Univ. Babes-Bolyai Math., 41(1986), nor.4, pap 23-27

SEQUENCES OF OPERATORS AND FIXED POINTS IN QUASIMETRIC SPACES

VASILE BERINDE ¹

Received: AMS Subject classification: 47 H 10

Rezumat. Siruri de operatori si puncte fixe in spatii quasimetrice.

Pentru un sir de operatori (f_n) pe un spatiu quasimetric, care converge catre un operator φ -contractiv f, este data o teorema privind convergenta sirului punctelor fixe ale lui $f_n, (x_n)$, catre unicul punct fix al lui f.

In particular, se obtine un rezultat al lui S.B.Nadler.

Abstract. For a sequence of certain selfoperators (f_n) of a quasimetric space X, uniformly convergent to a φ -contraction f, we establish a convergence theorem for the sequence of fixed points of $f_n, (x_n^*)$, to the unique fixed point of f.

This paper is in continuation with our investigations concerning the generalized contraction mapping principle in quasimetric spaces [2]. Its main goal is to extend a result of S.B.NADLER [3] for contractions in usual metric spaces to generalized contractions in quasimetric spaces. In order to state

¹University of Baia Mare, Department of Mathematics, 76, Victoriei, 4800 Baia Mare Romania

Theorem 3 (the main result of this paper) we need some definitions, examples and results from [1]-[4] which we summarize here.

A quasimetric space is a nonempty set X endowed with a quasimetric, that is a function $d: X \times X \to \mathbf{R}_+$, satisfying the following conditions:

d1) d(x, y) = 0 if and only if x = y,

d2) $d(x, y) = d(y, x), \forall x, y \in X;$

d3) $d(x,z) \le a[d(x,y) + d(y,z)], \forall x, y, z \in X,$

where $a \ge 1$ is a given real number, see [1].

Obviously, when a = 1 we obtain the usual notion of metric (space). Example 1. [1] The space $l_p(0 ,$

$$l_p = \left\{ (x_n) \subset \mathbf{R} / \sum_{\mathbf{n=1}}^{\infty} |\mathbf{x}_{\mathbf{n}}|^{\mathbf{p}} < \infty \right\},$$

together with the function $d: l_p \times l_p \to \mathbf{R}$,

$$d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{1/p},$$

where $x = (x_n), y = (y_n) \in l_p$, is a quasimetric space. Indeed, by an elementary calculation we obtain

$$d(x,z) \le 2^{\frac{1}{p}} [d(x,y) + d(y,z)],$$

hence $a = 2^{\frac{1}{p}} > 1$ in this case.

Example 2.[1]. The space $L_p(0 of all real functions <math>x(t)$, $t \in [0, 1]$, such that

$$\int_{0}^{1} |x(t)|^{p} dt < \infty,$$

becomes a quasimetric space if we take

$$d(x,y) = (\int_0^1 |x(t) - y(t)|^p dt)^{1/p}$$
, for each $x, y \in L_p$.

The constant a is the same as in the previous example,

 $a=2^{\frac{1}{p}}.$

DEFINITION 1. A mapping $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ is called **comparison** function if

(i) φ is monotone increasing;

(ii) $\varphi^n(t) \to 0$, as $n \to \infty$, for each $t \in \mathbf{R}_+$.

Example 3. The mapping $\varphi(t) = \alpha t, t \in \mathbf{R}_+$, where $0 \leq \alpha < 1$, is a comparison function.

DEFINITION 2. Let (X, d) be a quasimetric space. A mapping

 $f:X\to X$ is called $\varphi\text{-contraction}$ if there exists a comparison function φ such that

$$d(f(x), f(y)) \le \varphi(d(x, y)), \forall x, y \in X.$$
(1)

Remark. A φ -contraction with φ as in Example 3 is an usual contraction.

DEFINITION 3. A mapping $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ which satisfies: (i) φ is monotone increasing (isotone);

(ii) There exist a convergent series of positive terms $\sum_{n=0}^{\infty} v_n$ and a real number $\alpha, 0 \leq \alpha < 1$, such that

$$\varphi^{k+1}(t) \le \alpha \varphi^k(t) + v_k$$
, for each $t \in \mathbf{R}_+$ and $n \ge N$ (fixed) (2)

is called (c)-comparison function (φ^k stands for the k the iterate of φ).

Remark.1) Using a generalization of the ratio test [5],[7], it results that if φ is a (c)-comparison function then the series

$$\sum_{k=0}^{\infty} \varphi^k(t) \tag{3}$$

converges for each $t \in \mathbf{R}_+$, therefore

$$\varphi^k(t) \to 0$$
, as $k \to \infty$,

that is any (c)-comparison function is a comparison function too.

2) If we denote by s(t) the sum of the series (4) then, s is monotone increasing and continuous at zero.

Example 4. The function given in example 3 is a (c)-comparison function but, generally, a comparison function is not a (c)-comparison function, see [2]-[3].

THEOREM 1.([2]) Let (X, d) be a complete quasimetric space and $f: X \to X$ a φ -contraction. Then f has a unique fixed point if and only if there exists $x_0 \in X$, such that the sequence $(x_n)_{n \in \mathbb{N}}$ of the succesive approximations,

$$x_n = f(x_{n-1}), n \in \mathbf{N},$$

is bounded.

In order to establish a generalized fixed point principle which furnishes an approximation method to the fixed point, we have to consider a stronger concept than that of comparison function.

DEFINITION 4. Let $a \ge 1$ be a given real number. A mapping $\varphi : \mathbf{R}_+ \to \mathbf{R}_+$ is called **a-comparison function** if f satisfies (i) and (iii) there are a convergent series of positive terms $\sum_{n=0}^{\infty} v_n$ and a real number $\alpha, 0 \le \alpha < 1$ such that

$$a^{k+1}\varphi^{k+1}(t) < \alpha \cdot a^k \varphi^k(t) + v_k$$
, for $t \in \mathbb{R}_+$ and for $k \ge \mathbb{N}$ (fixed) (4)

Remark. In view of the generalized ratio test [2], the series

$$\sum_{k=0}^{\infty} a^k \varphi^k(t) \tag{5}$$

converges for each $t \in \mathbf{R}_+$ and its sum, denoted by $s_a(t)$, is monotone increasing and continuous at zero.

Obviously, for a = 1 (that is, d is a metric on X) such an a-comparison function is a actually (c)-comparison function.

Based on this concept, in [2] we established the following generalized contraction principle in quasimetric spaces

THEOREM 2. Let (X, d) be a complete quasimetric space, $f : X \to X$ a φ - contraction with φ an a-comparison function. If $x_0 \in X$ is such that the sequence (x_n) ,

$$x_n = f(x_{n-1}), n \in N^*,$$

is bounded and $F_f = \{x^*\}$, then we have

$$d(x_n, x^*) \le a \cdot s_a(d(x_n, x_{n+1})), n \ge 0,$$
(6)

where $s_a(t)$ is the sum of the series (5).

Remark.1) If a = 1, Theorem 2 is just the generalized contraction principle, given in [2]-[4];

2) When $\varphi(t)$ is as in example 3, the condition (5) is satisfied if $\alpha \in [0; 1[$ is such that

$$\alpha a < 1.$$

In concrete problems we need to compute the fixed point x^* . An usual way is to seek for a sequence of operators (f_n) which approximates (uniformly) the given operator f such that $F_{fn} \neq \emptyset$, for each $n \in \mathbb{N}^*$ and the set F_{fn} is easier to be determined.

The following question then arise: in what conditions over f and f_n , from $x_n^* \in F_{fn}$, it results that

$$x_n^* \to x^*$$
, as $n \to \infty$?

If the answer is in the affirmative, then x^* may be approximated by x_n^* , for n sufficiently large.

The main result of this paper is given by.

THEOREM 3. Let (X, d) be a complete quasimetric space, f, $f_n: X \to X(n \in \mathbf{N}^*)$ such that

1) f satisfies the assumptions of Theorem 2 and, in addition, φ is subadditive;

2) (f_n) converges uniformly to f on X;

3) $x_n^* \in F_{fn}$, for each $n \in \mathbb{N}$.

Then (x_n^*) converges to x^* , the unique fixed point of f.

Proof. From (d_3) we have

$$d(x_n^*, x^*) = d(f_n(x_n^*), f(x^*)) \le a[d(f(x_n^*), f(x^*) + d(f_n(x_n^*), f(x_n^*))]$$

and, in view of the contraction condition, that is,

$$d(f(x_n^*), f(x^*) \le \varphi(d(x_n^*, x^*))),$$

we obtain

 $d(x_n^*, x^*) \le a\varphi(d(x_n^*, x^*)) + ad(f_n(x_n^*), f(x_n^*)).$

Based on the subadditivity of φ we then obtain by induction

$$d(x_n^*, x^*) \le a^{k+1} \varphi^{k+1} (d(x_n^*, x^*)) + \sum_{i=0}^k a^i \varphi^i (d(f_n(x_n^*), f(x_n^*))), k \ge 0$$
(7)

But φ is *a*-comparison function, hence the series (3) is convergent. This implies

 $a^{k+1}\varphi^{k+1}(d(x_n^*,x^*))\to 0, \text{ as } k\to\infty$

and then from (7) we obtain

$$d(x_n^*, x^*) \le s_a(d(f_n(x_n^*), f(x_n^*))).$$

But s_a is continuous at zero and then, from 2) we deduce that

 $d(f_n(x_n^*), f(x_n^*)) \to 0$, as $n \to \infty$,

therefore

$$d(x_n^*, x^*) \to 0$$
, as $n \to \infty$

that is $x_n^* \to x^*, n \to \infty$, as required.

Remark. 1) For φ as in Example 3, from Theorem 3 we obtain a theorem of Nadler type in quasimetric spaces;

2) For a = 1 and φ as in Example 3, from Theorem 3 we obtain a result of Nadler [3].

REFERENCES

1.BAHTIN, I.A., The contraction mapping principle in quasimetric spaces (Russian), *Func.An.*, No. 30, 26-37, Unianowsk, Gos. Ped. Ins., 1989

2.BERINDE,V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint nr.3,1993, pp 3-9, "Babes-Bolyai" University 3.NADLER,S.B., Sequences of contractions and fixed points, Pacific J. Math., vol 27 (1968), No3, 579-585

4.RUS,A.I.,Generalized contractions, Seminar on Fixed Point Theory, Preprint No.3, 1983,1-130,"Babes Bolyai" University of Cluj - Napoca