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Fixed point theorems for generalized contractions on metric, K-metric or uniform
spaces, as well as for generalized contra;cﬁons on o-complete vector lattices, have been given
in the papers [2]-[4], [6], [81-[9], {10]-[11].

The aim of the present paper is to extend a result of BAHTIN,LA. [1], given for usual
contractions in quasimetric spaces, to a class of @-contractions, with ¢ a comparison function.

A quasimetric space 15 a nonemply set X endowed with 2 quasimetric, ie. a findiond : Xx X = R,
satisfying the following conditions:

d1) d(x,y) = 0 if and only if x = y;

d2) d(x,y) = d(yx), V x,y € X;

d3) d(x,z) < a [d(xy) + d(3,2)], Y x5,z € X,
where a = 1 is a given real number, see [1].

Obviously, when a = 1 we obtain the usual notion of metric (space).

Example 1.[1] The space [,(0 <p < 1),

b= e RIT Il < |,

together the function d:/, x { — R,

iip
d(x,y) = [Z |x,~y, l") ,
n=1
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where y = (x,),y=(@,) € l,,, is a quasimetric space. Indeed, by an elementary calculation

we obtain

d(x,z) s 2_; [d(x,y) +d(y,2)],
hence 4 = 2_1: > 1 in this case.
Example 2.[1] The space L(0<p<1 ).of all real functions x(f), # € [0,1], such that
[1xpar<e,

becomes a quasimetric space if we take

v
d(x,y) = (J;l |x(£) - y(¥) |”dt) p, for each x,y €L, .

The constant a is the same as in the previous example

"

a=2",
In order to obtain our main result we need some definitions and results from [2]-[4]
and [11], which we summarise here.
DEFINITION 1. ([8]) A mapping ¢: R, — R, is called comparison function if
(1) o is monotone increasing;
(i) @"(#) = 0, as n — o, for each f ER,.

Example 3. The mapping @(¢) = af, ¢ € R, where 0 < a < 1, is a comparison

function.

Let (Xd) be, for instance, a metric space and £: X — X a mapping. An usual way
to obtain generalizations of the contraction mapping principle is to replace the classical
condition

d(f(x),f())) s a-d(x,y), Y2,y € X, M

by a generalized contraction condition

d(f(x),f()) = 9(d(x,y)), Y2,y € X, @

where @ is a certain comparison function, see, for example RUS,A L [10], [11].
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Generally, such a fixed point theorem asserts, under suitable conditions, the existence
or the existence and unicity of a fixed point of fbut it is not ablfa to say anything about the
approximation of this fixed point.

A class of generalized contractions for which a fixed point theorem furnishes an
estimation of the convergence of the sequence of successive approximations is studied in our
papers.[2]-[4], [8]-[9].

DEFINITION 2. ([2], [3]) A mapping ¢: R, — R, which satisfies:

(1) o is monotone increasing (isotone);

(ii) There exist a convergent series of positive terms i: v, and a real number a, 0 <
a < 1, such that "

e*(1) < agt(r) + v, for each 1 € K and n = N (fixed) €))
is called (c) - comparison function (¢* stands for the k iterate of ).

Remark. 1) Using a generalization of the ratio test [5], [7], it results that if ¢ is a (c)-
comparison function then the series

¥ o) @
k=0
converges for each 1 € R,, hence
(1) = 0, as k = oo,
i.e. any (c)-comparison function is a comparison function.

2) If we denote by s(f) the sum of the series.(4), then, see [2]-[4], s is monotone
increasing and continuous bizero.

Example 4. The function given in example 3 is a (c)-comparison function but,
generally, a comparison function is not a (c)-comparison function, see [2]-[3].

The following theorem extends theorem 1 from [1].

THEOREM 1. Let (X,d) be a complete quasimetric space and f: X~ X a -
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contraction, i.e. a mapping which satisfies (2).

Then f has a unique fixed point if and only if there exists x, € X, such that the
sequence (x ) of successive approximations,

x =z ), nE N,

is bounded.

Proof. The sufficiency is obvious: if fhas a unique fixed point, say x", then for x, =
x’, the sequence (x,) is bounded, being constant.

The necessity. We suppose that (x,) is bounded for a certain x, € X. This means there
exists a constant ¢ > 0 and an element y € X such that

d(x,,y) s c, foreach n €N,

and then, for n,m € N we have

d(x ,x )sald(x,,y) +dy,x,)] < 2ac.

m

Therefore
d(x,.x,,,) = d(f(x,),f(%,, ) s 9d(,,,x,,,)) =
< .. s @7(d(x, X)) S @ "1(2ac), n,p EN,
which shows (x,) is fundamental, hence (x,) is convergent, because (X d) is a complete
quasimetric space.
Let x* = lim x,. Then

n—o

limd(x,x*) =0

n—so0

and from -

0=d(f(x"),x") sald(f(x"),f(x,)) +d(f(x,),x")] =
s alo(d(x’,x,)) +d(x,,,x)],

we deduce

d(f(x9,x") =0,
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since @ is continuous é:l;zero. Hence x* < Fj'
The unicity is an immediate tonsequence of the contraction condition (2). The proof
is now complete. ,
Remark. For @ as in example 3, from theorem 1 we obtain theorem 1{1].
Now let @ = 1 be a given real number and let p:R—>R be a comparison function
for which there exists a convergent series of posiﬁ've terms i: v, and a real number a, 0 <

n=0Q
o < 1 such that

a*lgi(1) s a-akgf(r) + v,, for each  ER, and each k = N(ﬁxe(l) )

Then, in view of the generalized ratio test [5], the series

o

E a*gf(1), (6)

k=0
converges for each 7 € R, and its sum, denoted by s,(1), is monotone increasing and

continuous h&;zero.

Obviously, when @ =1 (i.e. 4 is actually a metric on X) such a comparison function
is a (c)-comparison function.

The main result of this paper is the following theorem.

THEOREM 2. Let (X,d) be a complete quasimetric space, f: X — X a ¢-contraction,
with @ satisfying the condition (5).

If x, € X is such that the sequence (x,),

x,=f(x_), n€EN,
is bounded and F={x"}, then we have
dx,x*)sa-s(d(x,x,)), n=0, @)

where s (t) is the sum of the series (6).

Proof. From the contraction condition (2) we deduce, for n = 1,

d(x,,x,,) = d(f(x,.,).f(x,)) s 9(d(x,,x,)),



and forn= 2,
d(x,,x,) s 9(d(x,,,%,,)),
which yields, using the monotocity of @,
d(x,,%,,) s ¢*(d(x,,,%,,)), forn=2.
By induction, we then obtain

fCx ey 5%,..) s 971 (d(x,,x,,,)), for each k.

By on other hand, the axiom d3) gives, for each p € N,

d(x,,x, )sald(x,,x,) +d(x,.,%,.)] =

n? " ntp

s ad(x,ﬂx,H‘l) 57 az[d(xnflﬂx,pz) a7 d(anZ’xnfp)] =

S oS (R XY+ @PHX %) o HaPd(x x. ),

ntp=17 " n+p

hence, from (8) we obtain
p~1
d(x,,x,,) s az afgb(d(x ,x,)).
k=0
Now if we take p — o in (9), we obtain the desired estimation (7).

The proof is complete.

®)

®)

Remarks. 1) If a = 1, theorem 2 is just the generalized contraction principle given in

[2]-[4]);

2) When ¢(?) is as in example 3, the condition (5) is satisfied if « & [0;1]

is such that

aa <1.
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