

ON THE RAABE-DUHAMEL AND GENERALIZED RATIO TESTS

Vasile Berinde

Department of Mathematics and Computer Science, North University of Baia Mare, Baia Mare 4800, Victorei 76, Romania.

Abstract

In this paper we give a partial answer to the following question: is the generalized ratio test equivalent to the Raabe-Duhamel test?

Key words: series of positive terms, ratio test, generalized ratio test, Raabe-Duhamel test.

1. INTRODUCTION

The well known ratio test was extended in our previous papers [2] - [4] to the so - called *generalized ratio test*, given by

Theorem 1. ([2]) Let $\sum_{n=1}^{\infty} u_n$ be a series with positive terms.

1) If there exist a convergent series of non - negative terms $\sum_{n=1}^{\infty} v_n$ and a constant number k such that

$$\frac{u_{n+1} + v_n - v_{n+1}}{u_n + v_n} \leq k < 1, \text{ for } n \geq N \text{ (fixed), then the series } \sum_{n=1}^{\infty} u_n \text{ is convergent.}$$

2) If there exists a decreasing sequence of positive numbers such that for $n \geq N$ (fixed), we have

- (i) $u_n > v_n$ and
- (ii)

$$\frac{u_{n+1} + v_n - v_{n+1}}{u_n} \geq 1,$$

then the series $\sum_{n=1}^{\infty} u_n$ is divergent.

Remarks. 1) If we take as „comparison series“ in Theorem 1 the null series, that is $v_n = 0$, $n \geq 1$, then we obtain the well-known ratio (or D'Alembert's) test which is very useful in studying the convergence of positive series.

However, if $\lim_{n \rightarrow \infty} \frac{u_{n+1}}{u_n} = 1$, then the ratio test fails. As shown by some examples in [1] and [2], the generalized ratio test is better then the classical ratio test.

Indeed, if we consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, the ratio test does not apply, while the generalized ratio test applies with the „comparison series“ $v_n = \frac{1}{n(n+1)}$, $n \geq 1$:

$$\frac{u_{n+1}}{u_n + v_n} = \frac{n^2}{2n^2 + 3n + 1} < \frac{1}{2}, \quad \forall n \geq 1.$$

2) A clasical tool in removing difficulties when the ratio test fails is the Raabe test. C. Avramescu [1] asked the following question : are the generalized ratio and the Raabe test equivalent?

For the „convergence part“ of these two tests, a partial answer is given in the next section.

2. THE RAABE TEST DOES IMPLY THE GENERALIZED RATIO TEST

Proposition 1. *If the convergence of a positive series is obtained by means of the Raabe test, then the convergence may be also obtained by means of the generalized ratio test.*

Proof. Let $\sum_{n=1}^{\infty} u_n$ a positive series whose convergence may be obtained by means of the Raabe test, that is (sec [5], for example)

$$n \left(\frac{u_{n+1}}{u_n} - 1 \right) \leq -\alpha < -1, \quad \text{for } n \geq N_0 \text{ (fixed).}$$

It follows that $\alpha > 1$ and

$$\frac{u_{n+1}}{u_n} \leq 1 - \frac{\alpha}{n}, \quad n \geq N_0,$$

and if we denote $k = 1 - \frac{\alpha}{N_0}$ we have

$$\frac{u_{n+1}}{u_n} \leq k < 1, \quad n \geq N_0,$$

and then

$$\frac{u_{n+1}}{u_n + v_n} \leq \frac{u_{n+1}}{u_n} \leq k < 1, \quad n \geq N_0,$$

hence the convergence of $\sum_{n=1}^{\infty} u_n$ may be also obtained by means of the generalized ratio test.

Remark. Having in view the fact that from Theorem 1 we obtain a necessary and sufficient convergence test for the series of decreasing positive terms [3], [4], we expect that the reverse of proposition 1 is true.

References

- [1] Avramescu C.: *Personal communication* , 1993.
- [2] Berinde V.: Une generalisation du critere du D'Alembert pour les series positive, *Bul. Stii. Univ. Baia Mare*, seria B, 1991, 7, Nr.1 - 2, 21 - 26.
- [3] Berinde V.: A convolution type proof of the generalized ratio test, *Bul. Stii. Univ. Baia Mare*, seria B, 1992, 8, 35 - 40.
- [4] Berinde V., Sandor J.: On the generalized ratio test, *Bul. Stii. Univ. Baia Mare*, seria B, 1995, 11, 55 - 58.
- [5] Knopp K.: *Theorie und anwendung der unendlichen Reihen*, Springer Verlag, Berlin, 1964.