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1. Introduction. In applications of the contraction mapping
principle to concrete problems associated with the fixed points
of a given operator an usual way is to find a space where the
operator in guestion is contractive, i.e. to csnstruct a norm,
equivalent to the norms of the spaces into consideration, with
respect to which the operator in question is contractive.

Results concerned with the construction of some Bielecki
adequate norms are given, for example, in (7], [8], [10].

In this note we shall give some "existence and unigueness"
theorems for the problem of Darboux-Ionescu [8), using an
alternative of the above mentioned approach, i.e., the
generalized contraction mapping principle [2], when generalized
norms (with values in the positive cone of a real Banach space),
rather than equivalent Bielecki norms are considered.

2. A fixed point theorem in E-metric spaces. In this paper
we consider, as in [2], [3), a generalized norm, i.e., a norm
which takes values in an abstract cone K and comparison maps
§ : K~ K, which enjoys certain properties in common with the map
t - at where 0 < a < 1, but is not necessarily linear.

We need some definitions and results from [1]~(3], (9], [4],



[51.
Let (£,1'1) be a real Banach space.

A set K ¢ E is called a cone if
(i) K is closed
(ii) x,y € K implies ax + by ¢ K for all a,b ¢ R,;
(iii) K n (-F) = {8}, where 8 is the null element of E.
The cone K induces a reflexive, transitive and
.antisiretrical corder relation in E, by
x £y if and only if y - x € K,
related to the linear structure by the properties

u £ v implies u + z < v + z, for each z ¢ E

and

u < v implies tu £ tv, for each t ¢ K,,
that is "<" is a linear order relation.

The space E endowed with this order relation is called an
ordered Banach space, while K is termed as its positive conea,

We say that the norm of E is monotone if x,y ¢ E,

€; < x <y, implies Ix| < iy!.

The cone F is normal if there exists § > 0 such that, from
¥,y 28, x,y ¢ Eand [xt = Jyi = 1, it results [x + yj 2 §.

Recall that if the norm of (E,}J-]) is monotone, then X is
a normal cone (4].

Throughout this paper K will be the positive cone in a real
crdered Banach space (E,f-!) with monotone norm.

DEFINITION 2.1. A mapping ¢ : K » K is a comparison function
if

(i) ® 1s monstone increasing;

(ii) (¢"(t)).,\ converges to B, for all t € K.
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Example 2.1. Let £ = E, the real axis, with the usual norm.
In this case K = R, and a typical comparison function is
9 : R, - R,

p(t) = at, 0 <a<1l, t e K,.

DEFINITION 2.2. A mapping ¢ : K~ K is called (c)=-comparison
function if ¢ is rmonctone insreasiné and fulfils the follcwing
convergence condition

{c)} There exift two numbers k,, a, 0 < a < 1, and a
convergent series with nonnegative real ter=zs }ieap
such that “

1% ()] < a(isK{d)! + ay), for k > kg, (V)% € K.

Remark. Evervy (c; - compariscn functisn is a comparison
functioﬁ since, if 9 is a (c) - comparison Zuncticn, then (see
{1], [2]) the series iilw*(t}l converges for all t £ K and,

=
conseguently, the series

Y 9 (o) (1)
k=3

converges in E, hence condition (ii) in Definition 2.1 is
satisfied.

The function y from exanmple 2.1 is a (c) - comparison

function.
DEFINITION 2.3. Let X be a nonempty set. A mapping

d: X x X - K is salid to be a K-metric on X if

(i) d(x,y) =2 B and dix,y) =8 -=- x = y;

(ii) d(x.,y) d{y,x), for all x,y € X;

(iii) d(x,y) = d(x,z) + d(y,z), for all x,y,z € X.

The obtained entity: the nonempty sei X with 2 K-metric d
is called X - metric space, denoted as usually by (X,4d).
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DEFINITION 2.4. Let (X,d) be a K-metric space and
¢ : K~ K a comparison function. A mapping f : X -~ X is called
abstract ¢ - contraction if there exist a comparison function
¢ : K - K such that

d(f(x),f(y)) < e(d(x,y)), for all x,y € X. (2)

Example 2.2. Let K = B, and let ¢ be the comparison function
from example 2.1. Then a R, - metric space is an usual metric
space, while condition (2) becores the well - known contraction
condition

d(f(x),f(y)) < a-d(x,y), 0<a<1l1, X,y € X.

Remark. In a K-metric space the concepts as K-fundamental
sequence, K-convergent seguence and complete K-metric space are
defined in a similar manner to the usual metric spaces.

As shown by example 2.2, the following result (2] is a
generalization of the contraction mapping principle.

THEORiM 2.1. Let (X,d) be a complete K-metric space, where
K is a normal cone, and f:X — X an abstract g-contracticn, with
9 (c)-compariscn function.

Then

(1) Fg = {x"}, where Fy, = { x € X|f(x) = X };

(2) The sequence (x.)..N. X, = f(x,;), n 2 1, converges to

x", for every x, € X;
(3) We have
d(x,,x") s s(d(Xg,X3)) = Sp_y(d(xg.%;)),
where s(t), S,_,(t) denote the sum and the partial sum
of rank n-1, respectivaly, of the series (1);
(4) If, in addition, ¢ is subadditive and there exist ne€Kk,

n=»8, and a mapping g : X - X, so that



d(f(x),9(x}) < n, for all x € X,
then

diy,. x*) sn+5(n) + 8(dix,, x;)) -5,,(d(x,,x,)},

where

Yn ” 9“(10) .
Remark. X = R, and ¢ is as in example 2.1, from theorem 2.1

we obtain the Banach fixed point theorem [7], ([9].

3. Differentizl ojuaticas with deviating zrgument. Let us

first consider the following problem of Darboux [8)

a’u(x:z) % 3
Xy f{x.y.,ulhlx,¥.)})., (3)
ul(x,0) =0, x€[0,a] .

(4)
u(o.y) =0, yve[0,b] .

where £ € C([0,a] x (0,b] x R), h € C([0,a] x [0,b],
(0,a] x [0,b]).

Recall that by a solution of the problem (3)+(4) we mearn a
function u: [0,a] x [0,b] - E which is continuous together with

its partial derivatives -g;. %% and éf;;, and which satisfies

(3)+(4).
The problem (3)+(4) is equivalent to the following integral

equation of Velterra type ([7], [8])
utx,y) = [*[7f(s, t,uh(s. t)))dsac. (5)

Let D = [0,a) x [0,b] and let X be the space C(D), endowed
with the usual norm.

We denote by K the cone of the positive functions from X and
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wve define a mapping

by
fe(x,¥)i. = |u(x, )|, (x,y) € D.
It is obvious that [-{|, is a generalized norm on X, that is
(i) ful., 2 @8, for each u € X, where 6 is the null
function, and jul. = 8 if and only if u = 8;
(ii) f§auf. = [al-fuf,, for each u € X and any i ¢ K;
(iii) fu + vi. < ful, + Jvl., for each u,v ¢ X.
By other hand, K is the positive cone of X endowed with the
Cebisev's norm, which is monctone. Hence, K is a normal cone.
The partial order induced by K in X is given by, u,v ¢ X,
u<ve=u(xy < vix,y), ¥(x,¥) € D,
Let us censider the mapping
T2 XX,

dafined by
Tulx,v) = [*["(s, t.ulh(s, 0))dsde, (x.) eD. }' (6)

Every solitticn cf eguation (5), hence every solution of the
problem (3)+(4) too, is a fived point of T and vice versa.
Thus we obtain the main result of this paper given by
THEOREM 3.1. Assume that
(i) f e c(D x k) and h € c(p,D);
(ii) 7There exists a function g: ﬁ x R, - B,, integrable
with respect to the first argument and monotone with respect to
the second argumert (i.e., g(.,.,u) is integrable on D for fixed

u e R, arnd

L -]
1A
«

]

cix,y,u) < g(x,y,v), ¥Y(x,y) € D) (7)
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such that
If(x,y,u) = £(x,y,v}| < g(x,y,|u-v]), for
each (x,y) € D, u,ﬁ € R (8)

(iii) For the fu ction ¢ : X - K, defined by
eulx,y) = [*[7g(s, £, uth(s, £))) dsde, (%)
e Jo

there exist a number a« € (0,1) and a convergent series of

-

nonnegative terms Z:ak. such that, begining from a fixed rank
the following inaquzlity holds
le¥*3(r)| s ¢ {Je*(r)| + a,), for every r ¢ K, (10)
Then the problem (3)+(4) has a unigue solution u®, which may
be obtained by the succesive approximation method, starting from
an arbitrary element ug € X.
The seguence of succesive approximations (up)

peNie is given

by
uylx,y) = L'L’f{s.t.uﬁ{h{s. t)))dsde,

and we have the following estimation
lup-u'l. < s(lug=uyl.) = Sy (lug-uyi.).
Proof. From condition (7), we deduce that ¢ is monctone
increasing and from (iii) it results that ¢ is a (c¢)-ccmparison
function.

We have

|Tulx, y) - Tvix,y) | = |f0’fc’{f(s. t.ulh(s, £))) -

-f(s, t,vihls, £)))) dsdc;sj;"L’if(s. t,ulh(s, t))) -
- f(s,t,ulh(s, t))) |dsdz.

Using (8) we then obtain
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|mtx.y) —mx,ynsj *[7gts. e, Juthls, 1)) -v(h(s, t))|) dsdt,

for _each (x,y] € D,
that is _ _

1Tu - TVI-.. < ¢(lu ~ vi.), u,v éx,
hence T is an abstract o-contfaction.

Now, theorem 2.1 completes the proof.

Re_mar}:s. ! ]
1) For g(x,y,u) = L‘u, where 'L > 0 is constant, (8) is just
the condition (i) from Theorem 16. 3 1[7); . ¢

2) In a slmllar manner one can treat tr-‘n following problem

of Darboux = Ionascu {8]

5 3

' -Qz‘fT“fi*=F(x.y.'tr(gti.jr).h(x.y))) (x;y) €D, -+ (11).-
i S e :
{u(x.D) =a(x) . xe [0,a)] | (12
u(o,y) =B(y»), yelo,bl 2
where A b e | ¥ -
e € c[(o,a)], B e:clfo,b], -(g,h):€ c(D,D)
= g 2 P it . .
-Evza 0 @(0). = B0y EE 4 L § sYaset iy

We'ol:;tain' TR R _'::93;'-.;1- T et e R o U s SRR

"THEOREM 3.2. * Assume ﬁhat the .folinwing conditions ‘are.
fulfited - ' |
(i) Fec(x < B), o s' clfo,a), 8 € c}o, b)
and a(O} B0); i
(ii) ¢ e-g:cn,[o,'al'),_- h € ¢(D,[0,b]);
(iij.) There exists a function ¥: D x R, = K, integrable on

D-_wfith respéét"'tb'i:he first argument and monotone. . !



increasing with respect to the argument, i.e.,
- u<v-= t(x,},u) < ¥(x,¥,v), for each (x,y) € D,
u,v € R, such that
|F(x,y,u) = F(x,¥,v)| < ¥(x,y,|u-v|), for each
(x,y) € D and u,v € R; (13)

(iv) The function ¢ : K = K, defined by
u(x,y) =L’L”¢(s,c.u(g{s.c1.bts. t)))dsde, (x,y) €D,

satisfies the convercence conditior (8) from theorem 3.1.

Then, the problem of Darboux - Ionescu has a unique solution

Proof. The problenm (11)+(12) is equivalent to the following

integral eguation of Volterra type

ulx,y) =a(x) +p(y) -y, +L1LYF(x, t.u({g(s, t), h(s, t)) dsdt.

Remark. For w¥(x,y,u) = L(x,y)-u, (13) is the Lipschitz
condition frorx theorem 3.1 [7].

The generalized Lipschitz conditions used in Theorem 3.1 and

Theorem 3.2 are termed "Perron condition" in [5].
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