+1) + b2d(vn+1, yú) + b2d(yú, vn) + ”n =

= a2d(yú, yú) + b2d(vn+1, yú) + b2d(yú, vn) + (b2 + 1)”n.

So, (1 ≠ b2)d(vn+1, yú) Æ b2d(yú, vn) + ”Õ
n, where ”Õ

n := (b2 + 1)”n + a2d(yú, yú).
Passing it to the limit and applying Lemma 1.1 for b2

1≠b2
œ [0, 1), we obtain that

limnæŒ vn = yú.

Similarly, using the contraction condition (2.37), we obtain

d(wn+1, zú) Æ d(wn+1, T (zn, vn, un)) + d(T (zn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

Æ a3d (T (zú, yú, xú), zú) + b3d (T (wn, vn, un), wn) + “n Æ

Æ a3d(zú, zú) + b3d (T (wn, vn, un), wn+1) + b3d(wn+1, zú) + b3d(zú, wn) + “n =

= a3d(zú, zú) + b3d(wn+1, zú) + b3d(zú, wn) + (b3 + 1)“n.

Therefore, (1 ≠ b3)d(wn+1, zú) Æ b3d(zú, wn) + “Õ
n, where “Õ

n := (b3 + 1)“n +
a3d(zú, zú). Passing it to the limit and applying Lemma 1.1 for b3

1≠b3
œ [0, 1), we

obtain that limnæŒ wn = zú and then, we get the conclusion. ⇤

Theorem 2.25. (Timi�, [166]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the monotone property on X

and satisfying (2.38), (2.39) and (2.40).
If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, zú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (2.41).

Then, the tripled fixed point iterative procedure is T -stable.
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Proof. Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, ‘n = d (un+1, T (un, vn, wn)),

”n = d (vn+1, T (vn, un, wn)) and “n = d (wn+1, T (wn, vn, un)). Assume also that
limnæŒ ‘n = limnæŒ ”n = limnæŒ “n = 0 in order to establish that limnæŒ un =
xú, limnæŒ vn = yú and limnæŒ wn = zú.

Therefore, using the contraction condition (2.38), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

Æ a1d (T (xú, yú, zú), un) + b1d (T (un, vn, wn), xú) + ‘n Æ

Æ a1d(un, xú) + b1d (T (un, vn, wn), un) + b1d(un, xú) + ‘n =

= (a1 + b1)d(un, xú) + ‘n + b1‘n≠1.

Hence, passing it to the limit and applying Lemma 1.1 for h := a1 + b1 œ [0, 1)
and for ‘Õ

n := ‘n + b1‘n≠1 æ 0, as n æ Œ, we obtain that limnæŒ un = xú.

Now, using the contraction condition (2.39), we obtain

d(vn+1, yú) Æ d(vn+1, T (vn, un, wn)) + d(T (vn, un, wn) , yú) =

= d(T (vn, un, wn) , T (yú, xú, zú)) + ”n Æ

Æ a2d (T (yú, xú, zú), vn) + b2d (T (vn, un, wn), yú) + ”n Æ

Æ a2d(vn, yú) + b2d (T (vn, un, wn), vn) + b2d(vn, yú) + ”n =

= (a2 + b2)d(vn, yú) + ”n + b2”n≠1.

So, passing it to the limit and applying Lemma 1.1 for h := a2 + b2 œ [0, 1) and
for ”Õ

n := ”n + b2”n≠1 æ 0, as n æ Œ, we get limnæŒ vn = yú.

Similarly, using the contraction condition (2.40), we obtain

d(wn+1, zú) Æ d(wn+1, T (zn, vn, un)) + d(T (zn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

Æ a3d (T (zú, yú, xú), wn) + b3d (T (wn, vn, un), zú) + “n Æ

Æ a3d(wn, zú) + b3d (T (wn, vn, un), wn) + b3d(wn, zú) + “n =

= a3d(wn, zú) + b3d(wn, zú) + b3d(T (wn, vn, un), wn) + “n =

= (a3 + b3)d(wn, zú) + “n + b3“n≠1.

Hence, passing it to the limit and applying Lemma 1.1 for h := a3 + b3 œ [0, 1)
and for “Õ

n := “n + b3“n≠1 æ 0, as n æ Œ, we obtain that limnæŒ wn = zú and
then, we get the conclusion. ⇤
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3. Stability of tripled fixed point iteration procedures for mixed

monotone mappings

Let (X, Æ) be a partially ordered set and d be a metric on X such that (X, d)
is a complete metric space. Berinde and Borcut [32] endowed the product space
X3 with the following partial order:

(x, y, z), (u, v, w) œ X3, (u, v, w) Æ (x, y, z) … x Ø u, y Æ v, z Ø w.

Definition 3.31. [32] Let (X, Æ) be a partially ordered set and T : X3 æ X a
mapping. We say that T has the mixed monotone property if T (x, y, z) is monotone
nondecreasing in x, monotone nonincreasing in y and monotone nondecreasing in
z, that is, for any x, y, z œ X,

x1, x2 œ X, x1 Æ x2 ∆ T (x1, y, z) Æ T (x2, y, z),

y1, y2 œ X, y1 Æ y2 ∆ T (x, y1, , z) Ø T (x, y2, z),

z1, z2 œ X, z1 Æ z2 ∆ T (x, y, z1) Æ T (x, y, z2).

Definition 3.32. [32] An element (x, y, z) œ X3 is called tripled fixed point of
T : X3 æ X, if

T (x, y, z) = x, T (y, x, y) = y, T (z, y, x) = z.

Remark 3.35. The concept of tripled fixed point from this context is di�erent from
the concept used in above section.

A mapping T : X3 æ X is said to be a (k, µ, fl)-contraction, if and only if
there exists three constants k Ø 0, µ Ø 0, fl Ø 0, k + µ + fl < 1, such that
’x, y, z, u, v, w œ X,

(3.45) d(T (x, y, z), T (u, v, w)) Æ kd(x, u) + µd(y, v) + fld(z, w).

In relation to (3.45), we introduce some new contractive conditions:
Let (X, d) be a metric space. For a mapping T : X3 æ X, there exists

a1, a2, a3, b1, b2, b3 Ø 0, with a1 + a2 + a3 < 1, b1 + b2 + b3 < 1, such that
’x, y, z, u, v, w œ X, we introduce the following definitions of contractive con-
ditions:

(3.46) (i) d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), x) + b1d (T (u, v, w), u) ;

(3.47) d (T (y, x, y), T (v, u, v)) Æ a2d (T (y, x, y), y) + b2d (T (v, u, v), v) ;
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(3.48) d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), z) + b3d (T (w, v, u), w) ;

(3.49) (ii) d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), u) + b1d (T (u, v, w), x) ;

(3.50) d (T (y, x, y), T (v, u, v)) Æ a2d (T (y, x, y), v) + b2d (T (v, u, v), y) ;

(3.51) d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), w) + b3d (T (w, v, u), z) .

In the case of two matrices A, B œ M(m,n)(R), we say that A Æ B, if aij Æ bij,
for all i = 1, m, j = 1, n.

In order to prove our main stability result, we give the next result which ex-
tends Lemma 1.1 to vector sequences, where inequalities between vectors means
inequality on its elements:

Lemma 3.4. (Timi�, [165]) Let {un}Œ
n=0, {vn}Œ

n=0, {wn}Œ
n=0 be sequences of non-

negative real numbers and consider a matrix A œ M3,3(R) with nonnegative ele-
ments, so that

(3.52)

Q

ccca

un+1

vn+1

wn+1

R

dddb Æ A ·

Q

ccca

un

vn

wn

R

dddb +

Q

ccca

‘n

”n

“n

R

dddb , n Ø 0,

with
(i) limnæŒ An = O3;
(ii) qŒ

k=0 ‘k < Œ, qŒ
k=0 ”k < Œ and qŒ

k=0 “k < Œ.

Then, limnæŒ

Q

ccca

un

vn

wn

R

dddb =

Q

ccca

0
0
0

R

dddb .

Proof. For A = 0 œ M(3,3), the conclusion is obvious.
We rewrite (3.52) with n := k:

Q

ccca

uk+1

vk+1

wk+1

R

dddb Æ A ·

Q

ccca

uk

vk

wk

R

dddb +

Q

ccca

‘k

”k

“k

R

dddb , k Ø 0,

and sum the inequalities obtained for k = 0, 1, 2, ..., n.

After doing all cancellations, we obtain

(3.53)

Q

ccca

un+1

vn+1

wn+1

R

dddb Æ An+1

Q

ccca

u0

v0

w0

R

dddb +
nÿ

k=0
Ak

Q

ccca

‘n≠k

”n≠k

“n≠k

R

dddb .
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By (ii), it follows that the sequences of partial sums {En}Œ
n=0, {�n}Œ

n=0 and
{�n}Œ

n=0, given respectively by En = ‘0 + ‘1 + ... + ‘n, �n = ”0 + ”1 + ... + ”n and
�n = “0 + “1 + ... + “n, for n Ø 0, converge respectively to some E Ø 0, � Ø 0 and
� Ø 0 and hence, they are bounded.

Let M > 0 be such that

Q

ccca

En

�n

�n

R

dddb Æ M ·

Q

ccca

1
1
1

R

dddb , ’n Ø 0.

By (i), we have that ’e > 0, there exists N = N(e) such that

An Æ e

2M
· I3, ’ n Ø N, M > 0.

We can write qn
k=0 Ak

Q

ccca

‘n≠k

”n≠k

“n≠k

R

dddb = An

Q

ccca

‘0

”0

“0

R

dddb + ... + AN

Q

ccca

‘n≠N

”n≠N

“n≠N

R

dddb +

+AN≠1

Q

ccca

‘n≠N+1

”n≠N+1

“n≠N+1

R

dddb + ... + I3

Q

ccca

‘n

”n

“n

R

dddb .

But An

Q

ccca

‘0

”0

“0

R

dddb + ... + AN

Q

ccca

‘n≠N

”n≠N

“n≠N

R

dddb Æ e
2M · I3

S

WWWU

Q

ccca

‘0

”0

“0

R

dddb + ... +

Q

ccca

‘n≠N

”n≠N

“n≠N

R

dddb

T

XXXV =

e
2M · I3 ·

Q

ccca

En≠N

�n≠N

�n≠N

R

dddb Æ e
2M · I3 · M ·

Q

ccca

1
1
1

R

dddb = e
2 ·

Q

ccca

1
1
1

R

dddb , for all n Ø N .

On the other hand, if we denote AÕ = max
Ó
I3, A, ..., AN≠1

Ô
, we obtain

AN≠1

Q

ccca

‘n≠N+1

”n≠N+1

“n≠N+1

R

dddb + ... + I3

Q

ccca

‘n

”n

“n

R

dddb Æ AÕ

S

WWWU

Q

ccca

‘n≠N+1

”n≠N+1

“n≠N+1

R

dddb + ... +

Q

ccca

‘n

”n

“n

R

dddb

T

XXXV =

= AÕ

Q

ccca

En ≠ En≠N

�n ≠ �n≠N

�n ≠ �n≠N

R

dddb .

As N is fixed, then

lim
næŒ

En = lim
næŒ

En≠N = E, lim
næŒ

�n = lim
næŒ

�n≠N = �,
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and limnæŒ �n = limnæŒ �n≠N = �, which shows that there exists a positive
integer k such that

AÕ

Q

ccca

En ≠ En≠N

�n ≠ �n≠N

�n ≠ �n≠N

R

dddb <
e

2

Q

ccca

1
1
1

R

dddb , ’n Ø k.

Now, for m = max {k, N}, we get

An

Q

ccca

‘0

”0

“0

R

dddb + ... + I3

Q

ccca

‘n

”n

“n

R

dddb < e

Q

ccca

1
1
1

R

dddb , ’n Ø m,

and therefore, limnæŒ
qn

k=0 Ak

Q

ccca

‘n≠k

”n≠k

“n≠k

R

dddb = 0.

Now, by letting the limit in (3.53), as limnæŒ An = 0, we get

lim
næŒ

Q

ccca

un

vn

wn

R

dddb =

Q

ccca

0
0
0

R

dddb ,

as required. ⇤

Let (X, d) be a metric space and T : X3 æ X a mapping. For (x0, y0, z0) œ X3,
the sequence {(xn, yn, zn)}Œ

n=0 µ X3 defined by

(3.54) xn+1 = T (xn, yn, zn), yn+1 = T (yn, xn, yn), zn+1 = T (zn, yn, xn),

with n = 0, 1, 2, ..., is said to be a tripled fixed point iterative procedure.
We give the following definition of stability with respect tho T , in metric spaces,

relative to tripled fixed points iterative procedures:

Definition 3.33. (Timi�, [165]) Let (X, d) be a complete metric space and a
mapping T : X3 æ X, with

Fixt(T ) =
Ó
(xú, yú, zú) œ X3 | T (xú, yú, zú) = xú, T (yú, xú, yú) = yú,

T (zú, yú, xú) = zú }, the set of tripled fixed points of T .
Let {(xn, yn, zn)}Œ

n=0 µ X3 be the sequence generated by the iterative procedure
defined by (3.54), where (x0, y0, z0) œ X3 is the initial value, which is supposed to
converge to a tripled fixed point (xú, yú, zú) of T .

Let {(un, vn, wn)}Œ
n=0 µ X3 an arbitrary sequence and set

‘n = d (un+1, T (un, vn, wn)) , ”n = d (vn+1, T (vn, un, vn)) ,
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“n = d (wn+1, T (wn, vn, un)) , n = 0, 1, 2, ....

Then, the tripled fixed point iterative procedure defined by (3.54) is T -stable or
stable with respect to T , if and only if

lim
næŒ

(‘n, ”n, “n) = 0R3 implies that lim
næŒ

(un, vn, wn) = (xú, yú, zú).

Theorem 3.26. (Timi�, [165]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the mixed monotone property
on X and satisfying (3.45).

If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, yú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (3.54).

Then, the tripled fixed point iterative procedure is T -stable or stable with respect
to T .

Proof. From the suppositions of the hypothesis, Berinde and Borcut[32]
proved the existence and uniqueness of the tripled fixed point and now, using these
results, we can study the stability of the tripled fixed point iterative procedures.

Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, and set

‘n = d (un+1, T (un, vn, wn)) , ”n = d (vn+1, T (vn, un, vn)) ,

“n = d (wn+1, T (wn, vn, un)) .

Assume also that limnæŒ ‘n = limnæŒ ”n = limnæŒ “n = 0 in order to establish
that limnæŒ un = xú, limnæŒ vn = yú and limnæŒ wn = zú.

Therefore, using the (k, µ, fl)-contraction condition (3.45), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

(3.55) Æ kd(un, xú) + µd(vn, yú) + fld(wn, zú) + ‘n.
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d(vn+1, yú) Æ d(vn+1, T (vn, un, vn)) + d(T (vn, un, vn) , yú) =

= d(T (vn, un, vn) , T (yú, xú, yú)) + ”n Æ

(3.56) Æ kd(vn, yú) + µd(un, xú) + fld(vn, yú) + ”n.

d(wn+1, zú) Æ d(wn+1, T (wn, vn, un)) + d(T (wn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

(3.57) Æ kd(wn, zú) + µd(vn, yú) + fld(un, xú) + “n.

From (3.55), (3.56) and (3.57), we obtain
Q

ccca

d(un+1, xú)
d(vn+1, yú)
d(wn+1, zú)

R

dddb Æ

Q

ccca

k µ fl

µ k + fl 0
fl µ k

R

dddb ·

Q

ccca

d(un, xú)
d(vn, yú)
d(wn, zú)

R

dddb +

Q

ccca

‘n

”n

“n

R

dddb .

We denote A :=

Q

ccca

k µ fl

µ k + fl 0
fl µ k

R

dddb , where 0 Æ k + µ + fl < 1, as in (3.45).

In order to apply Lemma 3.4, we need that An æ 0, as n æ Œ.

Simplifying the writing, A :=

Q

ccca

a1 b1 c1

d1 e1 f1

g1 b1 h1

R

dddb , where

a1 + b1 + c1 = d1 + e1 + f1 = g1 + b1 + h1 = k + µ + fl < 1.

Then, A2 =

Q

ccca

k µ fl

µ k + fl 0
fl µ k

R

dddb ·

Q

ccca

k µ fl

µ k + fl 0
fl µ k

R

dddb =

=

Q

ccca

k2 + µ2 + fl2 2kµ + 2µfl 2kfl

2kµ + flµ k2 + µ2 + fl2 + 2kfl µfl

2kfl + µ2 2kµ + 2flµ k2 + fl2

R

dddb :=

Q

ccca

a2 b2 c2

d2 e2 f2

g2 b2 h2

R

dddb ,

where

a2 + b2 + c2 = d2 + e2 + f2 = g2 + b2 + h2 = (k + µ + fl)2 < k + µ + fl < 1.

Now, we prove by induction that

An =

Q

ccca

an bn cn

dn en fn

gn bn hn

R

dddb ,
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where

(3.58) an + bn + cn = dn + en + fn = gn + bn + hn = (k + µ + fl)n < k + µ + fl < 1.

If we assume that (3.58) is true for n, then since

An+1 =

Q

ccca

an bn cn

dn en fn

gn bn hn

R

dddb ·

Q

ccca

k µ fl

µ k + fl 0
fl µ k

R

dddb =

=

Q

ccca

kan + µbn + flcn µan + kbn + flbn + µcn flan + kcn

kdn + µen + flfn µdn + ken + flen + µfn fldn + kfn

kgn + µbn + flhn µgn + kbn + flbn + µhn flgn + khn

R

dddb .

We have

an+1 + bn+1 + cn+1 = kan + µbn + flcn + µan + kbn + flbn + µcn + flan + kcn =

= (k + µ + fl)an + (k + µ + fl)bn + (k + µ + fl)cn = (k + µ + fl)(an + bn + cn) =

= (k + µ + fl)(k + µ + fl)n = (k + µ + fl)n+1 < k + µ + fl < 1.

Similarly, we obtain

dn+1 + en+1 + fn+1 = gn+1 + bn+1 + hn+1 = (k + µ + fl)n+1 < k + µ + fl < 1.

Therefore, limnæŒ An = O3 and now, having satisfied the conditions of the
hypothesis of Lemma 3.4, we can apply it and we get

lim
næŒ

Q

ccca

un

vn

wn

R

dddb =

Q

ccca

xú

yú

zú

R

dddb ,

so the tripled fixed point iteration procedure defined by (3.54) is T -stable. ⇤

Remark 3.36. Theorem 3.26 completes the existence theorem of tripled fixed
points of Berinde and Borcut [32] with the stability result for the tripled fixed
point iterative procedures, using mixed-monotone operators.

Corollary 3.12. (Timi�, [165]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the mixed monotone property
on X.

There exists Ÿ œ [0, 1), such that for each x, y, z, u, v, w œ X, T satisfies the
following contraction condition:

(3.59) d(T (x, y, z), T (u, v, w)) Æ Ÿ

3 {d(x, u) + d(y, v) + d(z, w)} .
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If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, yú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (3.54).

Then, the tripled fixed point iterative procedure is T -stable or stable with respect
to T .

Proof. We apply Theorem 3.26, for k = µ = fl := Ÿ
3 . ⇤

Remark 3.37. Corollary 3.12 completes the existence theorem of tripled fixed
points of Berinde and Borcut [32] with the stability result for the tripled fixed point
iterative procedures, using mixed-monotone operators.

Theorem 3.27. (Timi�, [165]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the mixed monotone property
on X and satisfying (3.46), (3.47) and (3.48).

If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, yú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (3.54).

Then, the tripled fixed point iterative procedure is T -stable or stable with respect
to T .

Proof. Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, ‘n = d (un+1, T (un, vn, wn)),

”n = d (vn+1, T (vn, un, vn)) and “n = d (wn+1, T (wn, vn, un)). Assume also that
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limnæŒ ‘n = limnæŒ ”n = limnæŒ “n = 0 in order to establish that limnæŒ un =
xú, limnæŒ vn = yú and limnæŒ wn = zú.

Therefore, using the contraction condition (3.46), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

Æ a1d (T (xú, yú, zú), xú) + b1d (T (un, vn, wn), un) + ‘n Æ

Æ a1d(xú, xú) + b1d (T (un, vn, wn), un+1) + b1d(un+1, xú) + b1d(xú, un) + ‘n =

= a1d(xú, xú) + b1d(un+1, xú) + b1d(xú, un) + (b1 + 1)‘n.

Hence, (1≠b1)d(un+1, xú) Æ b1d(xú, un)+‘Õ
n, where ‘Õ

n := (b1+1)‘n+a1d(xú, xú).
Passing it to the limit and applying Lemma 1.1 for b1

1≠b1
œ [0, 1), we obtain that

limnæŒ un = xú.

Now, using the contraction condition (3.47), we obtain

d(vn+1, yú) Æ d(vn+1, T (vn, un, vn)) + d(T (vn, un, vn) , yú) =

= d(T (vn, un, vn) , T (yú, xú, yú)) + ”n Æ

Æ a2d (T (yú, xú, yú), yú) + b2d (T (vn, un, vn), vn) + ”n Æ

Æ a2d(yú, yú) + b2d (T (vn, un, vn), vn+1) + b2d(vn+1, yú) + b2d(yú, vn) + ”n =

= a2d(yú, yú) + b2d(vn+1, yú) + b2d(yú, vn) + (b2 + 1)”n.

So, (1 ≠ b2)d(vn+1, yú) Æ b2d(yú, vn) + ”Õ
n, where ”Õ

n := (b2 + 1)”n + a2d(yú, yú).
Passing it to the limit and applying Lemma 1.1 for b2

1≠b2
œ [0, 1), we obtain that

limnæŒ vn = yú.

Similarly, using the contraction condition (3.48), we obtain

d(wn+1, zú) Æ d(wn+1, T (zn, vn, un)) + d(T (zn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

Æ a3d (T (zú, yú, xú), zú) + b3d (T (wn, vn, un), wn) + “n Æ

Æ a3d(zú, zú) + b3d (T (wn, vn, un), wn+1) + b3d(wn+1, zú) + b3d(zú, wn) + “n =

= a3d(zú, zú) + b3d(wn+1, zú) + b3d(zú, wn) + (b3 + 1)“n.

Therefore, (1 ≠ b3)d(wn+1, zú) Æ b3d(zú, wn) + “Õ
n, where “Õ

n := (b3 + 1)“n +
a3d(zú, zú). Passing it to the limit and applying Lemma 1.1 for b3

1≠b3
œ [0, 1), we

obtain that limnæŒ wn = zú and then, we get the conclusion. ⇤
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Theorem 3.28. (Timi�, [165]) Let (X, Æ) be a partially ordered set and suppose
there is a metric d on X such that (X, d) is a complete metric space.

Let T : X3 æ X be a continuous mapping having the mixed monotone property
on X and satisfying (3.49), (3.50) and (3.51).

If there exists x0, y0, z0 œ X such that

x0 Æ T (x0, y0, z0), y0 Ø T (y0, x0, y0) and z0 Æ T (z0, y0, x0),

then there exists xú, yú, zú œ X such that

xú = T (xú, yú, zú), yú = T (yú, xú, yú) and zú = T (zú, yú, xú).

Assume that for every (x, y, z), (x1, y1, z1) œ X3, there exists (u, v, w) œ X3

which is comparable to (x, y, z) and (x1, y1, z1).
For (x0, y0, z0) œ X3, let {(xn, yn, zn)}Œ

n=0 µ X3 be the tripled fixed point itera-
tive procedure defined by (3.54).

Then, the tripled fixed point iterative procedure is T -stable or stable with respect
to T .

Proof. Let {xn}Œ
n=0, {yn}Œ

n=0, {zn}Œ
n=0 µ X3, ‘n = d (un+1, T (un, vn, wn)),

”n = d (vn+1, T (vn, un, vn)) and “n = d (wn+1, T (wn, vn, un)). Assume also that
limnæŒ ‘n = limnæŒ ”n = limnæŒ “n = 0 in order to establish that limnæŒ un =
xú, limnæŒ vn = yú and limnæŒ wn = zú.

Therefore, using the contraction condition (3.49), we obtain

d(un+1, xú) Æ d(un+1, T (un, vn, wn)) + d(T (un, vn, wn) , xú) =

= d(T (un, vn, wn) , T (xú, yú, zú)) + ‘n Æ

Æ a1d (T (xú, yú, zú), un) + b1d (T (un, vn, wn), xú) + ‘n Æ

Æ a1d(un, xú) + b1d (T (un, vn, wn), un) + b1d(un, xú) + ‘n =

= (a1 + b1)d(un, xú) + ‘n + b1‘n≠1.

Hence, passing it to the limit and applying Lemma 1.1 for h := a1 + b1 œ [0, 1)
and for ‘Õ

n := ‘n + b1‘n≠1 æ 0, as n æ Œ, we obtain that limnæŒ un = xú.

Now, using the contraction condition (3.50), we obtain

d(vn+1, yú) Æ d(vn+1, T (vn, un, vn)) + d(T (vn, un, vn) , yú) =

= d(T (vn, un, vn) , T (yú, xú, yú)) + ”n Æ

Æ a2d (T (yú, xú, yú), vn) + b2d (T (vn, un, vn), yú) + ”n Æ

Æ a2d(vn, yú) + b2d (T (vn, un, vn), vn) + b2d(vn, yú) + ”n =
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= (a2 + b2)d(vn, yú) + ”n + b2”n≠1.

So, passing it to the limit and applying Lemma 1.1 for h := a2 + b2 œ [0, 1) and
for ”Õ

n := ”n + b2”n≠1 æ 0, as n æ Œ, we get limnæŒ vn = yú.

Similarly, using the contraction condition (3.51), we obtain

d(wn+1, zú) Æ d(wn+1, T (zn, vn, un)) + d(T (zn, vn, un) , zú) =

= d(T (wn, vn, un) , T (zú, yú, xú)) + “n Æ

Æ a3d (T (zú, yú, xú), wn) + b3d (T (wn, vn, un), zú) + “n Æ

Æ a3d(wn, zú) + b3d (T (wn, vn, un), wn) + b3d(wn, zú) + “n =

= a3d(wn, zú) + b3d(wn, zú) + b3d(T (wn, vn, un), wn) + “n =

= (a3 + b3)d(wn, zú) + “n + b3“n≠1.

Hence, passing it to the limit and applying Lemma 1.1 for h := a3 + b3 œ [0, 1)
and for “Õ

n := “n + b3“n≠1 æ 0, as n æ Œ, we obtain that limnæŒ wn = zú and
then, we get the conclusion. ⇤

4. Illustrative example

Example 4.43. (Timi�, [165])

Let (X, d) be a complete metric space, where X = R, d(x, y) = |x ≠ y| and
a continuous and mixed monotone mapping T : R3 æ R, with T (x, y, z) =
2x≠2y+2z+1

12 .
Berinde and Borcut [32] proved the existence and the uniqueness of the tripled

fixed point of T , respectively (xú, yú, zú) =
1

1
10 , 1

10 , 1
10

2
, using (x0, y0, z0) =

1
1
20 , 1

5 , 1
20

2
.

For k = 1
2 , T satisfies the contraction condition (3.59), i.e.,

d(T (x, y, z), T (u, v, w)) Æ Ÿ

3 [d(x, u) + d(y, v) + d(z, w)] ,

for each x, y, z, u, v, w œ X, with x Ø u, y Æ v and z Ø w.
We apply Corollary 3.12 in order to prove the stability of the tripled fixed point

iteration procedure.
Let {(xn, yn, zn)}Œ

n=0 µ R3 be the sequence generated by the iterative procedure
defined by (2.41), where (x0, y0, z0) =

1
1
20 , 1

5 , 1
20

2
œ R3 is the initial value, which

converges to a tripled fixed point (xú, yú, zú) = ( 1
10 , 1

10 , 1
10) of T .
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Let {(un, vn, wn)}Œ
n=0 µ R3 an arbitrary sequence and set

‘n = d (un+1, T (un, vn, wn)) , ”n = d (vn+1, T (vn, un, vn)) ,

“n = d (wn+1, T (wn, vn, un)) , n = 0, 1, 2, ....

Assume that limnæŒ(‘n, ”n, “n) = 0R3 . Then,

‘n = d (un+1, T (un, vn, wn)) =
----un+1 ≠ 2un ≠ 2vn + 2wn + 1

12

---- ,

”n = d (vn+1, T (vn, un, vn)) =
----vn+1 ≠ 2vn ≠ 2un + 2vn + 1

12

---- ,

“n = d (wn+1, T (wn, vn, un)) =
----wn+1 ≠ 2wn ≠ 2vn + 2un + 1

12

---- ,

and passing to the limit for n æ Œ, we obtain that

lim
næŒ

(un, vn, wn) =
3 1

10 ,
1
10 ,

1
10

4
,

which is the unique tripled fixed point of T .
Hence, the tripled fixed point iterative procedure defined by (2.41) is T -stable.



CHAPTER 6

Conclusions

Fixed point theory has an important role in the nonlinear analysis domain,
with an expansive evolution in the last decades and with many concrete results.

Following the basic result from the metrical fixed point theory, respectively the
Contraction Principle of Picard-Banach-Caccioppoli [14], an important part of the
scientific literature appeared, with applications to functional equations, di�erential
equations, integral equations etc.

In order to solve a nonlinear equation, we appeal to approximating fixed points
of a corresponding contractive type mappings. From the existing methods for
approximating fixed points, we studied the Picard iteration and the Jungck type
iteration procedure.

Establishing the stability of these methods is very important in practical ap-
plications, because a fixed point iteration which is numerically stable will produce
small modifications on the approximate value of the fixed point during the com-
putational process.

The concept of stability of a fixed point iteration procedure has been system-
atically studied by Harder [60], Harder and Hicks [61], [62], and since then, many
other stability results for several fixed point iteration procedures and for various
classes of nonlinear operators were obtained.

In this paper, we treat the problem of stability of fixed point, common fixed
point, coincidence point and tripled fixed point iteration procedures, for certain
class of mappings.
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In the chapter named Stability of fixed point, common fixed point and

coincidence point iterative procedures for mappings satisfying an ex-

plicit contractive condition, we present the concept of stability of fixed point
iteration procedures and we survey the most significant contributions to this area.

Berinde [27] introduced a natural concept of stability, called weak stability, and
we transposed this notion to the case of two mappings S and T with a coincidence
point, named (S, T )-weak stability.

We established weak stability results for common fixed points iteration proce-
dures, on the metric space (X, d), with Y µ X and S, T : Y æ X two nonself
mappings with a coincidence point, satisfying the following contraction condition:

(i) d(Tx, Ty) Æ qd(Sx, Sy), for all x, y œ Y and q œ (0, 1);
(ii) d(Tx, Ty) Æ qd(Sx, Sy)+Ld(Sx, Tx), for all x, y œ Y , q œ (0, 1) and L Ø 0.

Because some fixed point iteration procedures are not weakly stable and be-
cause the stability can be obtained in the meaning of a new concept, we developed
a weaker notion, named w2-stability.

Therefore, we gave some stability results on a complete metric space (X, d)
and using a mapping T : X æ X satisfying the following contractive conditions:

(1) d(Tx, Ty) < max {d(x, Tx), d(y, Ty)};
(2) d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y)};
(3) d(Tx, Ty) < max {d(x, Tx), d(y, Ty), d(x, y), d(x, Ty), d(y, Tx)};
(4) d(Tx, Ty) < max

Ó
d(x, Tx), d(y, Ty), d(x, y), d(x,T y)+d(y,T x)

2

Ô
;

for all x, y œ X and x ”= y.

Moreover, we gave stability results on a complete metric space (X, d), using
two mappings S, T : X æ X with a coincidence point and satisfying the following
contractive conditions:

(1) d(Tx, Ty) < max {d(Sx, Tx), d(Sy, Ty)};
(2) d(Tx, Ty) < max {d(Sx, Ty), d(Sy, Tx)};
(3) d(Tx, Ty) < max {d(Sx, Tx), d(Sy, Ty), d(Sx, Sy)};
(4) d(Tx, Ty) < max {d(Sx, Tx), d(Sy, Ty), d(Sx, Sy), d(Sx, Ty), d(Sy, Tx)};
(5) d(Tx, Ty) < max

Ó
d(Sx, Tx), d(Sy, Ty), d(Sx, Sy), d(Sx,T y)+d(Sy,T x)

2

Ô
;

for all x, y œ X and x ”= y.
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We also presented some examples of weak stable, w2-stable but nor stable it-
erations with respect to T and with respect to (S, T ).

Our research can be extended by using other iterative methods, e.g. Ishikawa,
Mann, or another contractive conditions.

Following the development initiated by Popa [119], [120], [121], several clas-
sical fixed point theorems and common fixed point theorems have been recently
unified by considering general contractive conditions expressed by an implicit re-
lation.

On the chapter entitled Stability of fixed point, common fixed point and

coincidence point iterative procedures for contractive mappings defined

by implicit relations, we continued to study the stability of Picard iterative
procedure and also of Jungck iterative procedure for common fixed points and
coincidence points, for contractive mappings satisfying various implicit relations,
with di�erent number of parameters.

Using the set of all continuous real functions F introduced by Popa [119],
F : R5

+ æ R, with the following conditions:

(1) F is continuous in each coordinate variable,
(2) there exists h œ [0, 1) such that, for all u, v, w Ø 0 satisfying

• F (u, v, u, v, w) Æ 0 or
• F (u, v, v, u, w) Æ 0,

we have that u Æ h max {v, w} ,

we established a general stability result for the Picard iteration procedure, on the
complete metric space (X, d), for a mapping T : X æ X, with Fix(X) ”= ÿ, for
which there exists F œ F, such that for all x, y œ X,

F

A

d(Tx, Ty), d(x, y), d(x, Ty), d(y, Tx), d(x, Tx) + d(y, Ty)
2

B

Æ 0.

We also gave a stability result for the common fixed point iteration procedure
of Jungck-type using weakly compatible mappings satisfying (E.A) property and
defined by an implicit contraction condition on the complete metric space (X, d),
S, T : X æ X, for which there exists F œ F, such that for all x, y œ X,

F

A

d(Tx, Ty), d(Sx, Sy), d(Sx, Ty), d(Sy, Tx), d(Sx, Tx) + d(Sy, Ty)
2

B

Æ 0.
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On the other hand, using the set of all continuous real functions F introduced
by Popa [120], [121], F : R6

+ æ R+, with the following conditions:

(1) (a) F is non-increasing in the fifth variable and F (u, v, v, u, u + v, 0) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(b) F is non-increasing in the fourth variable and F (u, v, 0, u+v, u, v) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(c) F is non-increasing in the third variable and F (u, v, u+v, 0, v, u) Æ 0
for u, v Ø 0 =∆ ÷h œ [0, 1) such that u Ø hv;

(2) F (u, u, 0, 0, u, u) > 0, for all u > 0,

we also established a stability result for common fixed point iterative procedures,
on the complete metric space (X, d), for two mappings S, T : X æ X, with
Fix(X) ”= ÿ, for which there exists F œ F, such that for all x, y œ X,

F (d(Tx, Ty), d(Sx, Sy), d(Sx, Tx), d(Sy, Ty), d(Sx, Ty), d(Sy, Tx)) Æ 0.

Our research can be extended by using another iterative methods, e.g. Ishikawa,
Mann, another contractive conditions, or by modifying the number of the param-
eters.

The idea of the chapter A new point of view on the stability of fixed

point iterative procedures was due to Professor I. A. Rus [136], who unified
the notions of stability in di�erence equations, dynamical systems, di�erential
equations, operator theory and numerical analysis by new ones.

By considering these new notions, we gave some stability result for Picard
iteration procedure for mappings which satisfy certain contractive conditions.

We studied the relationship between the two stability definitions, the one of
Harder [60] and the other one due to Rus [136].

We gave stability results on the metric space (X, d), for self mappings T : X æ
X satisfying the following contraction conditions:

(1) d (Tx, Ty) Æ ”ud(x, y) + Lud(x, Tx), ”u œ [0, 1), Lu Ø 0;
(2) d (Tx, Ty) Æ ”d(x, y) + L min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, ” œ

(0, 1), L Ø 0;

for all x, y œ X.
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We also presented some examples of mappings satisfying certain contractive
conditions for which the associated Picard iteration was not stable in the sense of
Harder but it was actually stable in the sense of Rus.

On the other hand, we transposed the notion of stability introduced by Rus
[136] to common fixed points and we studied the relationship between the stability
concept introduced by Singh and Prasad [152] given for a pair of mappings (S, T )
with a coincidence point and our new stability concept.

We gave some stability results for the Jungck-type iteration procedure, with
respect to two mappings which satisfy the following contractive conditions:

(1) d(Tx, Ty) Æ ad(Sx, Sy), a œ [0, 1);
(2) d(Tx, Ty) Æ h max {d(Sx, Ty), d(Sy, Tx)}, h œ [0, 1);

for each x, y œ X.

Our research can be extended by using another iterative methods, e.g. Ishikawa,
Mann, or another contractive conditions.

An open problem is the study of the stability in the sense of Rus for general
nonexpansive mappings as well as for general almost contractions, that do not
satisfy a certain uniqueness condition.

In the chapter Stability of tripled fixed point iteration procedures,
we introduced the concept of stability for tripled fixed point iterative procedures
and also established stability results for mixed monotone mappings and monotone
mappings, satisfying various contractive conditions by extension from coupled fixed
points to tripled fixed points of contractive conditions employed by Olatinwo [102].

We established stability results for the tripled fixed point iteration procedure,
on the metric space (X, d), for mappings T : X3 æ X, in the case of the monotone
property and also in the case of the mixed monotone property of T , satisfying the
following contraction conditions:

(1) for k Ø 0, µ Ø 0, fl Ø 0, k + µ + fl < 1,

d(T (x, y, z), T (u, v, w)) Æ kd(x, u) + µd(y, v) + fld(z, w);

(2) for a1, a2, a3, b1, b2, b3 Ø 0, a1 + a2 + a3 < 1, b1 + b2 + b3 < 1,

d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), x) + b1d (T (u, v, w), u) ;

d (T (y, x, z), T (v, u, w)) Æ a2d (T (y, x, z), y) + b2d (T (v, u, w), v) ;
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d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), z) + b3d (T (w, v, u), w) ;

(3) for a1, a2, a3, b1, b2, b3 Ø 0, a1 + a2 + a3 < 1, b1 + b2 + b3 < 1,

d (T (x, y, z), T (u, v, w)) Æ a1d (T (x, y, z), u) + b1d (T (u, v, w), x) ;

d (T (y, x, z), T (v, u, w)) Æ a2d (T (y, x, z), v) + b2d (T (v, u, w), y) ;

d (T (w, y, x), T (z, v, u)) Æ a3d (T (z, y, x), w) + b3d (T (w, v, u), z) ;

’x, y, z, u, v, w œ X.
Moreover, we have illustrated these results with an example.
Our research can be extended by using some other contractive conditions, for

mappings satisfying various properties.
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