"Babes-Bolyai" UNIVERSITY
Faculty of Mathematics and Computer Science
RESEARCH SEMINARIES
Seminar on Fixed Point Theory
PREPRINT Nr.3, 1994, pp. 3-9

ERROR ESTIMATES FOR A CLASS OF (δ,φ) - CONTRACTIONS

by

Vasile BERINDE

The purpose of this paper is to establish an estimates for a class of generalized contractions.

Fixed point theorems for generalized contractions are given in [1] - [5], [10] - [13]. It is well known that in a fixed point theorem is very important to have an error estimates, that is a method for the approximation of the fixed point.

Because the fixed point for $(\delta - \phi)$ -contractions in [12], [13] does not give an error estimation of the fixed point, we are led to consider a class of (δ,ϕ) -contractions, as in [5], for which such an estimation may be obtained. To this end we need some notations, definitions and lemmas from [12], [13], [5].

Let (X,d) be a metric space and $f: X \to X$ a mapping. We denote as usually

$$F_{f} := \{x \in X | f(x) = x\},$$

$$O(x; f) := \{x, f(x), ..., f^{*}(x), ...\},$$

$$O(x, y; f) := O(x; f) \cup O(y; f),$$

$$\delta(A) = \sup \{d(a, b) | a, b \in A\}, A \subseteq X$$

and

$$I_{\lambda}(f) = \{A \subseteq X | A = \emptyset, f(A) \subseteq A, \delta(A) < +\infty\}.$$

DEFINITION 1. (BERINDE [1]). A function $\varphi: \mathbf{R} \to \mathbf{R}$ is called (c)-comparison function if the following two conditions are satisfied

- (c,) & is monotone increasing.
- (c₂) There exist two numbers k_0 , α , $0 < \alpha < 1$, and a convergent series with nonnegative terms $\sum_{n=1}^{\infty} a_n$, such as

$$q^{-1}(t) \le \alpha q^k(t) + a_k$$
, for each $t \in \mathbb{R}$, and $k \ge k_0$.

LEMMA 1 (BERINDE [1], [5]). If φ is a (c)-comparison function then

- $(c_1) \varphi(t) \le t$, for each $t \ge 0$:
- (c₄) ϕ is continuous in θ :
- (c,) The series

$$\sum_{k=0}^{\infty} \varphi^{k}(t) \tag{1}$$

converges for each t∈ R.

- (c_6) The sum of the series (1), s(t), is monotone increasing and continuous in 0.
- (c_1) $(\varphi^n(t))_{n\in\mathbb{N}}$ converges to 0. as $n\to\infty$, for each $t\in\mathbb{R}$.

Remark. A function φ: R. → R. satisfying (c1) and (c7) is called comparison function

Example 1. If $a \in (0,1)$, then $\phi: \mathbb{R} \to \mathbb{R}$, $\phi(t) = at$, $t \in \mathbb{R}$ is a (c)-comparison function, hence ϕ is a comparison function too. But $\phi: \mathbb{R} \to \mathbb{R}$, $\phi(t) = \frac{t}{1+t}$, $t \in \mathbb{R}$, is a comparison function which is not a (c)-comparison function.

DEFINITION 2. (RUS [12]). Let (Xd) be a metric space.

A mapping $f: X \to X$ is a (δ, φ) - contraction if there exists a comparison function φ such that

$$\delta(f(A)) \le \varphi(\delta(A)). \tag{2}$$

for all $A \in I_{\rho}(f)$

Example 2. If f is a q-contraction (see RUS [12]), i.e. a mapping which satisfies instead of (2) the following condition

$$d(f(x), f(y)) \le \varphi(d(x, y)), \ \forall x, y \in X$$

where φ is a comparison function, then f is a $(\delta - \varphi)$ -contraction.

Example 3. If f is a \(\phi\)-contraction with \(\phi\) a 5-dimensional comparison function (see BERINDE [5]), then f is a (δ-φ)-contraction.

Example 4. Let $f: [0,1] \rightarrow [0,1]$ be a function defined by $f(x) = x + \frac{1}{3}$, for $x \in \left[0, \frac{1}{3}\right]$ and $f(x) = \frac{1}{2}x - \frac{1}{6}$, for $x \in \left(\frac{1}{3}, 1\right]$ Then

b)
$$I_{\mathfrak{s}}(f) = \left\{ [0, b]/b \ge \frac{2}{3} \right\}$$

b) $I_3(f) = \left\{ [0, b]/b \ge \frac{2}{3} \right\}$; c) For $b > \frac{2}{3}$, any set A = [0, b] satisfies (2), with $\varphi(t) = \frac{2}{3}t$, but f is not a (δ, φ) contraction, because for $A = \left[0, \frac{2}{3}\right]$. (2) is not satisfied

DEFINITION 3. Let (X,d) be a metric space and $f: X \to X$ a mapping. An element $x \in X$ is called regular for f if the set O(x:f) is bounded. Two elements x and y of X are called asymptotic under f if the sequence $(d(f^*(x), f^*(y)))_{n \in \mathbb{N}}$ converges to 0 as $n \to \infty$

LEMMA 2. (RUS [13]). Let (X,d) be a metric space and $f: X \to X$ a (δ, φ) -contraction. If x and y are regular elements for f then x and y are asymptotic under f.

The following characterization of the (δ, φ) -contraction will be useful in the sequel.

LEMMA 3. (RUS [13]). Let (X,d) be a metric space, φ a given comparison function and $f: X \to X$ a mapping. Then the following statements are equivalent

- f is a (δ,φ)-contraction;
- (ii) $d(O(f(x), f(y); f)) \leq \varphi(O(x, y; f))$, for all regular elements x and y of X,
- (iii) $d(f(x), f(y)) \le \varphi(\delta(0(x, y; f)))$, for all regular elements x and y of X.

LEMMA 4. (RUS [13]). Let (X,d) be a complete metric space and $f: X \to X$ a (δ,φ) -

contraction

(ii) If $x \in F_f$ and x is a regular element for f, then $(f^*(x))_{x \in \mathbb{N}}$ converges to x^* .

The main result of this paper is given by

THEOREM 1. Let (X,d) be a complete metric space and $f: X \to X$ a (δ, φ) -contraction with φ a (c)-comparison function.

If there exists a regular element $x \in X$ for f then

a)
$$F_{i} = \{x^{*}\};$$

b) If $(x_n)_{n\in\mathbb{N}}$ is the sequence of the successive approximations with $x_0\in X$ a regular element for f, then

$$x \rightarrow x^*$$

c)
$$d(x_{*}, x^{*}) \le s(\delta(0(x_{*}, x_{*1})))$$
 (3)

where s(t) is the sum of the series (1).

Proof. From Theorem 1 [12] and example 2 it results a), b). In order to prove c), we use Lemma 3 and condition (2). We deduce

$$\delta(0(f(x),f(y);f)) \leq \varphi(\delta(0(x,y;f))). \tag{4}$$

for all regular elements $x,y \in X$.

Let x_0 be a regular element and $(x_0)_{n\in\mathbb{N}}$ the sequence of succesive approximations,

$$x_n = f''(x_n), n \ge 1.$$
 (5)

Obviously, x_n is a regular element for f too, for each $n \ge 1$ and then, from (4) we deduce

$$\delta(0(f^{n+1}(x_0),f^{n+2}(x_0))\leq \varphi(\delta(0(f^n(x_0),f^{n+1}(x_0);f))),$$

that is

$$\delta(0(x_{n-1},x_{n-2};f)) \leq \varphi(\delta(0(x_n,x_{n-1};f)).$$

By induction we obtain

$$\delta(\theta(x_{a-k},x_{a-k-1};f) \leq \varphi^k(\delta(x_a,x_{a-1};f)).$$

Since

$$d(x_s, x_{s-s}) \leq d(x_s, x_{s-1}) + d(x_{s+1}, x_{s-2}) + ... + d(x_{s+s-1}, x_{s-s}),$$

it results

$$d(x_{*}, x_{**}) \le r + \varphi(r) + ... + \varphi^{**}(r),$$
 (6)

where

$$r = \delta(0(x_1, x_{1,1}; f)).$$

Now we take $p \rightarrow \infty$ in (6) and we obtain just the desired estimation (3).

Remarks.

- 1) Theorem 1 in the present paper completes Theorem 5.2.2. [12] by the estimation (3);
- 2) It is possible to obtain a more general result if consider two metrics d and ρ defined on X. In this case we denote by $\delta_{\rho}(A)$ and $\delta_{\rho}(A)$ the diameter of the set A with respect to the metric d and ρ respectively.

The following theorem corrects the statement of Theorem 1 in MUREŞAN [10] and completes it by the estimation (7).

THEOREM 2. Let X be a nonempty set endowed with two metrics d and ρ and f. X \rightarrow X a mapping satisfying the following conditions

1) There exists a constant c > 0 such that

$$d(f(x), f(y)) \le cp(x, y)$$
, for all $x, y \in X$;

- 2) (X,d) is a complete metric space;
- 3) $f.(X,d) \rightarrow (X,d)$ is continuous;
- 4) f. $(X,p) \rightarrow (X,p)$ is a (b,φ) -contraction with φ a (c)-comparison function,
- 5) There exists a regular element $x \in X$ for $f: (X,p) \to (X,p)$

Ther:

- (i) $F_{r} = \{x^{*}\},$
- (ii) The sequence $(f^*(x_0))_{n\in\mathbb{N}}$ converges to x^* for any regular element $x_0\in X$
- (iii) For $x_0 \in X$ a regular element for f and $x_1 = f^*(x_0)$, we have

$$d(x_s, x^s) \le cs(\delta_s(0(x_s, x_{s+1}, f)))$$
 (7)

Proof. In a similar manner to theorem 1 we obtain, using (1) and (4),

$$d(x_{-}, x_{--}) \le c[\varphi^{s-1}(r) + \varphi^{s}(r) + ... + \varphi^{s-r-2}(r)]. \tag{8}$$

where

$$r = \delta_{\epsilon}(0(x_0, x_1; f))$$

Since φ is a (c)-comparison function, it results (x_n) is a Cauchy sequence in the complete metric space (X,d). Hence (x_n) is convergent. Let x^* be its limit. From condition (3) we obtain $x^* \in F_f$ and then $F_f = \{x^*\}$, in view of Lemma 4. In order to obtain (7) it suffices to take $p \to \infty$ in (8). The proof is now complete

Remark. If φ is not a (c)-comparison function then, from (8) does not result that (x_n) is a Cauchy sequence. For example, if $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is given by $\varphi(t) = \frac{t}{1-t}$, $t \in \mathbb{R}_+$, then $\varphi^{n-1}(1) + \varphi^n(1) + \dots + \varphi^{n-p-2}(1) \to \infty$, as $p \to \infty$

REFERENCES

- ! Berinde, V., Error estimates in the approximation of the fixed point for a class of q-contractions, Studia Univ. Cluj-Napoca, XXXV(1990), fasc. 2, 86-89
- 2 Berinde, V., The stability of fixed points for a class of φ-contractions. Seminar on Fixed Point Theory, 1990, 3, 13-20.
- 3 Berinde V., A fixed point theorem of Maia type in K-metric spaces. Seminar on Fixed

- Berinde, V., Abstract q-contractions which are Picard mappings, Mathematica, Tome 34(57), No. 2, 1992, 107-111.
- Berinde, V., Generalized contractions and applications (Romanian), Ph.D. Thesis. Univ Cluj-Napoca, 1993.
- Činić, L.B., A generalization of Banach's contraction principle. Proc. Amer. Math. Soc., 45(1974), 267-273.
- Čirić, L.B., A note on fixed point mappings with contracting orbital diameters, Publ. l'Institut Math., 27(1980), 31-32.
- 8. Fuchssteiner, B., Iterations and fix points, Pacific J.Math., 68(1977), 73-80.
- Hegedus, M., Kasahara, S., A contraction principle in metric spaces, Math. Sem. Notes, 7(1979), 597-603.
- Mureşan, A., Some fixed point theorems of Maia type, Seminar on Fixed Point Theory, 1988, 3, 35-42.
- Rus, I.A., Some metrical fixed point theorems, Studia Univ. Babes-Bolyai, Mathematica, 1, (1979), 73-77.
- 12. Rus, I.A., Generalized contractions, Seminar on Fixed Point Theory, 1983, 3, 1-130.
- Rus, I.A., Generalized q-contractions, Mathematica, Tome 24(47), No. 1-2, 1982, 175-178.