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Abstract

A comparison of the convergence rate of the so called Kras-
noselskij and Mann iterative methods, both known to converge to
a fixed point of Lipschitzian generalized pseudo-contractive oper-
ators, is obtained.

1 Introduction

In order to approximate fixed points of certain classes of operators
which satisfy weak contractive type conditions that do not guarantee
the convergence of Picard iterative process (or method of successive
approximations, as it is also known), many authors have used certain
mean value fixed point iterations, like Krasnoselskij, Mann or Ishikawa
iterative methods, see for example Berinde [3], for a recent survey.

In [7], Verma approximated fixed points of Lipschitzian and gen-
eralized pseudo-contractive operators in Hilbert spaces by both Kras-
noselskij and Mann type iterative methods. When, for a certain class of
mappings, two or more fixed point iteration procedures can be used to
approximate their fixed points, it is of theoretical and practical impor-
tance to compare the rate of convergence of these methods, and to find
out, if possible, which of them converges faster.

Inspired by the recent works [1, 4] of the author, where certain fixed
point iterative procedures are compared, this paper compares Krasnosel-
skij and Mann iterations for the class of Lipschitzian and generalized
pseudo-contractive operators in Hilbert spaces. The main result will
show that, for any Mann iteration, there is a Krasnoselskij iteration
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which converges faster to the unique fixed point of the operator in ques-
tion.

2 Preliminaries

Let H be a real Hilbert space with the norm || - || and the inner
product < -,- >, and K be a nonempty subset of H.

An operator T' : K — K is said to be a generalized pseudo-
contraction if, for all z,y in K, there exists a constant » > 0 such
that

1Tz —Ty|* < r?lle — yl* + |Tz = Ty —r(z —y)|>. (2.1
Condition (2.1) is equivalent to
Tz —Ty,z—y) <r- |z —y|?, (2.2)

or to
(I-T)z-(I-Ty,z—y) > 1 -r)llz—y|?,

where I is the identity map.

Clearly, if T' is generalized pseudo-contractive with r < 1, then I —7
is strongly monotone.

For r = 1 in (2.1), T is called pseudo-contraction, a concept intro-
duced and studied by Browder and Petryshyn [5] and thereafter by many
authors, in connection with the problem of approximating fixed points,
see for example Berinde [3].

The operator T is said to be Lipschitzian (or Lipschitz continuous)
if there exists a constant L > 0 such that

Tz —Ty||<L-||lz—vyl|, foral =,y in K. (2.3)

As shown in Berinde [1], Lemma 2.1, any Lipschitzian operator in a
Hilbert space is also generalized pseudo-contractive with the same con-
stant. Consequently, for a Lipschitzian operator T' with constant L > 0,
the only reason to consider also a generalized pseudo-contractive condi-
tion of the form (2.1) is that r could be smaller than L.
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1
Example 1. ([1]) Let H be the real line with usual norm, K = [5,2}

1
and7 : K — K given by Tz = —, for all z in K. Then T is Lipschitzian
T
with constant L = 4 and generalized pseudo-contractive with constant
r > 0, arbitrary. The Picard iteration, z,,, = Tz,, n > 0 does not

converge, for any initial guess zo # 1 (which is the unique fixed point of
T

In order to approximate fixed points of the operators considered in
this paper we shall make use of other two well known iterative methods.

1. The Krasnoselskij iteration method. For 5 € K and ) €
[0, 1], the sequence {z,,}>°, defined by

Znt1 =1 =Nzn+Xl2n, n=0,1,2,... (2.4)

is called Krasnoselskij iterative method or Krasnoselskij iteration and is
denoted by Ky (zo, A\, T).

2. The Mann iterative method. For zy € K and {a,}2, a
sequence in [0, 1], the sequence {y,}32, defined by

Ynt1 = (1 — an)yn + anTyn, n=0,1,2,... {2.5)

is called Mann iterative method or Mann iteration and will be denoted
by Mn(yo, an,T).

Remark 1. It is obvious that, for A = 1, the Krasnoselskij iteration
reduces to the method of successive approximations, while for a, =
A(const), the Mann iteration reduces to the Krasnoselskij method.

In [7], Verma stated two convergence theorems, one for the Kras-
noselskij iterative method (Theorem 2.1) and the other for a Mann type
iterative method (Theorem 2.2). As they will be used in the proof of
our main result, we give their statements here, slightly reformulated.

Theorem 1. [1] Let K be a non-empty closed convex subset of a real
Hilbert space H, and let T : K — K be Lipschitzian and generalized -
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pseudo-contractive, with the corresponding constants L > 0 and v > 0
satisfying

0<r<1l and r<L. (2.6)

Then:

(1) T has a unique fized point p in K;

(i) The Krasnoselskij iteration {x,}5° , = K,(xo,\,T) converges
strongly to p, for any xo € K and all X € (0,a) N (0, 1), where

a=2(1-7)/(1-2r+L?. (2:7)

Theorem 2. [7] Let H be a real Hilbert space and K a non-empty closed
conver subset of H. Let T : K — K be a Lipschitzian and generalized
pseudo-contractive operator with the corresponding constants L > 1 and
r>0. Let {0} be an increasing sequence in [0,1], such that

> an=o00. (2.8)
n=0

Then:

(i) T has a unique fized point p in K;

(1) The Mann iteration {yn}5 o = Mn(yo,tan,T) converges strongly
to p, for any yg € K and dll t in (0,a) that satisfy

< (@—=3F — 261 ~tr+- " < 1,
where a is given by (2.7).

In order to compare two fixed point iteration procedures, we shall
make use of the following concept of rate of convergence introduced
and studied in the papers Berinde [1, 2, 3, 4]. This concept is slightly
different from the one considered by Rhoades [6], but more suitable for
our purposes.

Let {a,}52 4, {0,152, be two sequences of real numbers that converge
to a and b, respectively, and assume there exists

I lim (=l
n—00 |bn = bl :
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a) If I = 0, then it is said that {a,}%°, converges faster to a than
{ba}nlo to b;

b) If 0 <1 < oo, than we say that {a,}3, and {b,}°, have the
same rate of convergence.

Remark 2. 1) In the case a), the notation a,,—a = o(b,, —b) is commonly
used;

2) If I = oo, that is b, — b = o(a,, — a), then {b,}° ; converges faster
than {an}5° .

Suppose that for two fixed point procedures {u,}% and {v,}%,

both converging to a certain fixed point p, the error estimates of the
form

lun —pl| < an, n=0,1,2,... (2.9)

and
”Un —p“ < bnv n—= 07 1727"- (210)

are available, where {an}22¢ and {b, }32¢ are sequences of positive mum-
bers (both converging to zero).

Definition 1. [/]. Let {u,}2 and {v,}52 be two fized point iteration
procedures that converge to the same fized point p such that (2.9) and
(2.10) are satisfied.

If {an}s2o converges faster than {b,}>,, then we say that {ua 22,
converges faster than {vn}5%, to p.

1 1
Example 2. Consider p = 0, u,, = and v, = — n > 1.

n n
Then {un} is better than {vn}, in the sense of Rhoades’ definition [6],
ie.,

lun —pll < llvn —pll,  for all n,
although {u,} and {v,} have actually the same rate of convergence, in

.. . . Up
the sense of Definition 1, since lim —~=1.
n—00 vp

The previous example also shows that the concept used by Rhoades
[6] is independent of that given by Definition 1.
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3 The main result

Theorem 3 in this section unifies and completes the results in Verma
[7], by showing that the Krasnoselskij iteration is more suitable than
the Mann iteration for approximating fixed points of Lipschitzian and
generalized pseudo-contractive operators.

Moreover, adapting a result from Berinde [3], we are able to prove
that amongst all Krasnoselskij iterations (2.4), with A € (0,a), where a
is given by (2.7), there exists one which is the fastest with respect to the
concept of rate of convergence given by Definition 1.

Theorem 3. Let H be a real Hilbert space and K a nonempty closed
convex subset of H. Let T : K — K be a Lipschitzian and generalized
pseudo-contractive operator with corresponding constants L > 1 and 0 <
r< 1.

Then:

1) T has a unigue fized point p in K;

2) For any zy € K and X € (0,a), with a given by (2.7), the Kras-
noselskij iteration {zp}>> = Ky (xg, A\, T') converges strongly to p;

3) For any yp € K and {0, }32 in [0,1] satisfying (2.8), the Mann
iteration {y, 152 o = My, (o, an, T') converges strongly to p;

4) For any Mann iteration converging to p, with 0 < an < b < 1,
there exists a Krasnoselskij iteration that converges faster to p.

Proof.  1)-2) For all A € [0, 1], consider the operator T, on K given by
Twx=01-Nz+XTz, z€K. (3.1)

Since K is convex, we have T)\(K) C K, for all A € [0, 1].
From the generalized pseudo-contractive and Lipschitzian conditions
on 7 and

I1Tx2 — Tayll” = (1 = M) (= —y) + MTz - Ty)|I> = 1 = 2)?|lz —y|*+
+ 201 = \) - (Tz — Ty, z —y) + X | Tz — Ty|*
we find that

IThe — Toyl? < [(1—X)? + 201 = Nr + XL - ||z — 9|,
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SO

”T,\il? - TAy“ <8 ”‘7: - y” > for all z,y in Ka (32)

where 0 < 0 = [(1— A2 + 201 — Nr+ A212]"? <1, as A < a.

Since K is a closed subset of a Hilbert space, K is a complete metric
space. Then by Banach’s contraction mapping principle, T has a unique
fixed point ¢ in K and the Picard iteration associated to T},

Tpy1 =Tzp, n20, (3.3)

converges strongly to g, for any zy € K.

Now using the fact that {z,}>2, given by (3.3) is exactly the Kras-
noselskij iteration K,(zg,A,T") associated to 1', on the one hand, and
the fact that F(T') = F(T)), for all A\ € (0,1), that is, p = ¢ is the
unique fixed point of T, on the other hand, we obtain 1) and 2).

3) Let {y,}2 ¢ be the Mann iteration given by (2.5), with {c,}3°, C

1
[0,1] satisfying (2.8). Consider ¢, 0 < t < 1, and denote a, = 7 s
n=0,1,2,....
Then the Mann iteration will be given by

yn—l-l:(l_'ta’n)yn +tanTyna n:071727"' .
We have
lont1 —pll =11 — an)yn + an [(1 —1)yn + tTyn] —pll <
< (1 = an)llyn = pll + anl(X — t)(yn — p) + H{Tyn — Tp)||- (34)
Using the properties of T' we find that
1E(Tyn = Tp) + (1 = ) (g — P)II> = (1 = )2l — 2II* +
+26(1 — 1) (Tyn — p, yn — p) + LTy — plI* <

< (1 =)2llyn — plI”> + 2t — O)rllyn — p|*> + 2L |lyn — p||* =
= [(1 —#)* +2t(1 — t)r + L] |lyn — p|®. (3.5)
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By (3.4) and (3.5) we get

s =l < {1 an+aa[(1= )% + 2601 = ) + 227 * } - Iy — p
= (1 (1 0)an)llyn —pll
< 11 (1= (1= 0)a)Isn —2 (36)

where
0<0=[(1—12+2t(1 — t)r + £202]"/?
for all ¢ such that 0 < t < 2(1 —r)/(1 —2r + L?).
o0 [e.°]
Since by (2.8) > «, diverges, it follows that > a, diverges, too,

n=>0

<1,

—0
and in view of 6 <n1 we get that
lim ] [1-(1-0)a] =0,

n—00
k=1

which by (3.6) shows that {y,} converges strongly to p.
4) Take z := Zn, Y := Tn—1 in (3.2) to obtain

|zn+1 — za|l < 0 |zZn — za-1]|,
which inductively yields
lznt+1 — znl| < 0"||z1 — o]
and hence by triangle rule we obtain
lZnip — 2ol <O® (1 +0+---+6°7) ||l21 — o], (3.7)

valid for all n,p € N*.
Now letting p — oo in (3.7) and using part 2), we get

Iz — 37l < < lle1 2ol (39

Therefore, in view of (3.6) and (3.8), in order to compare the Krasnosel-
skij and Mann iterations, we have to compare

6™ and ﬁ [1—(1—08)ayg .
k=1
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Let {y,}22, be a certain Mann iteration converging to p, with G
satisfying 0 < a;,, < b < 1. Then, a;, < b/t (denote b/t by b) and for any
m, 0 <m < 1, we may find 6 € (0,1) such that

0

b

b < .
1-6

m(1 — b)

—

Indeed, to this end it is enough to take 6 <
Using the fact that a; < b, it results

0

.= & i
[~ (=0, =™<Dh

which shows that

so the Krasnoselskij iteration {2,}5° , = K, (z9,0,T) converges faster
than the considered Mann iteration, {y,}5° ; = M, (vo, ay, T).
To end the proof we still need to show that the intervals (0, a), with

. m(1 —b) : :
a given by (2.7), and | 0, = e have nonempty intersection. But
. : . m(l-b) 2(1—r)
this is immediate, since ————~ >0and0<a= — ’ _ < 1,
m 1—2r+ L2

under the hypotheses of Theorem 3.

Remark 3. 1) Part 4) in Theorem 3 shows that, in order to approximate
the fixed points of a Lipschitzian and pseudo-contractive operator 7T, it
is always more convenient to use a certain Krasnoselskij iteration in the
family (2.4), with X € (0,a) and a given by (2.7).

2) Moreover, as shown by Theorem 3.2 in Berinde [1], amongst the
Krasnoselskij iterations in that family there exists one which is the
fastest in the sense of Definition 1.
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Theorem 4. [1] Let all assumptions in Theorem 1 be satisfied. Then
the fastest iteration {x,}52, in the family (2.4) with A € (0,a) is that
obtained for

A=1-7)/(1-2r+L3?.

Remark 4. 1) Theorem 4 shows that the fastest iteration is commonly
obtained for A situated in the middle of the interval to which the pa-
rameter belongs.

2) Note that, in view of the condition A < 1, the convergence of the
Picard iteration cannot be obtained from Theorems 1-4. Actually, as
shown by Example 1, the Picard iteration does not generally converge
and this is the reason we need to consider other fixed point iteration
procedures, like Krasnoselskij or Mann, in order to approximate fixed
points of Lipschitzian and generalized pseudo-contractions.

We end this paper with some numerical examples that illustrate the
effectiveness of our result.

4 Numerical examples

For the decreasing function 7' in Example 1, the execution of the
program FIXPOINT (see [3]) for some input data leads to the following
observations.

1) The Krasnoselskij iteration converges to p =1 for any A € (0,1)
and any initial guess zg (recall that the Picard iteration does not con-
verge for any initial value zo € [1/2,2] different from the fixed point).
The convergence is slow for A close enough to 0 (that is, for Krasnosel-
skij iterations close enough to the Picard iteration) or close enough to 1.
The closer to 1/2, the middle point of the interval (0, 1), X is, the faster
the Krasnoselskij iteration converges.

For A = 0.5 the Krasnoselskij iteration converges very fast to p =1,
the unique fixed point of 7. For example, starting with zq = 1.5, only
4 iterations are necessary in order to obtain p with 6 exact digits: z1 =
1.08335, zo = 1.00325, 23 = 1.000053, z, = 1.

For the same value of A and zy = 2, 4 iterations are again needed
to obtain p with the same precision, even though the initial guess is far
away from the fixed point: z; = 1.25, 295 = 1.025, z3 = 1.0003, 24 = 1;
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2) The speed of Mann iteration also depends on the position of {a,}
in the interval (0, 1).

If we take zy = 1.5, v, = 1/(n+1) then the Mann iteration converges
(slowly) to p =1 : after n = 35 iterations we get z35 = 1.000155.

For ay, = 1/¥/n + 1, we obtain the fixed point with 6 exact digits
performing 8 iterations. Notice that in this case the Mann iteration
converges not monotonically to p = 1.

Conditions like an — 0 (as » — oo) are usually involved in many
convergence theorems regarding the Mann iteration. The next example
shows that these conditions are not necessary for the convergence of
Mann iteration to the fixed point.

Indeed, taking

n 1

2n+1 - 27

we obtain the following results for the Mann iteration: z; = 2, zy = 1.5,
z3 = 1.166, r4 = 1.034, z5 = 1.0042, 24 = 1.00397, z; = 1.000031,
zg = 1.000002 and z9 = 1.

280:2, Qp =
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