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M AT H E M AT I C A L N O TAT I O N

Rn is the real Euclidean n-dimensional vector space, with the usual
operations of addition and scalar multiplication defined.

X, Y denote generic metric or topological spaces, depending upon
context.

v, x, y, z denote vectors (points) from Rn or Rn+1, depending upon con-
text.

v0, vi, vn Are the elements of a set (family) of vectors; indexes of set el-
ements start from 0, like the indexes of arrays in most of the
modern programming languages.

v[0], v[i], v[n] denote the components of a vector v; v[0], v[i], v[n] ∈ R; indexes
will start from 0.

e0, . . . , en is the standard basis of the real Euclidean vector space; ei is a
column vector with the component ei = 1 and the rest of compo-
nents equal to 0.

||x|| represents the Euclidean norm of a vector x ∈ Rn, x =

(x[0], . . . , x[n−1]); ||x|| =
√

x2
[0] + · · ·+ x2

[n−1].

〈x, y〉 denotes the dot product (or inner product)

〈x, y〉 =
n−1

∑
i=0

x[i]y[i], x, y ∈ Rn

[v0, . . . , vn] denotes a simplex with that specific vertices.

σ, τ will usually denote some faces of a simplex S.

∆n is the standard n-simplex with the vertices ei, i = 0, . . . , n.

T denotes a triangulation of a simplex.

coX denotes the convex hull of a set X, that is, the smallest convex
set containing X.

P(X) denotes the power set of X, i.e., the set of all subsets of X.

FT or Fix(T) denotes the set of all fixed points of T : X → X.
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I N T R O D U C T I O N

Motivation and Objectives

Over the last 50 years or so, Fixed Point Theory has developed it self into a research
domain and has been revealed as a very important, powerful and versatile tool
in the study of nonlinear phenomena. Apart of the fundamental applications of
Fixed Point Theory in nonlinear analysis, to problems in optimization, variational
inequalities, complementarity problems and approximation theory, the fixed point
techniques have received a lot of attention due to their extensive applications in
many applied sciences to solve diverse problems in biology, chemistry, economics,
engineering, game theory, physics, computer science, image recovery and signal
processing, control theory, communications and geophysics.

If we refer to the consistent monograph Rus et al. (2008), Fixed Point Theory is one
of the most dynamic area of research of the last 60 years, the dynamic of this topic
is reflected, at least, by the following arguments:
• Over 120 books (monographs, lecture notes, proceedings) on fixed point the-

ory and its applications;
• Over 12,000 papers on fixed point theory from 1940 until now;
• Almost 4,000 papers on fixed point theory only between 2000-2008;
• Except these theoretical books and papers, there are more than 2,000 books,

monographs and proceedings and over 40,000 papers, which use the abstract
theory of fixed point for various problems of pure, applied and computational
mathematics.

The main reasons of this impressive development is the fact that the Fixed Point
Theory approach offers - for any kind of problem we are tackling - not only in-
formation on the existence (and, sometimes, uniqueness) of the solution but also
provides a constructive algorithm for approximating that solution.

Many algorithms have been developed in order to approximate the fixed points or
the common fixed points for the great variety of mappings arising from the theoret-
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ical and practical applications of fixed point theory we mentioned before. But, if we
have a close look on this rich research work and try to classify the contributions into
two classes, theoretical and applied, we shall notice that the great majority of contri-
butions, even when dealing with concrete fixed point algorithms, are theoretically
oriented.

Despite the extraordinary development of electronic computers in the last half of
century, the implementations of many important algorithms in the field of fixed
point theory are much behind the latest developments in the computer hardware,
software and programming languages, and in some cases algorithms implementa-
tions date since the mainframe era, or are not accessible at all. It is also important
to notice that numerical computing algorithms are no longer implemented only
in FORTRAN and C programming languages, since a wide range of modern ap-
plications use numerical computing techniques in order to provide a better user
experience.

Moreover, the process of using an existing old implementation of some algorithm
is usually very tedious, if it is not already implemented in some popular computer
algebra system. This process involves the following steps: try to obtain the source
code from various sources (papers, books, online, e.g. Netlib (2013)), obtain a com-
piler and other programming tools, and maybe other necessary libraries, build the
sources, read the documentation, if exists, try to figure out how to use the code in
another program and understand the format for the input and output. This kind of
work can be challenging even for professional computer programmers.

But, for most of the algorithms that were implemented in the past (mainly, in the
seventies), the source code is not available at all and hence cannot be of help for
interested users and, moreover, these specialised algorithms that have small area
of applications in more complex problems are not supplied by the general routines
offered by known computer algebra packages (Mathematica, Maple, Matlab etc.).

Starting from the above findings, the aim of this thesis is to partially fill these gaps,
by achieving the following main objectives: to study some important fixed point
algorithms and to create new and easy to use implementations of these fixed point
algorithms; to test numerically the efficiency and robustness of the new implemen-
tations, on some relevant sample problems in nonlinear analysis and unconstrained
optimisation theory. Another ambitious objective was proposed initially, to find
possible improvements for some of these algorithms, in the sense of enlarging their
area of applications, but unfortunately, this objective was only partially achieved.

Some initial implementations of the algorithms were realized using C++, which is
one of the programming languages traditionally used for numerical computing al-
gorithms (beside FORTRAN and C). But at some point I decided to also experiment
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by using other programming languages. After a short experimentation with the
modern C# language (Bozantan, 2010), I decided to implement the numerical com-
puting algorithms in the very popular Javascript language. This decision allowed
me to also create a much more accessible and easy to use graphical user interface
for some of the implemented algorithms. A short report on this experiment is made
in the conclusion chapter.

I also think that it is important to mention another more personal factor for my
work on this subject. The origins of this PhD thesis can be traced back until my
high-school studies, when I implemented a simple program to plot function graphs
and different fractals. During my university studies I was interested in the com-
piler theory and I implemented a parser for mathematical expressions, which I
later used for various projects, in the mathematics and computer science courses:
function plotting, symbolic differentiation, computation and plotting of Lagrange
interpolation polynomials, computation of solutions of ordinary differential equa-
tions using Runge-Kutta methods. During the studies for the master degree, I
continued my work on numerical methods and building on the acquired experi-
ence I implemented a desktop application for computing fixed points using several
iterative methods. As a conclusion, much of the work for this thesis comes as a
natural continuation and improvement of my previous smaller projects.

Structure

The concepts of fixed point theory can be defined in various theoretical frameworks,
and this thesis presents some new implementations of fixed algorithms having as
theoretical background two famous fixed point theorems: the Banach fixed point
theorem and the Brouwer fixed point theorem. As a result, the first two chapters
of the thesis contain a mix theoretical notions and personal contributions related to
the fixed point algorithms based on these two important fixed point theorems and
the third chapter is dedicated to practical applications of the new implementations.

In the first chapter we present the new implementations of several fixed point iter-
ative algorithms defined in the context of metrical fixed point theory and based on
the Banach fixed point theorem. The first section (1.1) describes some basic theoret-
ical notions: metric spaces (1.1.1), normed spaces (1.1.2), Hilbert spaces (1.1.3). Two
important results are presented in this section: the Banach fixed point theorem, also
known as the contraction mapping principle (1.1.4) and a similar result for weak
contractions, due to Berinde (2004a) (1.1.5). The next section (1.2) presents first a
review of the existing software for iterative fixed point methods (1.2.1) and then
the details of the new Javascript implementation, together with personal contribu-
tions (1.2.2). This implementation is realized in a generic mode, so the same code is
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reused for the implementation of several important iterative methods, as described
in the following sections: the Picard iteration (1.3), the Krasnoselskii, Mann and
Ishikawa iterations (1.4).

In the second chapter of the thesis we present the implementations of some fixed
point algorithms defined in the Euclidean space Rn, as particular case of the topo-
logical spaces. The first section (2.1) presents several basic notions in Euclidean
geometry (2.1.1), and then describes the geometrical objects, simplices (2.1.2) and
triangulations (2.1.3), and the elementary pivoting steps (2.1.3) used in the algo-
rithms presented later in this chapter. As an example the Freudenthal triangulation
is presented (2.1.4). The second section (2.2) presents the famous Banach fixed point
theorem (2.2.1), its generalization for set-valued mappings, the Kakutani fixed point
theorem (2.2.2), and several equivalent forms of the fixed point problem (2.2.3). The
Sperner lemma (section 2.3) is presented, as an important connection between the
Brouwer fixed point theorem and the simplicial fixed point algorithm initially de-
veloped by Scarf. The following section (2.4) of this chapter will describe the first
fixed point algorithm for approximating a Brouwer fixed point, proposed by Scarf
(1967) (2.4.1), then some details about the implementation of these simplicial fixed
point algorithms (2.4.2) and the new Javascript implementation as a personal con-
tribution (2.4.3). The last section (2.5) of this chapter presents an advanced version
of the simplicial fixed point algorithms, the piecewise linear homotopy algorithms.
The following main points, which are used in the implementation of the algorithm,
are touched in this section: homotopy methods (2.5.1), piecewise linear approxi-
mations (2.5.2), a description of a generic PL algorithm (2.5.3) and some details
about the J3 refining triangulation of Rn+1 (2.5.4). The section concludes with the
description of the new implementation of the algorithm (2.5.5) proposed by Eaves
and Saigal (1972).

The third chapter is dedicated to applications and is composed of two sections.
The first section (3.1) presents practical applications of the new Javascript imple-
mentations of the Picard, Krasnoselskii, Mann and Ishikawa iterations: computing
fixed points with the Picard iteration, comparing Krasnoselskii iterations, the us-
age and usefulness of the mixed error test, the detection of cyclic iterations. The
second section (3.2) presents an empirical study of the efficiency and robustness of
the new implementation of the PL homotopy algorithm, by solving several uncon-
strained optimization problems and comparing the results with some of the well
known and widely used methods in optimization: the Newton’s method, Broyden-
Fletcher-Goldfarb-Shanno, conjugate gradient method, and nonlinear conjugate gra-
dient method.

Finally, the last chapter of the thesis presents the conclusions and some possible
directions of research for the future.
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Personal contributions

The main personal contributions come in the form of the new Javascript implemen-
tations of the fixed point algorithms and the applications on some relevant sample
problems, as detailed below.

In the first chapter the personal contributions are: the generic implementation of
the iterative fixed point algorithm (also referred as FIXPOINT), based on the Banach
fixed point theorem (section 1.2.2), which is used as a base for the other new im-
plementations of fixed point iterations: Picard, Krasnoselskii, Mann and Ishikawa
iterations (see sections 1.3.2, 1.4.2). The final section of the first chapter (3.1) which
uses the new implementations in practical applications is another personal contri-
bution. We also mention some new features of the FIXPOINT program, which at
this time are not present in other implementations, like: the usage of a mixed error
test for testing the convergence of the sequence of successive approximations, the
additional check for cycle detection and the built in comparison function, for details
see 1.2.2.

It is important to mention that the early versions of FIXPOINT were used for most
of the results in Chapter 9 of Berinde (2007) - Error analysis of fixed point itera-
tion procedures, and also for the numerical experiments in the comparative study
of the rate of convergence of fixed point iteration procedures, that were reported
in Berinde and Păcurar (2007), thus opening new research directions. By inspect-
ing the empirical results obtained by means of FIXPOINT for several fixed point
iterative methods, some theoretical results have been also inferred and proved in
Berinde (2004b), Berinde and Berinde (2005) and continued by other authors: Babu
and Prasad (2006, 2007) Duong (2012), Hussain et al. (2012, 2013, 2011), Kumar
(2013), Olaleru (2007, 2009), Păcurar (2009a,b, 2010a,b, 2011, 2012), Phuengrattana
and Suantai (2012), Popescu (2007), Xue (2008), Rhoades and Xue (2010).

Not last on this list is the complementary web-based application, which provides an
easy way to use these implementations and additional features like the interactive
visualisations, cobweb plots for the Picard iteration and a new intuitive visualisa-
tion for the Krasnoselskii iteration.

In the second chapter the personal contributions are the new implementation of
the simplicial fixed point algorithm of Kuhn (1968), see 2.4.3, and the new imple-
mentation of the PL homotopy method described by Eaves (1972) and Eaves and
Saigal (1972), see 2.5.5. The new implementation of the PL homotopy algorithm
is then used in section 3.2 to solve several unconstrained non-smooth optimization
problems in order to obtain new results about the robustness and efficiency of the
algorithm and of the new implementation. As shown by these numerical experi-
ments done on a set of classic test functions in optimization theory, the PL homo-
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topy algorithm appears to be more reliable than the classical Newton’s method and
some other important methods (Broyden-Fletcher-Goldfarb-Shanno, conjugate gra-
dient method, and nonlinear conjugate gradient method) for finding local minima.
The main advantages of the PL homotopy method, advantages clearly illustrated
by the numerical results, are that the method doesn’t require smoothness of the un-
derlying map and it can be also successfully applied when it is difficult to choose
a suitable starting point for the iterative methods because there is no available a
priori knowledge regarding the solutions of the system to be solved.
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1. N E W I M P L E M E N TAT I O N S O F

F I X E D P O I N T A L G O R I T H M S I N M E T R I C S PA C E S

1.1 basic notions in metrical fixed point theory

This section will present the basic notions in metrical fixed point theory, following
mainly the presentations of Berinde (2007). For more details the following bibli-
ography items can be consulted: Aliprantis and Border (2006), Rus et al. (2008),
Istratescu (2002), Rus (1979).

1.1.1 Metric Spaces

(1.1.1) Definition Let X be a nonempty set and T : X → X be a selfmap. We say
that x ∈ X is a fixed point of T if

T(x) = x

and we denote by FT or Fix(T) the set of all fixed points of T.

(1.1.2) Example If T : R→ R, T(x) = 4x2 − 3x− 8, then FT = {−1, 2}

(1.1.3) Definition Let X be any set and T : X → X a selfmap. For any given x ∈ X
we define Tn(x) inductively by T0(x) = x and Tn+1(x) = T(Tn(x)). We say that
Tn(x) is the nth iterate of x under T. To simplify notation we will use Tx instead of
T(x). The mapping Tn, for n ≥ 1 is called the nth iterate of T.

(1.1.4) Definition A metric (or distance) on a set X is a function d : X × X → R+

satisfying the following properties:
1. d(x, y) = 0⇔ x = y (discrimination or separation axiom).
2. d(x, y) = d(y, x), ∀x, y ∈ X (symmetry).
3. d(x, y) ≤ d(x, z) + d(y, z), ∀x, y, z ∈ X (triangle inequality).

The pair (X, d) is called a metric space.
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1.1. BASIC NOTIONS IN METRICAL FIXED POINT THEORY

(1.1.5) Example Given any set X, the discrete metric is defined by:

d =

{
0, if x = y
1, if x 6= y

This is a simple but important example of a metric distance which can be applied
to all non-empty sets.

(1.1.6) Definition Let (X, d) be a metric space and {xn} a sequence in X. The
sequence {xn} is convergent to a ∈ X, if for any ε > 0, there exists n0 (depending
on ε) such that d(xn, a) < ε, for any n ∈ N, n ≥ n0.

(1.1.7) Definition Let (X, d) be a metric space and {xn} a sequence in X. The
sequence {xn} is a Cauchy sequence (or fundamental), if for any ε > 0, there
exists n0 (depending on ε) such that d(xn, xn+p) < ε, for all n ∈ N, n ≥ n0, and any
p ∈ N∗. In other words, given any small positive distance ε, all the elements of the
sequence, excluding a finite number of them, are at a distance smaller than ε from
each other.

(1.1.8) Remark In a metric space, any convergent sequence is also a Cauchy se-
quence.

(1.1.9) Definition A metric space (X, d) is called complete metric space if every
Cauchy sequence is convergent.

1.1.2 Normed spaces

(1.1.10) Definition Let E be a real (or complex) linear vector space. A norm on E
is a mapping || · || : E× E→ R+ having the following properties:

1. ||x|| = 0⇔ x = 0, the null element of E;
2. ||λx|| = |λ| · ||x||, for any x ∈ E and any scalar λ;
3. ||x + y|| ≤ ||x||+ ||y||, for all x, y ∈ E (the triangle inequality).

The pair (E, || · ||) is called a normed space (or linear space).

(1.1.11) Remark If || · || is a norm on the (linear) vector space E, then d : E× E →
R+, given by

d(x, y) = ||x− y||, x, y ∈ E

is a distance on E. This shows that any normed space can be always regarded as a
metric space with respect to the distance induced by the norm.

(1.1.12) Definition A normed space which is complete as metric space is called
Banach space.
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1.1. BASIC NOTIONS IN METRICAL FIXED POINT THEORY

(1.1.13) Definition A Banch space (E, || · ||) is called uniformly convex if, given
any ε > 0, there exists δ > 0 such that for all x, y ∈ E satisfying ||x|| ≤ 1, ||y|| ≤ 1,
and ||x− y|| ≥ ε, we have

1
2
||x + y|| < 1− δ.

1.1.3 Hilbert spaces

(1.1.14) Definition Let H be a real vector space. An inner product is a functional
〈·, ·〉 : H × H → R satisfying:

1. 〈x, x〉 ≥ 0, for all x ∈ H, and 〈x, x〉 = 0 if and only if x = 0, the null vector in
H;

2. 〈x, y〉 = 〈y, x〉, for all x, y ∈ H;
3. 〈ax + by, z〉 = a 〈x, z〉+ b 〈y, z〉, for each x, y, z ∈ H and all a, b ∈ R.

The pair (H, 〈·, ·〉) is called prehilbertian space.

(1.1.15) Lemma If (H, 〈·, ·〉) is prehilbertian space, then the function x → 〈x, x〉1/2

is a norm on H, called the norm induced by the inner product.

(1.1.16) Definition A prehilbertian space is called Hilbert space if it is a Banach
space (that is, a complete metric space) with respect to the metric corresponding to
the norm induced by the inner product.

(1.1.17) Remark Any Hilbert space is a uniformly convex Banach space.

1.1.4 Contraction Mapping Principle

(1.1.18) Definition Let (X, d) be a metric space. A mapping T : X → X is called
Lipschitz continuous if there exists a constant L > 0 such that

d(Tx, Ty) ≤ L · d(x, y), ∀x, y ∈ X

Any such value L is called Lipschitz constant.

(1.1.19) Definition Let T : X → X be a Lipschitz continuous mapping with the
constant L.
• If 0 ≤ L < 1 then T is called contraction or more precisely L-contraction.
• If L = 1 then T is called nonexpansive.
• If d(Tx, Ty) < d(x, y), ∀x, y ∈ X, x 6= y then T is called contractive
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(1.1.20) Example f : R→ R, f (x) = x
5 + 2 is Lipschitz continuous and it is also a

contraction.

(1.1.21) Example f : R→ R, f (x) = x2 is not Lipschitz continuous.

(1.1.22) Theorem (Banach, 1922) Let (X, d) be a complete metric space and T : X →
X be a given contraction. Then T has a unique fixed point x∗, and the sequence
{Tn(x)}n∈N converges to x∗ for each x ∈ X.

Proof. (Palais, 2007) We will show first that the fixed point is unique. Since T is a
contraction mapping we have

d(Tx, Ty) ≤ Ld(x, y), ∀x, y ∈ X, with 0 < L < 1.

By induction we also have

d(Tnx, Tny) ≤ Lnd(x, y).

By the triangle inequality

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y),

so

(1.1.23) (1− L)d(x, y) ≤ d(x, Tx) + d(Ty, y).

Since L < 1, we have

d(x, y) ≤ 1
1− L

(d(x, Tx) + d(y, Ty)), ∀x, y ∈ X

So, in particular, if x and y are fixed points of T we have d(x, y) = 0, that is a
contraction mapping can have at most one fixed point.

We will show next that the sequence {Tn(x)}n∈N of iterates of x under T is a Cauchy
sequence. We consider Tnx and Tmx, where m = n + p and p > 0. From 1.1.23 we
have

d(Tnx, Tmx) ≤ 1
1− L

(d(Tnx, Tn(Tx)) + d(Tmx, Tm(Tx)))

≤ Ln + Lm

1− L
d(x, Tx).

Since K < 1, Kn → 0, so d(Tnx, Tmx) → 0 as n → ∞, that is, the sequence
{Tn(x)}n∈N is a Cauchy sequence.

Since (X, d) is a complete metric space, the sequence {Tn(x)}n∈N converges to some
point x∗ ∈ X, which clearly is a fixed point of T. �

(1.1.24) Definition Let E be an arbitrary real Banach space. A mapping T with
domain D(T) and range R(T) in E is called
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• strong pseudocontraction if there exists k > 0 such that for all x, y ∈ D(T)
there exists j(x, y) ∈ J(x− y) such that

〈(I − T)x− (I − T)y, j(x− y)〉 ≥ k · ||x− y||2

• pseudocontractive if for each x, y ∈ D(T) there exists j(x− y) ∈ J(x− y) such
that

〈(I − T)x− (I − T)y, j(x− y)〉 ≥ 0

where J is the normalized duality mapping.

1.1.5 Weak Contractions

(1.1.25) Definition (Berinde, 2007) Let (X, d) be a metric space. An operator T :
X → X is called weak contraction if there exist two constants L ∈ [0, 1) and δ ≥ 0
such that:

(1.1.26) d(Tx, Ty) ≤ Ld(x, y) + δd(y, Tx), ∀x, y ∈ X

(1.1.27) Theorem (Berinde, 2004a) Let (X, d) be a complete metric space and T :
X → X an weak contraction with constants L ∈ [0, 1) and δ ≥ 0. Then:

1. the Picard iteration {xn}n≥0 converges to some x∗(x0) ∈ FT for any x0 ∈ X;
2. for any x ∈ X we have that:

(1.1.28) d(x, x∗(x)) ≤ 1
1− L

d(x, Tx);

3. The following a priori and a posteriori error estimates hold:

(1.1.29) d(xn, x∗(x0)) ≤
Ln

1− L
d(x0, x1), n = 1, 2, . . .

(1.1.30) d(xn, x∗(x0)) ≤
L

1− L
d(xn−1, xn), n = 1, 2, . . .

Proof. 1) Let x0 ∈ X be arbitrary and {xn}n≥0 be the Picard iteration of T starting
from x0. For n ∈ N we have that

d(xn, xn+1) = d(Txn−1, Txn)

which by 1.1.26 implies

(1.1.31) d(xn, xn+1) < Ld(xn−1, xn), n ≥ 1.

By induction we get that

d(xn, xn+1) ≤ Lnd(x0, x1), n ≥ 0,
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which for p ≥ 1 implies:

(1.1.32) d(xn, xn+p) ≤ Ln 1− Ln

1− L
d(x0, x1).

Since L ∈ [0, 1), by letting n → ∞ in 1.1.32 we obtain that {xn}n≥0 is a Cauchy
sequence. Since (X, d) is complete, {xn}n≥0 is also convergent. We denote:

x∗(x0) = lim
n→∞

xn.

Then:

d(x∗(x0), Tx∗(x0)) ≤ d(x∗(x0), xn+1) + d(xn+1, Tx∗(x0))

= d(x∗(x0), xn+1) + d(Txn, Tx∗(x0)),

which by 1.1.26 implies

d(x∗(x0), Tx∗(x0)) ≤ (1 + δ)d(x∗(x0), xn+1) + Ld(xn, x∗(x0)), n ≥ 0.

Letting n→ ∞ in the previous relation we obtain

d(x∗(x0), Tx∗(x0)) = 0,

that is, x∗(x0) is a fixed point for T.

2) For any x ∈ X we obtain by 1.1.26 that

d(x, x∗(x)) ≤ d(x, Tx) + d(Tx, Tx∗(x)) ≤ d(x, Tx) + Ld(x, x∗(x))

which leads to 1.1.28.

3) The a priori estimate 1.1.29 is obtained from 1.1.32 by letting p→ ∞. From 1.1.31
we obtain by induction that

d(xn+k, xn+k+1) ≤ Lkd(xn−1, xn), k, n ∈ N.

Then similarly to deriving 1.1.32 we get that

d(xn, xn+p) ≤ L
1− Ln

1− L
d(xn−1, xn), n ≥ 1, p ≥ 1.

Letting p→ ∞ in the previous relation we obtain the a posteriori estimate 1.1.30. �
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1.2 a generic fixed point iteration algorithm

1.2.1 Fixed Point Related Software

In this section we will analyse existing software alternatives for computing fixed
points using iterative numerical methods and two different categories of software
will be described: specialized software packages and general purpose computer
algebra systems (CAS). Some parts and ideas of this section are included also in
Bozantan and Berinde (2014a) and Bozantan (2014a). We start our description with
the CAS category and we will analyse the features related to fixed point iterations,
offered in some of the most used and well known general purpose CAS: Mathemat-
ica, Maple and Matlab.

From all the software analysed in this section, including the category of specialized
software, Maple offers the most flexible and feature rich implementation for a fixed
point iteration, in the form of the built in command FixedPointIteration, included
in the Student[NumericalAnalysis] subpackage. The command will numerically
approximate the roots of a real function f , by converting the problem to a fixed
point problem and then using the Picard fixed point iteration with the supplied
initial approximation for the root. The command can be invoked using one of the
following forms:
• FixedPointIteration( f , x = a, opts)
• FixedPointIteration( f , a, opts)

The arguments have the following significance:
• f - is an expression in the variable x representing a continuous function
• x - specifies the independent variable of f
• a - is the initial approximation of the root
• opts - optional arguments in the form keyword=value

Some of the most important other options for the command are:
• fixedpointiterator = expression - specifies directly the expression to be used in

the fixed point iteration; if this option is present, the first argument, f , must
be omitted.
• tolerance = value - specifies the error tolerance of the approximation
• stoppingcriterion = value - specifies the criterion that the approximation must

meet before stopping the iteration, and can have one of the following values:

– relative -
|xn − xn−1|
|xn|

< tolerance

– absolute - |xn − xn−1| < tolerance
– function_value - | f (xn)| < tolerance

• maxiterations = value - specifies the maximum iterations to perform, if the
error tolerance is not achieved
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• output = value - specifies the type of the return value of the command, and it
can have on of the following values:

– value - returns just the final numerical approximation of the root
– sequence - returns the sequence of intermediate approximations pro-

duced by the fixed point iteration
– plot - returns a plot of f with each iterative approximation shown
– animation - returns an animation showing the iterations of the root ap-

proximation process
– information - returns detailed information about the iterative approxima-

tions of the root of f

There are many other options available, used to control the plotting functionality
of the command. More details about the Maple FixedPointIteration command are
available on the Maple Help web page http://www.maplesoft.com/support/help/

Maple/view.aspx?path=Student/NumericalAnalysis/FixedPointIteration. As an
example we use the Maple commands to solve the problem x2 − x− 2 = 0 and to
produce a plot of the fixed point iteration which are displayed in figure 1.1.

In Mathematica there are available two built in functions related to fixed point
iterations: FixedPoint and FixedPointList. Both functions use the Picard iteration
in order to compute a fixed point and have the same parameters, with the difference
that FixedPoint returns only the final value, while FixedPointList generates a list
with all the intermediate values. The FixedPoint function can be called with using
one of the following forms:
• FixedPoint[f, expr] - where expr is the initial approximation.
• FixedPoint[f, expr, n] - stops after at most n steps.
• FixedPoint[f, expr, . . . , SameTest -> s] - a custom test, s, can be used to check

if to consecutive results are equal

More details and examples are available online, on the Wolfram Mathematica Docu-
mentation website http://reference.wolfram.com/mathematica/ref/FixedPoint.

html. In Mathematica there is no built in functionality for plotting the fixed point
iteration, like in Maple, but this can be achieved using few lines of code, as shown
below.

1 g = Function [ x , 1 + 2/x ] ;
2 f p l = F i x e d P o i n t L i s t [ g , 1 . 0 ] ;
3 fpCoords = F l a t t e n [ Table [
4 { { f p l [ [ k ] ] , f p l [ [ k ] ] } , { f p l [ [ k ] ] , f p l [ [ k + 1 ] ] } } ,
5 { k , 1 0 } ] ,
6 1 ] ;
7 i t e r a t i o n P l o t = L i s t P l o t [ fpCoords ,
8 AxesOrigin −> { 0 , 0 } ,
9 PlotRange −> { { 0 , 4 } , { 0 , 4 } } ,

10 Joined −> True , P l o t S t y l e −> { Blue , Dashed } ] ;
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11 f u n c t i o n P l o t = P l o t [ { x , g [ x ] } , { x , 0 , 4 } , P l o t S t y l e −> { Thick } ] ;
12 Show[ i t e r a t i o n P l o t , f u n c t i o n P l o t ]

Listing 1.1 – Fixed point iteration and plot in Mathematica
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Figure 1.1 – Fixed point iteration commands in Maple
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Figure 1.2 – Mathematica plot: fixed point iteration applied to f (x) = 1 + 2
x with

initial point x0 = 1.0

Matlab and MathCAD do not offer any built in functions related to fixed point
iterations, but fixed point computation is possible using custom written functions,
as demonstrated by the following Matlab listing.

1 func t ion [ p0 , err , P ] = f i x p t ( g , x0 , t o l , max1 )
2 x = x0 ; %i n i t i a l guess
3 P ( 0 ) = x0 ;
4 xold = x ;
5 n = 1 ; %i t e r a t i o n counter
6 while n < max1
7 x = f e v a l ( g , x ) ;
8 P ( n ) = x ;
9 i f abs ( x−xold ) < t o l

10 break ;
11 end
12 xold = x ;
13 n = n + 1 ;
14 end

Listing 1.2 – Picard fixed point iteration in Matlab

As alternatives to the CAS software there are several other basic implementations
of the Picard fixed point iteration which can be used, from which we mention the
following:
• EasyNumerics is a desktop application which, beside other numerical algo-

rithms, has an implementation of the Picard fixed point iteration together
with some basic plotting of the iteration. It is available for download from
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http://www.metu.edu.tr/~csert/EasyNumerics/.
• Fixed Point Iteration Java Applet is available online at http://www.csulb.

edu/~wziemer/FixedPoint/FixedPoint.html and has another implementation
of fixed point iteration plotting.
• other simple implementations of the Picard fixed point iterations are available

online at:
– http://maccery.com/maths/#fixed-point

– http://planetcalc.com/2824/

– http://cs.laurentian.ca/badams/numeric/javascript/fpoint.htm

The above research indicates that all existing implementations for fixed point it-
erations have rather basic functionality, excepting Maple, which also has a good
cobweb diagram potting and animation. Another interesting point is that even the
implementations in well known CAS like Maple and Mathematica are lacking ad-
vanced features like oscillation detection (e.g. the case of logistic map, λx(1− x)),
appropriate convergence tests for practical applications and comparison of differ-
ent iterations. Also, there are no available implementations for other fixed point
iterative methods like Krasnoselskii, Mann and Ishikawa. Such implementations
are possible in CAS using custom written code, but, beside expensive licenses, this
requires at least some familiarity with the corresponding CAS programming lan-
guage and functions.

1.2.2 Details of the New Javascript Implementation

The new Javascript implementation contains implementations for several fixed point
iterative methods for real valued functions: Picard, Krasnoselskii, Mann, Ishikawa.
The implementation of the iteration algorithms for real valued functions are similar,
and are based on the generic fixed point iteration method, with the only difference
being the operator used in the iteration: the input function is wrapped in a special
operator which is used by the generic implementation. The implementation is in
the form of a Javascript function, which accepts the following parameters:
• f - the operator for which the approximate fixed point will be computed,

specified as a Javascript function; in order to support the Mann and Ishikawa
iterations using the same code, the operator is called at each iteration step
with two arguments: the current approximation (x) and the iteration step (n,
starting from 1).
• x0 - the real number which specifies the initial guess used to start the algo-

rithm;
• options - a Javascript object which can contain additional optional arguments

used to control the behaviour of the algorithm, as described below;
• options.maxError - specifies the maximum error to be accepted for the ap-

25

http://www.metu.edu.tr/~csert/EasyNumerics/
http://www.csulb.edu/~wziemer/FixedPoint/FixedPoint.html
http://www.csulb.edu/~wziemer/FixedPoint/FixedPoint.html
http://maccery.com/maths/#fixed-point
http://planetcalc.com/2824/
http://cs.laurentian.ca/badams/numeric/javascript/fpoint.htm


1.2. A GENERIC FIXED POINT ITERATION ALGORITHM

proximation of the fixed point; this value is used in the convergence test, as
described below;
• options.convergenceTest - this parameter is a Javascript function which will

be used by the algorithm to perform the convergence test for the sequence of
successive approximations; using this function provides the same flexibility as
for the Mathematica implementation; more details about how the convergence
test is performed are provided below;
• options.maxSteps - the maximum number of steps to be executed before stop-

ping the algorithm, in the case that desired precision was not achieved for the
approximation;
• options.checkCycles - by default, the implementation of the algorithm is also

checking for cycles of the iteration (oscillations), but this increases the com-
plexity of the algorithm to O(n2); if greater performance is required, this
option can be used to disable this additional check.

The function will return the following values (wrapped in a Javascript object):
• xn - the approximate fixed point obtained by the iteration;
• values - an array containing all the intermediate approximations (including

the initial approximation x0);
• numSteps - the number of iterations performed by the algorithm;
• errorMessage - it will contain a short description in case that the iteration is

not successful (iteration is not convergent, the maximum number of iterations
is reached or an undefined numerical operation is performed, e.g. 0/0).

Next we will describe some details of the performed convergence test. For all the
computations, the implementation of the algorithm is using IEEE 754 double preci-
sion floating point numbers, as most of the modern numerical computing software
(some of the CAS, like Mathematica and Maple, also provide the possibility to use
arbitrary precision arithmetic). Due to the precision limitations of the IEEE 754 float-
ing point format, using a simple absolute error test for convergence is not enough
for all the situations, so this implementation also provides the possibility to use
different convergence tests, as appropriate to each problem. By default the imple-
mentation provides an absolute error test, a relative error test and a mixed error test.
If another custom test is used, the convergenceTest function will be invoked after
each iteration step and must return true when the sequence is considered conver-
gent and f alse otherwise. The arguments for the custom convergence test function
are described below :
• maxError - the maximum accepted error, which is the value specified in

options.maxError parameter;
• x - the approximation obtained after the last iteration step
• xprev1, xprev2 - the approximations obtained in the previous two iteration
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steps (these are useful for a mixed error test);
• values - the complete sequence of approximations, which can be used for a

more complex convergence test;

The new implementation also offers an additional helper function fixpoint .compare

which can be used to generate a comparison table of several fixed point iterations.
The result of the comparison function can be obtained as text format or as LATEX
format, for easy inclusion in scientific papers.

Due to the considerable size of the complete code, we present below just a simpli-
fied and incomplete version of the code, which shows the main loop corresponding
to the iterative method. For further details about the algorithm implementation, the
complete version of the code, which include the Picard, Krasnoselskii, Mann and
Ishikawa iterations, the helper comparison function, the implementation of several
error tests (absolute, relative and mixed error tests) and a suite of validation tests
and examples is available online at http://algonum.appspot.com/fixpoint.

1 func t ion i t e r a t e ( f , x0 , opt ions )
2 {
3 var re s = { } ;
4 // helper v a r i a b l e s
5 var values = [ x0 ] ;
6 var x = x0 ;
7 var xprev1 = x0 ;
8 var xprev2 = x0 ;
9 var n = 0 ;

10 var stop = f a l s e ;
11

12 // algorithm code
13 while ( ! stop )
14 {
15 // perform an i t e r a t i o n step
16 x = f ( x , n ) ;
17 // s t o r e l a s t r e s u l t
18 values . push ( x ) ;
19 // i n c r e a s e i t e r a t i o n s number
20 n++;
21 // perform the s p e c i f i e d convergence t e s t and stop i f i t i s s u c c e s s f u l
22 i f ( convergenceTest ( opt ions . maxError , x , xprev1 , xprev2 , values ) )
23 {
24 stop = true ;
25 }
26 // check max number of i t e r a t i o n s
27 e l s e i f ( n === options . maxSteps )
28 {
29 re s . errorMessage = ’Maximum number of i t e r a t i o n s was reached . ’ ;
30 stop = true ;
31 }
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32 // check f o r overflows and undefined operat ions
33 i f ( ! Number . i s F i n i t e ( x ) )
34 {
35 re s . errorMessage = ’ I t e r a t i o n i s divergent ( numerical e r r o r ) . ’ ;
36 stop = true ;
37 }
38 // check i f the sequence already conta ins the current value
39 e l s e i f ( f indCycles ( ) )
40 {
41 re s . errorMessage = ’ I t e r a t i o n i s divergent ( c y c l e detec ted ) . ’ ;
42 stop = true ;
43 }
44 // save the values f o r the l a s t two i t e r a t i o n s
45 // these may be used f o r the convergence t e s t
46 xprev2 = xprev1 ;
47 xprev1 = x ;
48 }
49

50 // f i l l r e s u l t
51 r es . values = values ;
52 r es . numSteps = n ;
53 r es . x0 = x0 ;
54 i f ( re s . errorMessage === undefined )
55 {
56 re s . xn = x ;
57 }
58

59 re turn r es ;
60 }

Listing 1.3 – Simplified (incomplete) implementation of the generic fixed point
iterative method
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1.3 picard iteration

This section will present the complete statement of the contraction mapping princi-
ple and some other theoretical details regarding the Picard iteration, following the
presentations of Berinde (2007), and in the second part the new Javascript imple-
mentation of the Picard iteration.

1.3.1 Theoretical Background

We will present first the complete version of the contraction mapping principle,
which was presented in a simplified version in section 1.1 (theorem 1.1.22).

(1.3.1) Theorem (Banach Theorem or Contraction mapping principle) Let (X, d)
be a complete metric space and T : X → X be a given L-contraction, that is, an
operator satisfying:

(1.3.2) d(Tx, Ty) ≤ Ld(x, y), ∀x, y ∈ X

with 0 ≤ L < 1 fixed. Then

(i) T has an unique fixed point, that is, FT = {x∗};

(ii) The Picard iteration associated to T, i.e. the sequence {xn}n∈N, defined by

(1.3.3) xn = T(xn−1) = Tn(x0), n = 1, 2, . . .

converges to x∗, for any initial guess x0 ∈ X.

(iii) The following a priori and a posteriori error estimates hold:

(1.3.4) d(xn, x∗) ≤ Ln

1− L
d(x0, x1), n = 1, 2, . . .

(1.3.5) d(xn, x∗) ≤ L
1− L

d(xn−1, xn), n = 1, 2, . . .

(iv) The rate of convergence is given by:

(1.3.6) d(xn, x∗) ≤ Ld(xn−1, x∗) ≤ Lnd(x0, x∗), n = 1, 2, . . .

Proof. (Berinde, 2007) The proof for (i) and (ii) was given in the proof of the
simplified Banach fixed point theorem (1.1.22).

Next we will prove (iii). Since T is a contraction, from equation 1.3.2 we have

d(x2, x1) = d(Tx1, Tx0) ≤ Ld(x1, x0),

29



1.3. PICARD ITERATION

and by induction

d(xn+1, xn) ≤ Lnd(x1, x0), n = 0, 1, 2, . . .

Thus, for any numbers n, p ∈ N, p > 0, we have

d(xn+p, xn) ≤
n+p−1

∑
k=n

d(xk+1, xk) ≤
n+p−1

∑
k=n

Lkd(x1, x0) ≤
Ln

1− L
d(x1, x0).

By letting p→ ∞, we find

d(xn, x∗) = d(x∗, xn) = lim
p→∞

d(xn+p, xn) ≤
Ln

1− L
d(x0, x1), n ≥ 0

which is the a priori error estimate.

To obtain the a posteriori error estimate (1.3.5), let us notice, that since T is a con-
traction we have (using 1.3.2)

d(xn+1, xn) ≤ Ld(xn, xn−1)

and, by induction,

d(xn+k, xn+k−1) ≤ Lkd(xn, xn−1), k ∈ N∗,

so
d(xn+p, xn) ≤ (L + L2 + · · ·+ Lp)d(xn, xn−1) ≤

L
1− L

d(xn, xn−1).

By letting p→ ∞ in the last inequality we get exactly the a posteriori error estimate.
�

(1.3.7) Remark (Berinde, 2007)
1. The a priori error estimate shows that, when starting from an initial guess

x0 ∈ X, the approximation error of the nth iterate is completely determined
by the contraction coefficient L and the initial displacement d(x1, x0);

2. Similarly, the a posteriori error estimate shows that, in order to obtain the
desired error approximation of the fixed point by means of Picard iteration,
that is, to have d(xn, x∗) ≤ ε, we need to stop the iterative process at the first
step n for which the displacement between two consecutive iterates is at most
(1− L)ε/L. So, the a posteriori estimation offers a direct stopping criterion
for the iterative approximation of fixed points by Picard iteration, while the a
priori estimation indirectly gives a stopping criterion;

3. It is easy to see that the a posteriori estimation is better than the a priori one,
in the sense that we can obtain the a priori estimation from the a posteriori
estimation .
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4. Each of the three estimations given in the previous theorem shows that the
convergence of the Picard iteration is at least as quick as that of the geometric
series ∑ Ln. However, the convergence rate of Picard iteration for any contrac-
tion is linear;

5. In most of the cases, the contraction condition is not satisfied in the whole
space X, but only locally. In this context, a local version of the contraction
mapping principle is very useful for certain practical purposes.

(1.3.8) Corollary Let (X, d) be a complete metric space and

B(y0, R) = {x ∈ X | d(x, y0) < R}

be the open ball. Let T : B(y0, R)→ X be an L-contraction, such that

d(Ty0, y0) < (1− L)R.

Then T has a fixed point that can be obtained using the Picard iterative scheme,
starting from any x0 ∈ B(y0, r).

Proof. (Berinde, 2007) We show that any closed ball B = B(y0, r), r < R, is an
invariant set with respect to T, that is T(B) ⊂ B. To prove this, let us consider x ∈ B.
Then d(x, y0) ≤ R, and from

d(Tx, y0) ≤ d(Tx, Ty0) + d(Ty0, y0) ≤ Ld(x, y0) + (1− L)R

we obtain
d(Tx, y0) ≤ LR + (1− L)R = R,

which shows that Tx ∈ B. Since B is complete, we can apply now Banach fixed
point theorem (1.1.22) to get the conclusion. �

(1.3.9) Definition Let (X, d) be a complete metric space. A mapping T : X → X is
called (strict) Picard mapping if there exists x∗ ∈ X such that FT = {x∗} and

Tn(x0)→ x∗(uniformly)∀x0 ∈ X.

(1.3.10) Example If (X, d) is a complete metric space, then any contraction T : X →
X is a Picard mapping.

1.3.2 A New Javascript Implementation

The new Javascript implementation of the Picard iteration computes an approxi-
mate fixed point of real valued functions f : R → R. The implementation is in
the form of a Javascript function fixpoint .picard, which accepts as a parameters the
following input data for the algorithm:
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• f - the function for which the approximate fixed point will be computed,
specified as a Javascript function which must accept a single argument;
• x0 - the real number which specifies the initial approximation used to start

the algorithm;
• options - a Javascript object which can contain additional optional arguments

used to control the behaviour of the algorithm, as described below;
• options.maxError - specifies the maximum error to be accepted for the approx-

imation of the fixed point;
• options.convergenceTest - this parameter is a Javascript function which will be

used by the algorithm to perform the convergence test for the sequence of
successive approximations;
• options.maxSteps - the maximum number of steps to be executed before stop-

ping the algorithm, in the case that desired precision was not achieved for the
approximation;
• options.checkCycles - this option can be used to disable the additional checks

for oscillations.

The Picard iteration is based on the generic fixed point iteration described in 1.2.2,
which contains all the necessary details about the implementation and usage. Below
we present just the simple definition of the Javascript function corresponding to the
Picard iterative method.

1 /∗∗
2 ∗ @public method which computes a f i x e d point using the Picard i t e r a t i o n ;

@see a l s o # i t e r a t e .
3 ∗ @param { Function } f i s the funct ion to be i t e r a t e d .
4 ∗ @param {Number} x0 i s the i n i t i a l approximation .
5 ∗ @param { Object } opt ions w i l l conta in a d d i t i o n a l opt iona l parameters .
6 ∗ @return { Object } i t e r a t i o n r e s u l t .
7 ∗/
8 f i x p o i n t . picard = funct ion ( f , x0 , opt ions )
9 {

10 t r y
11 {
12 v a l i d a t e f x 0 ( f , 1 , x0 ) ;
13 re turn i t e r a t e ( f , x0 , opt ions ) ;
14 }
15 catch ( e r r )
16 {
17 re turn e r r ;
18 }
19 }

Complementary to the algorithm implementation a simple web-based user inter-
face is available at http://algonum.appspot.com/#fixpoint.picard, which can be
used very easily by persons without knowledge of Javascript programming for ex-
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perimenting with the algorithm. The user interface allows the users to enter the
input data for the algorithm in a very easy format. Some special attention was paid
on editing the mathematical formulas, and as it is visible in figure 1.3, it is possible
to edit complex formulas using a powerful editor.

Figure 1.3 – Web-based user interface for Picard iteration

The web-based software package can be also used to obtain nice visualisations of
the function and the associated Picard iteration (as a cobweb plot), as visible in the
following figures.
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1.4 krasnoselskii , mann and ishikawa iterations

1.4.1 Theoretical Background

When considering the case of nonexpansive mappings, the Picard iteration is not
necessarily always convergent. In this section we will describe the Krasnoselskii
iteration, in the context of nonexpansive and pseudocontractive mappings, with
the main theoretical notions presented as in Berinde (2007). The original form
of the iteration formula and the corresponding convergence result was given by
Krasnoselskii (1955), in the form of the averaged sequence involving two successive
terms of the Picard iteration:

xn+1 =
1
2
(xn + Txn)

The result obtained by Krasnoselskii was later extended by Schaefer (1957) to the
case when the constant 1/2 is replaced by a number λ ∈ (0, 1), obtaining in this
way what it is known as the general Krasnoselskii iteration.

(1.4.1) Definition Let H be a Hilbert space and C a subset of H. A mapping
T : C → H is called demicompact if it has the property that whenever {un} is a
bounded sequence in H and {Tun − un} is strongly convergent, then there exists a
subsequence {unk} of {un} which is strongly convergent.

(1.4.2) Lemma Let C be a bounded closed convex subset of a Hilbert space H and
T : C → C be a nonexpansive and demicompact operator. Then the set FT of fixed
points of T is a nonempty convex set.

(1.4.3) Theorem Let C be a bounded closed convex subset of a Hilbert space H
and T : C → C be a nonexpansive and demicompact operator. Then the set FT of
fixed points of T is a nonempty convex set and for any given x0 in C and any fixed
number λ with 0 < λ < 1, the Krasnoselskii iteration {xn}∞

n=0 given by

xn+1 = (1− λ)xn + λTxn, n = 0, 1, 2, . . .

converges (strongly) to a fixed point of T.

(1.4.4) Theorem (Berinde, 2007) Let X be a Banach space and K a nonempty closed
convex subset of X. If T : X → X is a Lipschitzian (with constant L) and strongly
pseudo contractive operator (with constant k) such that the fixed point set of T, FT,
is nonempty, then the Krasnoselskii iteration {xn} ⊂ K generated by x0 ∈ K, with
λ ∈ (0, a) and the number a given by

a =
k

(L + 1)(L + 2− k)
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converges strongly to the (unique) fixed point p of T. Moreover, amongst all Kras-
noselskii iterations, there exists one which is the fastest one, obtained for

λ0 = −1 +
√

1 + a

Next we present the definitions of Man and Ishikawa iteration processes. Although,
this iteration was introduced by Mann (1953), two years earlier than the Krasnosel-
skii iteration, the Mann iteration is formally a generalization of the later, in its
normal form, is obtained by replacing the parameter λ in the Krasnoselskii iter-
ation formula by a sequence of real numbers {αn} ⊂ [0, ]. Originally, the Mann
iteration was defined in a matrix formulation, see Berinde (2007).

(1.4.5) Definition Let C be a nonempty convex subset of a linear space X and
T : C → C a mapping. Let {αn} be a sequence of nonnegative numbers satisfying:

∞

∑
n=0

αn = ∞, 0 ≤ αn < 1, ∀n ∈ N.

The sequence {xn} ∈ C, defined by

xn+1 = M(xn, αn, T), n > 0; x0 ∈ C

where
M(xn, αn, T) = (1− αn) · xn + αn · Txn

is called the (normal) Mann iteration.

If in the above definition we take the sequence αn = λ (const), then the Man itera-
tive process obviously reduces to the Krasnoselskii iteration.

(1.4.6) Theorem Let C be a nonempty closed convex subset of a Banach space X
and T : C → C a continuous mapping. If the Mann iteration converges strongly to
a point x∗ ∈ C then x∗ is a fixed point of T.

The Ishikawa iteration was first used to establish the strong convergence to a fixed
point for a Lipschitzian and pseudo-contractive selfmap of a convex compact subset
of a Hilbert space. The Ishikawa iteration is given in the following definition.

(1.4.7) Theorem Let K be a convex compact subset of a Hilbert space H, T : K → K a
Lipschitzian pseudocontractive map and let the Ishikawa iteration be the sequence
{xn} ∈ K defined by

xn+1 = I(xn, αn, βn, T), n > 0; x0 ∈ K

where

I(xn, αn, βn, T) = (1− αn) · xn + αn · T [(1− βn) · xn + βn · Txn]
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with {αn} , {βn} sequences of positive numbers satisfying

(i) 0 ≤ αn ≤ βn ≤ 1, n ∈ N; (ii) lim
n→∞

βn = 0; (iii)
∞

∑
n=0

αn · βn = ∞.

Then the Ishikawa iteration converges strongly to a fixed point of T.

(1.4.8) Remark The Ishikawa iteration can be rewritten as follows:

yn = (1− βn) · xn + βn · Txn, n ∈ N
I(xn, αn, βn, T) = (1− αn) · xn + αn · Tyn, n ∈ N

If we take βn = 0 the Ishikawa iteration reduces to the Mann iteration, but there is
no general dependence between results for Mann iteration and Ishikawa iteration.
If we take αn = 0 the Ishikawa iteration reduces to the Picard iteration.

1.4.2 A New Javascript Implementation

The new Javascript implementations of the Krasnoselskii, Mann and Ishikawa itera-
tions compute an approximate fixed point of real valued functions f : R→ R. The
implementations are in the form of Javascript functions: fixpoint . krasnoselskii , fixpoint

.mann, fixpoint.ishikawa, which accept as a parameters the following input data for the
algorithm:
• f - the function for which the approximate fixed point will be computed,

specified as a Javascript function which must accept a single argument;
• lambda - the value corresponding to the λ constant in the Krasnoselskii itera-

tion formula;
• alphan - is a function which should return elements of the αn sequence; the

function should have parameter, n which is the index of the element in the
sequence to be computed; this parameter is used in the Mann and Ishikawa
iterations;
• betan - is similar to the above parameter alphan; this parameter is used in the

Ishikawa iterations;
• x0 - the real number which specifies the initial approximation used to start

the algorithm;
• options - a Javascript object which can contain additional optional arguments

used to control the behaviour of the algorithm, as described below;
• options.maxError - specifies the maximum error to be accepted for the approx-

imation of the fixed point;
• options.convergenceTest - this parameter is a Javascript function which will be

used by the algorithm to perform the convergence test for the sequence of
successive approximations;
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• options.maxSteps - the maximum number of steps to be executed before stop-
ping the algorithm, in the case that desired precision was not achieved for the
approximation;
• options.checkCycles - this option can be used to disable the additional checks

for oscillations.

The Krasnoselskii, Mann and Ishikawa iterations are based on the generic fixed
point iteration described in 1.2.2, which contains all the necessary details about
the implementation and usage. Below we present just the simple definition of
the Javascript functions corresponding to the Krasnoselskii, Mann and Ishikawa
iterative methods.

1 /∗∗
2 ∗ @public method which computes a f i x e d point using the Picard i t e r a t i o n ;

@see a l s o # i t e r a t e .
3 ∗ @param { Function } f i s the funct ion to be i t e r a t e d .
4 ∗ @param {Number} lambda i s number between 0 and 1 ( the constant in the

K r a s n o s e l s k i i formula )
5 ∗ @param {Number} x0 i s the i n i t i a l approximation .
6 ∗ @param { Object } opt ions w i l l conta in a d d i t i o n a l opt iona l parameters .
7 ∗ @return { Object } i t e r a t i o n r e s u l t .
8 ∗/
9 f i x p o i n t . k r a s n o s e l s k i i = funct ion ( f , lambda , x0 , opt ions )

10 {
11 func t ion K( x )
12 {
13 re turn (1 − lambda ) ∗ x + lambda ∗ f ( x ) ;
14 }
15 t r y
16 {
17 v a l i d a t e f x 0 ( f , 1 , x0 ) ;
18 // v a l i d a t e lambda constant
19 i f ( ! Number . i s F i n i t e ( lambda ) )
20 {
21 throw { errorMessage : ’A f i n i t e r e a l number i s expected . ’ ,

errorArgument : ’ lambda ’ } ;
22 }
23 i f ( lambda < 0 || lambda > 1)
24 {
25 throw { errorMessage : ’A r e a l number between 0 and 1 i s expected . ’ ,

errorArgument : ’ lambda ’ } ;
26 }
27 re turn i t e r a t e ( f , lambda , opt ions ) ;
28 }
29 catch ( e r r )
30 {
31 re turn e r r ;
32 }
33 }
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34

35 /∗∗
36 ∗ @public method which computes a f i x e d point using the Mann i t e r a t i o n ;

@see a l s o # i t e r a t e .
37 ∗ @param { Function } f i s the funct ion to be i t e r a t e d .
38 ∗ @param { Function } alphan i s the formula f o r the sequence in the Mann

i t e r a t i o n .
39 ∗ @param {Number} x0 i s the i n i t i a l approximation .
40 ∗ @param { Object } opt ions w i l l conta in a d d i t i o n a l opt iona l parameters .
41 ∗ @return { Object } i t e r a t i o n r e s u l t .
42 ∗/
43 f i x p o i n t . mann = funct ion ( f , alphan , x0 , opt ions )
44 {
45 func t ion M( x , n )
46 {
47 var a = alphan ( n ) ;
48 re turn (1 − a ) ∗ x + a ∗ f ( x ) ;
49 }
50

51 t r y
52 {
53 v a l i d a t e f x 0 ( f , 1 , x0 ) ;
54 // v a l i d a t e alphan
55 i f ( typeof f !== ’ funct ion ’ )
56 {
57 throw { errorMessage : ’A funct ion i s expected . ’ , errorArgument : ’

alphan ’ } ;
58 }
59 e l s e i f ( f . length !== 1)
60 {
61 throw { errorMessage : ’ The funct ion should have e x a c t l y 1 argument .

’ , errorArgument : ’ alphan ’ } ;
62 }
63 re turn i t e r a t e (M, x0 , opt ions ) ;
64 }
65 catch ( e r r )
66 {
67 re turn e r r ;
68 }
69 }
70

71 /∗∗
72 ∗ @public method which computes a f i x e d point using the Ishikawa i t e r a t i o n

; @see a l s o # i t e r a t e .
73 ∗ @param { Function } f i s the funct ion to be i t e r a t e d .
74 ∗ @param { Function } alphan i s the formula f o r the sequence in the Ishikawa

i t e r a t i o n .
75 ∗ @param { Function } betan i s the formula f o r the sequence in the Ishikawa

i t e r a t i o n .
76 ∗ @param {Number} x0 i s the i n i t i a l approximation .
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77 ∗ @param { Object } opt ions w i l l conta in a d d i t i o n a l opt iona l parameters .
78 ∗ @return { Object } i t e r a t i o n r e s u l t .
79 ∗/
80 f i x p o i n t . ishikawa = funct ion ( f , alphan , betan , x0 , opt ions )
81 {
82 func t ion I ( x , n )
83 {
84 var a = alphan ( n ) ;
85 var b = betan ( n ) ;
86 var y = (1 − b ) ∗ x + b ∗ f ( x ) ;
87 var r = (1 − a ) ∗ x + a ∗ f ( y ) ;
88 re turn r ;
89 }
90

91 t r y
92 {
93 v a l i d a t e f x 0 ( f , 1 , x0 ) ;
94 // v a l i d a t e alphan
95 i f ( typeof f !== ’ funct ion ’ )
96 {
97 throw { errorMessage : ’A funct ion i s expected . ’ , errorArgument : ’

alphan ’ } ;
98 }
99 e l s e i f ( f . length !== 1)

100 {
101 throw { errorMessage : ’ The funct ion should have e x a c t l y 1 argument .

’ , errorArgument : ’ alphan ’ } ;
102 }
103 // v a l i d a t e betan
104 i f ( typeof f !== ’ funct ion ’ )
105 {
106 throw { errorMessage : ’A funct ion i s expected . ’ , errorArgument : ’

betan ’ } ;
107 }
108 e l s e i f ( f . length !== 1)
109 {
110 throw { errorMessage : ’ The funct ion should have e x a c t l y 1 argument .

’ , errorArgument : ’ betan ’ } ;
111 }
112 re turn i t e r a t e (M, x0 , opt ions ) ;
113 }
114 catch ( e r r )
115 {
116 re turn e r r ;
117 }
118 }

Complementary to the algorithm implementation a simple web-based user interface
is available at http://algonum.appspot.com/, which can be used very easily by
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persons without knowledge of Javascript programming for experimenting with the
algorithms. The user interface allows the users to enter the input data for the
algorithm in a very easy format. Some special attention was paid on editing the
mathematical formulas, and as it is visible in figure 1.6, it is possible to edit complex
formulas using a powerful editor.

Figure 1.6 – Web-based user interface for Krasnoselskii iteration

The web-based software package can be also used to obtain visualisations for the
Krasnoselskii, Mann and Ishikawa iterations. In particular, the visualisation of the
Krasnoselskii iteration is realized in an innovative manner, that is, it displays the
plot of the function and a plot of the associated Picard operator combined with a
cobweb plot, as visible in the following figure.
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2. N E W I M P L E M E N TAT I O N S O F

F I X E D P O I N T A L G O R I T H M S I N R n

2.1 simplices and triangulations

This section will describe the basic geometric objects, simplices and simplicial com-
plexes, which will be used in the following sections for describing the implemen-
tations of several fixed point algorithms. This section also describes the pivoting
steps, which are the basic operations used in the simplicial fixed point algorithms.
The Freudenthal triangulation and the corresponding algorithm for pivoting in this
triangulation is given as a simple example. For some more details, examples, other
advanced notions and different approaches to this subject see Todd (1976a), Eaves
(1984), Dang (1995), Yang (1996) and McLennan (2012).

2.1.1 Basic Notions in Euclidean Geometry

(2.1.1) Definition An affine combination of v0, . . . , vk ∈ Rn is a point of the form
λ[0]v0 + · · ·+ λ[k]vk, where ∑k

i=0 λ[i] = 1.

(2.1.2) Definition A set of points v0, v1, . . . , vk ∈ Rn is said to be linearly inde-
pendent if the unique solution to ∑k

i=0 λ[i]vi = 0 is λ[i] = 0, ∀i = 0, 1, . . . , k, that is,
none of the points is a linear combination of the others. Otherwise, the points are
linearly dependent.

(2.1.3) Definition A set of points v0, v1, . . . , vk ∈ Rn is said to be affinely
independent (also called in general position), if the unique solution to

(2.1.4)
k

∑
i=0

λ[i]vi = 0,
k

∑
i=0

λ[i] = 0

is λ[i] = 0, ∀i = 0, 1, . . . , k, that is, none of the points is an affine combination of the
others.

(2.1.5) Remark The following statements are equivalent:
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• v0, v1, . . . , vk ∈ Rn are affinely independent.
• v1 − v0, v2 − v0, . . . , vk − v0 are linearly independent.
• (v0, 1), (v1, 1), . . . , (vk, 1) ∈ Rn+1 are linearly independent.

(2.1.6) Definition The affine hull aff(S) of a set S ∈ Rn is the set of all affine
combinations of elements of S. The affine hull of S contains S as a subset, and
we say that S is an affine subspace if the two sets are equal, that is, S is an affine
subspace if it contains all affine combinations of its elements.

(2.1.7) Definition If S ⊂ Rn is an affine subspace and v0 ∈ S, then {v − v0 | v ∈ S}
is a linear subspace, and the dimension of S, dimS, is the dimension of this linear
subspace. The codimension of S is n− dimS.

(2.1.8) Definition A hyperplane is an affine subspace of codimension one.

(2.1.9) Definition A (closed) half-space of a set S is a set of the form H =

{x ∈ S | 〈p, x〉 ≤ α}, where p ∈ S, p 6= 0 and α ∈ R.

(2.1.10) Definition A convex combination of v0, . . . , vk ∈ Rn is a point of the form
λ[0]v0 + · · ·+ λ[k]vk, where ∑k

i λ[i] = 1 and λ[0], . . . , λ[k] ≥ 0.

(2.1.11) Definition C ∈ Rn is a convex set if it contains all convex combinations of
its elements, so that (1− t)x0 + tx1 ∈ C for all x0, x1 ∈ C and 0 ≤ t ≤ 1.

(2.1.12) Definition The convex hull of a set S ∈ Rn, coS, is the smallest convex set
containing S. Equivalently, it is the set of all convex combinations of elements of S.

2.1.2 Simplices

(2.1.13) Definition For a set of k + 1 affinely independent points v0, . . . , vk ∈ Rn

we define the k-dimensional simplex with the vertices {v0, v1, . . . , vk} to be the
convex hull

(2.1.14) S =

{
x =

k

∑
i=0

λ[i]vi

∣∣∣ λ[i] ≥ 0,
k

∑
i=0

λ[i] = 1

}

The above coefficients, λ[0], . . . , λ[k] are usually called the barycentric co-ordinates
of x with respect to the affine basis v0, v1, . . . , vk.

(2.1.15) Remark A simplex is the generalization of a triangle or tetrahedron to
the n-dimensional space. A 0-simplex is a point, a 1-simplex is a line segment, a
2-simplex is a triangle, a 3-simplex is a tetrahedron.
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x

y

z

Figure 2.1 – The standard 2-simplex in R3

(2.1.16) Definition The standard n-simplex (or unit n-simplex) is the subset of
Rn+1 given by

(2.1.17) ∆n =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ n

∑
i=0

xi = 1 and xi ≥ 0, i = 0, n

}

The n + 1 vertices of the standard n-simplex are the points ei ∈ Rn+1:

e0 = (1, 0, 0, . . . , 0)
e1 = (0, 1, 0, . . . , 0)
...
en = (0, 0, 0, . . . , 1)

(2.1.18) Definition Let S = [v0, v1, . . . , vk] be a k-simplex. The convex hull of any
nonempty subset of the k + 1 points that define an k-simplex is called a face of the
simplex. The convex hull of a subset of size j + 1 (of the k + 1 defining points) is an
j-simplex, called an j-face of the k-simplex. Of particular interest are:
• the 0-faces which are called the vertices (vertex) of S
• the 1-faces which are called the edges S
• the (k− 1)-faces which are called the facets of S
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vertex

facet
edge

Figure 2.2 – Elements of 3-dimensional simplex

2.1.3 Triangulations

(2.1.19) Definition Let C ⊂ Rn be a k-dimensional convex set and let T = {τi}
be a collection of k-simplices. We call T a triangulation (also called simplicial
subdivision or simplicial complex) of the convex set C if:
(a)

⋃
τ∈T

τ = C

(b) for any two distinct simplices τ1, τ2 ∈ T , the intersection τ1 ∩ τ2 is either the
empty set or a common face of both simplices.

(c) each element x ∈ C has a neighborhood intersecting only a finite number of
simplices in T .

Also, we denote by T i the collection of all i-faces of simplices of T . It is trivial to
see that T k = T and that the members of T 0 are the vertices of simplices of T ,
which are also called the nodes of the triangulation.

correct wrong

Figure 2.3 – Triangulation

(2.1.20) Definition Let T be a triangulation of a simplex S. The diameter of a
simplex σ ∈ T is given by:

diam(σ) = max{||x− y|| | x, y ∈ σ}.
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The mesh size of a triangulation T is the maximum diameter of the simplices in
the triangulation:

mesh(T ) = sup
τ∈T

diam(τ).

(2.1.21) Definition Two simplices σ1, σ2 from a triangulation T are called adjacent
if they meet in a common facet of both simplices.

(2.1.22) Remark Usually, a triangulation is stored in the computer’s memory using
only a current simplex and a corresponding current facet of this simplex, together
with information used to obtain adjacent simplices, as required in various algo-
rithms.

(2.1.23) Lemma (Allgower and Georg, 2003) Consider T be a triangulation of a
simplex S, σ ∈ T be a simplex from the triangulation and τ be a facet of σ. Then
there is a unique simplex σ̃, such that: σ 6= σ̃ and τ is a facet of σ̃.

Proof. Let H ∈ Rn+1 denote the hyperplane which contains the facet τ of σ. Then
σ must lie on one side of H; let us call this side the "left" side of H. Consider a
straight line s ∈ R→ c(s) ∈ Rn+1 such that c(0) is a point in the relative interior of
τ and such that the tangent ċ(0) points into the "right" side of H. By the properties
of a triangulation, definition 2.1.19, there must exist at least one simplex σ̃ ∈ T
which contains the interval {c(s) | 0 ≤ s ≤ ε} for some small ε > 0. Also from the
definition of the triangulation 2.1.19, σ̃ must meet σ in the common facet τ. Of
course, σ̃ lies on the "right" side of H. Finally, we observe that two simplices in T
which have the same facet τ and lie on the same side of H must have a common
interior point and hence coincide. This shows the uniqueness of the simplex σ̃. �

(2.1.24) Definition (Allgower and Georg, 2003) Let σ = [v0, v1, . . . , vn] be an n-
simplex of a triangulation T and let τ = [v0, . . . , v̂i, . . . , vn] be the facet of σ lying
opposite to the vertex vi. By the preceding lemma (2.1.23), there must be a unique
node ṽi, which is different from vi and such that σ̃ = [v0, . . . , ṽi, . . . , vn] ∈ T . The
passage from σ to σ̃ is called a pivoting step. We say that the vertex vi of σ is
pivoted into ṽi and that the simplex σ is pivoted into the simplex σ̃ across the facet
τ.

2.1.4 Freudenthal Triangulation

(2.1.25) Example We describe the subdivision of a hypercube into n! simplices
along a diagonal, which is usually called Freudenthal triangulation or shorter,
K(h). This triangulation, already considered by Coxeter (1934) and Freudenthal
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vi

ṽi

Figure 2.4 – Pivoting in a triangulation

(1942), was popularized by Kuhn in the context of fixed point calculation Kuhn
(1960), and is frequently used for computational purposes, e.g. by Allgower and
Georg (2003).

The nodes of this triangulation are the same as the vertices of the unit hypercube in
Rn. Let v0 = 0 ∈ Rn, p = (p[1], . . . , p[n]) be any permutation of 1, . . . , n and denote
by Ip[i] the p[i] column of the unit matrix of order n. Each of the n! permutations of p
leads to an n-dimensional simplex in this triangulation. The n-dimensional simplex
associated with the permutation p, denoted by (v0, p), is [v0, v1, . . . , vn], where

vi = vi−1 + Ip[i] , i = 1, . . . , n.

Figure 2.5 – Freudenthal triangulation of the unit cube in R3
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An interesting property of K(h) is that the subdivisions of its lower dimensional
faces are also Freudenthal triangulations. Furthermore, opposite faces in this tri-
angulation are compatibly decomposed, thus, a regularly sampled domain can be
tiled using K(h) subdivided hypercubes, see Kuhn (1960). This means that this
triangulation can be extended, by translations, to provide a triangulation for the
whole Rn space, which is called the K1 triangulation. First Rn is partitioned in unit
cubes using the integer points from Rn and then each unit cube is subdivided as
above. The nodes of this triangulation are all the points with integer coordinates in
Rn. The mesh size of triangulation K1 is

√
n.

Having a simplex σ of this triangulation and a vertex vi ∈ σ, the following cyclic
formulas describe how the vertex vi is pivoted into the vertex ṽi of the simplex σ̃:

(2.1.26)
ṽi = vi−1 − vi + vi+1, i = 1, . . . , n− 1
ṽ0 = vn − v0 + v1

ṽn = vn−1 − vn + v0

For the formal proof that this pivoting rule defines indeed a triangulation of Rn see
Todd (1976a). This pivoting rule has been called pivoting by reflection (Allgower
and Georg, 1978) and is easily to implement in a computer program, as exposed in
the following algorithm.

(2.1.27) Algorithm Pivoting by reflection in Freudenthal’s triangulation

Require: [v0, v1, . . . , vn] is the input simplex
Require: 0 ≤ i ≤ n is the index of vertex to be pivoted next

procedure Pivot([v0, v1, . . . , vn], i)
prev = i− 1
next = i + 1

if i = 0 then cyclic formulas
prev = n

else if i = n then
next = 0

end if

vi := vprev − vi + vnext reflection rule
end procedure

The Freudenthal triangulation also has the advantage of being invariant under
affine transformations, hence any triangulation which is obtained from Freuden-
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thal’s triangulation by some affine transformation obeys the above pivoting rule, as
summarized in the following proposition.

(2.1.28) Proposition (Allgower and Georg, 1978) Let σ = [v0, v1, . . . , vn] ∈ Rn be
an n-simplex, and denote by T the family of all simplices which are obtained from
σ by a repeated use of the pivoting rule 2.1.26. Then T is a triangulation of Rn, and
in fact T is some affine image of Freudenthal’s triangulation.

A related example is the J1 triangulation, which also has the advantage to carry less
directional bias. The triangulation uses the same basic K(h) subdivided hypercubes,
and adjacent tiles are obtained by reflections instead of translations, as displayed in
figure 2.6.

K1 J1

Figure 2.6 – K1 and J1 triangulations in R2

Some other triangulations examples are: the J′ triangulation, proposed by Todd
(1984); the D1-triangulation of Rn, for simplicial algorithms for computing solutions
of nonlinear equations, described by Dang and Talman (1990), Dang (1991); D

′
1, a

new triangulation for simplicial algorithms, described by Todd and Tunçel (1993).
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2.2 fixed point problems and theorems

This section presents some important results in the fixed point theory. The Brouwer
fixed point theorem, one of the most important and elegant results in modern math-
ematics, provides a simple condition for the existence of solutions to the fixed point
problem. In order to realize the importance of Brouwer fixed point theorem, see
the impressive survey of Park (1999) regarding the areas of mathematics directly
related to this theorem. This section also presents a generalization of Brouwer’s re-
sult for set-valued mappings, the Kakutani fixed point theorem. In relation with the
fixed point problem, this section will also describe some other equivalent problems.
The bibliography on this subject is vast, with some excellent titles from Romanian
authors, Istratescu (2002), Rus (1979), Rus et al. (2008) and with other important
references like Smart (1974), Border (1989). The theoretical notions are presented
mainly as in Rus (1979) and Rus et al. (2008).

2.2.1 Brouwer Fixed Point Theorem

(2.2.1) Definition A topological space X has the fixed point property if every
continuous function f : X → X has at least one fixed point.

(2.2.2) Theorem Consider X, Y two topological spaces and h : X → Y a homeomor-
phism. If X has the fixed point property then Y also has the fixed point property.

Proof. (Rus, 1979) Let X to have fixed point property and f : Y → Y, a continuous
function. We will show that f has a fixed point.

If h : X → Y is a homeomorphism, then h is a bijection with h and h−1 being
continuous. The mapping h−1 ◦ f ◦ h : X → X is continuous, so it has at least one
fixed point, x0 ∈ X. We have

h−1( f (h(x0))) = x0,

so
f (h(x0)) = h(x0),

that is, h(x0) is a fixed point of f . �

(2.2.3) Lemma (Knaster et al., 1929) Let S = [v0, v1, . . . , vn] ⊂ Rn be a n-simplex
and let C0, C1, . . . , Cn be a collection of closed subsets of S such that:

1. S =
n⋃

i=0

Ci, that is, the simplex S is covered by the closed sets Ci.

2. co{vi | i ∈ Ik} ⊂
⋃
i∈Ik

Ci, that is, the face spawned by the vertices vi is covered

by the closed sets Ci, i ∈ Ik, for all Ik ⊂ {0, 1, . . . , n}.
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Then
n⋂

i=0

Ci 6= ∅.

(2.2.4) Theorem (Brouwer, 1911) Let C ⊂ Rn be a nonempty, compact and convex
set, and f : C → C a continuous function. Then there exists at least one point
x∗ ∈ C, such that f (x∗) = x∗.

Proof. (Rus et al., 2008) If Brouwer theorem is true for a certain compact and convex
set from Rn, then it is true for any compact and convex set in Rn. This due to the
fact that any two compact and convex sets in Rn are homeomorphic and because
the fixed point property is invariant under homeomorphisms.

Using the above remark we will prove that a simplex σ = [v0, . . . , vn] ⊂ Rn has the
fixed point property.

Let f : σ→ σ be a continuous function and v ∈ σ. Then

v =
n

∑
i=0

λ[i]vi, λ[i] ≥ 0,
n

∑
i=0

λ[i] = 1.

Because f (v) ∈ σ, we have:

f (v) =
n

∑
i=0

fi(λ[0], λ[1], . . . , λ[n])vi,
n

∑
i=0

fi(λ) = 1, fi(λ) ≥ 0.

We consider the sets:

Ck =

{
n

∑
i=0

λ[i]vi | λ[i] ≥ 0,
n

∑
i=0

λ[i] = 1, fk(λ[0], . . . , λ[n]) ≤ λ[k]

}
,

which satisfy the conditions of KKM lemma, and let x∗ ∈
n⋂

k=0

Ck.

If x∗ = λ∗[0]v0 + · · · + λ∗[n]v[n], then, from the definition of the sets Ck, we have
fi(λ

∗
[0], . . . , λ∗[n]) = λ∗[i], so f (x∗) = x∗. �

2.2.2 Kakutani Fixed Point Theorem

(2.2.5) Definition Let X, Y be two sets. A mapping f : X → P(Y) is named
point-to-set mapping or set-valued mapping.

(2.2.6) Definition Let f : X → P(Y) be a set-valued mapping. An element x ∈ X
is a fixed point of the set-valued mapping f , if x ∈ f (x). The set of all fixed points
of the set-valued mapping f is denoted by Ff .
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(2.2.7) Definition A set-valued mapping f : X → P(Y) is upper hemicontinuous
(u.h.c.) at x0 ∈ X, if for every open neighborhood V of f (x0), there exists an open
neighborhood U of x0 such that f (x) ⊂ V, ∀x ∈ U .

(2.2.8) Theorem Let X, Y be two compact metric spaces and f : X → P(Y) a set-
valued mapping such that f (x) is closed for all x ∈ X. The following propositions
are equivalent:

1. The set-valued mapping f is upper hemicontinuous.
2. The graph of f is a closed subset of X×Y.
3. For any sequences (xn), (yn), such that xn → x, yn ∈ f (xn), yn → y, we have

y ∈ f (x).

(2.2.9) Definition Let X, Y be two vector topological spaces. A set-valued mapping
f : X → P(Y) is named Kakutani-type mapping if f is upper hemicontinuous and
f (x) is nonempty, closed and convex for all x ∈ X.

(2.2.10) Definition Let X be a vector topological space and Y ⊂ X. Then Y has the
Kakutani fixed point property if each Kakutani-type mapping f : Y → P(Y) has at
leas a fixed point.

(2.2.11) Definition Let X be a topological space and Y a subspace of X. The
subspace Y is called a retract of X if there exists a continuous map r : X → Y,
called retraction, such that the restriction of r to Y is the identity map, that is
r(y) = y, ∀y ∈ Y.

(2.2.12) Theorem If the topological space X has the Kakutani fixed point property
then any retract of X has the Kakutani fixed point property.

Proof. (Rus, 1979) Let Y be a retract of X and r : X → Y the corresponding
retraction. Let f : Y → P(Y) be a Kakutani-type mapping. The mapping g : X →
P(Y), g(x) = f (r(x)) is a Kakutani-type mapping. If x∗ be a fixed point of g then
x∗ is a fixed point of f . �

(2.2.13) Definition Let X be a liniar space and Y ⊂ X a convex subset. A mapping
f : Y → Y is named affine mapping if:

f (ax + (1− a)y) = a f (x) + (1− a) f (y), ∀a ∈ (0, 1), ∀x, y ∈ Y.

(2.2.14) Theorem Let X be a topological space having the Kakutani fixed point
property. If Y is a topological space such that there exists an affine homeomorphism
h : X → Y, then Y has the Kakutani fixed point property.
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Proof. (Rus, 1979) Let f : Y → P(Y) be a Kakutani-type mapping. The mapping
h ◦ f ◦ h−1 : X → P(Y) is a Kakutani-type mapping so we have that h−1(x∗) is a
fixed point of f . �

(2.2.15) Theorem (Kakutani, 1941) Let C ⊂ Rn be a nonempty, compact and convex
set, and f : C → P(C) an Kakutani-type mapping. Then there exists at least one
point x∗ ∈ C, such that x∗ is a fixed point of the set-valued mapping f , that is
x∗ ∈ f (x∗).

Proof. (Rus, 1979) From theorem 2.2.12 it follows that it is sufficient to prove the
theorem for a closed simplex in Rn.

Let σ = [v0, v1, . . . , vn] be a closed n-simplex from Rn. For any ε(m) > 0 we can
construct a triangulation T of σ such that mesh(T ) < ε(m). Let f : σ → P(σ) be a
Kakutani-type mapping. There exists a mapping f (m) : σ→ σ such that:

1. f (m)(y(m)
i ) ∈ f (y(m)

i ) for any node y(m)
i of the triangulation T .

2. f (m) is affine on any simplex in T .

The mapping f (m) is continuous and from the Brouwer fixed point theorem it fol-
lows that it has at least a fixed point x(m)∗ :

x(m)∗ =
n

∑
i=0

λ
(m)
[i] y(m)

i , λ
(m)
[i] ≥ 0,

n

∑
i=0

λ
(m)
[i] = 1.

Because σ is a compact set it follows that there exists a convergent subsequence of
(x(m)∗) for which we will use the same notation (x(m)∗). Let

x∗ = lim
m→∞

x(m)∗ , yi = lim
m→∞

f (m)y(m)
i , λ[i] = lim

m→∞
λ
(m)
[i] .

It is evident that λ[i] ≥ 0 and ∑n
i=0 λ[i] = 1. Because (y(m)

i , f (m)y(m)
i ) ∈ G( f ) and

G( f ) is closed, it follows that yi ∈ f (x∗) and because f (x∗) is convex it follows that
x∗ ∈ f (x∗). �

2.2.3 Equivalent Forms of the Fixed Point Problem

In the next part of this section we will present some equivalent forms of the fixed
point problem, following the presentation of Yang (1996).

(2.2.16) Definition Let C be a subset of Rn, and let f : C → Rn be a function. Then
a point x∗ ∈ C is a fixed point of f if f (x∗) = x∗. The problem of finding a fixed
point is called the fixed point problem.
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As we saw before, the Brouwer fixed point theorem proves that if f is continuous it
has a fixed point.

(2.2.17) Definition Let C be a subset of Rn, and let f : C → Rn be a function. Then
a point x∗ ∈ C is a stationary point of f on C if, for all x ∈ C, we have:

(x∗)ᵀ f (x∗) ≥ xᵀ f (x∗)

The problem of finding a stationary point is called stationary point problem.

(2.2.18) Theorem Any continuous function f : C → Rn, where C is a nonempty,
convex and compact subset Rn, has at least one stationary point.

(2.2.19) Definition Let h : ∆n → Rn be a continuous function satisfying pᵀh(p) = 0
for any p ∈ ∆n. Then a point p∗ ∈ ∆n is a complementary point of the function h
if h(p∗) ≤ 0. The problem of finding a complementary point is called complemen-
tarity problem.

(2.2.20) Theorem Let h : ∆n → Rn be a continuous function satisfying pᵀh(p) = 0
for any p ∈ ∆n. Then h has a complementary point p∗ in ∆n.

(2.2.21) Definition Given a function f : C → Rn, a point x∗ ∈ C is called a zero
point if f (x∗) = 0. The problem of finding a zero point is called the zero point
problem.

The four problems defined in 2.2.16, 2.2.17, 2.2.19 and 2.2.21 are equivalent, for
more details see Eaves (1971).
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2.3 sperner lemma in fixed point theory

This section will present a simple combinatorial lemma, due to Sperner (1928). Al-
though this lemma may look simple at a first sight, it has powerful implications,
for example it is used in solving fair division problems, see Su (1999) and it can be
used to prove the Fundamental Theorem of Algebra, see Huang (2004). Fifty years
after the proving this result, Sperner himself listed the surprising applications of
his lemma (Sperner, 1980).

In the context of fixed point theory Sperner lemma is important because it is a
combinatorial analogue of Brouwer fixed point theorem. In fact, Sperner lemma
is the base of the simplicial fixed point algorithms which are used to compute
approximate Brouwer fixed points for continuous mappings.

2.3.1 Sperner Lemma

(2.3.1) Definition Let T be a triangulation of a simplex S ∈ Rn and l : T 0 →
{0, 1, . . . , n} be a labeling function, which associates a label to each node of the
triangulation T . A simplex σ = [v0, . . . , vn] ∈ T is completely labeled if

{l(v0), l(v1) . . . , l(vn)} = {0, 1, . . . , n}
that is, all vertices of σ are labeled distinctly.

(2.3.2) Definition Let T be a triangulation of a simplex S ∈ Rn. A labeling function
l : T 0 → {0, 1, . . . , n} is called Sperner labeling if, for any x ∈ T 0 with x[i] = 0, we
have l(x) 6= i, that is, the simplex S is labeled completely and the label of any node
of the triangulation which is on a face of S matches the label of one of the vertices
spanning that face.

(2.3.3) Remark It is evident that a Sperner labeling on the n-simplex S induces
Sperner labelings on each facet as (n− 1)-simplices.

(2.3.4) Lemma (Sperner, 1928) Any Sperner-labeled triangulation of an n-simplex
contains an odd number of completely labeled n-simplices, and in particular, there
is at least one.

Proof. (Cohen, 1967) The presented proof will use induction. For n = 1 the theorem
is obvious. We assume the proposition to be true for dimensions less than n.

Let S = [v0, . . . , vn] be an n-simplex, T be a triangulation of S, T 0 the set containing
the nodes of this triangulation and l : T 0 → {0, 1, . . . , n} be a Sperner labeling.

We choose a face [v0, . . . , vn−1] of S. This face is triangulated and completely labeled,
so it contains an odd number of complete n− 1 simplices, with labels {0, 1, . . . , n−
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0

1

2

Figure 2.7 – Sperner labeling

1}. Let [x0, . . . , xn−1] be one such n − 1 simplex, which will be the face of an n-
simplex in T and let the other vertex of this n-simplex be xn. If l(xn) = n, then we
have a completely labeled n-simplex and we stop the chain. If l(xn) = i, i < n, then
we have an n-simplex with two vertices with the same label. Let l(x0) = l(xn). Then
[x1, . . . , xn] is a complete (n− 1)-simplex with no vertex labeled n, which, again, is
the face of an n-simplex in T which is formed by adding the vertex xn+1 6= x0.
Again we have either a completely labeled n-simplex or two vertices with the same
label. Keeping xn+1 and dropping one of the previously acquired vertices, we again
obtain a complete (n− 1)-simplex.

We continue this process and establish a chain of n-simplices each with n distinct
labels. The chain will not cover the same n-simplex twice; since both approaches
to a given n-simplex in the chain are included, the first n-simplex covered twice
would have to be the n-simplex we started with. This n-simplex, though, lies on the
boundary of S and the only way it could be covered a second time by the chain is
for the chain to recover the second n-simplex first. Therefore the chain ends after a
finite number of n-simplices.

There are only two ways for the chain to end: one is by encountering a complete
n-simplex and the other is by landing on a face of S. The only face of S that could
contain a complete (n− 1)-simplex that has no vertex labeled n is [v0, . . . , vn−1].

So we see that the completely labeled (n − 1)-simplices of the face [v0, . . . , vn−1]
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pair off into pairs that are connected by type of chains described above. But an odd
number of them start chains which end in completely labeled n-simplices. Similarly,
a chain starting from a completely labeled n-simplex, starting with the face that has
no face labeled n, will end either on the face [v0, . . . , vn−1] or at another complete
n-simplex.

So the n-simplices pair off into pairs connected by chains, except for the ones con-
nected to the face opposite vn. We know that the number of simplices which are
connected to this face is odd, therefore the total number of complete n-simplices in
T is odd. �

2.3.2 Sperner Lemma and Brouwer Fixed Point Theorem

In the rest of this section we will describe the connections between Sperner lemma
and Brouwer fixed point theorem.

(2.3.5) Theorem Sperner Lemma implies Brouwer fixed point theorem.

Proof. We consider a simplex S = [x0, . . . , xn] and a continuous mapping of the
simplex into itself, f : S → S, f = ( f0, f1, . . . , fn). We will show that there exists
x∗ ∈ S such that f (x∗) = x∗.

We consider a sequence of triangulations Tδ of the simplex S which we can choose
in such a way that the maximum diameter of the simplices in the triangulations
tends to zero, mesh(Tδ)→ 0.

For each triangulation T in the sequence Tδ we also consider a corresponding label-
ing l : T 0 → {0, 1, . . . , n}, with the following property: if l(x) = i then x[i] > 0 and
fi(x) ≤ x[i]. It is evident that there will be at least one such index for each node
of the triangulation T , and if there are several we make an arbitrary choice among
them. It is easy to show that such a labeling is a Sperner labeling, for details see for
example Sondjaja (2008).

From Sperner lemma it follows that there is at least on simplex in the triangulation
T which has all of its vertices indexed differently. In other words, we can find a
simplex in the triangulation such that at each of its vertices a different coordinate
is not increased by means of the mapping f .

So each triangulation in the sequence Tδ contains a completely labeled simplex, and
we can find a subsequence of triangulations with the vertices converging to a single
point x∗. Since the mapping f is continuous, f (x∗) ≤ x∗[i], and therefore x∗ is a fixed
point of the mapping. �

(2.3.6) Theorem Brouwer fixed point theorem implies Sperner lemma.
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Proof. (Sondjaja, 2008) We consider an n-simplex S = [v0, . . . , vn], a triangulation T
of S and l : T 0 → {0, 1, . . . , n} a Sperner labeling of T , such that l(vi) = i. Using
Brouwer fixed point theorem we will show that there exists a completely labeled
simplex in T .

We define f : S→ S, such that

f (x) =


vl(x) if x ∈ T 0

k

∑
i=0

x[i] f (wi) if x ∈ [w0, . . . , wk] ∈ T and x /∈ T 0

It is a simple to see that f is continuous on the entire simplex S, so from Brouwer
fixed point theorem, there is a point x∗ ∈ S such that f (x∗) = x∗. Without loss
of generality, we assume that x∗ ∈ int(S), since when x∗ is not in the interior of
S, then there exists a face of S that contains x∗ in its interior and we can make the
following arguments for this face of S.

Let σ = [w0, . . . , wn] ∈ T denote an n-simplex that contains x∗. We can write x∗ as
a convex combination of the vertices of σ:

x∗ =
n

∑
i=0

wix∗[i]

First we show that x∗ must lie in the interior of σ. Since f is linear within σ, then

(2.3.7) f (x∗) = f (
n

∑
i=0

wix∗[i]) =
n

∑
i=0

f (wi)x∗[i]

We suppose the contrary, that x∗ lies in a proper face of σ. Then there is an index
i for which x∗[i] = 0. Then vi is not a vertex of the carrier of f (x∗), which means
that x∗ lies on a proper face of S, which contradicts the assumption that x∗ is in the
interior of S. So we know that x∗ must be in the interior of σ, hence, x∗[i] > 0 for all
i.

Now we show that the images of w0, . . . , wn under f must be all the vertices of S,
namely {v0, . . . , vn}. We suppose the contrary, but from equation 2.3.7 we see that
f (x∗) lies on a proper face of S, which is again a contradiction. So the set of images
of the vertices of σ is equal to the set containing all the vertices of S, which means
that σ is completely labeled. �
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2.4 simplicial fixed point algorithms

Motivated by the aim of finding algorithm for the computation of equilibrium prices
for a general Walrasian model of competitive market exchange - see Debreu (1959),
in 1967 Scarf described the first algorithm for computing a fixed point of a con-
tinuous mapping implied by Brouwer’s theorem (Scarf, 1967). This section will
present the main ideas used in this algorithm and the personal contributions for
the implementation in the Javascript language.

The algorithm proposed by Scarf uses the idea of complementary pivoting de-
scribed by Lemke and Howson (1964) and Lemke (1965). The papers of Lemke
and Howson provided an algorithm for computing Nash equilibrium points for a
general two-person non-zero sum game. This algorithm is also available for the
more general linear complementarity problem, which as we saw in section 2.2 is
related to the fixed point problem. Murty (1988) provides a clear and in-depth de-
scription of the linear complementarity problem and its applications in fixed point
theory. An argument similar to the one used by Lemke and Howson, is used by
Cohen (1967) to provide a proof for the Sperner lemma, which is also presented
in section 2.3, but without considering an algorithm to find one of the completely
labeled simplices.

For the first description of the algorithm, Scarf used the concept of primitive sets,
but as he recognized in Scarf (1991), he didn’t realize that the combinatorial lemma
described in his original paper is the equivalent of Sperner’s lemma. A few months
later, Hansen proposed a great improvement for the original algorithm (Hansen,
1968), by providing an alternative to the concept of primitive sets. The improvement
proposed by Hansen was also described by Kuhn (1968), where he also describes the
equivalence of Scarf’s algorithm with the Sperner lemma and the relation between
primitive sets and triangulations.

We will now describe the original algorithm proposed by Scarf and then continue
with the description of the improvements proposed by (Hansen, 1968) and Kuhn
(1968), following the exposition made by Scarf (1982).

2.4.1 Scarf’s Algorithm

(2.4.1) Definition A triangulation T of a simplex S is named restricted triangula-
tion if none of the nodes v ∈ T 0, other than the vertices of S, lie on the boundary
of S.

Next we will describe the combinatorial lemma which is the basis of the simplicial
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fixed point algorithms.

(2.4.2) Lemma (Scarf, 1982) Let T be a restricted triangulation of an n-simplex
S = [v0, . . . , vn], with the nodes v0, . . . , vn, . . . , vk ∈ T 0 and let l : T 0 → {0, 1, . . . , n}
be labeling function, such that l(vj) = j, for j = 0, 1, . . . , n. Then there exists at least
one completely labeled simplex in the triangulation, that is, a simplex with all the
vertices having distinct labels.

Proof. (Scarf, 1982) The existence of such a simplex will be proved by an ex-
plicit computational procedure based on an argument which was first described
by Lemke and Howson (1964) and Lemke (1965).

We will consider the unique simplex in the triangulation whose vertices are v1,
v2, . . . , vn and a single other vertex, vj. The vertices v1, v2, . . . , vn will have the labels
1, 2, . . . , n. If the vertex vj is labeled 0 the algorithm terminates immediately with a
completely labeled simplex. Otherwise l(vj) will be one of the integers 1, 2, . . . , n.
We proceed by eliminating the vertex whose label is the same with l(vj), arriving
at a new simplex in the triangulation. Again we determine the label associated
with the new vertex which has just been introduced. If this label is 0, we terminate;
otherwise the process continues by eliminating that old vertex whose label agrees
with that of the vertex just introduced.

At each stage of the algorithm we will be faced with a simplex of the triangulation
whose vertices have the n labels 1, 2, . . . , n. A pair of the vertices, one of which has
just been introduced, will have a common label, and we continue by removing the
other member of this pair.

There are a finite number of simplices in the triangulation. We will demonstrate
that the algorithm never returns to a simplex which it previously encountered. As-
suming this to be correct, the algorithm must terminate after a finite number of
iterations. But termination can only occur if we have reached a simplex all og
whose labels are different, ot if we arrive at a simplex which has n vertices on the
boundary of S, with the remaining vertex about to be removed. Such a boundary
simplex, however, has to contain the vertices v1, . . . , vn, since if the vertex v0 ap-
pears in a simplex encountered before the label 0 would have been obtained and
the algorithm would have terminated.

We see, therefore, that the we will have to demonstrate that the algorithm will never
return to the same simplex. Consider the first simplex which is revisited. If this
is not the initial simplex it can be revisited in through one of the two adjacent
simplices with n distinct labels. But both of these adjacent simplices would have
been encountered during the first visit and our simplex is therefore not the first
simplex to be revisited. A similar argument demonstrates that the initial simplex is
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not the first simplex to be revisited. �

Next we will give a new constructive proof of the Sperner lemma, based on the
combinatorial lemma 2.4.2.

(2.4.3) Lemma (Sperner, 1928) Let T be a triangulation of an n-simplex S =

[v0, . . . , vn], and let l : T 0 → {0, 1, . . . , n} be labeling function, such that l(v[i]) = i
only if v[i] > 0, for i = 0, 1, . . . , n. Then there exists at least one completely labeled
simplex in the triangulation.

Proof. (Scarf, 1982) We will prove the Sperner lemma using the combinatorial
lemma of Scarf (2.4.2) and the following simple idea. We embed the unit simplex
in a larger simplex S′ with the vertices s0, . . . , sn. We then extend the triangulation
T of S to a restricted triangulation of S′, by introducing a number of simplices
obtained in the following way: take an arbitrary subset T ⊂ {0, 1, . . . , n} with t < n
members. Consider a collection of n + 1 − t vertices in the face of S defined by
xi = 0, for i ∈ T, and which lie in a single sub-simplex of T . These n + 1 − t
vertices in S are combined with the t vertices si for i ∈ T in order to define a
simplex in the larger (restricted) triangulation.

In order to apply 2.4.2 to the triangulation of S′ we must associate a distinct label
with each of the new vertices s0, . . . , sn, and we wish to do this in such a fashion
that the completely labeled simplex obtained by applying lemma 2.4.2 will contain
none of the new vertices.

We define l(si) = (i + 1) mod (n + 1), in other words l(s0) = 1, l(s1) = 2, . . . ,
l(sn) = 0. A completely labeled simplex may then contain the vertices si, and
n + 1− t other vertices on the face xi = 0, for i ∈ T. Since these remaining vertices
will, by the assumption of Sperner lemma, have labels different from the members
of T, it follows that the collection of vertices si in the completely labeled simplex
must have all og the labels in T. This is contradiction to l(si) = (i + 1) mod (n+ 1)
unless T is the empty set and the completely labeled simplex is a member of the
original triangulation of S. �

Considering the simplex S, the triangulation T and the labeling function l as in
lemma 2.4.3, we will present an alternative description of the algorithm following
Saigal (1979), see also Kuhn (1968).

From Sperner lemma, we know that the triangulation T contains an odd number
of completely labeled simplices. By considering all these completely labeled sim-
plices from T together with all the facets of simplices in T having the set of labels
{1, 2, . . . , n} we can create four types of paths

1. paths starting from a facet on the boundary of the simplex S, and ending in a
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simplex of the triangulation (the path between A and B).
2. paths starting from a facet on the boundary of the simplex S, and ending at

another facet on the boundary (the path between C and D).
3. paths starting from an simplex of the triangulation and ending at another

simplex of the triangulation (the path between E and F).
4. looping paths (the path between G and G); the algorithm never reaches these

paths.

The paths 1. and 2. above suggest the idea of the algorithm. The steps of the
algorithm are the following:

Step 0 Find a facet τ1 of a simplex in T which is on the boundary of S
and has the set of labels {1, 2, . . . , n}. Find the unique n-simplex
σ1 ∈ T which contains this facet. Find the vertex v of σ1 which
is not a vertex of τ1.

Step 1 If the label of v is 0, we found a completely labeled simplex and
we stop the algorithm.

Step 2 Since the label of v is one of the elements of {1, 2, . . . , n}, there
exists exactly one more facet τ2 of σ1 which has the set of labels
{1, 2, . . . , n}. Find the unique facet τ2 and let τ1 = τ2.

Step 3 If τ1 is on the boundary, stop. Otherwise, there exists another
simplex σ2 ∈ T which has τ1 as a facet. Find the vertex ṽ of σ2

which is not a vertex of τ1 and let v=ṽ. Go to step 1.

The sequence of steps described above is finite since no simplex in the triangulation
is considered more than once, and there are only a finite number of simplices in
the triangulation. This is true since for a simplex to appear more than once in
the algorithm, it must have more than to facets with the set of labels {1, 2, . . . , n},
which is not possible (as seen in step 2). Thus, after a finite number of iterations,
the algorithm will stop either at step 1 or at step 3. Stopping at step 1, leads us
to a completely labeled simplex, while stopping at step 3 means that the algorithm
failed to find a completely labeled simplex.

Many of the authors, see for example Murty (1988) or Border (1989), also give an
informal description of the algorithm, using a little story similar to the following
one. Consider a house with a finite number of rooms. There are three types of
rooms in the house: rooms without doors, rooms with exactly two doors and rooms
with just a single door. If we enter one of the outside doors of the house and
keep going from room to room, entering through one of the doors and exiting
through the other one, we either end up in a room with only one door or we end
up back outside of the house. The house corresponds to the simplex S and the
n-sub-simplices of the triangulation T are the rooms in this house. Each facet of an
n-sub-simplex is corresponding to a wall of the room, with the completely labeled
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facets corresponding to the walls with doors. The rooms with one door are the
completely labeled simplices which we are searching.

By using the algorithm described above, combined with a well chosen labeling
function, we may find approximate fixed points implied by the Brouwer theorem.
Let us consider a continuous mapping of the unit simplex into itself, f : ∆n → ∆n,
f = ( f0, f1, . . . , fn), such that:

fi(x) ≥ 0, i = 0, 1, . . . n

and
n

∑
i=0

fi(x) = 1

We also consider a triangulation T of the unit simplex, and the following labeling
function: l : T 0 → 0, 1, . . . , n, such that:

l(x) = i if fi(x) ≤ x[i] and x[i] 6= 0

It is easy verified that the assumptions of the Sperner lemma are satisfied, and the
previous algorithm on which the proof of Sperner lemma is based may be used to
determine such a completely labeled simplex, for example σ = [v0, . . . , vn]. Also,
from the continuity of f we have that for any ε > 0 there exists a δ > 0 such that
||x − y|| < δ =⇒ || f (x)− f (y)|| < ε, for any x, y ∈ σ. So, if diam(σ) ≤ δ, then
any point x ∈ σ verifies || f (x)− x|| ≤ n(ε + δ), that is, any point in the completely
labeled simplex will serve as an approximate fixed point of the mapping, with the
above precision.

2.4.2 Simplicial Fixed Point Algorithms

The algorithm described above finds an approximate fixed point of a continuous
mapping by moving systematically through a sequence of simplices in a triangu-
lation. At each step, having a particular simplex of the triangulation, we remove
one of its vertices with a duplicate label. Then, the algorithm moves to the unique
adjacent simplex in the triangulation which has n vertices in common with the re-
maining vertices of the original simplex. In order to obtain an effective computer
implementation of this algorithm, this pivoting step has to be as simple as possible.
Also, the nodes of the triangulation must be positioned in a regular manner in the
simplex, such that the approximation error will be independent of the region in
which the fixed point is located. Having the nodes of the triangulation positioned
regularly will also reduce the memory required by the algorithm, since in order
to find the next simplex in the sequence, it is enough to store just the vertices of
the current simplex, instead of storing all the nodes of the triangulation. The im-
provements proposed by Hansen (1968) and Kuhn (1968) solved these two issues,
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present in the original algorithm described by Scarf using the concept of primitive
sets, by using a particular triangulation which we will describe below, following
the description given by Scarf (1982).

Let us consider and a triangulation of the unit simplex

∆n =

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣ n

∑
i=0

xi = 1 and xi ≥ 0, i = 0, n

}

with the nodes given by all the points in ∆n of the form( s[0]
D

,
s[1]
D

, . . . ,
s[n]
D

)
where D is a large positive integer and

n

∑
i=0

s[i] = D.

Then, the vertices of any simplex of this triangulation are given using a node of the
triangulation b, called the base point, and a permutation (π[1], . . . , π[n]) of the set
1, 2, . . . , n, using the following formulas:

v0 = b
v1 = v0 + eπ[1]
...
vn = vn−1 + eπ[n]

where
e1 = (1,−1, 0, . . . , 0)
e2 = (0, 1,−1, . . . , 0)
...
en = (0, 0, . . . , 1,−1)

In order to describe the pivoting operation, let us consider a simplex of the triangu-
lation, given by the vertices:

v0 = b
v1 = v0 + eπ[1]
...
vj = vj−1 + eπ[j]

vj+1 = vj + eπ[j+1]
...
vn = vn−1 + eπ[n]

and assume that we want to pivot the vertex vj, with 0 < j < n.
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The new simplex will contain the vertices v0, v1, . . . , vj−1, so it will be defined by the
same base point b and a new permutation (π̃[1], π̃[2], . . . , π̃[n]), which has the first
j− 1 members the same as π, that is, π̃[1] = π[1], . . . , π̃[j−1] = π[j−1].

Because vj will not be in the new simplex we must have π̃[j] 6= π[j]. But, since vj+1

must remain in the new simplex, and because vj+1 = vj−1 + eπ[j] + eπ[j−1] , we have
that (π̃[j], π̃[j+1]) = (π[j+1], π[j]).

In other words, the adjacent simplex with the same vertices, except vj, is found
by taking the same base point b and the permutation in which π[j] and π[j+1] are
switched. So, the pivoted vertex ṽj is given by:

ṽj = vj−1 + eπ[j+1]

or
ṽj = vj−1 + vj+1 − vj.

If the vertex v0 is to be replaced, then the new base point will be v1 and the new
permutation is given by:

(π̃[1], π̃[2], . . . , π̃[n]) = (π[2], . . . , π[n], π[1]).

In this case, the vertices of the new simplex will be given by:

ṽ0 = v1

ṽ1 = ṽ0 + eπ̃[1] = v1 + eπ̃[2] = v2
...
ṽn−1 = ṽn−2 + eπ̃[n−1] = vn−1 + eπ̃[n] = vn

ṽn = ṽn−1 + eπ̃[n] = vn + eπ[1]

So, the pivoted vertex ṽ0 is given by:

ṽ0 = vn + eπ[1] = vn + v1 − v0.

Using a similar reasoning we find that the pivoted vertex ṽn is given by:

ṽn = v0 + vn−1 − vn.

Now it is clear that this pivoting rules are the same given in 2.1.26, so from propo-
sition 2.1.28 it follows that the above pivoting rules define indeed a triangulation,
which is in fact an affine image of the Freudenthal triangulation, with the mesh size√

n/D.

In the implementation of the algorithm, only the numerators of the fractions which
define the vertices of the current simplex are stored in a matrix, each vertex having
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the components represented as a row of the matrix. For example, for n = 4 and
D = 30 a sequence of pivoting steps will look like below:


0 5 9 16
1 4 9 16
1 4 10 15
0 4 10 16


↓


0 5 9 16
1 4 9 16
1 4 10 15
1 5 9 15


↓


2 4 9 15
1 4 9 16
1 4 10 15
1 5 9 15


↓


2 4 9 15
2 4 10 14
1 4 10 15
1 5 9 15


↓


2 4 9 15
2 4 10 14
2 5 9 14
1 5 9 15


In order to simplify the pivoting steps the Freudenthal triangulation was chosen to
be used in the algorithm, but this is not a restricted triangulation, so we can not
directly apply lemma 2.4.2. Next we will describe the method proposed by Kuhn
(1968) for initiating the algorithm at any boundary point of the simplex.
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The Freudenthal triangulation is extended with a set of nodes which have the first
coordinate equal to −1, with the general form of these new nodes being given by:
(−1, s[1], . . . , s[n]) with s[i] ≥ 0 for i = 1, 2, . . . , n and ∑n

i=1 s[i] = D + 1.

In the Javascript implementation we chose D such that D = nd, where d is provided
as user input and the starting simplex will be initialized with the vertices given by
the rows of the following matrix:


−1 d . . . d d + 1
−1 d . . . d + 1 d

...
0 d . . . d d


The new nodes added in the triangulation will be labeled with the first integer
index i for which s[i] > d.

2.4.3 A New Javascript Implementation

We complete this section by presenting the source code for the Javascript implemen-
tation of the simplicial fixed point algorithm described.

1 var f i x p o i n t = f i x p o i n t || { } ;
2

3 f i x p o i n t . kuhn = funct ion ( f , D, maxSteps , fnLogPath )
4 {
5 var n = f . length ;
6 var i ;
7 var re s = { } ;
8

9 i f ( isNaN (D) || D <= 0 || Math . f l o o r (D) !== D)
10 {
11 throw new Exception ( ’ i n v a l i d value f o r parameter D; ( a p o s i t i v e

i n t e g e r i s expected ) ’ ) ;
12 }
13

14 i f ( maxSteps === undefined )
15 {
16 maxSteps = n ∗ D ∗ Math . c e i l ( Math . s q r t ( n ∗ D) ) ;
17 }
18 e l s e i f ( isNaN ( maxSteps ) || maxSteps <= 0 || Math . f l o o r ( maxSteps ) !==

maxSteps )
19 {
20 throw new Exception ( ’ i n v a l i d value f o r parameter maxSteps ; ( a p o s i t i v e

i n t e g e r i s expected ) ’ ) ;
21 }
22
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23 // helper v a r i a b l e s
24 var t = new TrSimplex ( f , n , D) ;
25 var nSteps = 0 ;
26

27 // algorithm code
28 while ( t . l a b e l ( f ) !== 0)
29 {
30 t . p ivot ( ) ;
31 nSteps ++;
32 i f ( nSteps >= maxSteps ) break ;
33 }
34

35 // f i l l r e s u l t
36 var re s = { } ;
37 r es . xn = t . ge tPoint ( ) ;
38 r es . numSteps = nSteps ;
39

40 re turn r es ;
41

42

43 func t ion TrSimplex ( f , n , d )
44 {
45 var D = ( n − 1) ∗ d ;
46 var v e r t i c e s = new Array ( n ) ;
47 var l a b e l s = new Array ( n ) ;
48 var vtmp = new Array ( n ) ;
49 var cv r tx = n − 1 ;
50 var ob j = { } ;
51

52 func t ion i n i t V e r t i c e s ( )
53 {
54 var i v r t x , icrd , v ;
55 f o r ( i v r t x = 0 ; i v r t x < n ; i v r t x ++)
56 {
57 v = v e r t i c e s [ i v r t x ] = new Array ( n ) ;
58 f o r ( i c r d = 1 ; i c r d < n ; i c r d ++)
59 {
60 v [ i c r d ] = d ;
61 }
62

63 v [ 0 ] = −1;
64 v [ n − 1 − i v r t x ] = ( d + 1) ;
65

66 l a b e l s [ i v r t x ] = n − i v r t x − 1 ;
67 }
68 v e r t i c e s [ n − 1 ] [ 0 ] = 0 ;
69

70 i f ( fnLogPath )
71 {
72 fnLogPath ( v e r t i c e s , 0 ) ;
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73 }
74

75 obj . l a b e l ( f ) ;
76 }
77

78 obj . l a b e l = funct ion ( f )
79 {
80 var i ;
81 var v = v e r t i c e s [ cv r t x ] ;
82

83 i f ( v [ 0 ] === −1)
84 {
85 f o r ( i = 1 ; i < n ; i ++)
86 {
87 i f ( v [ i ] > d )
88 {
89 l a b e l s [ c vr t x ] = i ;
90 re turn i ;
91 }
92 }
93

94 throw new Error ( " can ’ t l a b e l ver tex : " + v . t o S t r i n g ( ) ) ;
95 }
96

97

98 f o r ( i = 0 ; i < n ; i ++)
99 {

100 vtmp [ i ] = v [ i ] / D;
101 }
102

103 f o r ( i = 0 ; i < n ; i ++)
104 {
105 i f ( vtmp [ i ] !== 0)
106 {
107 i f ( f [ i ] . apply ( null , vtmp ) <= vtmp [ i ] )
108 {
109 l a b e l s [ c vr t x ] = i ;
110 re turn i ;
111 }
112 }
113 }
114

115 re turn n − 1 ;
116 //throw new Error ( " can ’ t l a b e l ver tex : " + v . t o S t r i n g ( ) ) ;
117 }
118

119 obj . pivot = funct ion ( )
120 {
121 var i ;
122 var pvrtx = −1;
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123

124 f o r ( i = 0 ; i < n ; i ++)
125 {
126 i f ( i !== cv r tx )
127 {
128 i f ( l a b e l s [ i ] === l a b e l s [ c vr t x ] )
129 {
130 pvrtx = i ;
131 break ;
132 }
133 }
134 }
135

136 i f ( pvrtx === −1)
137 {
138 throw new Error ( " can ’ t f ind pivot ver tex " ) ;
139 }
140

141 i f ( fnLogPath )
142 {
143 //fnLogPath ( v e r t i c e s , pvrtx )
144 }
145

146 var i 1 = pvrtx − 1 ;
147 var i 2 = pvrtx + 1 ;
148

149 i f ( i 1 === −1) i 1 = n − 1 ;
150 i f ( i 2 === n ) i 2 = 0 ;
151

152 var vp = v e r t i c e s [ pvrtx ] ;
153 var v1 = v e r t i c e s [ i 1 ] ;
154 var v2 = v e r t i c e s [ i 2 ] ;
155

156 f o r ( i = 0 ; i < n ; i ++)
157 {
158 vp [ i ] = v1 [ i ] + v2 [ i ] − vp [ i ] ;
159 }
160

161 c vr t x = pvrtx ;
162 }
163

164 obj . ge tPoint = funct ion ( )
165 {
166 var p = new Array ( n ) ;
167 var i , i v r t x ;
168

169 f o r ( i = 0 ; i < n ; i ++)
170 {
171 p [ i ] = 0 ;
172
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173 f o r ( i v r t x = 0 ; i v r t x < n ; i v r t x ++)
174 {
175 p [ i ] += v e r t i c e s [ i v r t x ] [ i ] ;
176 }
177

178 p [ i ] = p [ i ] / n / D;
179 }
180

181 re turn p ;
182 }
183

184 i n i t V e r t i c e s ( ) ;
185 re turn ob j ;
186 }
187 }

Listing 2.1 – Implementation of the simplicial fixed point algorithm
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2.5 piecewise-linear homotopy algorithms

In 1967 Herbert Scarf proposed a method for approximating fixed points of continu-
ous mappings Scarf (1967) which is also a numerically implementable constructive
proof of the Brouwer fixed point theorem. Several improvements to the algorithm
developed by Scarf were made by Terje Hansen in 1967, see Scarf and Hansen
(1973) and by Harold W. Kuhn in 1968 Kuhn (1968). But the decisive advancements
came in 1972, when Eaves Eaves (1972) and then Eaves and Saigal Eaves and Sai-
gal (1972) described a piecewise-linear (PL) homotopy deformation algorithm as
an improvement for the algorithm proposed by Scarf. Some other algorithms simi-
lar to piecewise linear algorithm of Eaves-Saigal, were proposed by Merrill (1972),
van der Laan and Talman (1981), Wright (1981), Freund and Todd (1981), Doup et al.
(1987).

The main practical advantage of the PL homotopy methods is that they don’t re-
quire smoothness of the underlying map, and in fact they can be used to calculate
fixed points of set-valued maps. Although PL methods can be viewed in the more
general context of complementary pivoting algorithms usually are considered in
the special class of homotopy or continuation methods (Allgower and Georg, 2003).

Some parts and ideas of this section are included also in Bozantan (2010) and Bozan-
tan and Berinde (2013). Most of the definitions an theorems are presented as in
Allgower and Georg (2003).

2.5.1 Homotopy Methods

The homotopy methods are useful alternatives and aides for the Newton methods
in solving systems of n nonlinear equations in n variables:

(2.5.1) F(x) = 0, F : Rn → Rn

mainly when very little a priori knowledge regarding the zero points of F is avail-
able and so, a poor starting value could cause a divergent Newton iteration se-
quence.

The idea of the homotopy methods is to consider a new function G : Rn → Rn,
related to F, with a known solution, and then to gradually deform this new function
into the original function F. Typically one can define the convex homotopy:

(2.5.2) H(x, λ) = λG(x) + (1− λ)F(x)

and can try to trace the implicitly defined curve

(2.5.3) H−1(0) = {x ∈ Rn | ∃ λ ∈ [0, 1] such that H(x, λ) = 0}
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from a starting point (x0, 1) to a solution point (x∗, 0). The implicit function the-
orem ensures that the set H−1(0) is at least locally a curve under the assumption
that (x0, 1) is a regular value of H i.e. the Jacobian H′(x0, 1) has full rank n.

However, because we don’t require any smoothness conditions on F, a more com-
plex approach involving piecewise-linear approximations is needed.

2.5.2 Piecewise Linear Approximations

(2.5.4) Definition The piecewise linear approximation of H (with respect to T ) is
defined as the union

(2.5.5) HT =
⋃

σ∈T
Hσ

where Hσ : σ → Rn is the uniquely defined affine map which coincides with H on
the vertices of σ.

Hσ can be uniquely extended to an affine map on the affine space spanned by σ.
The Jacobian H′σ has the property H′σ(x− y) = Hσ(x)− Hσ(y) for x, y in this affine
space.

(2.5.6) Definition A point x ∈ Rn+1 is called a regular point of the PL map HT if
x is not contained in any face of dimension smaller than n, and if H′τ has maximal
rank n for all faces τ containing x. A value y ∈ Rn is a regular value of HT if all
points in H−1(y) are regular. If a point is not regular it is called singular. If a value
is not regular it is called singular.

We introduce the following notation:

(2.5.7) −→ε :=


ε1

...
εN


(2.5.8) Definition We call an n-simplex τ completely labeled if it contains solutions
of the equation Hτ(v) = ~ε for all sufficiently small ε > 0.

In other words, we define an n-simplex τ to be completely labeled if it contains a
zero point of the PL approximation Hτ, and if this property of τ is stable under
certain small perturbations in the above sense.

(2.5.9) Definition An (n + 1)-simplex σ ∈ T is called transverse (with respect to
H) if it contains a completely labeled n-face.
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(2.5.10) Definition If τ = [v1, . . . , vn+1] ∈ T is an n-simplex, we call the matrix:

(2.5.11) L(τ) :=

(
1 . . . 1

H(v1) . . . H(vn+1)

)
the labeling matrix on τ induced by H.

(2.5.12) Proposition The n-simplex τ = [v1, . . . , vn+1] is completely labeled if and
only if: the labeling matrix L(τ) is nonsingular and L(τ)−1 is lexicographically
positive i.e. the first non-zero entry in any row of L(τ)−1 is positive.

2.5.3 Generic PL Continuation Algorithms

(2.5.13) Proposition Door-In-Door-Out Principle (Allgower and Georg, 2003) An
(n + 1)-simplex has either zero or two completely labeled n-faces.

Proof. We assume that σ is transverse and consider the equation Hσ(v) = ~ε for
v ∈ σ. An analogue version of Sard’s theorem - the perturbation lemma - can be
demonstrated for piecewise linear maps, see Allgower and Georg (2003). From
this lemma we have that for any compact subset C ⊂ Rn+1 there are at most finitely
many ε > 0 such that C∩H−1

T (~ε) contains a singular point of HT . As a consequence,
~ε is a regular value of HT for almost all ε > 0. So for ε > 0 being sufficiently small,
the solutions v form a line which does not intersect lower-dimensional faces of σ.
Hence, the line intersects exactly two n-faces of σ. These two n-faces cannot change
as ε → 0, since otherwise a lower dimensional face would be traversed and the
perturbation lemma would be contradicted. In other words, exactly two n-faces of
σ contain solutions of the equation Hσ(v) = ~ε for ε > 0 being sufficiently small. �

The PL algorithm for tracing certain components of H−1
T (0) can now be easily de-

scribed via the Door-In-Door-Out-Principle. Heuristically, let us imagine that the
(n + 1)-simplexes σ ∈ T are “rooms” in an “infinite” building T , and the “walls”
of a room σ are its n-faces τ. A wall has a “door” if it is completely labeled. Hence
a room has either no or exactly two doors. The algorithm consists of passing from
one room to the next, and the following rule must be obeyed: if a room is entered
through one door, it must be exited through the other door Allgower and Georg
(2003).

In the general PL methods a suitable starting simplex has to be constructed, but
for the special case of homotopy methods the choice of the starting simplex is
straightforward.

The pivoting step finds the simplex which is adjacent to the current simplex on
a given facet. The implementation of the pivoting step depends on the chosen
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triangulation and typically is performed using only a few operations which define
the pivoting rules of the triangulation.

The door-in-door-out step finds the second completely labeled n-face of a trans-
verse simplex. This step is computationally more expensive than the pivoting step
because it involves the solving of linear equations in a manner typical for linear
programming methods and so it is also referred as linear programming (LP) step.

2.5.4 Refining Triangulations of Rn × R

In this section we will describe some special triangulations of Rn ×R, the refining
triangulations, which are used in the context of PL homotopy methods. As an
example of a refining triangulation we describe the triangulation J3 of Rn × (0, 1]
and the corresponding pivoting rules. The J3 triangulation is used in the new
Javascript implementation of the PL homotopy algorithm of Eaves and Saigal (1972)
and is related to the triangulation K3 used in the original implementation. Some
more details and different approaches in the description of the J3 triangulation are
available in Allgower and Georg (2003), Todd (1976b) and Todd (1977).

We will give the definition of a refining triangulation of the space Rn × (0, 1].

(2.5.14) Definition We consider a triangulation T of Rn × (0, 1] into (n + 1)-
simplices, such that every simplex in the triangulation is contained in some slab
of Rn × (0, 1], that is for every simplex σ ∈ T we have:

σ ⊂ Rn ×
[

1
2k ,

1
2k+1

]
, k ∈ N.

Let σ = [v0, v1, . . . , vn+1] ∈ T be an (n + 1)-simplex and let π : Rn ×R→ R be the
following canonical projection: π(x[0], x[1], . . . , x[n]) = x[n].

We define the level of σ as is the maximum of the last co-ordinates of all vertices of
σ, that is:

max π(vi), i = 0, 1, . . . , n + 1

We call T a refining triangulation if the diameter of σ tends to zero as the level of
σ tends to zero.

For describing the J3 triangulation and the corresponding pivoting rules we follow
the exposition given by Saigal (1979). The vertices of the triangulation J3 are given
by the set of points:
(2.5.15)

J0
3 =

{
v = (v[0], . . . , v[n])

∣∣∣v[n] = 1
2k , k ∈ N and

v[i]
v[n]
∈ Z, i = 0, . . . , n− 1

}
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Figure 2.8 – J3 triangulation in R×R

In addition, the following subset of vertices in J0
3 are called central vertices:

(2.5.16) J0
3 =

{
v = (v[0], . . . , v[n]) ∈ J0

3

∣∣∣ v[i]
v[n]

is an odd integer, i = 0, . . . , n− 1

}
.

A vertex v ∈ J0
3 has the level k if v[n] = 1

2k . Each central vertex of depth k ≥ 1 has
an unique nearest central vertex of depth k− 1 obtained as:

(2.5.17) y(v) = v − v[n] · µ(v)

where
µ(v) = (µ[0](v), µ[1](v), . . . , µ[n](v))

(2.5.18) µ[i](v) =


−1, if

v[i]
v[n] mod 4 = 1

+1, if
v[i]
v[n] mod 4 = 3

Each simplex σ ∈ J3 has an unique representation by a triplet (v, π, s) where
v = (v[0], . . . , v[n]) is a central vertex, π a permutation of {0, . . . , n} and s =

(s[0], . . . , s[n]) with s[i] ∈ {−1,+1}. The vertices of this simplex are obtained as
follows:

(2.5.19)

γ0 = v
γi+1 = γi + v[n]s[π[i]]

eπ[i] i = 0, . . . , j− 1

γj+1 = γj − v[n]
n

∑
k=j+1

µ[π[k]]
eπ[k] + v[n]en

γk+1 = γk + 2v[n]µ[π[k]]
eπ[k] j + 1 ≤ k ≤ n
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where µ = µ(v), (e0, . . . , en) is the standard unit basis in Rn+1 and j is the index
such that π[j] = n. A proof that J3 is indeed a triangulation is available in Todd
(1977).

Next we will present the pivoting rules for the J3 triangulation. Let (v, π, s) be a
simplex in J3, and let π[j] = n. Also, let γ0, . . . , γn+1 be the vertices of this simplex
generated by the above relations.

In order to simplify the recursive relations, we define the n-dimensional vector b
with components b[i] ∈ {−1,+1}, i = 0, 1, . . . , n− 1, such that µ and s are combined
in a single vector:

(2.5.20)
b[π[i]]

= s[π[i]]
0 ≤ i ≤ j− 1

b[π[i]]
= µ[π[i]]

j + 1 ≤ i ≤ n

We assume that γi is the vertex which has to be pivoted. The new simplex (v′, π′, s′)
is obtained by the following rules.

i = 0
j = 0

v′ = v − v[n](−1, b[0], . . . , b[n−1])

π′ = (π[1], . . . , π[n], π[0])

b′ = b

i = 0
j > 0

v′ = v + 2v[n]b[π[0]]
eπ[0]

π′ = π

b′ = b − 2b[π[0]]
eπ[0]

1 ≤ i ≤ j− 1
v′ = v
π′ = (π[0], . . . , π[i+1], π[i], . . . , π[n])

b′ = b

i = j
b[π[j−1]]

= µ[π[j−1]]

v′ = v
π′ = (π[0], . . . , π[j], π[j−1], . . . , π[n])

b′ = b

i = j
b[π[j−1]]

= −µ[π[j−1]]

v′ = v
π′ = (π[0], . . . , π[j−2], π[j], . . . , π[n], π[j−1])

b′ = b − 2b[π[j−1]]
eπ[j−1]

j + 1 ≤ i ≤ n
v′ = v
π′ = (π[0], . . . , π[i+1], π[i], . . . , π[n])

b′ = b

i = n + 1
j < n

v′ = v
π′ = (π[0], . . . , π[j−1], π[n], π[j], . . . , π[n−1])

b′ = b − 2b[π[n]]
eπ[n]

i = n + 1
j = n

v′ = v + 1
2 v[n](−1, b[0], . . . , b[n−1])

π′ = (π[n], π[0], . . . , π[n−1])

b′ = b

79



2.5. PL HOMOTOPY ALGORITHMS

Because the performance of simplicial algorithms is very sensitive to the triangula-
tion used, further study of this subject is required and some interesting papers are
mentioned below. Rivara (1984) describes two general algorithms for refining trian-
gular computational meshes based on the bisection of triangles by the longest side
which can be applied globally or locally for selective refinement of any conforming
triangulation and always generate a new conforming triangulation. Persiano et al.
(1993) give general scheme for adaptive triangulation refinements, where the sim-
plices of 3D triangulation are bisected as part of refinement and with an application
defined refinement criterion. Weiss and Floriani (2011) describe approaches to hier-
archical spatial decompositions that focus on a specific dimension and that apply
to all dimensions.

2.5.5 Implementation Details of the PL Homotopy Algorithm

The idea of the piecewise linear continuation algorithm can be used to approxi-
mate a fixed point of a continuous bounded map F : Rn → Rn. We consider the
homotopy:

(2.5.21) H : Rn+1 → Rn, H(x, λ) = x− λx0 − (1− λ)F(x)

and we try to follow the solution path from (x0, 1) to (x∗, 0), where x0 is the initial
approximation of the solution and x∗ is a fixed point of F which we try to approxi-
mate. Because there are no smoothness conditions on F, we use the piecewise linear
continuation algorithm in conjunction with a refining triangulation T of Rn× (0, 1],
see definition 2.5.14.

We define the piecewise linear map HT which interpolates H on the vertices of the
given refining triangulation J3.
• HJ3(x, 1) = x0

• HJ3(x, 0) = F(x)

• HJ3(x, t) =
n+1

∑
i=0

λi H(vi, t), where:

(vi, t) are vertices of a simplex σ ∈ J3

(x, t) =
n+1

∑
i=0

λi(vi, t),
n+1

∑
i=0

λi = 1, λi ≥ 0.

It can be shown that T induces a triangulation on the frontier of Rn × (0, 1] so
we have an induced triangulation over Rn × {1}. If we assume that the starting
point u0 := (x0, 1) is in the interior of a facet τ0, then it is clear that τ0 is the
only completely labeled facet on Rn × {1}. So the algorithm cannot terminate on
the boundary Rn × {1}, so it generates a sequence τ0, τ1, . . . of completely labeled
facets. It is possible to follow the polygonal solution path parametrized by arclength
0 ≤ s < s0 ≤ ∞, c(s) = (x(s), λ(s)) in H−1(0), starting at c(0) = (x0, 1). From the
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boundedness of the map it follows that λ(s) tends to zero as s tends to s0 and

(2.5.22) lim
s→s0
||x(s)− F(x(s))|| = 0

Since x(s) remains bounded as s tends to s0, this implies that every accumulation
point of x(s) is a fixed point of F.

The input data required by the algorithm is:
• n - the dimension of the problem
• F : Rn → Rn - the function for which we calculate a fixed point, specified as

an expression depending on the parameters x1, x2, . . . , xn.
• v1, . . . , vn+1 ∈ Rn - the vertices of a starting simplex
• x0 ∈ Rn - an initial approximation of the fixed point

There are also some parameters for flow controlling:
• the minimum required contraction factor for the Newton steps
• the maximal allowed bisection level of the triangulation
• the maximal number of steps to be performed
• the stopping tolerance for ||F||

If an approximate solution is found the algorithm will output this solution and the
number of steps executed to find it. During the execution, the algorithm will output
the current point of the followed polygonal path.

In the linear programming step we try to find the second completely labeled n-
face of a transverse simplex. This is usually a computational intensive step since
involves solving of linear equations in a manner typical for linear programming
methods, so it has to be implemented using efficient methods.

We denote the current transverse (n + 1)-simplex by σn = [v1, . . . , vn+2] and its
current completely labeled n-face by τn−1 = [v1, . . . , vn+1]. Hence the vertex vn+2

was just pivoted in the preceding step. Our aim in the linear programming step is
to find a completely labeled n-face τn of σn which is different from τn−1. So we have
to find an index i ∈ {1, . . . , n + 1} such that the right inverse of the matrix obtained
by deleting the i-th column of A = L(σn) is lexicographically positive. One index
which satisfies this is i = N + 2, since the n-face opposite vn+2 is completely labeled.
The other index which will be obtained is the new index we are seeking in the linear
programming step.

For numerical purposes, the lexicographical operations in linear programming are
usually performed only over the first coordinate of the rows. Theoretically, in cases
of degeneracies, an algorithm based on this simplified test could cycle, but this is
rarely observed in practice.

Using this simplification, the numerical linear algebra of the “door-in-door-out”
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step consists of solving the equations

Aγ = 0, γ[j] = −1

Aα = e1

for γ, α ∈ Rn+2 and where the index j is given and corresponds to the known
completely labeled n-face. Then a minimization

min
{

α[i]
γ[i]

∣∣∣ γ[i] > 0, i = 1, . . . , n + 2
}

is performed to find the index i corresponding to the vertex to be pivoted next. The
vertex vi is pivoted into the vertex ṽi. The corresponding label

y :=

(
1

H(ṽi)

)

is calculated, and the new labeling matrix Ã is obtained by replacing the i-th column
of A by y:

Ã = A + (y− Aei)ei
ᵀ.

At each step, a standard decomposition of Ã is updated from a given decomposition
of A, which enables us to solve the linear equations in each step. The cheapest such
method directly updates the right inverse B of A such that ei

ᵀB = 0 for the current
pivot index i. However, this update method is not always stable, so we actually
update a QR factorization of Ã in each cycle.

In order to improve the convergence rate of the algorithm a technique of mixing
PL steps with Newton steps can be used, see Saigal and Todd (1978). This follows
from the fact that a modified Newton’s method expressed in barycentric coordi-
nates leads to a system of linear equations which is closely related to the linear
equations obtained in the linear programming step and in fact it is possible to con-
tinue the updates of the labeling matrix during the Newton steps on the column
corresponding to the vertex which has to be pivoted next. The Newton steps are
performed when each new level Rn × {k} is reached in the algorithm. If the con-
traction of the Newton steps is sufficiently strong the algorithm will continue to
perform these steps until it stops with an approximate solution. If the Newton
steps are not successful then the pivoting step is executed and the PL homotopy
algorithm continues normally.

Due to the considerable size of the complete code, we present below just the main
loop of the iterative method. For further details about the algorithm implementa-
tion, the complete version of the code and the suite of problems used for practical
applications in this thesis is available online at http://algonum.appspot.com/plh.

82

http://algonum.appspot.com/plh


2.5. PL HOMOTOPY ALGORITHMS

1 func t ion solve ( labelFunc , x0 , opt ions )
2 {
3 var re s = { } ;
4 var l e v e l = −1;
5 var o l d _ l e v e l ;
6 var new_index = 0 ;
7 var n = 0 ;
8 // . . . o ther i n t e r n a l v a r i a b l e s
9

10 // i n i t i a l i z e i n t e r n a l data s t r u c t u r e s
11 i n i t ( ) ;
12 // log information about the step in the r e s u l t
13 add_step_info ( ) ;
14

15 // perform i t e r a t i o n s
16 while ( t rue )
17 {
18 n++;
19 o l d _ l e v e l = l e v e l ;
20 // compute t r i a n g u l a t i o n l e v e l
21 l e v e l = Math . round(−Math . log ( Math . abs ( depth [ new_index ] ) ) / Math . log

( 2 . 0 ) ) ;
22

23 // perform pivot ing operat ion according to t r i a n g u l a t i o n pivot ing
r u l e s

24 new_index = pivot ( f ind_pivot ing_index ( ) ) ;
25 // add information about the step in the r e s u l t
26 // ( current simplex and approximation )
27 add_step_info ( ) ;
28

29 i f ( check_solut ion ( ) )
30 {
31 // stop when s o l u t i o n i s found
32 break ;
33 }
34

35 // f o r new encountered l e v e l attempt Newton s teps
36 i f ( l e v e l > o l d _ l e v e l )
37 {
38 i f ( newton ( ) )
39 {
40 // stop i f Newton s teps are s u c c e s f u l
41 break ;
42 }
43 }
44

45 i f ( l e v e l > options . max_bisect ions )
46 {
47 // stop i f t r i a n g u l a t i o n l e v e l i s too high
48 re s . errorMessage = " Maximal t r i a n g u l a t i o n l e v e l reached . " ;
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49 break ;
50 }
51 i f ( n > options . max_steps )
52 {
53 // stop a f t e r a maximum number of i t e r a t i o n s
54 re s . errorMessage = " Maximal number of i t e r a t i o n s teps reached . " ;
55 break ;
56 }
57

58 // compute the l a b e l f o r the new current ver tex a f t e r pivot ing
59 l a b e l ( ) ;
60 // door−in−door−out step
61 // f i n d s the second completely labe led f a c e t
62 f i n d _ f a c e t ( ) ;
63 }
64

65 r es . numsteps = n ;
66 r es . x0 = x0 ;
67 i f ( re s . errorMessage === undefined )
68 {
69 re s . xn = x ;
70 }
71

72 re turn r e t ;
73 }

Listing 2.2 – Simplified (incomplete) implementation of the PL homotopy fixed
point algorithm
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3.1 practical applications of fixpoint

In this section there are presented several practical applications of the FIXPOINT
software package, demonstrating the usage of the implementations and the new
features. Some parts of this section are also included in Bozantan and Berinde
(2014b) and Bozantan (2014b).

3.1.1 Computing Fixed Points with the Picard Iteration

Let f : [0, 1]→ [0, 1] be defined by:

f =


2
3

x, x ∈
[

0,
1
2

)
2
3

x +
1
3

, x ∈
[

1
2

, 1
)

As shown in Păcurar (2009b), f defined above is a weak contraction with L = 2
3 and

δ = 6 and has two fixed points: Ff = {0, 1}.

We compute the fixed points using the Javascript implementation of the Picard fixed
point iteration:

1 func t ion f ( x )
2 {
3 i f ( x >= 0 && x < 1/2)
4 re turn 2/3 ∗ x ;
5 i f ( x >= 1/2 && x < 1)
6 re turn 2/3 ∗ x + 1/3;
7 }
8 var r e t = f i x p o i n t . picard ( f , 1/4) ;
9 console . log ( r e t ) ;
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The following tables will present the Picard iterations obtained using the new
Javascript implementation previously described applied to the function f , for sev-
eral starting initial approximations.

The tables are obtained using an additional helper function fixpoint .compare as illus-
trated in the corresponding listings below.

1 var r e t 0 5 = f i x p o i n t . picard ( f , 0 . 0 5 , { maxError : 1e−4 } ) ;
2 var r e t 1 0 = f i x p o i n t . picard ( f , 0 . 1 0 , { maxError : 1e−4 } ) ;
3 var r e t 1 5 = f i x p o i n t . picard ( f , 0 . 1 5 , { maxError : 1e−4 } ) ;
4 var r e t 2 5 = f i x p o i n t . picard ( f , 0 . 2 5 , { maxError : 1e−4 } ) ;
5 var r e t 3 5 = f i x p o i n t . picard ( f , 0 . 3 5 , { maxError : 1e−4 } ) ;
6 var r e t 4 5 = f i x p o i n t . picard ( f , 0 . 4 5 , { maxError : 1e−4 } ) ;
7 var s = f i x p o i n t . compare ( [ re t05 , re t10 , re t15 , re t25 , re t35 , r e t 4 5 ] , 5 , ’

l a t e x ’ ) ;
8 console . log ( s ) ;

0 0.05000 0.10000 0.15000 0.25000 0.35000 0.45000
1 0.03333 0.06667 0.10000 0.16667 0.23333 0.30000
2 0.02222 0.04444 0.06667 0.11111 0.15556 0.20000
3 0.01481 0.02963 0.04444 0.07407 0.10370 0.13333
4 0.00988 0.01975 0.02963 0.04938 0.06914 0.08889
5 0.00658 0.01317 0.01975 0.03292 0.04609 0.05926
6 0.00439 0.00878 0.01317 0.02195 0.03073 0.03951
7 0.00293 0.00585 0.00878 0.01463 0.02048 0.02634
8 0.00195 0.00390 0.00585 0.00975 0.01366 0.01756
9 0.00130 0.00260 0.00390 0.00650 0.00910 0.01171

10 0.00087 0.00173 0.00260 0.00434 0.00607 0.00780
11 0.00058 0.00116 0.00173 0.00289 0.00405 0.00520
12 0.00039 0.00077 0.00116 0.00193 0.00270 0.00347
13 0.00026 0.00051 0.00077 0.00128 0.00180 0.00231
14 0.00017 0.00034 0.00051 0.00086 0.00120 0.00154
15 0.00023 0.00034 0.00057 0.00080 0.00103
16 0.00015 0.00023 0.00038 0.00053 0.00069
17 0.00015 0.00025 0.00036 0.00046
18 0.00017 0.00024 0.00030
19 0.00016 0.00020
20 0.00014

1

2 var r e t 5 0 = f i x p o i n t . picard ( f , 0 . 5 0 , { maxError : 1e−4 } ) ;
3 var r e t 6 0 = f i x p o i n t . picard ( f , 0 . 6 0 , { maxError : 1e−4 } ) ;
4 var r e t 7 0 = f i x p o i n t . picard ( f , 0 . 7 0 , { maxError : 1e−4 } ) ;
5 var r e t 7 5 = f i x p o i n t . picard ( f , 0 . 7 5 , { maxError : 1e−4 } ) ;
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6 var r e t 8 0 = f i x p o i n t . picard ( f , 0 . 8 0 , { maxError : 1e−4 } ) ;
7 var r e t 9 0 = f i x p o i n t . picard ( f , 0 . 9 0 , { maxError : 1e−4 } ) ;
8 var s = f i x p o i n t . compare ( [ re t50 , re t60 , re t70 , re t75 , re t80 , r e t 9 0 ] , 5 , ’

l a t e x ’ ) ;
9 console . log ( s ) ;

0 0.50000 0.60000 0.70000 0.75000 0.80000 0.90000
1 0.66667 0.73333 0.80000 0.83333 0.86667 0.93333
2 0.77778 0.82222 0.86667 0.88889 0.91111 0.95556
3 0.85185 0.88148 0.91111 0.92593 0.94074 0.97037
4 0.90123 0.92099 0.94074 0.95062 0.96049 0.98025
5 0.93416 0.94733 0.96049 0.96708 0.97366 0.98683
6 0.95610 0.96488 0.97366 0.97805 0.98244 0.99122
7 0.97074 0.97659 0.98244 0.98537 0.98829 0.99415
8 0.98049 0.98439 0.98829 0.99025 0.99220 0.99610
9 0.98699 0.98960 0.99220 0.99350 0.99480 0.99740

10 0.99133 0.99306 0.99480 0.99566 0.99653 0.99827
11 0.99422 0.99538 0.99653 0.99711 0.99769 0.99884
12 0.99615 0.99692 0.99769 0.99807 0.99846 0.99923
13 0.99743 0.99794 0.99846 0.99872 0.99897 0.99949
14 0.99829 0.99863 0.99897 0.99914 0.99931 0.99966
15 0.99886 0.99909 0.99931 0.99943 0.99954
16 0.99924 0.99939 0.99954 0.99962 0.99970
17 0.99949 0.99959 0.99970
18 0.99966 0.99973

3.1.2 Comparison of Krasonselskii Iterations

Let f :
[

1
2

, 2
]
→
[

1
2

, 2
]

, f (x) =
1
x

. As shown in Berinde (2007), we have:

• f is Lipschitzian with constant L = 4;
• f is strongly pseudocontractive with any constant k ∈ (0, 1);
• Ff = 1;
• The Picard iteration associated to f does not converge to the fixed point of f

for any x0 6= 1;
• The Krasnoselskii iteration associated to f converges to the fixed point p = 1,

for any x0 and λ ∈ (0, 1
16 ).

Now we use the new implementation of the Krasnoselskii iteration in order to
compute the fixed point of f for several various values of λ, and then to compare
the results.
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1 var lambdas = [ 0 . 0 5 , 0 . 1 0 , 0 . 2 5 , 0 . 3 3 , 0 . 5 , 0 . 6 6 , 0 . 7 5 , 0 . 9 , 0 . 9 5 ]
2 var i t e r a t i o n s = [ ] ;
3 var item ;
4 f o r ( var i = 0 ; i < lambdas . length ; i ++)
5 {
6 i t e r a t i o n s [ i ] = f i x p o i n t . k r a s n o s e l s k i i ( f , lambdas [ i ] , 2 ,
7 { maxError : 1e−3, convergenceTest : f i x p o i n t . e r r t e s t . abso lute } ) ;
8 }
9 f i x p o i n t . compare ( i t e r a t i o n s , 4 , ’ l a t e x ’ ) ;

λ 0.05 0.10 0.25 0.33 0.5 0.66 0.75 0.9 0.95
0 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
1 1.9250 1.8500 1.6250 1.5050 1.2500 1.0100 0.8750 0.6500 0.5750
2 1.8547 1.7191 1.3726 1.2276 1.0250 0.9969 1.0759 1.4496 1.6809
3 1.7889 1.6053 1.2116 1.0913 1.0003 1.0010 0.9661 0.7658 0.6492
4 1.7274 1.5071 1.1150 1.0336 1.0000 0.9997 1.0179 1.2518 1.4958
5 1.6700 1.4227 1.0605 1.0118 1.0001 0.9913 0.8441 0.7099
6 1.6165 1.3507 1.0311 1.0040 1.0044 1.1506 1.3737
7 1.5666 1.2897 1.0158 1.0014 0.9978 0.8973 0.7603
8 1.5202 1.2383 1.0080 1.0005 1.0011 1.0928 1.2876
9 1.4770 1.1952 1.0040 0.9995 0.9329 0.8022

10 1.4370 1.1593 1.0020 1.0003 1.0580 1.2244
11 1.4000 1.1297 1.0010 0.9564 0.8371

12
...

...
...

...
20 1.1728 1.0186 1.0060 1.0715

...
...

...
...

...
27 1.0865 1.0039 0.9987 0.9677

...
...

...
...

32 1.0520 1.0004 1.0196
...

...
...

40 1.0227 1.0084
...

...
...

49 1.0089 0.9968
...

...
60 1.0010

...
...

68 1.0004
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3.1.3 The Mixed Error Test

Let f : [0, 1]→ [0, 1] be defined by:

f =


2
3

x, x ∈
[

0,
1
2

)
2
3

x +
1
3

, x ∈
[

1
2

, 1
)

We compute the fixed points using the Javascript implementation of the Picard fixed
point iteration and using the relative error test and the mixed error test:

1 func t ion f ( x )
2 {
3 i f ( x >= 0 && x < 1/2)
4 re turn 2/3 ∗ x ;
5 i f ( x >= 1/2 && x < 1)
6 re turn 2/3 ∗ x + 1/3;
7 }
8

9 var r e t R e l a t i v e = f i x p o i n t . picard ( f , 0 . 2 5 ,
10 {
11 convergenceTest : f i x p o i n t . e r r t e s t . r e l a t i v e ,
12 maxError : 1e−3,
13 maxSteps : 20
14 } ) ;
15 console . log ( r e t R e l a t i v e ) ;
16

17

18 var retMixed = f i x p o i n t . picard ( f , 0 . 2 5 ,
19 {
20 convergenceTest : f i x p o i n t . e r r t e s t . mixed ,
21 maxError : 1e−3,
22 maxSteps : 20
23 } ) ;
24 console . log ( retMixed ) ;

The following tables will present the advantage of using the mixed error test instead
of the relative error test. As it is shown by the data, by using the mixed error test
with a maximum error of 1e− 3, the algorithm will stop after 15 iterations, but when
using the relative error test, the desired error is never achieved (since the relative
error is always constant 1/3), so the algorithm will stop only when the maximum
number of steps is reached.
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n xn relative error mixed error
1 0.16666667 0.3333 0.0714
2 0.11111111 0.3333 0.1250
3 0.07407407 0.3333 0.0862
4 0.04938272 0.3333 0.0588
5 0.03292181 0.3333 0.0398
6 0.02194787 0.3333 0.0268
7 0.01463192 0.3333 0.0180
8 0.00975461 0.3333 0.0121
9 0.00650307 0.3333 0.0081

10 0.00433538 0.3333 0.0054
11 0.00289025 0.3333 0.0036
12 0.00192684 0.3333 0.0024
13 0.00128456 0.3333 0.0016
14 0.00085637 0.3333 0.0011
15 0.00057091 0.3333 0.0007
16 0.00038061 0.3333
17 0.00025374 0.3333
18 0.00016916 0.3333
19 0.00011277 0.3333
20 0.00007518 0.3333

3.1.4 Detection of Cyclic Iterations

In order to demonstrate the cycle detection feature we use as an example a sample
function similar to the logistic map, which is often cited as a basic example of
chaotic behaviour. f : R→ R, f (x) = 3.4 · x · (1− x)

We try to compute a fixed point using the Javascript implementation of the Picard
fixed point iteration, using the following code:

1 func t ion f ( x )
2 {
3 re turn 3 . 4 ∗ x ∗ (1 − x ) ;
4 }
5 var r e t = f i x p o i n t . picard ( f , 1/2) ;
6 console . log ( r e t ) ;

The fixed point algorithm returns the following error message: "Iteration is diver-
gent (cycle detected between iterations #227 and #231)." and we show the last few
intermediate approximations obtained by the algorithm:
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n xn

220 0.45196324762615453
221 0.84215439943267100
222 0.45196324762615200
223 0.84215439943267020
224 0.45196324762615375
225 0.84215439943267090
226 0.45196324762615220
227 0.84215439943267050
228 0.45196324762615320
229 0.84215439943267060
230 0.45196324762615300
231 0.84215439943267050

Figure 3.1 – Visualisation of Picard iteration applied to logistic map - obtained with
FIXPOINT
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3.1.5 Empirical study of the convergence rate

The early versions of FIXPOINT were used for the numerical experiments in the
comparative study of the rate of convergence of fixed point iteration procedures,
that were reported in Berinde and Păcurar (2007), and we quote here some extracts
from from study.

Let K = [0, 1] and T : K → K be given by Tx = (1− x)6.

Then T has p1 ≈ 0.2219 and p1 ≈ 2.1347 as fixed points. Both of them are repulsive
fixed points with respect to the Picard iteration. However, p1 is attractive with
respect to Krasnoselskii, Mann and Ishikawa iterations, while p2 stays repulsive,
as indicated by the numerical results obtained by running the new version of the
program FIXPOINT.

Krasnoselskii iteration: if we start from x0 = 2 and the parameter that defines the iter-
ation is λ = 0.5, then we obtain x1 = 1.5, x2 = 0.757, x3 = 0.379, x4 = 0.2181, x5 =

0.2232 and x6 = 0.2214;

Mann iteration: if we start from x0 = 2 and the parameter sequence is αn = 1/(n +

1), then we obtain x1 = 1.0, x2 = 0.5, x3 = 0.338, x4 = 0.2748, x5 = 0.2489 and
x6 = 0.2378;

Ishikawa iteration: if we start from x0 = 2 and the parameter sequences are αn =

1/(n+ 1) and βn = 1/(n+ 2), respectively, then we obtain x1 = 0.01, x2 = 0.55, x3 =

0.346, x4 = 0.2851, x5 = 0.2527 and x6 = 0.2392;

These empirical results suggest that Krasnoselskii iteration converges faster than
both Mann and Ishikawa iterations. This fact is more clearer illustrated if we choose
x0 = p2, the repulsive fixed point of T: after 20 iterations, Krasnoselskii method
gives x20 = 0.2219, while Mann and Ishikawa iteration procedures give x20 = 0.6346
and x20 = 0.6347, respectively. The convergence of Mann and Ishikawa iteration
procedures is indeed very slow in this case: after 500 iterations we get x500 = 0.222
for both methods.

Note that for x0 ∈ {−2, 3, 4} and the previous values of the parameters λ, αn and
βn, all three iteration procedures: Krasnoselskii, Mann and Ishikawa, converge to 1,
which is not a fixed point of T.

Starting from such kind of numerical results, it was tried to infer that, for cer-
tain classes of mappings, Picard iteration always converges faster than Mann or
Ishikawa iterations. The first results of this kind have been reported in Berinde
(2004a) and then continued in Berinde and Berinde (2005), Berinde and Păcurar
(2007), Berinde (2007). This opened a fruitful direction of research that has been
later considered by many other authors, see, for an incomplete list, Akbulut and
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Ozdemir (2012), Alotaibi et al. (2013), Babu and Prasad (2006, 2007) Duong (2012),
Hussain et al. (2012, 2013, 2011), Kang et al. (2013), Karahan and Ozdemir (2013),
Khan et al. (2014), Kumar (2013), Olaleru (2007, 2009), Phuengrattana and Suantai
(2012), Popescu (2007), Xue (2008), Rhoades and Xue (2010).

93



3.2. APPLICATIONS OF PL HOMOTOPY ALGORITHM TO NONSMOOTH OPTIMIZATION

3.2 applications of pl homotopy algorithm to

nonsmooth optimization

3.2.1 Overview

The main aim of this section is to illustrate the relevance of the piecewise-linear
homotopy algorithm described in the previous section, for solving unconstrained
optimization problems and to compare its performances to other well known itera-
tive methods. We consider the unconstrained optimization problem

(3.2.1) min f (x), x ∈ Rn,

where f : Rn → R is continuously differentiable. There exists many (Newton
type) iterative methods in literature for solving problem (3.2.1), see for example
Edgar and Himmelblau (1989), Güler (2010), Kelley (1999), and various studies and
improvements of these methods, see for example Cătinaş (2001, 2002), Măruşter
et al. (2012). Such an iterative method produces a monotone or non monotone
sequence x0, x1, x2, . . . , where xk+1 is generated from xk, the current direction dk,
and the stepsize αk by the rule

(3.2.2) xk+1 = xk + αkdk.

Amongst the most reliable and largely used iterative methods in unconstrained
optimization, Newton’s method and Newton type methods play an important role,
due to the fact that they allow us to identify by a certain procedure the search
directions.

In order to decide which one of these methods should be more convenient for a
certain problem, it would be desirable to know a priori, if possible, a scale of the
most efficient and robust techniques, for as many as possible classes of objective
functions.

Efficiency is an important feature of any iterative procedure, since in concrete prob-
lems for more than three or four variables trial and error becomes impractical be-
cause, in some regions, the optimization algorithm may progress very slowly to-
ward the optimum, requiring excessive computer time.

Robustness, i.e., the ability to achieve a solution, is equally or even more important
because a general nonlinear function is unpredictable in its behaviour: there may
be local maxima or minima, saddle points, regions of convexity, concavity, and
so on. Therefore, it is of great theoretical and practical importance to draw an
extensive experience in testing optimization algorithms for unconstrained functions
to evaluate their efficiency and robustness.
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This new approach to unconstrained optimization problems is based on the fact
that algorithm (3.2.2) can be regarded as a particular case of a classic fixed point it-
erative method, that is, of the Picard iteration or successive approximations method
associated to a certain nonlinear fixed point equation

(3.2.3) x = Tx,

where T is a given self operator of a space X. Suppose X and T are such that
the equation (3.2.3) has at least one solution (usually called a fixed point of T). A
typical situation of this kind is illustrated by the well known Brouwer’s fixed point
theorem, see 2.2.4. Under the assumptions of Brouwer Theorem, the Picard iteration
associated to (3.2.3), defined by x0 ∈ X and

(3.2.4) xn+1 = Txn, n = 0, 1, 2, . . . ,

does not converge, in general, even though in many cases (e.g., for contractive type
mappings, see Berinde (2007)) it is a useful method to solve nonlinear fixed point
equations.

Any contraction mapping is continuous but the reverse is not true. This is the
reason why several authors tried to find specific algorithms that could be success-
fully used to compute fixed points of continuous but not contractive mappings.
This thesis describes two such algorithms: the simplicial fixed point algorithm for
continuous mappings proposed by Scarf (1967) and the PL homotopy fixed point
algorithm proposed by Eaves and Saigal (1972).

The PL homotopy fixed point algorithm discussed in section 2.5 is part of the class
of homotopy continuation algorithms. This category of algorithms can be used to
solve various problems, like:
• the economic equilibrium problems, see Herings et al. (1996), Scarf (1983),

Hansen and Scarf (1969),
• game theory problems, see Herings and van den Elzen (2002), Herings and

Peeters (2010)
• nonlinear constrained optimization problems, see Merrill (1972), Watson and

Haftka (1989), Allgower and Georg (2000), Bozantan and Berinde (2014b)
• nonlinear boundary value problems, see Allgower and Georg (1993), Allgower

and Jeppson (1973),
• finding roots of systems of nonlinear equations, see Saigal (1977),
• finding roots of complex polynomials, see Verschelde (1999), Li (1997), Kuhn

(1974)
• nonlinear complementarity problem, see Murty (1988)

We also mention as other (more practical) possible applications of the PL homotopy
algorithm: computing fixed points of non differentiable functions in elastic contact
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problems with friction where the problem encountered is the minimization of a
function with non differentiable terms (in particular the absolute value function) or
in discrete contact problems with friction formulated as fixed point problems (the
fixed point being the contact tension), see for example Pop (2008, 2009), Ligurskỳ
(2012), Bozantan et al. (2014)

Following the descriptions given by Allgower and Georg (2003) and Saigal (1979)
we describe the transformation of nonsmooth optimization problems as fixed point
problems.

A function θ : Rn → R is called convex if

λ1θ(x1) + λ2θ(x2) ≥ θ(λ1x1 + λ2x2)

holds for all convex combinations λ1, λ2 ≥ 0, λ1 + λ2 = 1, x1, x2 ∈ Rn.

For a convex function θ, a point s ∈ Rn is called a subgradient at x ∈ Rn, if for any
z ∈ Rn we have:

θ(z) ≥ θ(x) + 〈s, z − x〉

The subdifferential of θ at x is the set ∂θ(x) of all subgradients of θ at x, that is:

∂θ(x) = {s ∈ Rn | θ(z) ≥ θ(x) + 〈s, z− x〉 , ∀z ∈ Rn}

The subdifferential of convex function has the property that it is nonempty, closed
and convex at every point.

We consider the constrained optimization problem defined by

(3.2.5) min
x
{θ(x) | gi(x) ≤ 0, i = 0, 1, . . . , m}

where θ : Rn → R and gi : Rn → R. In addition we also assume that each of these
functions is convex, and that in the case the set G = {x | gi(x) ≤ 0, i = 0, . . . , m}
is nonempty, there exists x, such that gi(x) < 0 for each i = 0, 1, . . . , m.

We define the mapping
s(x) = max

0≤i≤m
gi(x)

It is simple to show that s(x) is convex. We also define

I(x) = {i | s(x) = gi(x)}

Then, we have

∂s(x) = co

 ⋃
i∈I(x)

∂gi(x)


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Now, we consider the following mapping from Rn into convex subsets of Rn:

f (x) =


x − ∂θ(x) s(x) < 0
x − co{∂θ(x) ∪ ∂s(x)} s(x) = 0
x − ∂s(x) s(x) > 0

The above mapping is upper hemicontinuous, and we will show that one of its fixed
point x∗ solves the optimization problem 3.2.5. Depending on the value of s(x∗),
we have the following three cases:

1. s(x∗) < 0. Then 0 ∈ ∂θ(x∗) and thus, x∗ is a global minimizer of θ, and is also
in G, and thus solves the problem.

2. s(x∗) > 0. Then 0 ∈ ∂s(x∗), and x∗ is a global minimizer of s, and since
s(x∗) > 0, the set G is empty.

3. s(x∗) = 0. Then 0 ∈ co{∂θ(x∗)∪ ∂s(x∗)} and thus there exist the nonenegative
numbers ρ0, ρi for i ∈ I(x∗), and the vectors y0 ∈ ∂θ(x∗) and yi ∈ ∂gi(x∗), i ∈
I(x∗), such that

ρ0y0 + ∑
i∈I(x∗)

ρiyi = 0

If ρ0 = 0, then since x∗ is a global minimizer of s, it is impossible that gi(x) < 0
for each i. Since we have assumed the contrary, ρ0 6= 0, and we have x∗ and
ρi
ρ0

for i ∈ I(x) satisfying the standard Karush-Kuhn-Tucker necessary and
sufficient conditions for a solution to the problem.

Thus, solving the optimization problem 3.2.5 can be reduced to finding a fixed point
of the mapping f .

Since the piecewise-linear homotopy method could be in particular applied to solve
optimization problems, the following samples are used to test numerically the effi-
ciency and robustness of this algorithm in the case of unconstrained optimization
problems and to compare it with some of the well known and widely used methods
in optimization: the Newton’s method, Broyden-Fletcher-Goldfarb-Shanno, conju-
gate gradient method, and nonlinear conjugate gradient method. This empirical
study is done on a small set of representative test functions taken from literature,
see Floudas et al. (1999), Hedar (2014), Moré et al. (1981), Pohlheim (2006).

In order to find local or global minima of a nonlinear multivariable function F :
Rn → R, the following homotopy map is defined and used in the PL homotopy
algorithm for all the considered examples:

(3.2.6) H : Rn ×R→ Rn, H(x, t) =

{
x− x0 for t ≤ 0,
∇F(x) for t > 0.

We shall use the following symbols in the comparison tables that synthesise the
numerical experiments we have done:
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• BFGS = Broyden-Fletcher-Goldfarb-Shanno method (a quasi-Newton method)
• CG = conjugate gradient method
• NCG = nonlinear conjugate gradient method
• PLH = piecewise linear homotopy algorithm
• ∞ = method does not converge
• 6= = method converges, but not to the correct global/local minimum

All the numerical results are computed to a maximal final error of 1e− 4.

We also include sample outputs produced by the PLH algorithm for the test func-
tions. In the sample outputs x is the current intermediate approximation of the
solution and S is the current simplex processed in the algorithm. Each column of
the printed matrix represents a vertex of the simplex. The simplex S is printed in a
compact form, that is, we print just n of the n + 1 coordinates of a vertex. The last
implicit coordinate which is not printed is determined by the other coordinates and
by the current level of the triangulation (the last parameter of the homotopy used
in the algorithm).

3.2.2 Bukin function N. 6

F(x, y) = 100 ·
√
|y− 0.01 · x2|+ 0.01 · |x + 10|, (x, y) ∈ R2.

The global minimum value of F is F(−10, 1) = 0. It is usually evaluated on the
rectangle (x, y) ∈ [−15,−5] × [−3, 3]. The sixth Bukin function has many local
minima, all of which lie in a ridge. Note also that F is not differentiable on the set
{(−10, b) : b ∈ R} ∪ {(10

√
|b|, b) : b ∈ R}.

x0, y0 -15,0 -10,0 -11,3 -13, -3
Newton iterations ∞ ∞ ∞ ∞
BFGS iterations ∞ ∞ ∞ ∞
BFGS func evals
BFGS gradient evals
CG iterations ∞ ∞ ∞ ∞
CG func evals
CG gradient evals
NCG iterations ∞ ∞ ∞ ∞
NCG func evals
NCG gradient evals
NCG hessian evals
PLH iterations 199 35 92 104
PLH Newton steps 109 29 54 54
PLH label evals 308 64 146 158
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−12 −10 −8 −2
−1

0
1
20

100

200

Figure 3.2 – Bukin Function N. 6

From the table above we note that all algorithms taken into consideration in our
comparison study for the PL homotopy algorithm do not converge in the case of
the starting points (−15, 0), (−10, 0), (−11, 3), (−11,−3) (and, of course, for many
other starting points). This is mainly due to the fact that the objective function F is
not differentiable at some points.

The merit of the PL homotopy algorithm is that it converges in all those cases and
reaches the minimal value.

Below are some fragments from the output produced by the algorithm for the initial
point (−13,−3).

1. PLH triangulation level = 0

S = [ -12.8333 -12.3333 -13.3333 -13.3333 ]

[ -3.1667 -2.6667 -2.6667 -3.6667 ]

x = [ -13.3333 -3.6667 ]

2. PLH triangulation level = 1

S = [ -12.8333 -12.3333 -13.3333 -12.8333 ]

[ -3.1667 -2.6667 -2.6667 -2.6667 ]

x = [ -12.8333 -2.6667 ]

Attempting Newton steps.

x = [ -12.9131 -2.6739 ]

x = [ -12.9594 -2.1550 ]

Newton steps failed.
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3. PLH triangulation level = 1

S = [ -12.8333 -12.3333 -13.3333 -12.8333 ]

[ -2.1667 -2.6667 -2.6667 -2.6667 ]

x = [ -12.8333 -2.1667 ]

4. PLH triangulation level = 1

S = [ -12.8333 -12.3333 -13.3333 -13.3333 ]

[ -2.1667 -2.6667 -2.6667 -1.6667 ]

x = [ -13.3333 -1.6667 ]

5. PLH triangulation level = 1

S = [ -12.8333 -12.3333 -12.3333 -13.3333 ]

[ -2.1667 -2.6667 -1.6667 -1.6667 ]

x = [ -12.3333 -1.6667 ]

...

50. PLH triangulation level = 13

S = [ -11.2702 -11.2701 -11.2703 -11.2701 ]

[ 1.2702 1.2701 1.2703 1.2703 ]

x = [ -11.2701 1.2703 ]

Attempting Newton steps.

x = [ -11.2702 1.2702 ]

x = [ -11.2702 1.2702 ]

Newton steps failed.

...

99. PLH triangulation level = 12

S = [ -10.0003 -10.0001 -10.0001 -9.9998 ]

[ 0.9998 0.9998 1.0001 0.9998 ]

x = [ -10.0001 0.9998 ]

Attempting Newton steps.

x = [ -10.0001 0.9999 ]

x = [ -9.9999 1.0001 ]

Newton steps failed.

100. PLH triangulation level = 12

S = [ -10.0000 -10.0001 -10.0001 -9.9998 ]

[ 1.0000 0.9998 1.0001 0.9998 ]

x = [ -10.0000 1.0000 ]

101. PLH triangulation level = 13

S = [ -10.0000 -10.0001 -10.0001 -10.0001 ]

[ 1.0000 0.9998 1.0001 1.0000 ]
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x = [ -10.0001 1.0000 ]

Attempting Newton steps.

x = [ -10.0001 1.0000 ]

x = [ -10.0000 1.0003 ]

x = [ -10.0000 1.0003 ]

Newton steps failed.

102. PLH triangulation level = 13

S = [ -10.0000 -10.0000 -10.0001 -10.0001 ]

[ 1.0000 1.0000 1.0001 1.0000 ]

x = [ -10.0000 1.0000 ]

103. PLH triangulation level = 14

S = [ -10.0000 -10.0000 -10.0000 -10.0001 ]

[ 1.0000 1.0000 1.0000 1.0000 ]

x = [ -10.0000 1.0000 ]

Attempting Newton steps.

x = [ -10.0000 1.0000 ]

x = [ -10.0000 1.0000 ]

Newton steps failed.

104. PLH triangulation level = 14

S = [ -10.0000 -10.0000 -10.0000 -10.0000 ]

[ 1.0000 1.0000 1.0000 1.0000 ]

x = [ -10.0000 1.0000 ]

Approximate solution found.

x = [ -10.0000 1.0000 ]

f(x) = 0.2853

PLH iterations: 104

Newton steps: 54

Label evals: 158

3.2.3 Dixon-Price function

(3.2.7) f (x) = (x1 − 1)2 +
d

∑
i=2

i · (2 · x2
i − xi−1)

2

Global minimum is: f (x∗) = 0, at xi = 2−
2i−2

2i , for i = 1, . . . , d.

The table below compares the speed of convergence of the tested algorithms on the
Dixon-Price function with d = 4.
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Figure 3.3 – Dixon-Price Function

x0 0,0,0,0 1,1,1,1 -100,-100,-100,-100 2000,2000,2000,2000
Newton iterations ∞ 6 ∞ ∞
BFGS iterations 11 111 ∞
BFGS func evals 6= 17 129
BFGS gradient evals 17 129
CG iterations 13 ∞
CG func evals 6= 29 6=
CG gradient evals 29
NCG iterations 8 44
NCG func evals 6= 9 6= 56
NCG gradient evals 16 99
NCG hessian evals 8 44
PLH iterations 42 54 179 361
PLH Newton steps 14 14 34 35
PLH label evals 56 68 213 396

Below are some fragments from the output produced by the algorithm for the initial
point (0, 0, 0, 0).

1. PLH triangulation level = 0

S = [ 0.3000 0.8000 -0.2000 -0.2000 -0.2000 -0.2000 ]

[ 0.1000 0.6000 0.6000 -0.4000 -0.4000 -0.4000 ]
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[ -0.1000 0.4000 0.4000 0.4000 -0.6000 -0.6000 ]

[ -0.3000 0.2000 0.2000 0.2000 0.2000 -0.8000 ]

x = [ -0.2000 -0.4000 -0.6000 -0.8000 ]

2. PLH triangulation level = 1

S = [ 0.3000 0.8000 -0.2000 -0.2000 -0.2000 0.3000 ]

[ 0.1000 0.6000 0.6000 -0.4000 -0.4000 0.1000 ]

[ -0.1000 0.4000 0.4000 0.4000 -0.6000 -0.1000 ]

[ -0.3000 0.2000 0.2000 0.2000 0.2000 0.2000 ]

x = [ 0.3000 0.1000 -0.1000 0.2000 ]

Attempting Newton steps.

x = [ 0.0402 0.0047 0.1349 0.1654 ]

x = [ 1.7141 0.1879 -0.8956 0.2389 ]

Newton steps failed.

3. PLH triangulation level = 1

S = [ 0.3000 0.8000 -0.2000 -0.2000 0.3000 0.3000 ]

[ 0.1000 0.6000 0.6000 -0.4000 0.1000 0.1000 ]

[ -0.1000 0.4000 0.4000 0.4000 0.4000 -0.1000 ]

[ -0.3000 0.2000 0.2000 0.2000 0.2000 0.2000 ]

x = [ 0.3000 0.1000 0.4000 0.2000 ]

4. PLH triangulation level = 1

S = [ 0.3000 0.8000 -0.2000 0.3000 0.3000 0.3000 ]

[ 0.1000 0.6000 0.6000 0.6000 0.1000 0.1000 ]

[ -0.1000 0.4000 0.4000 0.4000 0.4000 -0.1000 ]

[ -0.3000 0.2000 0.2000 0.2000 0.2000 0.2000 ]

x = [ 0.3000 0.6000 0.4000 0.2000 ]

5. PLH triangulation level = 1

S = [ 0.3000 0.8000 0.8000 0.3000 0.3000 0.3000 ]

[ 0.1000 0.6000 0.6000 0.6000 0.1000 0.1000 ]

[ -0.1000 0.4000 0.4000 0.4000 0.4000 -0.1000 ]

[ -0.3000 0.2000 0.2000 0.2000 0.2000 0.2000 ]

x = [ 0.8000 0.6000 0.4000 0.2000 ]

...

36. PLH triangulation level = 4

S = [ 0.9875 1.0188 0.9875 1.0500 0.9875 0.9875 ]

[ 0.7250 0.6937 0.7250 0.7250 0.7250 0.6625 ]

[ 0.5875 0.6188 0.6500 0.6500 0.5875 0.5875 ]

[ 0.5125 0.5437 0.5750 0.5750 0.5750 0.5125 ]

x = [ 1.0188 0.6937 0.6188 0.5437 ]

37. PLH triangulation level = 5
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S = [ 0.9875 1.0188 0.9875 0.9875 0.9875 0.9875 ]

[ 0.7250 0.6937 0.7250 0.6937 0.7250 0.6625 ]

[ 0.5875 0.6188 0.6500 0.6188 0.5875 0.5875 ]

[ 0.5125 0.5437 0.5750 0.5437 0.5750 0.5125 ]

x = [ 0.9875 0.6937 0.6188 0.5437 ]

Attempting Newton steps.

x = [ 0.9910 0.7017 0.5912 0.5413 ]

x = [ 1.0051 0.7102 0.5964 0.5470 ]

Newton steps failed.

38. PLH triangulation level = 5

S = [ 0.9875 1.0188 0.9875 0.9875 0.9875 0.9875 ]

[ 0.7250 0.6937 0.6937 0.6937 0.7250 0.6625 ]

[ 0.5875 0.6188 0.5875 0.6188 0.5875 0.5875 ]

[ 0.5125 0.5437 0.5437 0.5437 0.5750 0.5125 ]

x = [ 0.9875 0.6937 0.5875 0.5437 ]

39. PLH triangulation level = 5

S = [ 0.9875 1.0188 0.9875 1.0188 0.9875 0.9875 ]

[ 0.7250 0.6937 0.6937 0.6937 0.7250 0.6625 ]

[ 0.5875 0.6188 0.5875 0.5875 0.5875 0.5875 ]

[ 0.5125 0.5437 0.5437 0.5437 0.5750 0.5125 ]

x = [ 1.0188 0.6937 0.5875 0.5437 ]

40. PLH triangulation level = 5

S = [ 0.9875 1.0188 0.9875 1.0188 0.9875 0.9875 ]

[ 0.7250 0.6937 0.6937 0.6937 0.7250 0.7250 ]

[ 0.5875 0.6188 0.5875 0.5875 0.5875 0.5875 ]

[ 0.5125 0.5437 0.5437 0.5437 0.5750 0.5437 ]

x = [ 0.9875 0.7250 0.5875 0.5437 ]

41. PLH triangulation level = 5

S = [ 1.0031 1.0188 0.9875 1.0188 0.9875 0.9875 ]

[ 0.7094 0.6937 0.6937 0.6937 0.7250 0.7250 ]

[ 0.6031 0.6188 0.5875 0.5875 0.5875 0.5875 ]

[ 0.5594 0.5437 0.5437 0.5437 0.5750 0.5437 ]

x = [ 1.0031 0.7094 0.6031 0.5594 ]

42. PLH triangulation level = 6

S = [ 1.0031 1.0188 0.9875 1.0188 1.0031 0.9875 ]

[ 0.7094 0.6937 0.6937 0.6937 0.7094 0.7250 ]

[ 0.6031 0.6188 0.5875 0.5875 0.6031 0.5875 ]

[ 0.5594 0.5437 0.5437 0.5437 0.5437 0.5437 ]

x = [ 1.0031 0.7094 0.6031 0.5437 ]

Attempting Newton steps.

x = [ 0.9973 0.7055 0.5935 0.5447 ]
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x = [ 0.9998 0.7070 0.5945 0.5452 ]

x = [ 1.0000 0.7071 0.5946 0.5452 ]

x = [ 1.0000 0.7071 0.5946 0.5453 ]

Newton steps succedeed.

Approximate solution found.

x = [ 1.0000 0.7071 0.5946 0.5453 ]

f(x) = 0.0000

PLH iterations: 42

Newton steps: 14

Label evals: 56

3.2.4 Easom function

F(x, y) = − cos(x) · cos(y) · e−(x−π)2−(y−π)2
, (x, y) ∈ R2.

The global minimum value of F is F(π, π) = −1 within −100 ≤ x, y ≤ 100. It has
many local minima.
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Figure 3.4 – Easom Function
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x0, y0 0,0 1,1 2,2 3,3
Newton iterations 6= 6= 6= 4
BFGS iterations ∞ 6= 3 3
BFGS func evals 9 5
BFGS gradient evals 9 5
CG iterations ∞ 6= 1 2
CG func evals 18 5
CG gradient evals 6 5
NCG iterations 2 6= 3 4
NCG func evals 14 9 5
NCG gradient evals 15 11 8
NCG hessian evals 2 3 4
PLH iterations 6= 6= 11 5
PLH Newton steps 6 6
PLH label evals 17 11

Below is the full output produced by the algorithm for the initial point (2, 2).

1. PLH triangulation level = 0

S = [ 2.1667 2.6667 1.6667 1.6667 ]

[ 1.8333 2.3333 2.3333 1.3333 ]

x = [ 1.6667 1.3333 ]

2. PLH triangulation level = 1

S = [ 2.1667 2.6667 1.6667 2.1667 ]

[ 1.8333 2.3333 2.3333 2.3333 ]

x = [ 2.1667 2.3333 ]

Attempting Newton steps.

x = [ 2.1688 1.9143 ]

x = [ 2.1812 2.0221 ]

Newton steps failed.

3. PLH triangulation level = 1

S = [ 2.1667 2.6667 1.6667 2.1667 ]

[ 2.8333 2.3333 2.3333 2.3333 ]

x = [ 2.1667 2.8333 ]

4. PLH triangulation level = 1

S = [ 2.1667 2.6667 2.6667 2.1667 ]

[ 2.8333 2.3333 2.3333 2.3333 ]

x = [ 2.6667 2.3333 ]

5. PLH triangulation level = 1

S = [ 2.1667 2.6667 2.6667 2.6667 ]
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[ 2.8333 2.3333 2.3333 2.8333 ]

x = [ 2.6667 2.8333 ]

6. PLH triangulation level = 1

S = [ 2.1667 2.6667 2.6667 2.6667 ]

[ 2.8333 2.3333 3.3333 2.8333 ]

x = [ 2.6667 3.3333 ]

7. PLH triangulation level = 1

S = [ 3.1667 2.6667 2.6667 2.6667 ]

[ 2.8333 2.3333 3.3333 2.8333 ]

x = [ 3.1667 2.8333 ]

8. PLH triangulation level = 1

S = [ 3.1667 2.6667 2.6667 2.6667 ]

[ 2.8333 3.3333 3.3333 2.8333 ]

x = [ 2.6667 3.3333 ]

9. PLH triangulation level = 1

S = [ 3.1667 2.6667 2.6667 3.1667 ]

[ 2.8333 3.3333 3.3333 3.3333 ]

x = [ 3.1667 3.3333 ]

10. PLH triangulation level = 1

S = [ 3.1667 2.6667 2.9167 3.1667 ]

[ 2.8333 3.3333 3.0833 3.3333 ]

x = [ 2.9167 3.0833 ]

11. PLH triangulation level = 2

S = [ 3.1667 3.1667 2.9167 3.1667 ]

[ 2.8333 3.0833 3.0833 3.3333 ]

x = [ 3.1667 3.0833 ]

Attempting Newton steps.

x = [ 3.1419 3.1330 ]

x = [ 3.1415 3.1425 ]

x = [ 3.1416 3.1415 ]

x = [ 3.1416 3.1416 ]

Newton steps succedeed.

Approximate solution found.

x = [ 3.1416 3.1416 ]

f(x) = -1.0000

PLH iterations: 11

Newton steps: 6

Label evals: 17
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3.2.5 Rosenbrock function

F(x, y) = (1− x)2 + 100(y− x2)2, (x, y) ∈ R2.

The Rosenbrock function, also known as banana function, is unimodal, and the
global minimum value, F(1, 1) = 0, lies in a narrow, parabolic valley. Usually it is
evaluated within the rectangle −5 ≤ x, y ≤ 5.
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Figure 3.5 – Rosenbrock Function

x1, x2 0,0 2,2 3,3 10,10 10000,10000
Newton iterations 4 7 8 9 ∞
BFGS iterations 21 20 38 49 6=
BFGS func evals 26 30 57 69
BFGS gradient evals 26 30 57 69
CG iterations 17 6= 31 6= 6=
CG func evals 33 78
CG gradient evals 33 78
NCG iterations 33 24 31 51 6=
NCG func evals 53 37 44 83
NCG gradient evals 85 60 74 133
NCG hessian evals 33 24 31 51
PLH iterations 115 91 100 169 308
PLH Newton steps 59 45 45 45 72
PLH label evals 174 136 145 214 380
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Below are some fragments from the output produced by the algorithm for the initial
point (10000, 10000).

1. PLH triangulation level = 0

S = [ 10116.6667 10466.6667 9766.6667 9766.6667 ]

[ 9883.3333 10233.3333 10233.3333 9533.3333 ]

x = [ 9766.6667 9533.3333 ]

2. PLH triangulation level = 1

S = [ 10116.6667 9766.6667 9766.6667 9766.6667 ]

[ 9883.3333 9883.3333 10233.3333 9533.3333 ]

x = [ 9766.6667 9883.3333 ]

Attempting Newton steps.

x = [ 9766.6667 10000.0115 ]

x = [ 9451.7532 659955189.9653 ]

Newton steps failed.

3. PLH triangulation level = 1

S = [ 9416.6667 9766.6667 9766.6667 9766.6667 ]

[ 9883.3333 9883.3333 10233.3333 9533.3333 ]

x = [ 9416.6667 9883.3333 ]

4. PLH triangulation level = 1

S = [ 9416.6667 9066.6667 9766.6667 9766.6667 ]

[ 9883.3333 10233.3333 10233.3333 9533.3333 ]

x = [ 9066.6667 10233.3333 ]

5. PLH triangulation level = 1

S = [ 9416.6667 9066.6667 9066.6667 9766.6667 ]

[ 9883.3333 10233.3333 9533.3333 9533.3333 ]

x = [ 9066.6667 9533.3333 ]

...

124. PLH triangulation level = 1

S = [ 316.6667 -33.3333 -33.3333 -33.3333 ]

[ 783.3333 783.3333 1133.3333 1133.3333 ]

x = [ 316.6667 783.3333 ]

125. PLH triangulation level = 1

S = [ 316.6667 -33.3333 -33.3333 141.6667 ]

[ 783.3333 783.3333 1133.3333 958.3333 ]

x = [ 141.6667 958.3333 ]

126. PLH triangulation level = 2
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S = [ -33.3333 -33.3333 -33.3333 141.6667 ]

[ 958.3333 783.3333 1133.3333 958.3333 ]

x = [ -33.3333 958.3333 ]

Attempting Newton steps.

x = [ -33.3333 1111.1121 ]

x = [ -33.3333 1111.1115 ]

Newton steps failed.

127. PLH triangulation level = 2

S = [ -33.3333 54.1667 -33.3333 141.6667 ]

[ 958.3333 1045.8333 1133.3333 958.3333 ]

x = [ 54.1667 1045.8333 ]

128. PLH triangulation level = 3

S = [ -33.3333 54.1667 -33.3333 -33.3333 ]

[ 958.3333 1045.8333 1133.3333 1045.8333 ]

x = [ -33.3333 1045.8333 ]

Attempting Newton steps.

x = [ -33.3332 1111.1130 ]

x = [ -33.3332 1111.1069 ]

Newton steps failed.

129. PLH triangulation level = 3

S = [ 10.4167 54.1667 -33.3333 -33.3333 ]

[ 1089.5833 1045.8333 1133.3333 1045.8333 ]

x = [ 10.4167 1089.5833 ]

130. PLH triangulation level = 4

S = [ 10.4167 54.1667 10.4167 -33.3333 ]

[ 1089.5833 1045.8333 1045.8333 1045.8333 ]

x = [ 10.4167 1045.8333 ]

Attempting Newton steps.

x = [ -25.7563 1050.8195 ]

x = [ -65.4107 1023.7008 ]

Newton steps failed.

...

302. PLH triangulation level = 17

S = [ 0.9959 0.9959 0.9852 0.9959 ]

[ 0.9923 0.9816 0.9923 1.0030 ]

x = [ 0.9959 1.0030 ]

303. PLH triangulation level = 16

S = [ 0.9745 0.9959 0.9852 0.9959 ]

[ 1.0030 0.9816 0.9923 1.0030 ]
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x = [ 0.9745 1.0030 ]

304. PLH triangulation level = 16

S = [ 0.9745 0.9959 1.0173 0.9959 ]

[ 1.0030 0.9816 1.0030 1.0030 ]

x = [ 1.0173 1.0030 ]

305. PLH triangulation level = 15

S = [ 1.0066 0.9959 1.0173 0.9959 ]

[ 0.9923 0.9816 1.0030 1.0030 ]

x = [ 1.0066 0.9923 ]

306. PLH triangulation level = 16

S = [ 1.0066 0.9959 0.9959 0.9959 ]

[ 0.9923 0.9816 0.9923 1.0030 ]

x = [ 0.9959 0.9923 ]

Attempting Newton steps.

x = [ 0.9967 0.9934 ]

x = [ 0.9973 0.9947 ]

Newton steps failed.

307. PLH triangulation level = 16

S = [ 1.0066 1.0012 0.9959 0.9959 ]

[ 0.9923 0.9977 0.9923 1.0030 ]

x = [ 1.0012 0.9977 ]

308. PLH triangulation level = 17

S = [ 0.9959 1.0012 0.9959 0.9959 ]

[ 0.9977 0.9977 0.9923 1.0030 ]

x = [ 0.9959 0.9977 ]

Attempting Newton steps.

x = [ 0.9980 0.9960 ]

x = [ 0.9990 0.9980 ]

x = [ 0.9995 0.9990 ]

x = [ 0.9998 0.9995 ]

x = [ 0.9999 0.9998 ]

x = [ 0.9999 0.9999 ]

Newton steps succedeed.

Approximate solution found.

x = [ 0.9999 0.9999 ]

f(x) = 0.0000

PLH iterations: 308

Newton steps: 72

Label evals: 380
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3.2.6 Schwefel function

F(x1, . . . , xn) =
n

∑
i=1
−xi · sin

(√
|xi|
)

We will test the optimization algorithms for n = 10, in the hypercube xi ∈ [−10, 10] ,
i = 1..n. The function has a single minimum in this input domain which is:

F
(

5π

3
, . . . ,

5π

3

)
=
−7.89 · n

2
.

Note also that the Schwefel function F is not differentiable on the set {(0, a2, . . . , an) :
a2, . . . , an ∈ R} ∪ {(a1, 0, a3, . . . , an) : a1, a3, · · · ∈ R} ∪ . . . .

−5
0

5 −5 0 5

−5

0

5

Figure 3.6 – Schwefel Function for n = 2

We shall use the following starting points for comparing the algorithms:

c1 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5), c2 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 1), c3 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2),

c4 = (2, 2, 2, 2, 2, 2, 2, 2, 2, 1), c5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), c6 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 0),

c7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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x0 c1 c2 c3 c4 c5 c6 c7

Newton iterations 2 ∞ ∞ ∞ 4 ∞ ∞
BFGS iterations 3 6= 5 6= 4 6= ∞
BFGS func evals 4 6 6
BFGS gradient evals 4 6 6
CG iterations 1 6= 6= 6= 2 6= ∞
CG func evals 15 6
CG gradient evals 4 6
NCG iterations 3 6= 3 6= 4 ∞ ∞
NCG func evals 4 5 5
NCG gradient evals 6 7 8
NCG hessian evals 3 3 4
PLH iterations 14 20 43 44 45 50 45
PLH Newton steps 14 9 8 9 8 8 13
PLH label evals 28 29 51 53 53 58 58

Below are some fragments from the output produced by the algorithm for the initial
point (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). In order to be able to fit the data on the page the
maximal accepted error used for the data below 1e− 2.

1. PLH triangulation level = 0

S =

[ 4.09 9.09 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 ]

[ 3.18 8.18 8.18 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 ]

[ 2.27 7.27 7.27 7.27 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 ]

[ 1.36 6.36 6.36 6.36 6.36 -3.64 -3.64 -3.64 -3.64 -3.64 -3.64 -3.64 ]

[ 0.45 5.45 5.45 5.45 5.45 5.45 -4.55 -4.55 -4.55 -4.55 -4.55 -4.55 ]

[ -0.45 4.55 4.55 4.55 4.55 4.55 4.55 -5.45 -5.45 -5.45 -5.45 -5.45 ]

[ -1.36 3.64 3.64 3.64 3.64 3.64 3.64 3.64 -6.36 -6.36 -6.36 -6.36 ]

[ -2.27 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 -7.27 -7.27 -7.27 ]

[ -3.18 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 -8.18 -8.18 ]

[ -4.09 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 -9.09 ]

x = [ -0.91 -1.82 -2.73 -3.64 -4.55 -5.45 -6.36 -7.27 -8.18 -9.09 ]

2. PLH triangulation level = 1

S =

[ 4.09 9.09 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 4.09 ]

[ 3.18 8.18 8.18 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 3.18 ]

[ 2.27 7.27 7.27 7.27 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 2.27 ]

[ 1.36 6.36 6.36 6.36 6.36 -3.64 -3.64 -3.64 -3.64 -3.64 -3.64 1.36 ]

[ 0.45 5.45 5.45 5.45 5.45 5.45 -4.55 -4.55 -4.55 -4.55 -4.55 0.45 ]

[ -0.45 4.55 4.55 4.55 4.55 4.55 4.55 -5.45 -5.45 -5.45 -5.45 -0.45 ]

[ -1.36 3.64 3.64 3.64 3.64 3.64 3.64 3.64 -6.36 -6.36 -6.36 -1.36 ]
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[ -2.27 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 -7.27 -7.27 -2.27 ]

[ -3.18 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 -8.18 -3.18 ]

[ -4.09 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 ]

x = [ 4.09 3.18 2.27 1.36 0.45 -0.45 -1.36 -2.27 -3.18 0.91 ]

Attempting Newton steps.

x = [ 3.02 2.64 2.21 1.67 0.89 0.29 -0.14 -0.82 -1.59 -2.42 ]

x = [ 0.50 0.65 0.81 0.95 0.99 0.71 0.56 1.16 1.33 1.29 ]

Newton steps failed.

3. PLH triangulation level = 1

S =

[ 4.09 9.09 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 -0.91 4.09 ]

[ 3.18 8.18 8.18 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 -1.82 3.18 ]

[ 2.27 7.27 7.27 7.27 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 -2.73 2.27 ]

[ 1.36 6.36 6.36 6.36 6.36 -3.64 -3.64 -3.64 -3.64 -3.64 -3.64 1.36 ]

[ 0.45 5.45 5.45 5.45 5.45 5.45 -4.55 -4.55 -4.55 -4.55 -4.55 0.45 ]

[ -0.45 4.55 4.55 4.55 4.55 4.55 4.55 -5.45 -5.45 -5.45 -5.45 -0.45 ]

[ -1.36 3.64 3.64 3.64 3.64 3.64 3.64 3.64 -6.36 -6.36 -6.36 -1.36 ]

[ -2.27 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 -7.27 -7.27 -2.27 ]

[ -3.18 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82 -8.18 -3.18 ]

[ 5.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 ]

x = [ 4.09 3.18 2.27 1.36 0.45 -0.45 -1.36 -2.27 -3.18 5.91 ]

...

44. PLH triangulation level = 1

S =

[ 4.09 6.59 9.09 9.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 ]

[ 3.18 5.68 8.18 8.18 8.18 8.18 3.18 3.18 3.18 3.18 3.18 3.18 ]

[ 2.27 4.77 7.27 7.27 7.27 7.27 7.27 7.27 2.27 2.27 2.27 2.27 ]

[ 1.36 3.86 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 1.36 1.36 ]

[ 0.45 2.95 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 ]

[ 9.55 7.05 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 9.55 ]

[ 8.64 6.14 3.64 3.64 3.64 3.64 3.64 3.64 3.64 8.64 8.64 8.64 ]

[ 7.73 5.23 2.73 2.73 2.73 2.73 2.73 7.73 7.73 7.73 7.73 7.73 ]

[ 6.82 4.32 1.82 1.82 1.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82 ]

[ 5.91 3.41 0.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 ]

x = [ 6.59 5.68 4.77 3.86 2.95 7.05 6.14 5.23 4.32 3.41 ]

45. PLH triangulation level = 2

S =

[ 6.59 6.59 9.09 9.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 4.09 ]

[ 5.68 5.68 8.18 8.18 8.18 8.18 3.18 3.18 3.18 3.18 3.18 3.18 ]

[ 4.77 4.77 7.27 7.27 7.27 7.27 7.27 7.27 2.27 2.27 2.27 2.27 ]

[ 3.86 3.86 6.36 6.36 6.36 6.36 6.36 6.36 6.36 6.36 1.36 1.36 ]

[ 5.45 2.95 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 5.45 ]
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[ 7.05 7.05 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 4.55 9.55 ]

[ 6.14 6.14 3.64 3.64 3.64 3.64 3.64 3.64 3.64 8.64 8.64 8.64 ]

[ 5.23 5.23 2.73 2.73 2.73 2.73 2.73 7.73 7.73 7.73 7.73 7.73 ]

[ 4.32 4.32 1.82 1.82 1.82 6.82 6.82 6.82 6.82 6.82 6.82 6.82 ]

[ 3.41 3.41 0.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 5.91 ]

x = [ 6.59 5.68 4.77 3.86 5.45 7.05 6.14 5.23 4.32 3.41 ]

Attempting Newton steps.

x = [ 5.32 5.27 5.14 5.02 5.23 5.31 5.31 5.21 5.07 5.02 ]

x = [ 5.23 5.24 5.25 5.29 5.24 5.23 5.23 5.24 5.26 5.34 ]

x = [ 5.24 5.24 5.24 5.22 5.24 5.24 5.24 5.24 5.24 5.19 ]

x = [ 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.26 ]

x = [ 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.23 ]

Newton steps succedeed.

Approximate solution found.

x = [ 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.24 5.23 ]

f(x) = -39.45

PLH iterations: 45

Newton steps: 7

Label evals: 52

In the next table we show some of the results obtained for the bi-dimensional Schwe-
fel function (n = 2).

x1, x2 5,5 3,3 1,1 0.1,0.1 0.0001,0.0001 0,0
Newton iterations 2 4 4 15 908 ∞
BFGS iterations 3 4 4 2 3 6=
BFGS func evals 4 5 6 8 19
BFGS gradient evals 4 5 6 8 18
CG iterations 1 1 2 1 1 6=
CG func evals 15 15 6 18 28
CG gradient evals 4 3 6 6 15
NCG iterations 33 24 31 51 5 6=
NCG func evals 53 37 44 83 22
NCG gradient evals 85 60 74 133 25
NCG hessian evals 33 24 31 51 5
PLH iterations 5 20 35 40 42 42
PLH Newton steps 3 3 3 3 3 3
PLH label evals 8 23 38 43 45 45

Below is the full output produced by the algorithm for the initial point (5, 5).
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1. PLH triangulation level = 0

S = [ 5.1667 5.6667 4.6667 4.6667 ]

[ 4.8333 5.3333 5.3333 4.3333 ]

x = [ 4.6667 4.3333 ]

2. PLH triangulation level = 1

S = [ 5.1667 5.6667 4.6667 5.1667 ]

[ 4.8333 5.3333 5.3333 5.3333 ]

x = [ 5.1667 5.3333 ]

Attempting Newton steps.

x = [ 5.1314 4.9981 ]

x = [ 5.1366 5.0960 ]

Newton steps failed.

3. PLH triangulation level = 1

S = [ 5.1667 5.6667 5.6667 5.1667 ]

[ 4.8333 5.3333 5.3333 5.3333 ]

x = [ 5.6667 5.3333 ]

4. PLH triangulation level = 1

S = [ 5.1667 5.4167 5.6667 5.1667 ]

[ 4.8333 5.0833 5.3333 5.3333 ]

x = [ 5.4167 5.0833 ]

5. PLH triangulation level = 2

S = [ 5.1667 5.4167 5.1667 5.1667 ]

[ 4.8333 5.0833 5.0833 5.3333 ]

x = [ 5.1667 5.0833 ]

Attempting Newton steps.

x = [ 5.2393 5.2392 ]

Newton steps succedeed.

Approximate solution found.

x = [ 5.2393 5.2392 ]

f(x) = -7.8906

PLH iterations: 5

Newton steps: 3

Label evals: 8
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The new implementation of the iterative fixed point algorithms based on the Banach
fixed point theorem (the FIXPOINT software package), described in 1.2.2 proved it-
self as a very useful practical tool, due to the new features, which at this time are not
present in other implementations, like: the usage of a mixed error test for testing
the convergence of the sequence of successive approximations, the additional check
for cycle detection and the built in comparison function. For example, some early
versions of FIXPOINT were used for the most of the results reported in Chapter 9
of Berinde (2007) - Error analysis of fixed point iteration procedures, and also for
the numerical experiments in the comparative study of the rate of convergence of
fixed point iteration procedures, that were reported in Berinde and Păcurar (2007)
and later used as a starting point for inferring and proving some theoretical results
mentioned in the Introduction chapter. The complementary web-based application
provides an easy way to use these FIXPOINT software package and some additional
features like the interactive visualisations, cobweb plots for the Picard iteration and
a new intuitive visualisation for the Krasnoselskii iteration, which may be useful
also as a didactic tool. As possible future work directions related to the new im-
plementations of the iterative methods described in the first chapter we mention:
improving the interactive visualisations with animations and other features, imple-
menting other fixed point algorithms see for example Berinde (2007), Agarwal et al.
(2009) and implementing some acceleration techniques as described for example in
Bumbariu (2013).

The main generic advantages of the PL homotopy methods described and in the sec-
ond chapter is that they don’t require smoothness of the underlying map. Also an-
other important feature of these methods is that they can be applied when no a pri-
ori knowledge regarding the solutions of the system to be solved is available. When
applying this algorithm to unconstrained optimization problems, represented here
by some classic objective test functions (Bukin function, Easom function, Rosen-
brock function, Schwefel function etc.), it appears the PL homotopy method is more
robust than some of the most important and used iterative methods in optimization
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(Newton’s method, Broyden-Fletcher-Goldfarb-Shanno algorithm, conjugate gradi-
ent method, nonlinear conjugate gradient method), see the results from 3.2. Due to
these results, some possible work directions for the future are to continue the study
by to extend the numerical tests to even higher dimensions, considering other im-
portant optimization test functions, see Floudas et al. (1999), Hedar (2014), Moré
et al. (1981), Pohlheim (2006) and considering other different types of problems see
for example Herings and Peeters (2010) or Pop (2008, 2009). As other possible re-
search directions we mention studying feasibility of parallelizing some parts of the
implemented PL homotopy algorithm; using some acceleration techniques when
attempting Newton steps; the implementation other versions of the PL homotopy
algorithms like van der Laan and Talman (1981) or Wright (1981).

Considering that one of the initial objectives was to create easy to use implemen-
tations of some fixed point algorithms, the very popular Javascript language was
finally used, after some experimentation with the C++ and C# languages. As a
direct consequence of using the Javascript language, it was very natural to create
a complementary web-based application, which has great advantages for users in
the form of: easy accessibility and usability, seamless updates and even enhanced
collaboration. Considering the latest advancements in the programming tools for
Javascript language, these new implementations also offers the unique possibility
to run the same implementation of an algorithm on the client machine, using a
smart client application or on servers using for example Node.js (2013). Also the
Javascript language has a straightforward syntax, it doesn’t require a compiler and
the support for developers is very good in the form of documentation, samples and
tools, so it is expected that the new Javascript implementations could be used very
easily, even by other persons, for different applications.
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Păcurar, M. (2012). Common fixed points for almost Prešić type operators.
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