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REZUMAT. - Operatori ¢-monotoni §i ¢-contractivi in spatii Hilbert. Lucrarea introduce
nojiunca de ¢-monotonie, care generalizeazdi conceptul de tarc-monotonic, §i arati ¢a familia
operatorilor ¢-monotoni cste cchivalenld, intr-un anume sens, cu cca a opcratorilor ¢-
contractivi.

Introduction. The aim of this paper is to establish a relation between a class of
monotone operators, by a hand, and a class of contractive mappings, on the other hand, using
a generalization of the contraction mapping pnnciple due to KRASNOSELSKI and
STECENKO [6]. As shown by CEA [3], which applies this results in optimization theory, if
the operator (; satisfies certain monotonic conditions, then 7, = / - y(;, for a certain y > 0, is
a contraction. in (5] DINCA argued that CEA’s conditions are only sufficient and,
consequently furnishes necessary and sufficient conditions, obtaining the following
generalization of CEA's result: (7 is strongly monotone and Lipschitz operator if and only if
there exists y > 0 such that 7, is a contraction.

Theorem 3.1 extends these results, by means of scme new concepts, and states that

(i 1s ¢-monotone operator if and only if there 1s y > 0 such that 7 1s ¢-contraction.

1. Comparison functions. Vanous concepts of comparison functions was defined and
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intensively studied in connection with the generalized contraction mapping principle, see. for
example RUS,A L [7], (8], BERINDE,V. {i] {2} in the present paper we need comparison
functions defined without the monotone ncicasing condition.

DEFINITION 1.1. A mapping ¢ : R, — R is said (o be a comparison function if

(1) g s continuous,

() 0 < q(f) <t for 1> 0.
Let’s denote by ¢ the set of all comparison functions. Coviously, ¢ is nonempty and contains
both linear and nonlinear functions as shown by

Fxample 11 If @ R, =R, g()=a + 1= 1, 1ER, then ¢ € ¢.

Ixampme 12, If ¢ R, = R, @)=y o uni )l and @) =41, forr = 1,
then ¢ € ¢, but ¢ is nonlinear.

LEMMA 1.1. Let @ € ¢ be a comparisun furciion. Then

a) ¢(0) = 0;

b) 0 < 2eq(r) - ¢°(f) < £, for 1 > 0.

Proof.

a) From (u1) we obtalnlim' y(7) = 0, hence, by (1), 4{0) = 0.

b) Since ¢ € ¢, we have (1) 2 0 and ¢ - @(1) = ¢, 1 < R,. Then, for every r ER,,

209(0) - ¢ (1) = () [+ (1 -9(1)] 2 0

Finally, for £ > 0, £ - i) > 0, then 204(¢) - ¢*(1) > 0 and (1 - y(1))* > 0, that is, 20(¢) - ¢(1)
< ', which completes the proof.

We are now able to give the following

DEFINITION 1.2. Let ¢ € ¢ be a compansua function. A functionr : R, — R, given
by r, (£) =¥ 2uq{t)—¢7(1) 1s called the transformate of y.
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5 LFP‘I'N! Al2 Le!cp € ¢ be a comparisfqn JSunction and r ir:\e rragu;ﬁ{{rqafg.. nl‘t'!l” .
nqeﬁ .
b) The mapping r:¢ — ¢, r(@) = r is bijective;
N I e
 Proof,

a) follows from Lemma 1.1.

b) It suffices to show that for any ¢ € ¢ there e:_:ists_a unique ¢ € ¢ there a unique -

p € ¢ such that

seily i (P RA 5 2“P(f) e (f) = (f) NS ()

[irst, We observe that for 7 = 0, it follows qv(O) = 0. Then, let 7 = 0 be arbllrary but fixed.

Defiote & = '_*_’E’)‘ , x = 00 (’) . Since ¢ E ¢ a € (0, I) From (l) we oblam the equation
.x_—2x+a--0 B
which has a unique._sglulion x € (0g1) o xi=1it= m __
l-lcn(l:el i _ 1 3 LS
Q1) =1 -1~ y}(1) . (ER,
is the unique solution of (1), that is, r is bijective.
<) It is obv:ous : LT &
DEFINITION 1.3. Let (Xt!) be a metric space. A mapping fX - Xis called ¢
contraction if _;lherg__gxists a gompaﬁson_fuqction vEd such that
A(f(x). /() = d(x.y) - @(d(x.y)), Vx.y E”X- RE (2)
We need the following generalization of thc cuntracuon mappmg pnncnple G el
THFOREM 1.1. (KRASNOSELSKI and STIZCENKO [6]. RUSA.L [7]) %
Let ()(d) be a compferg melric space and f. X— X a $-contraction. {?u"n _f has a
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unique fixed point that can be found by using functional iteration siarting at an arbitrary *

point x, in X.

2. ¢-monotone operators. Let H be a real Hilbert space Iwhosé norm and inner
product are denoted as usually by |-] and <-,>, respectively. An operator G : H — H is
called monotone operator if

'ﬁl'Gu -Gv,u 5 v> 2 0, Yu,vE H 7 oo 3)

G is called strictly monotone operator if equality in (3) implies u =v. "

G is said to be strongly monotone b;.:ve;’atb; if there exists m > 0 such that

<Gu-Gv,i:.—v‘a"zm-lu'-—vl", VquH ik @ |
' Thé opéfator G is called L'i;':schil: 'operémr if there exists M > 0 such that J
IGu-les;M-Iu"—vI, YuveEH. ) 1

LEMMA 2.1. If G: H — H is an operator which satisfies (4) and (5) then m s M.
Proof. Since G is strongly monotone, hence monotone, the Cauchy-Schwarz inequality
yields. :
<Gu-Gvu-v>s< |Gu-Gv|-Ju-v|, Vu,vEH
which toéether with (4) and (5) gives mju - v[*s M-Ju -v|?, VYu, vE H, thatism <
Remark. 1 G: d — H is strongly monotone, then G is injective:. !f';dr' an injective
operator G and a given comparison function 1, let denote by 1, = !,((}:ﬂi) L h=hGY) 1, <
1,, the (assumedjl real roots of the qﬁ;dratic eqda'tion‘ .
IGu —vallzlrz 5 <Gu —'G.&, u-v> -k'i;pz;(l-u 25 1)=0, }J, veE H uev, (6)
'DE.FINIT[ON‘ ;Z.I'.:-Wé: say that an inje{':tive'\é)p't-':-l‘atdr"(}: H— H:'is.ja} .4’_;"""0“”“‘
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operaior if there exists ¢ € ¢ such that
(m) <Gu-Gv,u-v>z|Gu-Gv|]-y(u-v|),¥Y uveH;

(my,) ﬂH[r.(G,w),rz(G,w)] =¢.

LEMMA 22. Any strongly monotone and Lipschitz operator is a ¢-monotone
operator,

Proof. Assume G satisfies (4) and (5). To prove (m,_) it suffices to show that there
exists Y € ¢ such that

mlu=-viP2M-|u-vl-Y(lu-v]),VuveH
or equivalently,
miu-vli=M-y(lu-vl), YuvEH. ™

If m = M, (*) holds for any W) =at, 0<a < 1, ER, and if m < M, (*) holds for p (1) = %r‘
For the second part of the proof, let us observe that [#,,4,] is the solution of the inequation
obtained from (6) replacing "=" by "<", hence (m,) is equivalent to the following condition:
there exists y > 0 such that

1Gu-Gv|Py¥-2-<Gu-Gv,u-v>y+¢*(lu-v|)=0, VuveEH.

Using (4) and (5) we have

, 1Gu-GvIFY-2<Gu-Gv,u-v>'y+¢’(Ju-v|) = @
s (MY -2ym)-Ju-vP+¢ (lu-v]),

hence, to prove (7) it suffices to show that for certain y > 0 and @ = r, the inequality
(M -2ym)-|u-v[*+ @*(Ju-v|)=0, Vu,vEH (Sj
holds.
If m = M, then y(f) = at, 0 < a < 1 and (8) holds for y = ;Tl/r since
(m* =2yM)lu-vP+a*lu-vP< (M -2yM+ 1) u-v|*=0.
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m

M
Indeed, in this case we have ! )

If m < M, when @(f) = — ¢, (8) hoids for y = -ﬁ'_? :

SR T Vo g m® m*  m? |- >
(M y2=2ym) fu - v+ @ (lue-vi) =|p- 2 -2 o My -y2=0.
M MW

Remark. The class of ¢-monoione ope:ators is larger than the class of strongly ’

monotone:-and Lipschitz:operators as shown: by theor-m 3.1 together with theorem 1.1 and :

theorem 3.2. )

3. Fixed points. Let / be, as in the previou: section, a reai Hilbert space and let G:
H — H be a given operator. For ‘every y > 0, fet +; define the operator 7,: H —» H, given by
_ T, =1-4G, Lsaina sz (9)
where / 1s the identity' operator. SRR
= Such a procedure’plays: an: important roie' 1n many, practical ‘problems,. when the
problem: of solving the operatorial equation
G{x) =0
1s reduced (if possibly) to the fixed point problem:
1) =x 2l - (i)
Thus we are interested to convert the monotonic hypothesis. on; G in adequate
‘ conditions of contractive _;ypé. on T,,: in orldenl' 1!9 .obtair;_la_nq ‘itgn‘l'live method to solve (10).
‘The main‘result of this paper is given by thc.followiﬁg-._ itz A T) avaia 6 o0
THEOREM 3.1. Let H be a real Hilbert space, G H = H a given,operaior and let
1, be the operator defined byl 9). - ahod
Then, G:is a.#monotane_ operator if and only if there exists v.2 0 such that T, is a

$-coniraction. TR

Wit
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Prooj Assume T is a ¢-contractlon We shaII prove - that there eusts 2 E ¢ such thal

oot A ",} 3\\ fr

(m,) and (m,) holds We have from (9)

Ve .-"."’. e T I."', '.';.I,\‘\ e (- LA Y ST Y
1Zu-Tv=lu-v-y(Gu-Gv)? = an
2esty 9t sonvil = IIa'ir v[l-f— 2y < Gu=Gvou=v>+ - lu=v[* N usvEH
. But Li is ¢-contracnon 1f a.nd only 1f lhere exlsts 0 E ¢ such that 3
TR F Ty TV R TS RS
ﬂfu-TvﬂsHu—vi]-q;([lrr-vﬂ) anEH : 12)

Thus E'rorn (11) and (l") we deduce !hat there exlsis @ €- ¢ and Ve > 0 such that
ﬂ(rn—t'llz°y_ —.?.'<(ur—0\_',u-v>7 +rw'(||n-vﬂ) =0, V_u,v EH, (13)

that is, the inequation 1

I IIGu —‘.lell_l_ 12 =2:<Gu-Gv, oy >l +,r;_( lu-v H) < 0 v E H (14)

FIARREE

has a pos:twe solutions 7 = y and y does not depend on u rEH.
. A P et R RS A o 2T YN

This implies, by a hand that :
: <Gu-Gv,u-v>20, Vu vE H
(otherwise (13) is impossible for # = v), and on the other hand that

<Gu -Gy u=v>-|Gu - Grf’ -gf(ﬂu -vl)=0 Yu,vEH ~ (15

From (14) and (15) we oblam (ml) w:th lp = r

Bi™ sty

'|‘\\5- LU T 18 : R

Let r (F lp) 1, ((; qn) t ((; qi) <h (G tp) lhe rea[ rbots of‘ the equation

associate to (14). Then YE [4(G.y), rzl({(:. y)], for each v € H u # v, that is (m,)

AR I S (e oy i gk =g, g o S AT Eee shi s b Kb | e b T ait
holds. Hence G is ¢-monotone operator. The. converse is obvious. The proof is now complete.
- i himipd e { i [

~ Remark. From the prooi of‘ Lemma 1t rasuhs _giiaf‘if st "stroriglj; monotone and
Lipschitz OP?—‘Y?‘E’E,_‘.,“C“, Gi is ¢.-Impno_t_orll_§,” where ﬂ:, = {q) E ¢ fq:(t) 'm’ 0 sas| ] is
the class of linear comparison functions. Thiis wé obtain’ from" theorem 3.1 the results of
DINCA ([5], theorem 12.32, p.520; see also DINCA, BLEBEA [4]).

THEOREM 3.2. Let H be a real Hilbert space, G: H — Ha given apcf:amr: and 1.

57



From theorem 3.1 'we obtain following.

44 o qua.ﬁ Metode veriafionale §i aphcam Ed. Tchmci‘n Bucun:su 1986.
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H — H defi ined by (9). Hu’n (r is s‘frongh monotone and I :p.sdm' apcra!ar rf and only :f

there exists y > 0 such that T, is a contraction.

e o R e . Yo\

, T i 1 ’. §
il dvion Lol D (o) A

: )R

i

i

{

Remark: There ‘exist nonlinear companson funcnons -see example. 1.2, hence the class !
e §

of ¢-monotone operalors is !ar;_.,er than the class of strongly monotone and Llpschuz opt.ralors

b
1 s

CORROLARY 3.1. Let' H be'a real Hilbért \;me :md G: H " 'Ha ¢-mmm:mn:
apem!ur Then .'h..' vqmrrmn . . : -
G(x)=0 oo oepant sl g Sl

has a unique solution x* € H and’there exists'y > 0 such that the sequence of successive

approximations (x,),.-x defined f_u: (4

i T e,

X=X =y (;(x")‘ HE 0 %

converges to xX°, for cach x, € H.

"REFERENCES

1. Berinde.V.. Error estimates in the u}:prﬂlxl'u}ml&m aof i‘h'e j‘ xed points ﬁr a class of w'-éph'fﬁi&ﬁms. Studia
Unix essitatis 7Babes-Bolyai”. Mathematica, XXXV. 2(1990), 86-89. ’
2. Beninde V.. Hu' smhdm qf i :u.'d points ﬁlra class qf q,-cunfmcrmm Prcpm'll nr 3 l‘)')(i Uru\ of Cluj-
- Napoca, 13-20. o
Ceal. ( )plmn'nrmn "Théoric et nié,unrhlm’s ‘Dunod, Paris, 1971
© 4. DincdG.. BledeaD . Remarque sur une méthode de contraction & minimiscr k.s ﬁJnﬂmnm h‘v convexes,
‘Bull. Sci. 'Vl1lh R.SR.. 123(71). nr.3. 227-229.

sl G ST e

ad

'!Jl

J

Krasnosclski.M.A.. Stecenko.V.. The !hc'urvnf eqmnom' ‘with concave ap'mmrv (ln..ussum) Sib. Mat.
)l 1001969), 565572,

' Rus Al Prmc:pu si aplicapii a!e teorici pnnclu!m _;Jx Ed Daua, CluJ-N:lpoca, 1979,
- 1. 8., . Rus.A L, Generglized contractions, Preprint nr. 3, 1983, Uru\ of CIuj—Napuca, l 110

P .

LLLE

?‘-'

58



