UNIVERSITY OF CLUJ-HAPOCA

FACULTY OF MATHEMATICS

Research Seminars

Seminar on Pixed Point Theory

Preprint nr.3,1990,pp.43-20.

THE STABILITY OF FIXED POINTS FOR A CLASS

OF \Q - CONTRACTIONS

by

Vasile BERINDE

In the paper [1] has been studied the comparison functions $\varphi: R_+ \to R_+$ which fulfil the following condition

(c) There exist the numbers k_0 and d , 0 < d < 1, and a convergent series of nonnegative terms $\sum_{k=1}^{\infty} a_k$, such that

 $\varphi^{k+1}(r) \leq \angle \left[\varphi^k(r) + a_k\right]$, for each $k \geq k_0$, (?) $r \in R_+$. The aim of the present paper is to show the relationship between the strict comparison functions and the (c)-comparison functions and to prove some results, established for the strict φ - contractions in [4], which remains valid for the φ - contractions with φ (c) - comparison function.

We refer to [4] for the definition and basic properties of comparison functions.

DEFINITION 1 ([4]). A function $\varphi: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ is called comparison function if satisfies the following conditions

- (i) Y is monotone increasing ;
- (ii) (Ψ^a(t))_{B ∈ B} converges to o, for all t > o .
 i comparises function Ψ is called strict comparison function
 if, in addition, Ψ satisfies the conditions
 - (111) is continuous ;
 - (1v) $t \varphi(t) \rightarrow + \infty$ as $t \rightarrow \infty$.

DEFINITION 2.

A function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is called (c) - comparison function if φ is monotone increasing and satisfies the condition (c). The following lemma is given in [1]

LEVELA 1. .

If $\psi: R_+ \longrightarrow R_+$ is a(c) - comparison function then ψ is a comparison function.

REMARK 1.

The condition (c) is, in fact, a necessary and sufficient condition for the convergence of the series of decreasing terms

 $\sum_{k=1}^{\infty} \varphi^k(t), \quad \text{for all } t \in \mathbb{R}_+ \tag{1}$ This result is proved in [1] using a generalization of the ratio (or D'Alembert's) test for the series of positive terms. Por convenience we denote by F, F_g, F_c and F_{cg} , respectively, the set of all comparison functions, of all strict comparison functions, of all (c) - comparison functions and of all subadditive (c) - comparison functions.

STAMPLE 1.

If $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi(t) = \frac{t}{t+1}$, $t \in \mathbb{R}_+$, we have $\varphi \in \mathbb{F}$ and $\varphi \in \mathbb{F}_6$ (see [3] , example 3.1.2.) but $\varphi \notin \mathbb{F}_6$, because the series

 $\sum_{k=1}^{\infty} \varphi^{k}(1) = \sum_{k=1}^{\infty} \frac{1}{k} \quad \text{diverges} .$

XAMPLE 2.

For the function $\varphi\colon\mathbb{R}_+\to\mathbb{R}_+$, $\varphi(t)=0$ if $t\in[0,1)$ and $\varphi(t)=\frac{1}{2}$ t, if $t\geqslant 1$, we have $\varphi\in\mathbb{F}_0$, and $\varphi\notin\mathbb{F}_8$, because φ is not continuous.

LAMPLE 3.

Let $\varphi:\mathbb{R}_+\to\mathbb{R}_+$, $\varphi(t)=at$, $t\in\mathbb{R}_+$ and 0 $\angle a$ $\angle 1$, be a function. Then $\varphi\in\mathbb{P}_8$ and $\varphi\in\mathbb{P}_6$.

Prom this considerations we obtain

LEMMA 2.

- 1) P CP and P CP;
- . 11) Pg / Pg # Ø ;
 - 111) $P_B \setminus P_C \neq \emptyset$ and $P_C \setminus P_B \neq \emptyset$.

DEPINITION 3.

A function $\varphi: \mathbb{R} \to \mathbb{R}$ is called subadditive if $\varphi(t_1 + t_2) = \varphi(t_1) + \varphi(t_2) , (\forall) t_1, t_2 \in \mathbb{R} .$

EXAMPLE 4.

For the function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi(t) = \frac{1}{2} t^2 + \frac{3}{10} t$, if $t \in [0,1]$ and $\varphi(t) = \frac{1}{2} t$, if t > 1, we have $\varphi \in \mathbb{P}_g$ and $\varphi \notin \mathbb{P}_{cg}$.

$$\frac{1}{2} = \varphi(1) > 2\varphi(\frac{1}{2}) = \frac{2}{5}$$
.

EXAMPLE 5.

Por the function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$, $\varphi(t) = -\frac{2}{5} t^2 + \frac{9}{10} t$, if $t \in [0,1]$ and $\varphi(t) = \frac{2}{3}$, if $t \ge 1$, we have $\varphi \in \mathbb{F}_{ce}$ and $\varphi \notin \mathbb{F}_{g}$.

Indeed, from the inequality

$$\varphi^{k}(t) < (\frac{9}{10})^{k}t, \quad n \in \mathbb{S} \text{ and } t \in [0,1]$$

it results that the series (2) converges uniformly, hence, it is pointwise convergent, which implies that $\varphi \in \mathbb{F}_c$ and $\varphi \in \mathbb{F}_{cs}$, but $\varphi \notin \mathbb{F}_c$ because φ is not continuous.

REMARK 4.

The comparison function from example 1 is subadditive, $\varphi \in \mathbb{F}_g$ but $\varphi \notin \mathbb{F}_{cs}$, because $\varphi \notin \mathbb{F}_c$.

, KIAMPLE 6. ([3]), Example 3.1.3.)

Let $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ be a function given by $\varphi(t) = \frac{1}{2}t$, for $t \in [0,1)$ and $\varphi(t) = t - \frac{1}{2}$, if t > 1. Then

1) $\varphi \in \mathbb{F}$ and $\varphi \in \mathbb{F}_{\mathbb{C}}$ but $\varphi \notin \mathbb{F}_{\mathbb{C}}$ (φ is not subadditive);

2) $\varphi \notin P_g$, because $t - \varphi(t) = \frac{1}{2}$, for t > 1.

Prom the preceding examples and remarks it follows

LEWYA 3.

11)
$$P_B \setminus P_{CB} \neq \emptyset$$
 and $P_{CB} \setminus P_B \neq \emptyset$.

Other results concerning some bundles between the comparison functions and the rates of convergence (a (c) - comparison function is a rate of convergence) can be found in the recent paper $\lceil 2 \rceil$.

To prove the main result of this paper we need some definitions and lemmas.

DEPINITION 4. ([4])

Let (I,d) be a matric space. A mapping $f: I \longrightarrow X$ is called (strict) φ - contraction if and only if $\varphi \in F$ (respectively $\varphi \in F_g$) and

$$d(f(x),f(y)) \leq \varphi(d(x,y)), \quad (\forall) \quad x,y \in I.$$
 (2)

LEMA 4.

If $\varphi \in \mathbb{P}$ then φ is continuous at 0.

Proof.

From (1) and (11) it results $\psi(t) \angle t$, (ψ) t > 0 and $\psi(0) = 0$ (see [4], chapter III).

From $f(t) \ge 0$, we obtain $\lim_{t\to 0} f(t) \ge 0$,

and from $\varphi(t)$, $\lim_{t\to 0} \varphi(t) \leq 0$, hence $\lim_{t\to 0} \varphi(t) = \varphi(0)$,

as claimed.

LEMMA 5.

If $\varphi:\mathbb{R}_+\to\mathbb{R}_+$ is a (c) - comparison function, and $s(t)=\sum_{k=1}^\infty \varphi^k(t)\ ,\ t\in\mathbb{R}_+$ then s is continuous at zero.

Proof ..

Let a > 0 La fixed number. From the monotonocity of φ ,

we obtain

$$\varphi^{k}(t) \leq \varphi^{k}(a)$$
, (\forall) $t \in [0,a]$

hence the series (1) converges uniformly on [0,a] .

Since 4 is continuous in zero, it is obvious that s is continuous in zero and the proof is completed.

The continuous dependence of the fixed point of the strict . φ - contractions is given by

THEOREM 1. ([4]) .

Let (I,d) be a complete matric space and $f,g: I \longrightarrow I$ two mappings. We suppose

- (u) f is a strict 4 contraction,
- $(v) \quad x_g^v \in P_g ,$
- (w) there exist $\eta > 0$ so that $d(f(x), g(x)) \leq \eta \quad \text{, for all } x \in I.$

Then

$$d(x_g^*, x_f^*) \leq t_{\gamma}$$

where $P_f = \{x_f^*\}$ and $t_{\gamma} = \sup \{t \mid t - \psi(t) \leq \gamma\}$. In the proof of Theorem 3 we shall use the following statement of [1], which is a generalization of the Theorem 3.2.1. from [3].

THEOREM 2.

Let (I,d) be a complete matric space, $f: I \longrightarrow I$ a mapping satisfying (2) with $\varphi \in P_g$.

Then

1)
$$P_{\mathbf{r}} = \left\{ \mathbf{x}^{\mathsf{Y}} \right\};$$

2) The sequence of succesive approximations, $(x_n)_{n \in X}$.

 $x_n = f(x_{n-1})$, $n \ge 1$, converges to x' , for every $x_0 \in X$;

3) We have

$$d(x_n, x^i) \leq e(d(x_0, x_1)) - S_{n-1}(d(x_0, x_1))$$
,

where s(t), Sn-1(t) denote the sum, respectively, the par-

tial sum of rank n-1, of the series (1);

4) If $Y \in P_{GB}$ and $g : I \rightarrow I$ is a mapping satisfying (w),

then

 $d(y_n,x) \leq \gamma + s(\gamma) + s(d(x_0,x_1)) - s_{n-1}(d(x_0,x_1)),$ where $y_n = g^n(x_0)$.

We are now able to prove

THEOREM 3.

Let (I,d) be a complete matric space and f,g: $X \longrightarrow X$ two mappings. If f is a Y- contraction with $Y \in \mathbb{F}_{GS}$ and the assumptions (v). (w) are satisfied,

$$d(\mathbf{x}_{\mathbf{f}}^*, \mathbf{x}_{\mathbf{g}}^*) \leq \gamma + s(\gamma),$$
where $P_{\mathbf{f}} = \{\mathbf{x}_{\mathbf{f}}^*\}$ and $s(\gamma)$ is the sum of the series
$$\sum_{k=1}^{\infty} \varphi^k(\gamma).$$

Proof.

We apply theorem 2, with $x_0 = x_g^{\frac{\gamma}{2}}$, to obtain $d(x_f^{\frac{\gamma}{2}}, x_g^{\frac{\gamma}{2}}) \leq \gamma + s(\gamma) + s(r_0) - s_{n-1}(r_0)$, where $r_0 = d(x_g^{\frac{\gamma}{2}}, f(x_g^{\frac{\gamma}{2}}))$.

Now it is enough to take $n \longrightarrow \infty$ and the proof, is completed. REMARK 5.

1) Prom the continuity of s'we have

$$\lim_{\eta \to 0} (\eta + s(\eta)) = 0;$$

- ·2) If $\varphi(t) = at$, 0 < a < 1, than (see [4], example 7.1.1.)
- $f'(t) = \frac{1}{1+t} + s(\frac{1}{1-a}) = \frac{f'(\frac{1}{1-a})}{1-a};$ 3) If $f'(t) = \frac{t}{1+t}$, then (see [4]), exemple 7.1.2) the Theorem 1 give an estimation with

$$t_{\gamma} = \frac{1}{2} (\gamma + \sqrt{\gamma^2 + 4}),$$

but theorem 3 fails, because $\psi \notin P_c$, and consequently, $\psi \notin P_c$

Pcs .

4) If we take φ as in example 5, then Theorem 3 applies, but Theorem 1 not.

An analogous to Theorem 7.2.1. from [4] holds.
THEOREM 4.

Let (I,d) be a complete metric space and $f_n, f: X \longrightarrow I$, $n \in E$, such as:

- 1) f_n is a φ contraction with $\varphi \in P_{os}$, for all $n \in S$;
- 2) (fn)ne m converges pointwise to f .

Then f is a φ - contractions with $\varphi \in P_{cs}$

and $(x_n)_{n \in \mathbb{R}}$ converges to x^* ,

where $Y_f = \{x_n^*\}$ and $Y_f = \{x^*\}$.

Proof.

Using 1) and 2), from the inequality

 $d(f(x),f(y)) \leq d(f(x),f_n(x)) + d(f_n(y),f_n(y)) + d(f_n(y),f(y)),$ we obtain, latting $n \to \infty$, that f is a φ - contraction, with $\varphi \in P_{on}$.

Since $\varphi \in \mathbb{F}_{aB}$, from $d(x_n^{\flat}, x^{\flat}) = d(f_n(x_n^{\flat}), f(x^{\flat})) \leq \varphi(d(x_n^{\flat}, x^{\flat})) + d(f_n(x^{\flat}), f(x^{\flat}))$, it

 $d(x_n^*, x^*) \le \varphi^{k+1}(d(x_n^*, x^*)) + \sum_{j=0}^k \varphi^1(d(f_n(x^*), f(x^*))) , k \ge 0.$ which, together with (ii), yields, letting $k \to \infty$

d(x,x) & r, + s(r,),

where $r_0 = d(f_n(x^3), f(x^3))$.

Prom (2) we now obtain lim r = 0 and, from lemma 5,

 $\lim_{n\to\infty} s(r_n) = 0$

hence

$$\lim_{n\to\infty} d(x_n^*, x^*) = 0$$

REMARK 6.

The theorem 7.1.2. and 7.2.3. [4] remain also valid if we replace the condition $\varphi \in P_g$ with the condition $\varphi \in P_{gg}$.

REFERENCES

e- 1/1, 2 ban soom plates stalquab a of (b, 2) tal-

- [1] BERINDE, V. Error estimates in the approximation of the fixed points for a class of φ contractions, Studia (to appear)
- [2] MURESAN,A.S. Some remarks on the comparison functions Seminar on num.and stat.calculus, Preprint nr.9, 1987,pp.99-108, Univ.of.Cluj-Napoca
- [37] RUS,I.A. Principii și aplicații ale teoriei
 punctului fix, Ed.Dacia, Cluj-Napoca,
 1979
- [4] RUS,I.A. Generalized contractions, Preprint
 nr.3, 1983,p.1-130, Sem.on fixed point
 theory, Univ.of Cluj-Napoca .