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CHAPTER 1

Introduction

The fixed point theory is one of the most productive and dynamic sub-domains of
nonlinear analysis. Even since Banach stated in 1922 his famous Contraction Principle
[17], considered the cornerstone of this field, mathematicians all over the world were
concerned to extend, generalize, improve this fundamental result. In the last decades
many important results starting from the contraction principle were obtained, as we
can see in [147],[3], [5], [6], [8], [10], [14], [25], [19], [28], [30], [35], [33], [39], [37],
[54], [62], [65], [70], [85], [95], [109], [113],[101], [121], [120], [126], [133], [135],
[66].

Studying the literature, it can be observed that fixed point theory has developed
following three major directions, producing:

(1) metric fixed point theorems, based on the famous contraction principle of Ba-
nach [17], among which we mention Kannan [79] , Chatterjea [48], Zamfirescu
[150], Reich-Rus [114]-[119], Edelstein [62], Caristi [46];

(2) topological fixed point theorems, having their starting point in Brower’s fixed
point result, followed by Schauder [130], Tychonoff [142], Ky Fan [64], Kras-
noselskii [87] and many others;

(3) fixed point theorems in ordered spaces (Tarski [137], Bourbaki [44] and others.)

The development of metric fixed point theory, in turn, followed various directions
in extending Banach’s contraction principle, such as :

• weakening the contraction condition (see, for example, Kannan [79], Berinde
[25], Altun and Acar [5] Choudhury, Metiya and Postolache [50]);
• extending the concept of metric (see, for example, Perov [121], Petruşel [108],
Rus [122], Shatanawi, Abbas and Samet [134] );
• extending the space and endowing it with different relations (see Ben-El-
Mechaiekh [19], Turinici and Samet [126], Asgari and Mousavi [9], Beg and
Butt [18] );
• combination of the above directions (see Maia [91], Berinde [20], Kasahara
[85], Rus [124]).

The fixed point theory evolved under the impulse of its applications, and, later on,
it has developed as a stand alone discipline. From the applications of the fixed point
results, strictly related to the topic of this thesis, it is important to mention:
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2 1. INTRODUCTION

• integral equations (see Krasnoselskii [87], Aghajani [3], Berzig and Samet [35],
Shatanawi, Samet and Abbas [134], Sintunavarat, Kumam and Cho [135],
Avramescu [147], Burton [45], Rus [121]);
• numerical analysis (see Timiş [141], Rhoades [115],[116], Păcurar [101]);
• initial value problems for ODE (see Amini-Harandi [8], Nieto and Rodriguez-
Rodríguez-López [96], [95], Samet, Vetro and Vetro [128], Guo, Cho and Zhu
[69]);
• periodic boundary value problems (see Bhaskar and Lakshmikantham[36],
Berinde [27], Bernfeld and Lakshmikantham [31], Petruşel, Petruşel, Samet
and Yao[107], Urs [143]);
• systems of differential and integral equations and inclusions (see Urs [145],
Opŏicev [97], Petruşel, Petruşel and Yao[106], Bota, Petruşel, Petruşel and
Samet in [43], M.D. Rus [125], Eshi, Das and Debnath [63], Urs, Petruşel and
Petruşel [108]);
• nonlinear matrix equations (see Ran and Reurings [113], Long, Hu and Zhang
[90], Berzig and Samet [34], [32], Asgari and Mousavi [10]).

One of the most important contributions in the evolution of fixed point theory is the
fixed point theorem of Ran and Reurings [113], who combined metric fixed point the-
orems and fixed point theorems in ordered sets. They endowed the metric space with
a relation of partial order and assumed that the contraction condition holds only for
comparable elements in X (i.e., x ≥ y). They also added to the hypotheses a condition
of monotony for the operator F involved (i.e., it should be either order-preserving or
order-reversing) obtaining results regarding the existence and uniqueness of the fixed
point. The importance of their research is emphasized by its applicability in solving
linear matrix equations of the type X − A∗1XA1 − ... − A∗mXAm = Q where Q is a
positive definite matrix and A1, ...Am are arbitrary matrices inM(n).

Their idea inspired many other mathematicians and lead to various interesting ex-
tensions and generalizations. Ran and Reurings fixed point theorem is based essentially
on the continuity of the operator F . Nieto and Lopez have the merit to remove the
continuity of the operator F , for F nonincreasing or F nondecreasing, respectively in
[96], [95], [94]. Bhaskar and Lakshmikantham[36] combined the two results of Ni-
eto and Lopez (i.e., for increasing and decreasing mappings), obtaining existence and
uniqueness results for coupled fixed points in the context of partially ordered metric
spaces, for mixed monotone mappings, using a weak contractive condition:

(1.1) d(F (x, y), F (u, v)) ≤ k

2 [d(x, u) + d(y, v)], ∀x ≥ u, y ≤ v
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As an application, they studied the existence of a unique solution to a periodic
boundary value problem, broadening in this way the sphere of problems solvable using
fixed point tools.
Coupled fixed points were studied even earlier by Opŏicev in [97], [99], [98], in 1974-
1975 in the context of non-expansive heterogeneous operators. Then, independently,
Guo and Lakshmikantham introduce coupled fixed points in [70], in 1987, in the context
of monotone operators defined on ordered sets, followed by Bhaskar and Lakshmikan-
tham in [36] who added a metric and the classical contractive condition to the fixed
point theorem in the context of coupled fixed points, result received with great interest.

Using this concept, many researchers obtained new results, by weakening the con-
tractive condition, adding assumptions regarding the operator involved to the hypothe-
ses or by using two operators instead of one, as we can see in [11], [25], [30], [32], [35],
[51], [65], [81], [89], [108], [111], [112], [133], [135], [136], [143], [144], [146]. Also,
related to this concept, in very short time, coupled common and coincidence points
were introduced by Ćirić and Lakshmikantham in [53] and Jungck and Rhoades in
[75]. These too were widely discussed and extended in many directions in [77], [76],
[149], [50], [132], [26], etc.

Despite the variety of the new results, Theorems 3.1.33-3.1.44 and their extensions
were not able to solve systems of the form given in Example 6.128 from [40].

This was the main reason for Berinde and Borcut in [28] to introduce a new concept,
the tripled fixed point of a mapping. Thus, the existence and uniqueness of a tripled
fixed point of a mapping was and still is studied in various contexts, for continuous,
mixed-monotone mapping [42],[110], for monotone mappings that are not necessarily
continuous [39] and so on. Along with this new concept, following the same direction
in research, tripled coincidence point results were obtained by Borcut in [37], [38].
The results presented by Berinde and Borcut in [28] were some of the most appreciated,
cited and studied results from the last decade, representing an important moment in
the evolution of fixed point theory as we can see in [102], [12], [14], [49], [57], [74],
[78], [82], [83], [4], [117], [141], [148], due to the great number of applications in
solving different types of problems:

• integral equations (see Berzig and Samet [35], Musatafa, Roshan and Parvaneh
[93], Borcut, Păcurar and Berinde [42], Amini-Harandi [7], Aydi, Karapinar
and Shatanawi [14], etc.);
• various systems of equations (see Roldán, Martínez-Moreno and Roldán [118],
Parvaneh, Roshan and Radenović [103] etc.);
• matrix equations (see Berzig and Samet [35], Dobrican [60], etc.) .
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It is important to remark the fact that most of the results regarding the fixed points
of a mapping are obtained in partially (ordered) metric spaces even though not always
all of the properties of the relation of (partial) order are being used. For example, in
[113], [36] the antisymmetry of "≤" is not essential in the proofs the authors present.
Thus, Samet and Turinici endow the metric space with an amorphous binary relation
in [126] extending and generalizing many existing fixed point results in ordered met-
ric spaces. Asgari and Mousavi endow in [10], [9] the metric space with a reflexive
relation R obtaining new, original results regarding coupled fixed points with various
applications in solving nonlinear matrix equations. Similar results were obtained in
[19], [57], [65], [136] and many others.

The purpose of this thesis is to perform a systematic study of coupled fixed points,
tripled fixed points, coupled coincidence points and tripled coincidence points, in the
setting of a metric space endowed with a reflexive binary relation. In this way, we
unify, generalize and extend various results in the field. The material is organized in six
chapters, excluding the introduction and the list of bibliographical resources as follows:

Chapter 2, Preliminaries, is a brief presentation of the basic notions and most
important results of metric fixed point theory from the background of the results pre-
sented in Chapters 3, 4, 5, 6. This chapter consists of three paragraphs: Basic notations
of fixed point theory, Tripled fixed points of operators in ordered metric spaces, Fixed
points of operators in metric spaces endowed with a binary relation

The remaining chapters (3-6) present the original contribution of the author.

Chapter 3, Coupled fixed point theorems in metric spaces endowed with
a binary relation, consists of three paragraphs,Preliminaries, Existence and unique-
ness theorems and Examples and applications. In this chapter, we first present the
backgound of coupled fixed points, then extend and generalize some of the results of
Asgari and Mousavi in [10] and [9] by weakening and then symmetrizing the contractive
condition in Theorem 3.1.49. Thus, we define the orbital continuous operatorial pair
(f1, f2) (Definition 3.2.52), we obtain results regarding the existence (Theorems 3.3.54,
3.3.58, 3.3.53) and uniqueness (Theorems 3.3.56, 3.3.59) of coupled fixed points. Fur-
ther on, we prove some existence (Theorem 3.3.61, Theorem 3.3.54, Theorem 3.3.58,
Theorem 3.3.53, Theorem 3.3.55) and uniqueness results (Theorem 3.3.62, Theorem
3.3.56, Theorem 3.3.59,Theorem 3.4.70) for coupled fixed points for an operatorial
pair, as presented in [145], [143] and [108] in the case of a metric space endowed
with a reflexive relation. Some examples are also provided (Example 3.4.68, Example
3.4.69), followed by an application in the study of the solution of a first-order periodic
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boundary value system, following the ideas presented in [31].

The results in this chapter extend, unify and generalize some of the results of
Berinde in [25], [24], Asgari and Mousavi in [10], [9], Bhaskar and Lakshmikantham
in [36], Urs in [143], [144], etc.

The author’s original contributions to this chapter are Definition 3.2.52, Theorem
3.3.53, Theorem 3.3.54, Theorem 3.3.56, Theorem 3.3.58, Theorem 3.3.59, Theorem
3.3.61, Theorem 3.3.62, Theorem 3.4.70, Remark 3.3.57, Remark 3.3.57, Remark 3.3.63,
Remark 3.3.64, Remark 3.3.65, Remark 3.3.66, Remark 3.3.67, Remark 3.4.71, Remark
3.4.72, Example 3.4.68, Example 3.4.69. Some of the results were published in [57] and
[59] and were also presented in [55].

Chapter 4, Tripled fixed point theorems in metric spaces endowed with
a reflexive relation, consists of four paragraphs, Preliminaries, Tripled fixed points
of mixed-monotone operators, Tripled fixed points of monotone operators and Exam-
ples and applications. In this chapter, we extend the results of Asgari and Mousavi
from [10] and [9] in the case of tripled fixed points introduced by Berinde and Bor-
cut in [28], then extended by Borcut et. al. in [39], [40], [37], [38], [41]. Thus, we
obtain existence (Theorems 4.2.92, 4.2.96, 4.2.99, 4.2.100,Theorems 4.3.115, 4.3.118,
4.3.121, 4.3.122, Theorem 4.2.95 ) and uniqueness results (Theorems 4.2.94, 4.2.97,
4.2.102, 4.2.103, Theorems 4.3.117, 4.3.119, 4.3.124, 4.3.125 ), for tripled fixed points
of a mixed-R-monotone operator, and, respectively, R−monotone operator. An appli-
cation to nonlinear matrix equations is also provided. The novelty brought by these
results consists in the fact that the metric space is endowed with a reflexive relation,
whereas most of the results in the field use a relation of (partial) order (see [129], [2],
[7], [18], [24], [21], [30], [52], [67], [68], [73], [74], [82], [86], [89], [100], [101], [102],
[104], [115], [116], [124], [123], [146], [148], [150] and others).

The author’s contributions to this chapter are Definition 4.2.90, Definition 4.2.91,
Definition 4.2.87, Definition 4.2.88, Definition 4.2.89, Definition 4.3.112, Definitions
4.3.113, Definition 4.3.110, Definition 4.3.111, Notation 2, Notation 3, Theorem 4.2.92,
Theorem 4.2.96, Remark 4.2.93, Theorem 4.2.94, Theorem 4.2.97, Theorem 4.2.99,
Theorem 4.2.100, Remark 4.2.101, Theorem 4.2.102, Theorem 4.2.103, Theorem 4.2.95,
Theorem 4.3.115, Theorem 4.3.117, Theorem 4.3.118, Theorem 4.3.119, Theorem 4.3.124,
Theorem 4.3.125, Theorem 4.3.121, Theorem 4.3.122, Theorem 4.4.133, Theorem 4.4.134,
Remark 4.2.104, Remark 4.2.105, Remark 4.2.106, Remark 4.2.107, Remark 4.2.108,
Remark 4.3.116, Remark 4.3.120, Remarko46, Remark 4.3.109, Remark 4.2.98, Remark
4.3.123, Remark 4.3.126, Remark 4.3.127, Remark 4.3.128, Example 4.4.129, Example
4.4.130. Some of these results were published in [60] and [57] and were also presented
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in [55].

In the fifth chapter, Coupled coincidence point theorems in metric spaces
endowed with a reflexive relation, we study the existence and uniqueness of cou-
pled coincidence points in metric spaces endowed with a reflexive relation and redefine
some related notions to them in this particular context. Coupled coincidence points
were discussed by Lakshmikantham and Ćirić in [88], then extended and intensively
studied in various contexts (graphs, in [139], [140], generalized metric spaces, in [133],
L-fuzzy metric spaces, in [132] and so on).

This chapter consists of four paragraphs, Coupled coincidence points of operators
in partially ordered metric spaces-Preliminaries, Definitions, Existence and uniqueness
theorems and Examples and applications. In the first paragraph we recall some of the
important results in the field. In the second section we present the definitions of a
lower-R−coupled coincidence point, mixed g − R-monotone property of a mapping f ,
orbital g−continuity of a mapping f . In the third paragraph we give some existence
and uniqueness results for coupled coincidence points followed by illustrative examples
in the last paragraph of the chapter. These results extend, unify and generalize various
previous results, see [26], [51], [50], [53], [27], etc.
To prove the effectiveness of our results, in the last part of this chapter, we provide an
application to nonlinear matrix equations.
The author’s original contributions to this chapter are Definition 5.2.154, Definition
5.2.155, Definition 5.2.156, Notation 4, Theorem 5.3.157, Corollary 5.3.158, Theorem
5.3.159, Theorem 5.3.160, Theorem 5.3.161, Theorem 5.3.162, Theorem 5.3.163, The-
orem 5.3.164, Theorem 5.3.165, Theorem 5.4.172, Theorem 5.4.173, Remark 5.3.166,
Remark 5.3.167, Remark 5.3.168, Remark 5.4.174, Example 5.4.169, Example 5.4.170,
Example 5.4.171. Some of the results can be found in [58]

In Chapter 6, Tripled coincidence point theorems in metric spaces endowed
with a reflexive relation, we extend the results obtained in Chapter 5, in the case
of tripled coincidence points introduced by Borcut in [40], [37], [38]. In the first para-
graph we present results regarding tripled coincidence points of mixed-g−R-monotone
mappings. The second paragraph consists of definitions and theorems regarding tripled
coincidence points of g − R-monotone mappings. In the last paragraph of this chap-
ter, there are presented some illustrative examples. These results extend, unify and
generalize various previous results, see [40], [37], [38], [49], [12], etc. We also provide
an application to integral equations systems, motivated by the work of Eshi, Das and
Debnath in [63].
The author’s original contributions to this chapter are Definition 6.1.175, Definition
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6.1.176, Definition 6.1.177, Definition 6.2.190, Definition 6.2.191, Notation 5, Notation
6, Theorem 6.1.178, Corollary 6.1.179, Theorem 6.1.180, Theorem 6.1.181, Theorem
6.1.182, Theorem 6.1.183, Theorem 6.1.184, Theorem 6.1.185, Theorem 6.1.186, The-
orem 6.2.193, Corollary 6.2.194, Theorem 6.2.195, Theorem 6.2.196, Theorem 6.2.197,
Theorem 6.2.198, Theorem 6.2.199, Theorem 6.2.200, Theorem 6.2.201, Theorem 6.3.206,
Remark 6.2.192, Remark 6.2.189, Remark 6.1.187, Remark 6.1.188, Remark 6.2.202,
Remark 6.3.207, Example 6.3.203, Example 6.3.204, Example 6.3.205. Some of the
results can be found in [61]

In the last chapter, Conclusions, we resumed the original contributions from this
thesis, also mentioning some future research directions starting from our results.
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CHAPTER 2

Preliminaries

In this chapter we present the definitions of the basic concepts and notations used
in this paper and the most important fixed point theorems that represent the starting
point in obtaining the results presented in Chapters 3, 4, 5 and 6. Most of the results
presented in this chapter were taken from "Iterative Approximation of Fixed Points",
[20] and "Principles and Applications of the Fixed Point Theory"[121]. The following
bibliographical references were also used: [24], [22], [29], [36], [70], [9], [19], [39], [40],
[108], [109], [143], [53], [124], [109], [96], [95].

1. Basic notions of fixed point theory

We will start by recalling the definition of a metric space. We assume that all
notions in metric space, like sequence, convergent sequence, fundamental sequence,
etc. are known.

Definition 2.1.1. [24] Let X be a nonempty set. A mapping d : X × X → R is
called metric or distance on X provided that:

(1) d(x, y) = 0⇔ x = y;
(2) d(x, y) = d(y, x),∀x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z),∀x, y, z ∈ X (“the triangle inequality”).

A set X endowed with a metric d is called metric space and we denote it by (X, d).

Definition 2.1.2. [24] A metric space (X, d) is called complete if any fundamental
(Cauchy) sequence in X is convergent.

Definition 2.1.3. [138] Let A and B be two sets. An ordered triple r = (A,B,R)
is called a binary relation, where R is a subset of the cartesian product A×B. The set
A is called the domain of the relation and B, the codomain of the relation.
If r = (A,B,R) is a relation, we say that x ∈ A is related to y ∈ B by R, i.e.
(x, y) ∈ R, also written as xRy.

Most of the results in the field are obtained in partially ordered metric spaces. We
will now recall the definition of a partially ordered set:

Definition 2.1.4. [20] A binary relation R on a set X is a partial order if and
only if it is:

9
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(1) reflexive, that is, xRx, ∀x ∈ X;
(2) antisymmetric, that is, if xRy and yRx, then x = y, x, y ∈ X;
(3) transitive, that is, if xRy and yRz, then xRz, x, y, z ∈ X.

The ordered pair (X,R) is called partially ordered set (poset) when R is a partial
order.

If, in addition to properties (1)-(3), for any pair (x, y), where x, y ∈ X, we have
xRy or yRx, then R is called total (linear) order.

Example 2.1.5.
(1) If X = R and R :=′′≤′′, we obtain the (totally) ordered set (R,≤).
(2) Let X = Z and xRy ⇔ [((x ≥ 0) ∧ (y ≥ 0)) ∨ ((x ≤ 0) ∧ (y ≤ 0))]. This

relation is reflexive, because, ∀x ∈ X, (x, x) ∈ R, but it is neither transitive(
because, for example, (1, 0) ∈ R and (0,−1) ∈ R, but (1,−1) /∈ R), nor
antisymmetric ( for example, (1, 0) ∈ R and (0, 1) ∈ R, but 0 6= 1). Thus, R
is a reflexive-only relation;

(3) X = R2, R :=′′≤′′, (x1, y1)R(x2, y2) if x1 ≤ x2 and y1 ≤ y2; (X,≤) is a partially
ordered set.

Definition 2.1.6. [24] Let X be a nonempty set and T : X → X a self-map. We
say that x ∈ X is a fixed point of T if

T (x) = x.

We denote by FT (or Fix(T )) the set of fixed points of T and, in order to simplify the
notations, we will use Tx instead of T (x).

In this context we can define T n(x) (the nth iterate of x under T ) inductively:
T 0(x) = x, T 1(x) = T (T 0(x)),..., T n+1(x) = T (T n(x)).

Example 2.1.7.
(1) If X = R and T (x) = x2 + 3x+ 1, then FT = {−1};
(2) If X = R and T (x) = x2 + 4x+ 4, then FT = ∅;
(3) If X = R and T (x) = x, then FT = R.

Definition 2.1.8. [53] Let X, Y be two nonempty sets and F,G : X → Y two
operators. An element x ∈ X is called coincidence point of F and G if Fx = Gx. We
will denote by

C(F,G) = {x ∈ X |Fx = Gx}

the set of all coincidence points of F and G.

Example 2.1.9.
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Let f, g : R → R, f(x) = 2x, g(x) = −4x. It is easy to remark that x = 0 is a
coincidence point of f and g, that is,[ C(f, g) = {0};

Definition 2.1.10. [24] Let (X, d) be a metric space. A mapping T : X → X is
called:

(1) Lipschitzian (or L-Lipschitzian) if there exists L > 0 such that

d(Tx, Ty) ≤ L · d(x, y), ∀x, y ∈ X;

(2) (strict) contraction if there exists a constant a ∈ (0, 1] such that T is a−Lipshchitzian;
(3) nonexpansive if T is 1−Lipschitzian;
(4) contractive is d(Tx, Ty) < d(x, y),∀x, y ∈ X, x 6= y;
(5) isometry if d(Tx, Ty) = d(x, y),∀x, y ∈ X.

Example 2.1.11.

(1) T : R→ R, T (x) = 4−
x

4, x ∈ R is a strict contraction and FT =

16
5

;
(2) [24] the mapping T : R→ R, T (x) = ln(1 + ex) is contractive and FT = ∅;

Next, we will present the fundamental result of the metrical fixed point theory,
called the Contraction mapping principle, also known as Banach’s fixed point theorem
or Banach-Picard-Caccioppoli Contraction Principle.

Theorem 2.1.12. [17] Let (X, d) be a complete metric space and T : X → X be a
mapping satisfying:

d(Tx, Ty) ≤ a · d(x, y),∀x, y ∈ X

with a ∈ [0, 1). Then
i) T has a unique fixed point, FT = {x∗};
ii) The Picard iteration associated to T converges to x∗, for any initial guess x0 ∈ X;
iii) The a priori and a posteriori error estimates

d(xn, x∗) ≤
an

1− a · d(x0, x1), n = 0, 1, 2, ...

d(xn, x∗) ≤
a

1− a · d(xn−1, xn), n = 0, 1, 2, ...

hold.
iv) The rate of convergence is given by

d(xn, x∗) ≤ a · d(xn−1, x
∗) ≤ an · d(x0, x

∗), n = 0, 1, 2, ...

One of the first extensions of this principle was given by Edelstein in [62], by
establishing that every uniform local contraction f : X → X of an ε-chainable complete
metric space (X, d) has a unique fixed point. Let us recall the definitions of an ε-
chainable sequence and uniform local contraction:
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Definition 2.1.13. [62] We say that a metric space (X, d) is ε-chainable, for ε > 0,
if ∀x, y ∈ X, ∃{ui}i=0

m a finite sequence in X such that:
x = u0, um = y, d(ui−1, ui) < ε,∀i = 1, ...,m.

Definition 2.1.14. [62] A mapping f : X → X is called a local contraction (l.c.)
if there exist real-valued functions µ(x), λ(x), with µ(x) > 0 and 0 < λ(x) < 1, such
that whenever y, z are in the sphere

S(x, µ(x)) = {u : d(x, u) ≤ µ(x)}

it follows that
d(f(y), f(z)) ≤ λ(x)d(y, z).

If µ(x) (resp. λ(x)) is constant, we have a µ−(resp. λ−) uniform local contraction
(u.l.c.).

Definition 2.1.15. [62] A mapping f of X to itself is said to be (ε, λ)-uniformly
locally contractive if it is locally contractive and both ε and λ do not depend on x.

The extended contraction principle of Edelstein presented in [62] is stated as follows:

Theorem 2.1.16. [62] Let X be a complete metric ε−chainable space, f a mapping
on X into itself, which is (ε, λ)-uniformly locally contractive. Then there exists a unique
point ξ ∈ X such that f(ξ) = ξ.

In the last decades, many generalizations of Theorem 2.1.16 have been obtained.
Some of them, weakening the contractive properties of the mapping (see [25], [36],
[54], [62], [96], [95], [113], etc.), others, by altering the structure of the space involved
or by combining the two methods described and, eventually, endowing the mapping or
the ambient space with supplementary properties (see [68], [122], [86], [10], [9], [108],
etc.)

The following theorem is an analogue of the Contraction Principle in partially
ordered sets:

Theorem 2.1.17 ([113]). Let X be a partial ordered set such that every pair
x, y ∈ X has an upper bound and lower bound. Furthermore, let d be a metric on
X such that (X, d) is a complete metric space. If T : X → X is a continuous, mono-
tone mapping such that:

(2.2) ∃ 0 < α < 1 : d(Tx, Ty) ≤ α · d(x, y),∀x ≥ y

(2.3) ∃ x0 ∈ X : x0 ≤ Tx0 or x0 ≥ Tx0

then T has a unique fixed point x∗. Moreover, for every x ∈ X



1. BASIC NOTIONS OF FIXED POINT THEORY 13

limn→∞ T
nx = x∗

In [109], Rus and Petruşel emphasize the fact that, when working on a set that
is endowed simultaneously with a metric and a binary relation (an order structure in
[109]), we should add an additional assumption, namely the compatibility between the
two structures:
if {xn}n∈N → x, {yn}n∈N → y and xn ≤ yn then x ≤ y, ∀n ∈ N.

In [96], [95] Nieto and Rodríguez-López improve Theorem 2.1.17 by removing the
continuity of the operator T in the case of nonincreasing and nondecreasing, respec-
tively, operators, obtaining more general results:

Theorem 2.1.18. [95] Let (X,≤) be a partially ordered set and suppose there exists
a metric d on X such that (X, d) is a complete metric space.
Let f be a monotone nondecreasing mapping such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k · d(x, y), ∀x ≥ y.

Suppose that either f is continuous or X is such that

(2.4) if a nondecreasing sequence {xn}n∈N → x ∈ X, then xn ≤ x,∀n ∈ N.

If there exists x0 ∈ X such that x0 ≤ f(x0), then f has a fixed point.

Theorem 2.1.19. [95] Let (X,≤) be a partially ordered set and suppose there exists
a metric d on X such that (X, d) is a complete metric space.
Let f be a monotone nondecreasing mapping such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k · d(x, y),∀x ≥ y.

Suppose that either f is continuous or X is such that

(2.5) if a nonincreasing sequence {xn}n∈N → x ∈ X, then xn ≤ x,∀n ∈ N.

If there exists x0 ∈ X such that x0 ≥ f(x0), then f has a fixed point.

Theorem 2.1.20. [96] Let (X,≤) be a partially ordered set such that every pair of
elements of X has an upper bound and a lower bound and suppose there exists a metric
d on X such that (X, d) is a complete metric space.
Let f be a monotone nonincreasing function such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k · d(x, y),∀x ≥ y.

Suppose that either f is continuous or X is such that
(2.6)
if {xn}n∈N → x, is a sequence in X whose consecutive terms are comparable, then

there exists a subsequence {xnk}k∈N such that every term is comparable to the limit x.

If there exists x0 ∈ X such that x0 ≥ f(x0) or x0 ≤ f(x0) , then f has a fixed point.
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Theorem 2.1.21. [96] Let (X,≤) be a partially ordered set such that every pair of
elements of X has an upper bound and a lower bound and suppose there exists a metric
d on X such that (X, d) is a complete metric space.
Let f : X → X be such that it maps comparable elements into comparable elements,
that is x, y ∈ X, x ≤ y implies 

f(x) ≤ f(y)

or

f(x) ≥ f(y)
and such that there exists k ∈ [0, 1) with

d(f(x), f(y)) ≤ k · d(x, y),∀x ≥ y.

Suppose that either f is continuous or X is such that condition (2.6) holds. If there
exists x0 ∈ X x0 is comparable to f(x0), then f has a fixed point, x∗. Moreover,
∀x ∈ X, lim

n→∞
fn(x) = x∗.

2. Fixed points of operators defined on metric spaces endowed with a
binary relation

Despite the general tendency to study the existence and uniqueness of fixed points
in partially ordered metric spaces, there are researchers who obtained results regarding
their existence and uniqueness, by replacing the partial order with amorphous relations
(see [126]), transitive relations (see [19]) or reflexive relations ([10], [9], [57]). Next,
we will present some of the results obtained using these relations.

2.1. Fixed points of operators defined on metric spaces endowed with
an amorphous relation

Turinici and Samet extend and generalize in [126] many existing results in the field.
They consider a metric space (X, d) and R a binary relation over X. They denote by
S = R∪R−1, that is the symmetric relation attached to R. Clearly,
x, y ∈ X, xSy ⇔ xRy or yRx.

Using this notation, they present the definition of an S−directed subset D of X, of
comparative mappings and other related notions in order to obtain their main results:

Definition 2.2.22. [126] We say that the subset D of X is S−directed if, for every
x, y ∈ D, there exists z ∈ X such that xSz and ySz.

Definition 2.2.23. [126] We say that (X, d,S) is regular if the following condition
holds: if the sequence {xn} in X and the point x ∈ X are such that

(2.7) xnSxn+1,∀n and lim
n→∞

d(xn, x) = 0,

then there exists a subsequence
{
xn(p)

}
of {xn} such that xn(p)Sx,∀p.
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Definition 2.2.24. [126] We say that T : X → X is a comparative mapping if T
maps comparable elements into comparable elements, that is,

x, y ∈ X, xSy ⇒ TxSTy.

In order to obtain their main results, they use the following notations:
(1) Let Φ be the set of functions ϕ : [0,∞)→ [0,∞) satisfying :

• ϕ is nondecreasing;
• ∑∞n=1 ϕ

n(t) <∞ for each t > 0, where ϕn is the nth iterate of ϕ;

(2) MT (x, y) = max

d(x, y),
1
2[d(x, Tx) + d(y, Ty)],

1
2[d(x, Ty) + d(y, Tx]

 , where T :

X ×X is a mapping.

Theorem 2.2.25. [126] Assume that T is a comparative map, and

(2.8) x, y ∈ X, xSy ⇒ d(Tx, Ty) ≤ ϕ(MT (x, y)),

where ϕ ∈ Φ. Suppose also that the following conditions hold:
i.) there exists x0 ∈ X such that x0STx0;
ii.) (X, d,S) is regular.
Then T has a fixed point x∗ ∈ X. Moreover, if, in addition, D := FT is S−directed,
then x∗ is the unique fixed point of T in X.

Turinici and Samet also present 7 corollaries of this result, by replacing condition
(2.8) with some other contractivity conditions. They also prove that, by customizing
the relation involved ( for example, letting R be a relation of order), they obtain
important results in the literature.

2.2. Fixed points of operators defined on metric spaces endowed with a
transitive relation

The results of Ran and Reurings also inspired the mathematician Hichem Ben-
El-Mechaiekh [19]. In 2014, he replaces the order relation on x, y ∈ X, from the
original result, with a transitive binary relation. The purpose of this is to increase
the applicability of fixed point theorems. He starts from the extension that Edelstein
brings to Banach’s contraction principle in [62], by establishing that every uniform
local contraction f : X → X of an ε-chainable complete metric space (X, d) has a
unique fixed point. Recall that a metric space (X, d) is ε-chainable for some ε > 0, if
∀x, y ∈ X, ∃{ui}i=0

m a finite sequence in X such that:
x = u0, um = y, d(ui−1, ui) < ε,∀i = 1, ...,m.

Let us recall the following concepts, used in his results in [19]:

Definition 2.2.26. [19] Two elements x, y ∈ X are joined by an ε−monotone
chain for some ε > 0 if there exists a monotone sequence {ui}i=0

m in X such that:
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x = u0, um = y, d(ui−1, ui) < ε,∀i = 1, ...,m.

Definition 2.2.27. [19] The space (X,≤, d) is said to be ε−monotone chainable
for some ε > 0 if any two comparable elements x, y ∈ X are joined by a ε−monotone
chain.

Definition 2.2.28. [19] The metric d is monotone complete if and only if every
monotone Cauchy sequence converges in X.

The most important results listed in his paper are:

Theorem 2.2.29. [19] Let (X,≤, d) be a triple consisting of a metric space (X, d)
and a transitive binary relation ≤ on X, let f : X → X be a mapping and ε > 0 be
such that:

(1) ∃x0 ∈ X such that x0 and f(x0) are joined by a ε−monotone chain;
(2) f is monotone;
(3) if limn→∞ f

n(x0) = x∗ ∈ X then fn(x0) and x∗ are comparable, ∀n;
(4) ∃0 < k < 1 such that for any comparable elements x and y in X, d(x, y) ≤ ε

implies d(f(x), f(y)) ≤ kd(x, y).
Then, f has a unique fixed point x∗ = lim

n→∞
fn(x0) provided the metric d is monotone

complete.

Theorem 2.2.30. [19] Let (X,≤, d) a triple, where ≤ is a transitive relation and
d is a metric, is ε−monotone chainable for some ε > 0 and f : X → X is a mapping
satisfying:

(1) ∃x0 ∈ X such that x0 and f(x0) are comparable;
(2) f is monotone;
(3) if limn→∞ f

n(x0) = x∗ ∈ X then fn(x0) and x∗ are comparable, ∀n;
(4) ∃0 < k < 1 such that if x and y ∈ X are comparable, d(x, y) ≤ ε implies

d(f(x), f(y)) ≤ kd(x, y).
(5) every pair of elements of X admits a third element similarly comparable to

both.
Then, f has a unique fixed point x∗ = lim

n→∞
fn(x), for any initial point x ∈ X provided

the metric d is monotone complete.

Similar results were obtained by Shahzad et. al. in [131].



CHAPTER 3

Coupled fixed point theorems in metric spaces
endowed with a reflexive relation

In this chapter we will present some coupled fixed point results, that unify, extend
and generalize results from [10], [9], Berinde [25], [20], [23], Urs [145], [143], [144]
and others, that we summarize in the following:

1. Preliminaries

1.1. Coupled fixed points of operators in ordered metric spaces

In this paragraph we will present the concept of coupled fixed point and basic no-
tions related to it. This concept was first studied by Opoitsev in [97], [99], [98] then
studied and presented by Guo, Bhaskar and Lakshmikantham in [36], [70]. Their work
is fundamental for all the results obtained so far for coupled fixed points, presenting a
new perspective in the study of this theory.

Next, we present the definition of a coupled fixed point of a mapping as presented
in [70] and [36]:

Definition 3.1.31. [36],[70] We call an element (x, y) ∈ X2 a coupled fixed
point of the mapping F , F : X2 → X, if F (x, y) = x and F (y, x) = y.
If x = y and, in consequence, F (x, x) = x, then x ∈ X is a fixed point of F .

Definition 3.1.32. [36] Let (X,≤) be a set endowed with a relation of partial
order and F : X2 → X. We say that F has the mixed monotone property on X if
F (x, y) is monotone nondecreasing in x and is monotone nonincreasing in y, that is,
for any x, y ∈ X, x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y) ≤ F (x2, y) and y1, y2 ∈ X, y1 ≤ y2 ⇒
F (x, y1) ≥ F (x, y2).

Note that Opŏicev [97], [99], [98] used the term “heterogenous” for a mixed mono-
tone mapping F : X2 → X.

The main result obtained by Bhaskar and Lakshmikantham is the following theo-
rem:

Theorem 3.1.33. [36] Let F : X2 → X be a continuous mapping having the mixed
monotone property on X. Assume that ∃k ∈ [0, 1) with

17
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d(F (x, y), F (u, v)) ≤
k

2[d(x, u) + d(y, v)], ∀x ≥ u, y ≤ v.

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

then ∃x, y ∈ X such that x = F (x, y) and y = F (y, x).

The following results complete Theorem 3.1.33, by establishing, respectively, the
uniqueness of the coupled fixed point and the identity of the components in the pair
(x, y):

Theorem 3.1.34. [36] Adding the condition that for every (x, y), (x∗, y∗) ∈ X2,
∃(u, v) ∈ X2 that is comparable to both (x, y) and (x∗, y∗) to the hypotheses of Theorem
3.1.33, we obtain the uniqueness of the coupled fixed point of F .

Theorem 3.1.35. [36] In addition to the hypothesis of Theorem 3.1.33, suppose
that every pair of elements of X has an upper bound or a lower bound in X. Then
x = y.

Theorem 3.1.36. [36] In addition to the hypothesis of Theorem 3.1.33, suppose
that x0, y0 ∈ X are comparable. Then x = y.

Berinde extends their result in [25], for mappings having the mixed monotone
property, but not necessarily continuous, obtaining results regarding the existence,
uniqueness of the coupled fixed point, but also the equality of the two components
of the coupled fixed point. The contraction conditions is also weakened by using a
symmetric one:

Theorem 3.1.37. [25] Let (X,≤) be a partially ordered set and suppose there is
a metric d on X such that the metric space (X, d) is complete. Let F : X2 → X a
continuous mapping having the mixed monotone property on X, for which there exists
a constant k ∈ [0, 1), ∀x ≥ u, y ≤ v, with

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(x, u) + d(y, v)].

If there exist x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

then ∃x̄, ȳ ∈ X such that x̄ = F (x̄, ȳ) and ȳ = F (ȳ, x̄).
The error estimate for the described method is:

d((xn, yn), (x̄, ȳ)) ≤
kn

1− kd((x1, y1), (x0, y0)), n ≥ 0

Theorem 3.1.38. [25] Adding the condition that ∃(z1, z2) ∈ X2, comparable to
(x, y) and (x, y) to the hypotheses of Theorem 3.1.37, we obtain the uniqueness of the
coupled fixed point.
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Similarly to [36], it is obtained a result regarding the equality of the two components
of the pair (x, y):

Theorem 3.1.39. [25] In addition to the hypothesis of Theorem 3.1.37, suppose
that every pair of elements of X has an upper bound or a lower bound in X. Then for
the coupled fixed point we have x = y, that is, F has a fixed point.

The same conclusion is obtained under the following assumption:

Theorem 3.1.40. [25] In addition to the hypothesis of Theorem 3.1.37, suppose
that x0, y0 ∈ X are comparable.Then for the coupled fixed point we have x = y, that is,
F has a fixed point.

In [108] Urs, Petruşel and Petruşel present a new approach on coupled fixed points,
by using two mappings instead of one:

Definition 3.1.41. [108] Let X be a nonempty set and T : X ×X → X ×X be
an operator defined by

T (x, y) :=
T1(x, y)
T2(x, y)

 ,
where T1, T2 : X2 → X.

• By definition, a solution (x, y) for the systemT1(x, y) = x

T2(x, y) = y

is called a fixed point for the operator T , respectively, a coupled fixed point for
the pair of singlevalued operators (T1, T2).
• The cartesian product of T and T is denoted by T × T and it is defined in
the following way: T × T : Z × Z → Z × Z, (T × T )(z, w) := (T (z), T (w)),
where Z := X2 and z := (x, y), w := (u, v) are two arbitrary elements in Z.

Remark 3.1.42. In the definition above, if T1(x, y) = F (x, y) and T2(x, y) =
F (y, x), we obtain the classical definition of the coupled fixed point of an operator
F .

The following result is one of the main results in [108] and establishes the existence
of a unique coupled fixed point for the pair of mappings considered.

Theorem 3.1.43. [108] Let (X, d,≤) be an ordered complete metric space and let
T1, T2 : X2 → X be two operators. We suppose:
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(1) for each z = (x, y), w = (u, v) ∈ X×X which are not comparable with respect
to the partial ordering ≤ on X × X, there exists t := (t1, t2) ∈ X × X such
that t is comparable with both z and w, that is,

((x ≥ t1 and y ≤ t2) or (x ≤ t1 and y ≥ t2)) and

((u ≥ t1 and v ≤ t2) or (u ≤ t1 and v ≥ t2));

(2) for all ((x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we haveT1(x, y) ≥ T1(u, v)

T2(x, y) ≤ T2(u, v)
or T1(u, v) ≥ T1(x, y)

T2(u, v) ≤ T2(x, y)

(3) T1, T2 : X2 → X are continuous;
(4) there exists z0 := (z1

0 , z
2
0) ∈ X ×X such thatz

1
0 ≥ T1(z1

0 , z
2
0)

z2
0 ≤ T2(z1

0 , z
2
0)

or T1(z1
0 , z

2
0) ≥ z1

0

T2(z1
0 , z

2
0) ≤ z2

0

(5) there exists a matrix A =
k1 k2

k3 k4

 ∈ M2(R+) convergent toward zero such

that
d(T1(x, y), T1(u, v)) ≤ k1d(x, u) + k2d(y, v)

d(T2(x, y), T2(u, v)) ≤ k3d(x, u) + k4d(y, v)

for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y).
Then there exists a unique element (x∗, y∗) ∈ X ×X such that

x∗ = T1(x∗, y∗) and y∗ = T2(x∗, y∗)

and the sequence of the successive approximations (T n1 (w1
0, w

2
0), T n2 (w1

0, w
2
0))

converges to (x∗, y∗) as n→∞, for all w0 = (w1
0, w

2
0) ∈ X ×X

For the particular case of classical coupled fixed points (that is, T1(x, y) = F (x, y)
and T2(x, y) = F (y, x), where F : X2 → X is a given operator), the authors present a
generalization of Bhaskar and Lakshmikantham’s fixed point theorem in [36]:

Theorem 3.1.44. [36] Let (X, d,≤) be an ordered complete metric space and let
F : X2 → X be two operators. We suppose that:
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i). for each x = (x, y), w = (u, v) ∈ X2, which are not comparable with respect to the
partial ordering "≤" on X2, there exists t = (t1, t2) ∈ X2 such that t is comparable
with both z and w;

ii). for all (x ≥ u and y ≤ v) or (x ≤ u and y ≥ v), we have

F (x, y) ≥ F (u, v)

F (y, x) ≤ F (v, u)
or F (u, v) ≥ F (x, y)

F (v, u) ≤ F (y, x);

iii). F : X2 → X is continuous;
iv). there exists z0 = (z1

0 , z
2
0) ∈ X2 such that

z
1
0 ≥ F (z1

0 , z
2
0)

z2
0 ≤ F (z2

0 , z
1
0)

or F (z1
0 , z

2
0) ≥ z1

0

F (z2
0 , z

1
0) ≤ z2

0 ;

v). there exist k1, k2 ∈ R+, with k1 + k2 < 1 such that

d(F (x, y), F (u, v) ≤ k1d(x, u) + k2d(y, v)

for all (x ≥ u and y ≤ v) or (x ≤ u and y ≥ v).

Then there exists a unique element (x∗, y∗) ∈ X2 such that
x∗ = F (x∗, y∗) and y∗ = F (y∗, x∗)
and the sequence of the successive approximations (F n(w1

0, w
2
0), F n(w2

0, w
1
0)) converges

to (x∗, y∗), as n→∞, for all w0 = (w1
0, w

2
0) ∈ X2.

1.2. Coupled fixed points in metric spaces endowed with a reflexive
relation

Asgari and Mousavi [9] present some coupled fixed point results in the case of a
metric space endowed with a reflexive binary relation. The definition for R-coupled
fixed point they provide is the following:

Definition 3.1.45. [9] Let X be a nonempty set and let R be a reflexive relation
on X, F : X2 → X. An element (x, y) ∈ X2 is called R−coupled fixed point of F , if
F × F (x, y) ∈ XR(x, y), where XR(x, y) = {(z, t) ∈ X2 : zRx ∧ yRt}, ∀(x, y) ∈ X2.



223. COUPLED FIXED POINT THEOREMS IN METRIC SPACES ENDOWED WITH A REFLEXIVE RELATION

If R =′′≤′′, F × F (x0, y0) ∈ XR(x0, y0), which is the condition for (x, y) ∈ X2 to
be an R-coupled fixed point of F , becomes (x0, y0) ≤ (F (x0, y0), F (y0, x0)), that is,
x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Motivated by this fact, we will use along this thesis
the term of lower R-coupled fixed point for the concept of R-coupled fixed point defined
in [9] by Asgari and Mousavi (see Definition 3.1.45).

Asgari and Mousavi , in [9], also redefine the mixed monotone property of a map-
ping, introduced by Bhaskar and Lakshmikantham [36], for the case of a partial ordered
metric space endowed with a reflexive relation. This is given as follows:

Definition 3.1.46. [9] Let X be a nonempty set and let R be a reflexive relation
on X, F : X2 → X. The mapping F has the mixed R−monotone property on X

if F × F (XR(x, y)) ⊆ XR(F × F (x, y)), for all (x, y) ∈ X2, where F × G(x, y) =
(F (x, y), G(y, x)).

The definition for an R−monotone sequence is the following:

Definition 3.1.47. [9] A sequence {(xn, yn)}n∈N ⊆ X2 is called R−monotone se-
quence if (xn, yn) ∈ XR(xn−1, yn−1) for all n ∈ N.

We will also recall the definition of the coupled attractor basin element of a mapping,
orbital continuity of a mapping and Picard operators, as presented in [9]:

Definition 3.1.48. [9] Let X be a topological space and let F : X2 → X be a
mapping.

• Then an element (x, y) ∈ X2 is called a coupled attractor basin element of F
with respect to (x, y) ∈ X2 if F n(x, y) → x and F n(y, x) → y, as n → ∞
and an element x ∈ X is called an attractor basin element of F with respect
to x ∈ X, if F n(x, x) → x, as n → ∞. The set of all coupled attractor basin
elements of F with respect to (x, y) will be denoted by AF (x, y) and the set of
all attractor basin elements of F with respect to x ∈ X, by AF (x).
• The mapping F is called orbitally continuous if (x, y), (a, b) ∈ X ×X and
F nk(x, y) → a, F nk(y, x) → b, when k → ∞, implies F nk+1(x, y) → F (a, b)
and F nk+1(y, x)→ F (b, a), when k →∞;
• The mapping F is called a Picard operator, if there exists x ∈ X such that
FF = {x} and AF (x) = X.

In [10] Asgari and Mousavi also prove some coupled fixed point theorem with
respect to a reflexive relation. Their result for orbitally continuous mappings is the
following:

Theorem 3.1.49 ([9]). Let (X, d) be a metric space and R a reflexive relation on
X. If F : X2 → X is a mapping such that:
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• F has the mixed R−monotone property on X.
• (X, d) is a complete metric space.
• F has an R−coupled fixed point, that is there exists (x0, y0) ∈ X2 such that
F × F (x0, y0) ∈ XR(x0, y0).
• there exists a constant k ∈ [0, 1) such that:

d(F (x, y), F (z, t)) ≤
k

2[d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t).
• f is orbitally continuous.

Then:

• There exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.
• The sequences {xn}n∈N and {yn}n∈N defined by xn+1 = F (xn, yn) and yn+1 =
F (yn, xn) converge respectively to x∗ and y∗, as n→∞.
• The error estimate is given by :

maxn∈N{d(xn, x∗), d(yn, y∗)} ≤
kn

2(1− k)[d(F (x0, y0), x0) + d(F (y0, x0), y0)].

They also prove a result where they remove the orbital continuity of the mapping
F :

Theorem 3.1.50 ([9]). Let (X, d) be a metric space and R a reflexive relation on
X. If F : X2 → X is a mapping such that:

• F has the mixed R−monotone property on X.
• (X, d) is a complete metric space.
• F has an R−coupled fixed point, that is, there exists (x0, y0) ∈ X2 such that
F × F (x0, y0) ∈ XR(x0, y0).
• there exists a constant k ∈ [0, 1) such that:

d(F (x, y), F (z, t)) ≤
k

2[d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t).
• if an R−monotone sequence {(xn, yn)}n∈N → (x, y), then (xn, yn) ∈ XR(x, y),
for all n ∈ N.

Then:

• There exist x∗, y∗ ∈ X such that F (x∗, y∗) = x∗ and F (y∗, x∗) = y∗.
• The sequences {xn}n∈N and {yn}n∈N defined by xn+1 = F (xn, yn) and yn+1 =
F (yn, xn) converge respectively to x∗ and y∗.
• The error estimate is given by :

maxn∈N{d(xn, x∗), d(yn, y∗)} ≤
kn

2(1− k)[d(F (x0, y0), x0) + d(F (y0, x0), y0)].

Remark 3.1.51. The compatibility condition between the metric d and the reflexive
relation R used in Theorem 3.1.49 and Theorem 3.1.50 should be :

If xnRyn then lim
n→∞

xnR lim
n→∞

yn,∀n ∈ N .
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It is also important to recall some of the notations presented by Asgari and Mousavi,
notations used to obtain and prove the results presented in the following section:

Notation 1. [9] Let X be a nonempty set and let f : X ×X → X be a mapping.
Then

(1) The cartesian product of f and itself is denoted by f × f and it is defined by

f × f(x, y) = (f(x, y), f(y, x)).

(2) We will denote f 0(x, y) = x and fn(x, y) = f(fn−1(x, y), fn−1(y, x)), for all
x, y ∈ X,n ∈ N.

2. Definitions

In order to obtain some of the results in the following section, we need to define the
orbital continuity of an operatorial pair (f1, f2), starting from the classical definition
of orbital continuity in [9]:

Definition 3.2.52. Let X be a topological space and f1, f2 : X × X → X two
mappings. We say that the pair (f1, f2) is orbitally continuous if, for (x, y), (a, b) ∈
X2 such that fnk

1 (x, y) → a and fnk
2 (x, y) → b, we have fnk+1

1 (x, y) → f1(a, b) and
fnk+1

2 (x, y)→ f2(a, b), when k →∞.

3. Existence and uniqueness theorems

The following result extends the coupled fixed point Theorem 3.1.49 of Asgari and
Mousavi presented in Chapter 2, that is, Theorem 3.1.49, by replacing the original
contractive condition (3.1.49) with a more general, symmetrical one. This type of
condition was used by Berinde [25] in Theorem 3.1.37 in the extension of Bhaskar and
Lakshmikantham’s results.

Theorem 3.3.53. [55],[57]
Let (X, d) be a complete metric space, R be a binary reflexive relation on X such

that R and d are compatible. If F : X2 → X is a mapping such that

• F has an lower-R-coupled fixed point;
• F has the the mixed R-monotone property on X;
• F is orbitally continuous;
• ∃k ∈ [0, 1) such that

d(F (x, y), F (z, t)) + d(F (y, x), F (t, z)) ≤ k[d(x, z) + d(y, t)],

∀(x, y) ∈ XR(z, t).(3.9)
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Then:

(1) F has a coupled fixed point, that is, ∃(x, y) ∈ X2 such that F (x, y) = x and
F (y, x) = y.

(2) The sequences {xn}n∈N, {yn}n∈N, defined by xn+1 = F (xn, yn), yn+1 = F (yn, xn),
converge to x and y, respectively.

(3) The error estimation that holds is:

maxn∈N{d(xn, x), d(yn, y)} ≤
kn

1− k[d(F (x0, y0), x0) + d(F (y0, x0), y0)].

Proof: Since the mapping F admits a lower-R-coupled fixed point, let (x0, y0) ∈
X×X be it, we have F×F (x0, y0) ∈ XR(x0, y0). Further, using the mixed R-monotone
property of F , we have F × F (x0, y0) ∈ XR(F (x0, y0), F (y0, x0)). Using the induction,
we can easily prove that:

(3.10) (F n(x0, y0), F n(y0, x0)) ∈ XR(F n−1(x0, y0), F n−1(y0, x0)).

We define d2 : X2 ×X2 → R+ d2(Y, Z) =
1
2[d(x, z) + d(y, t)],∀Y = (x, y), Z = (z, t) ∈

X2.
d2 is a metric on X2 because:

• d2(Y, Z) = 0 ⇔ Y = Z is a simple task to check , using the definition of d2

and the fact that d is a metric.
• d2(Y, Z) = d2(Z, Y ),∀Y, Z ∈ X2 holds, because d is a metric, and the sum in
d2’s definition is commutative.
• d2(Y, Z) ≤ d2(Y, T ) + d2(T, Z),∀Y, T, Z ∈ X2 can also be easily checked.

Therefore the metric space (X2, d2) is complete.
We consider the operator:
T : X2 → X2 defined by T (Y ) = (F (x, y), F (y, x)), ∀Y = (x, y) ∈ X2.
For Y = (x, y), Z = (z, t) ∈ X2, considering the definition for d2, we have:

d2(T (Y ), T (Z)) =
d(F (x, y), F (z, t)) + d(F (y, x), F (t, z))

2
and

d2(Y, Z) =
d(x, z) + d(y, t)

2 .

By the contractivity condition (3.9) we have

(3.11) d2(T (Y ), T (Z)) ≤ k · d2(Y, Z),∀Y, Z ∈ X2, Y ∈ XR(Z).

Denote Z0 = (x0, y0) ∈ X2 and consider the sequence {Zn}n≥0 ⊂ X2, defined by Zn+1 =
T (Zn), n ≥ 1, where Zn = (xn, yn) ∈ X2, n ≥ 1.This means Zn = (F n(x0, y0), F n(y0, x0)),
Since F has the mixed R-monotone property on X, we have

T (XR(Z0)) ⊂ XR(T (Z0)).
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But T (Z0) = Z1, so, by induction, we have T (XR(Zn)) ⊂ XR(Zn+1). Next, we denote
Y = Zn ≥ Zn−1 = V .
We replace this in (3.11), obtaining:

d2(T (Zn), T (Zn−1)) ≤ k · d2(Zn, Zn−1), n ≥ 1⇔

⇔ d2(Zn+1, Zn) ≤ k · d2(Zn, Zn−1), n ≥ 1.

Using the induction, we have:

d2(Zn+1, Zn) ≤ kn · d2(Z1, Z0), n ≥ 1.

Let i < j. We get:

d2(Zi, Zj) ≤
j∑

l=i+1
d2(Zl, Zl−1) ≤ (ki + ki+1 + ...+ kj−i−1) · d2(Z1, Z0) ≤

(3.12) ≤ ki
1− kj−i−1

1− k · d2(Z1, Z0)

⇒ {Zn}n≥0 is a Cauchy sequence in the complete metric space (X2, d2)⇒

⇒ lim
n→∞

Zn = Z.

So, T (Z) = Z ⇔ (F (x, y), F (y, x)) = (x, y)⇔ F (x, y) = x, F (y, x) = y ⇔ (x, y) is the
coupled fixed point for F .
Since the considered metric space is complete , ∃ x, y ∈ X such that F n(x0, y0)→ x,
F n(y0, x0)→ y, n→∞. Using the fact that F is orbitally continuous, we have:

{xn}n∈N → x, xn+1 = F (xn, yn)

{yn}n∈N → y, yn+1 = F (yn, xn)

So, by (3.12) we have:

d2((xn, yn), (x, y)) ≤ kn

1− k · d2((x1, y1), (x0, y0)), n ≥ 0.

We return to the original metric d:

d(xn, x) + d(yn, y)
2 ≤

kn

1− k ·
d(x1, x0) + d(y1, y0)

2 ⇔

⇔ d(xn, x) + d(yn, y) ≤ max
n∈N
{d(xn, x), d(yn, y)} ≤

kn

1− k · [d(x1, x0) + d(y1, y0)].

But xn+1 = F (xn, yn) and yn+1 = F (yn, xn). We get:

max
n∈N
{d(xn, x), d(yn, y)} ≤

kn

1− k · [d(F (x0, y0), x0) + d(F (y0, x0), y0)].

�

Next, let us recall the definition of a mapping γ, called comparison function, from
[122]: Let γ : [0,∞)→ [0,∞) satisfying :
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i) γ is monotone increasing;
ii) lim

n→+∞
γn(t) = 0,∀t ∈ [0,∞);

Introducing in the right hand of the contractive condition of Theorem 2.6 in [9]
this mapping instead of constant k, we obtain the following result, with a more general
contractive condition:

Theorem 3.3.54. Let (X, d) be a complete metric space, γ a comparison function,
R be a binary reflexive relation on X such that R and d are compatible. If F : X2 → X

is a mapping such that

(i) F has the mixed R-monotone property;
(ii) F is orbitally continuous;
(iii)

d(F (x, y), F (z, t)) ≤ γ

d(x, z) + d(y, t)
2

 ,∀(x, y) ∈ XR(z, t), where γ is a comparison function;

(3.13)

(iv) F has a lower-R-coupled fixed point;

Then F has a coupled fixed point, that is, there exists (x, y) ∈ X2 such that
F (x, y) = x and F (y, x) = y.

Proof: Since the mapping F admits a lower-R-coupled fixed point, let (x0, y0) ∈
X×X be it, we have F×F (x0, y0) ∈ XR(x0, y0). Further, using the mixed R-monotone
property of F , we have F × F (x0, y0) ∈ XR(F (x0, y0), F (y0, x0)). Using the induction,
we can easily prove that:

(3.14) (F n(x0, y0), F n(y0, x0)) ∈ XR(F n−1(x0, y0), F n−1(y0, x0)).

Now, we claim that for n ∈ N, we have

d(F n+1(x0, y0), F n(x0, y0)) ≤ γn

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2

(3.15)

and(3.16)

d(F n+1(y0, x0), F n(y0, x0)) ≤ γn

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


For n = 1, we get

d(F 2(x0, y0), F (x0, y0)) ≤ γ

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


and

d(F 2(y0, x0), F (y0, x0)) ≤ γ

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2

 .
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Next, we assume (3.15) holds. Using (3.13), we have

d(F n+2(x0, y0), F n+1(x0, y0))

= d(F (F n+1(x0, y0), F n+1(y0, x0)), F (F n(x0, y0), F n(y0, x0)))

≤ γ

d(F n+1(x0, y0), F n(x0, y0)) + d(F n+1(y0, x0), F n(y0, x0))
2


γn+1

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


Similarly, we can prove that

d(F n+2(x0, y0), F n+1(x0, y0)) ≤

γn+1

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


But condition ii holds (i.e. lim

n→+∞
γn(t) = 0,∀t ∈ [0,∞)), so {F n(x0, y0)}n∈N and

{F n(y0, x0)}n∈N are Cauchy sequences in the complete metric space (X, d).
Since (X, d) is complete, there exist x, y ∈ X such that F n(x0, y0)→ x and F n(y0, x0)→
y, as n → ∞. Since F is orbitally continuous, we have that F n+1(x0, y0) → F (x, y)
and F n+1(y0, x0)→ F (y, x), so the proof of the theorem is complete. �

Next, let us replace the γ function with a more general one, the function ϕ in-
troduced in [53] by Ćirić and Lakshmikantham: Let ϕ : [0,∞) → [0,∞) satisfying
:
i) ϕ(t) < t,∀t ∈ (0,∞);
ii) lim

r→t+
ϕ(r) < t,∀t ∈ (0,∞);

The set of all these mappings ϕ is denoted by Φ.

Theorem 3.3.55. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If F : X2 → X is a mapping such
that

(i) F has the mixed R-monotone property;
(ii) F is orbitally continuous;
(iii)

d(F (x, y), F (z, t)) ≤ ϕ

d(x, z) + d(y, t)
2

 ,∀(x, y) ∈ XR(z, t),(3.17)

where ϕ ∈ Φ;
(iv) F has a lower-R-coupled fixed point;

Then F has a coupled fixed point, that is, there exists (x, y) ∈ X2 such that
F (x, y) = x and F (y, x) = y.
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Proof: Since F has a lower-R-coupled fixed point, let (x0, y0) be it. Thus, (F ×
F )(x0, y0) ∈ XR(x0, y0).
From (i) we have that (F × F )(XR(x0, y0)) ⊆ XR((F × F )(x0, y0)).
Further, it can easily be checked that

(3.18) (F n(x0, y0), F n(y0, x0)) ∈ XR(F n−1(x0, y0), F n−1(y0, x0)).

Next, let x1, y1 ∈ X such that x1 = F (x0, y0), y1 = F (y0, x0) and so on. Step by step,
we obtain the sequences {xn} and {yn} such that

(3.19) xn+1 = F (xn, yn), yn+1 = F (yn, xn)

Let’s consider the nonnegative sequence {zn}n∈N∗ such that zn = d(xn+1, xn)+d(yn+1, yn), n ∈
N∗.
Now, using (3.17), (3.18) and letting x := xn and y := yn, z := xn−1 and t := yn−1, we
obtain

d(xn+1, xn) = d(F (xn, yn), F (xn−1, yn−1)) ≤ ϕ

d(xn, xn−1) + d(yn, yn−1)
2

 =

ϕ

zn−1

2


and

d(yn+1, yn) = d(F (yn, xn), F (yn−1, xn−1)) ≤ ϕ

d(xn, xn−1) + d(yn, yn−1)
2

 =

ϕ

zn−1

2

 .
By summing up the last two relations, we get that

d(xn+1, xn) + d(yn+1, yn) = zn ≤ 2 · ϕ
zn−1

2

 .
Now, using (i) from the definition of ϕ, we have that

(3.20) zn ≤ 2 · ϕ
zn−1

2

 < 2 ·
zn−1

2 = zn−1.

Thus, the sequence {zn}n∈N∗ is decreasing and nonnegtive. Therefore, there exists
ε0 ≥ 0 such that

lim
n→∞

zn = ε0.

Now, we will prove that ε0 = 0. In (3.20), let n→∞. Using (ii) (the second condition
satisfied by ϕ), we have

ε0 = lim
n→∞

zn ≤ 2 · lim
n→∞

ϕ

zn−1

2

 = 2 · lim
zn−1→ε0+

ϕ

zn−1

2

 < ε0,
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which is a contradiction. Thus, limn→∞ zn = 0 and, consequently, lim
n→∞

d(xn+1, xn) = 0
and lim

n→∞
d(yn+1, yn) = 0.

Next, we will prove that {xn}n∈N and {yn}n∈N are Cauchy sequences. Suppose that at
least one of them is not a Cauchy sequence. Then, there exists a constant δ > 0 and
two integer sequences {n1(k)} and {n2(k)}, such that

(3.21) sk := d(xn2(k), xn1(k)) + d(yn2(k), yn1(k)),

where n1(k) > n2(k) ≥ k, k ∈ N∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (3.21). Then, we have

(3.22) d(xn2(k), xn1(k)−1) + d(yn2(k), yn1(k)−1) < δ.

Now, using the triangle inequality and the last two inequalities ((3.21) and (3.22)), we
have

δ ≤ d(xn2(k), xn1(k)) + d(yn2(k), yn1(k))

≤ d(xn1(k), xn1(k)−1) + d(yn1(k), yn1(k)−1) + d(xn2(k), xn1(k)) + d(yn2(k), yn1(k))

≤ d(xn2(k), xn1(k)) + d(yn2(k), yn1(k)) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(xn2(k), xn1(k)) + d(yn2(k), yn1(k))] = δ.

Now we will show that δ = 0. Supposing the contrary, we have

sk = d(xn2(k), xn1(k)) + d(yn2(k), yn1(k))

≤ d(xn1(k), xn1(k)+1) + d(xn1(k)+1, xn2(k)) + d(yn1(k), yn1(k)+1) + d(yn1(k)+1, yn2(k))

= zn1(k) + d(xn1(k)+1, xn2(k)) + d(yn1(k)+1, yn2(k))

(3.23) ≤ zn1(k) + zn2(k) + d(xn1(k)+1, xn2(k)+1) + d(yn1(k)+1, yn2(k)+1).

But
d(xn1(k)+1, xn2(k)+1) + d(yn1(k)+1, yn2(k)+1)

= d(F (xn1(k), yn1(k)), F (xn2(k), yn2(k))) + d(F (yn1(k), xn1(k)), F (yn2(k), xn2(k)))

≤ 2 · ϕ
d(xn1(k), xn2(k)) + d(yn1(k), yn2(k))

2



≤ 2 · ϕ
sk

2

 .
Now, returning to (3.23), we have

sk ≤ zn1(k) + zn2(k) + 2 · ϕ
sk

2

 .
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Let k →∞. Using ii (the second property of ϕ), we obtain

δ ≤ 2 · lim
k→∞

ϕ

sk
2

 = 2 · lim
sk→δ+

ϕ

sk
2

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {xn}n∈N and {yn}n∈N are Cauchy sequences in the complete metric space
(X, d). Since X is complete, there exist x and y such that xn → x and yn → y as
n → ∞. Which means that F n−1(xn, yn) → x and F n−1(yn, xn) → y, as n → ∞.
Using the orbital continuity of F , we get that F n(xn, yn)→ x and F n(yn, xn)→ y, as
n→∞, that is, (x, y) is a coupled fixed point for F . �

Theorem 3.3.56. In addition to the hypothesis of Theorem 3.3.54, if for every
(x, y), (x∗, y∗) ∈ X2, there exists (u, v) ∈ X2 such that (x, y), (x∗, y∗) ∈ XR(u, v), then
F has a unique coupled fixed point.

Proof: The proof of this Theorem follows the steps of Theorem 2.9 in [9]. Accord-
ing to the proof of Theorem 3.3.54, there exists a coupled fixed point for the mapping
F . Let (x∗, y∗) ∈ X2 be it. In order to prove the uniqueness of this point, we have to
show that AF (x∗, y∗) = X2, where AF is the set of coupled attractor basin elements
introduced in Definition 3.1.48.
From the hypothesis of Theorem 3.3.54, we know that F has the mixed R-monotone
property on X and it admits a lower-R-coupled fixed point. Hence, we have that

F × F (XR(x, y)) ⊆ XR(F × F (x, y)), ∀(x, y) ∈ X

and

F × F (x, y)) ∈ XR(x, y)( that is (x, y) lower−R− coupled fixed point)

. Next, let (x, y) ∈ X2 be arbitrary and x∗ = x0 and y∗ = y0. Thus, there exists
(u, v) ∈ X2 such that (x, y), (x0, y0) ∈ XR(u, v).
Since (X, d) is a complete metric space, we have that

(F n((x0, y0), F n(y0, x0)) ∈ XR(F n(u, v), F n(v, u)), n ∈ N

So the pair (F n(x0, y0), F n(y0, x0)) is eligible to satisfy the contractive condition (3.13).
In consequence, similarly to the proof of Theorem 3.3.54, we have:

(3.24) d(F n(x0, y0), F n(u, v)) ≤ γn

d(x0, u) + d(y0, v)
2


and

(3.25) d(F n(y0, x0), F n(v, u)) ≤ γn

d(x0, u) + d(y0, v)
2

 .
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From the proof of Theorem 3.3.54 we have that F n(x0, y0)→ x∗ and F n(y0, x0)→ y∗,
when n → ∞. Thus, (x0, y0) ∈ X2 is a coupled attractor basin element for F , that is
(x0, y0) ∈ AF (x∗, y∗). If, in addition to this, we consider the last two inequalities (3.24)
and (3.25), it follows that (u, v) ∈ AF (x∗, y∗).
From the hypothesis, we have that (x, y) ∈ XR(u, v), where (x, y) ∈ X2 arbitrary. This
implies that AF (x∗, y∗) = X2, so the proof of the theorem is complete. �

Remark 3.3.57. Note that for γ(t) = kt in Theorem 3.3.54, we obtain Asgari and
Mousavi’s fixed point Theorem 2.6 in [9].

We may obtain a more general result than the one given by Theorem 3.3.55, by
considering a symmetric contractive condition.

Theorem 3.3.58. Let (X, d) be a complete metric space, γ a comparison function,
R be a binary reflexive relation on X such that R and d are compatible. If F : X2 → X

is a mapping such that

(i) F is mixed R-monotone;
(ii) F is orbitally continuous;
(iii)

d(F (x, y), F (z, t)) + d(F (y, x), F (t, z)) ≤ 2 · γ
d(x, z)) + d(y, t)

2

 ,(3.26)

∀(x, y) ∈ XR(z, t), where γ is a comparison function;

(iv) F has a lower-R-coupled fixed point.

Then F has a coupled fixed point, that is, there exists (x, y) ∈ X2 such that
F (x, y) = x and F (y, x) = y.

Proof: Since F has a lower-R-coupled fixed point, let (x0, y0) be it.
Thus, (F × g)(x0, y0) ∈ XR(x0, y0). Further, using the mixed R-monotone property of
F , we have
F × F (x0, y0) ∈ XR(F (x0, y0), F (y0, x0)). Using the induction, we can easily prove
that:

(3.27) (F n(x0, y0), F n(y0, x0)) ∈ XR(F n−1(x0, y0), F n−1(y0, x0)).

Since F (X2) ⊆ X, let x1, y1 ∈ X such that x1 = F (x0, y0), y1 = F (y0, x0) and so on.
Step by step, we obtain the sequences {xn} and {yn} such that

(3.28) xn+1 = F (xn, yn), yn+1 = F (yn, xn)
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Now, we claim that for n ∈ N, we have

d(F n+1(x0, y0), F n(x0, y0)) ≤ γn

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2

(3.29)

d(F n+1(y0, x0), F n(y0, x0)) ≤ γn

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


For n = 1, we get

d(F 2(x0, y0), F (x0, y0)) ≤ γ

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


and

d(F 2(y0, x0), F (y0, x0)) ≤ γ

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2

 .
Next, we assume (3.29) holds. By summing up and using (3.26), we have

d(F n+2(x0, y0), Fn+ 1(x0, y0)) + d(F n+2(y0, x0), F n+1(y0, x0))

≤ 2γ
d(F n+1(x0, y0), F n(x0, y0)) + d(F n+1(y0, x0), F n(y0, x0))

2



2γn+1

d(F (x0, y0), x0) + d(F (y0, x0), y0)
2


Now, using condition (ii) (i.e. lim

n→+∞
γn(t) = 0,∀t ∈ [0,∞)) , we have that {F n(x0, y0)}n∈N

and {F n(y0, x0)}n∈N are Cauchy sequences in X.
Since (X, d) is complete, there exist x, y ∈ X such that F n(x0, y0)→ x and F n(y0, x0)→
y, as n → ∞. Since F is orbitally continuous, we have that F n+1(x0, y0) → F (x, y)
and F n+1(y0, x0)→ F (y, x) and by (3.28) the proof of the theorem is complete. �

Similarly to Theorem 3.3.54, by adding one more assumption to the hypothesis of
Theorem 3.3.58, we obtain the uniqueness of the coupled fixed point. The proof of the
result is similar to the proof of Theorem 3.3.56.

Theorem 3.3.59. In addition to the hypothesis of Theorem 3.3.58, if for every
(x, y), (x∗, y∗) ∈ X2, there exists (u, v) ∈ X2 such that (x, y), (x∗, y∗) ∈ XR(u, v), then
F has a unique coupled fixed point.

Proof: The proof of this result also follows the steps of Theorem 2.9 in [9]. Accord-
ing to the proof of Theorem 3.3.58, there exists a coupled fixed point of the mapping
F . Let (x∗, y∗) ∈ X2 be it. In order to prove the uniqueness of this point, we have to
show that AF (x∗, y∗) = X2, where AF is the set of coupled attractor basin elements
introduced in Definition 3.1.48.
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From the hypothesis of Theorem 3.3.58, we know that F has the mixed R-monotone
property on X and it admits a lower-R-coupled fixed point. Hence, we have that

F × F (XR(x, y)) ⊆ XR(F × F (x, y)), ∀(x, y) ∈ X

and

F × F (x, y)) ∈ XR(x, y)(thatis(x, y) lower−R− coupled fixed point)

. Next, let (x, y) ∈ X2 be arbitrary and x∗ = x0 and y∗ = y0. Thus, there exists
(u, v) ∈ X2 such that (x, y), (x0, y0) ∈ XR(u, v).
Since (X, d) is a complete metric space, we have that

(F n((x0, y0), F n(y0, x0)) ∈ XR(F n(u, v), F n(v, u)), n ∈ N

Moreover, we know that the pair (F n(x0, y0), F n(y0, x0)) satisfies the contractive con-
dition (3.26). In consequence, similarly to the proof of Theorem 3.3.58, we have:
(3.30)

d(F n(x0, y0), F n(u, v))+d(F n(y0, x0), F n(v, u) ≤ 2γn
d(x0, u) + d(y0, v)

2

→ 0, as n→∞.

From the proof of Theorem 3.3.58 we have that F n(x0, y0)→ x∗ and F n(y0, x0)→ y∗,
when n → ∞. Thus, (x0, y0) ∈ X2 is a coupled attractor basin element for F , that is
(x0, y0) ∈ AF (x∗, y∗). If, in addition to this, we consider the last inequality (3.30), it
follows that (u, v) ∈ AF (x∗, y∗).
From the hypothesis, we have that (x, y) ∈ XR(u, v), where (x, y) ∈ X2 arbitrary. This
implies that AF (x∗, y∗) = X2, so the proof of the theorem is complete. �

Remark 3.3.60. By letting γ(t) = kt in (3.26) from Theorem 3.3.58, we obtain
Theorem 3.3.53.

The next theorem extends the results of Urs from [144] (see Theorem 2.6) in the
case of metric space endowed with a reflexive relation.

Theorem 3.3.61. [56] Let (X, d) be a metric space and R a reflexive relation on
X such that R and d are compatible. If f1, f2 : X2 → X are two mappings such that:

(i) f1, f2 have the mixed R−monotone property on X.
(ii) (X, d) is a complete metric space.
(iii) there exists (x0, y0) ∈ X2 such that f1 × f2(x0, y0) ∈ XR(x0, y0).
(iv) there exists a constant k ∈ [0, 1) such that:

d(f1(x, y), f1(z, t)) + d(f2(x, y), f2(z, t)) ≤ k · [d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t).

(v) the pair (f1, f2) is orbitally continuous.

Then:

(i) There exist x∗, y∗ ∈ X such that f1(x∗, y∗) = x∗ and f2(x∗, y∗) = y∗.
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(ii) The sequences {xn}n∈N and {yn}n∈N defined by xn+1 = f1(xn, yn) and yn+1 =
f2(xn, yn) converge respectively to x∗ and y∗.

(iii) The error estimation is given by:

maxn∈N{d(xn, x∗), d(yn, y∗)} ≤
kn

2(1− k)[d(f1(x0, y0), x0) + d(f2(x0, y0), y0)].

Proof: From (iii), we have that the pair (f1, f2) admits a lower-R-coupled fixed
point; let (x0, y0) ∈ X×X be it, we have f1×f2(x0, y0) ∈ XR(x0, y0). Further, using the
mixed R-monotone property of f1, f2, we have f1×f2(x0, y0) ∈ XR(F (x0, y0), F (y0, x0)).
Using the induction, we can easily prove that:

(3.31) (fn1 (x0, y0), f2(x0, y0)) ∈ XR(fn−1
1 (x0, y0), fn−1

2 (x0, y0)).

We define d2 : X2 ×X2 → R+ d2(Y, Z) =
1
2[d(x, z) + d(y, t)],∀Y = (x, y), Z = (z, t) ∈

X2.
d2 is a metric on X2 because:

• d2(Y, Z) = 0 ⇔ Y = Z is a simple task to check , using the definition of d2

and the fact that d is a metric.
• d2(Y, Z) = d2(Z, Y ),∀Y, Z ∈ X2 holds, because d is a metric, and the sum in
d2’s definition is commutative.
• d2(Y, Z) ≤ d2(Y, T ) + d2(T, Z),∀Y, T, Z ∈ X2 can also be easily checked.

Therefore (X2, d2) is a complete metric space.
We consider the operator:
T : X2 → X2 defined by T (Y ) = (f1(x, y), f2(x, y)),∀Y = (x, y) ∈ X2.
For Y = (x, y), Z = (z, t) ∈ X2, considering the definition for d2, we have:

d2(T (Y ), T (Z)) =
d(f1(x, y), f1(z, t)) + d(f2(x, y), f2(z, t))

2
and

d2(Y, Z) =
d(x, z) + d(y, t)

2 .

By the contractivity condition (iv) we have

(3.32) d2(T (Y ), T (Z)) ≤ k · d2(Y, Z),∀Y, Z ∈ X2, Y ≥ Z.

Denote Z0 = (x0, y0) ∈ X2 and consider the sequence {Zn}n≥0 ⊂ X2, defined by Zn+1 =
T (Zn), n ≥ 1, where Zn = (xn, yn) ∈ X2, n ≥ 1.This means Zn = (fn1 (x0, y0), fn2 (x0, y0)),
Since f1, f2 have the mixed R-monotone property on X, we have

T (XR(Z0)) ⊂ XR(T (Z0)).

But T (Z0) = Z1, so, by induction, we have T (XR(Zn)) ⊂ XR(Zn+1). We denote
Y = Zn ≥ Zn−1 = V .
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We replace this in (3.32), obtaining:

d2(T (Zn), T (Zn−1)) ≤ k · d2(Zn, Zn−1), n ≥ 1⇔

⇔ d2(Zn+1, Zn) ≤ k · d2(Zn, Zn−1), n ≥ 1.

Using the induction, we have:

d2(Zn+1, Zn) ≤ kn · d2(Z1, Z0), n ≥ 1.

Let i < j. We get:

d2(Zi, Zj) ≤
j∑

l=i+1
d2(Zl, Zl−1) ≤ (ki + ki+1 + ...+ kj−i−1) · d2(Z1, Z0) ≤

(3.33) ≤ ki
1− kj−i−1

1− k · d2(Z1, Z0)

⇒ {Zn}n≥0 is a Cauchy sequence in the complete metric space (X2, d2)⇒

⇒ lim
n→∞

Zn = Z∗.

We now use (3.31): T (Z∗) = Z∗ ⇔ (f1(x∗, y∗), f2(y∗, x∗)) = (x∗, y∗) ⇔ f1(x∗, y∗) =
x∗, f2(x∗, y∗) = y∗ ⇔ (x∗, y∗) is the coupled fixed point for the pair (f1, f2).
Since (X, d) is a complete metric space, ∃ x∗, y∗ ∈ X such that fn1 (x0, y0) → x∗,
fn2 (x0, y0)→ y∗, n→∞. Using the last assumption in the hypothesis, we have:

{xn}n∈N → x∗, xn+1 = f1(xn, yn)

{yn}n∈N → y∗, yn+1 = f2(xn, yn)

So, by (3.33) we have:

d2((xn, yn), (x∗, y∗)) ≤
kn

1− k · d2((x1, y1), (x0, y0)), n ≥ 0.

We return to the original metric d:

d(xn, x∗) + d(yn, y∗)
2 ≤

kn

1− k ·
d(x1, x0) + d(y1, y0)

2 ⇔

⇔ d(xn, x∗) + d(yn, y∗) ≤ max
n∈N
{d(xn, x∗), d(yn, y∗)} ≤

kn

1− k · [d(x1, x0) + d(y1, y0)].

But xn+1 = f1(xn, yn) and yn+1 = f2(xn, yn). We get:

max
n∈N
{d(xn, x∗), d(yn, y∗)} ≤

kn

1− k · [d(f1(x0, y0), x0) + d(f2(x0, y0), y0)].

�

The following result establishes the conditions under which we obtain the unique-
ness of the coupled fixed point. It is sufficient to suppose that there exists a couple
(r, s) in X2 such that any other two arbitrary coupled in X2 are in the reflexive relation
R with (r, s).
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Theorem 3.3.62. [56] In addition to the hypothesis of Theorem 3.3.61, we suppose
that, for every (x, y), (x0, y0) ∈ X2, there exists (r, s) ∈ X2 such that (x, y), (x0, y0) ∈
XR(r, s). Then, the pair (f1, f2) admits a unique fixed point.

Proof: From Theorem 3.3.61 it follows that there exists x∗, y∗ ∈ X such that
f1(x∗, y∗) = x∗, f2(x∗, y∗) = y∗.
The next step is to show that A(f1, f2)(x∗, y∗) = X ×X.
Let (x, y) ∈ X2. Since f1, f2 have the mixed R−monotone property on X, then there
exists (r, s) ∈ X2 such that (x, y), (x0, y0) ∈ XR(r, s). From (x0, y0) ∈ XR(r, s) and the
fact that (X, d) is a complete metric space, it follows that for n ∈ N

(fn1 (x0, y0), fn2 (x0, y0)) ∈ XR(fn1 (r, s), fn2 (r, s)).

From the sixth assumption of Theorem 3.3.61 (that is, for (x, y), (a, b) ∈ X2 such that
fnk

1 (x, y) → a and fnk
2 (x, y) → b, we have fnk+1

1 (x, y) → f1(a, b) and fnk+1
2 (x, y) →

f2(a, b), when k →∞) we have:

d(fn1 (x0, y0), fn1 (r, s)) ≤ kn · [d(x0, r) + d(y0, s)],

and

d(fn2 (x0, y0), fn2 (r, s)) ≤ kn · [d(x0, r) + d(y0, s)].

Now, using the fact that (x0, y0) ∈ A(f1, f2)(x∗, y∗), it follows that (r, s) ∈ A(f1, f2)(x∗, y∗).
Thus, A(f1, f2)(x∗, y∗) = X2.
Therefore the pair(f1, f2) admits a unique fixed point. �

It is important to note that the results presented are extensions of important results
in the field.

Remark 3.3.63. If, in Theorem 3.3.61 we take f1(x, y) = F (x, y) and f2(x, y) =
F (y, x), we obtain Theorem 3.3.53.

Remark 3.3.64. If, in Theorem 3.3.62 we take f1(x, y) = F (x, y) and f2(x, y) =
F (y, x), we obtain Theorem 3.3.54.

Remark 3.3.65. If, in Theorem 3.3.61, we take f1(x, y) = F (x, y) and f2(x, y) =
F (y, x) and the contractive condition is replaced by

d(F (x, y), F (z, t)) ≤
k

2 [d(x, z) + d(y, t)] ,∀(x, y) ∈ XR(z, t),

we obtain Theorem 3.1.49 of Asgari and Mousavi in [9].

Remark 3.3.66. If, in Theorems 3.3.61 and 3.3.62, we endow the metric space with
a relation of partial order (instead of the reflexive relation), we obtain similar results
to the ones obtained by Urs, Petruşel and Petruşel in [108], [143] and [144].
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Remark 3.3.67. If, in Theorems 3.3.61 and 3.3.62 we take f1(x, y) = F (x, y) and
f2(x, y) = F (y, x) and R is the partial order on X we obtain Theorems 3.1.37 and
3.1.38, that is, the results in Berinde [25].

4. Examples and applications

4.1. Examples

Theorem 3.3.53 is more general than the fixed point theorem of Asgari and Mousavi
[9] because of the new contractivity condition, fact illustrated by the following example.

Example 3.4.68. Let X = R, the metric d(x, y) = |x− y|, the relation R on X

given by

xRy ⇔
x2 − 2y

3 =
y2 − 2x

3 .

Let F : X2 → X be defined by F (x, y) =
x− 2y

3 . So, ∀(x, y) ∈ X2, F has the mixed
R−monotone property, satisfies (3.9), but does not satisfy the contractivity condition in
Asgari and Mousavi’s fixed point theorem [9]. Indeed, assume that there exists k ∈ [0, 1)
such that (3.1.49) holds. This means∣∣∣∣∣∣

x− 2y
3 −

z − 2t
3

∣∣∣∣∣∣ ≤
k

2[|x− z|+ |y − t|],∀(x, y) ∈ XR(z, t)

by which, for x = z, we get
2
3 |y − t| ≤

k

2 |y − t|

which, for y 6= t, would imply
4
3 ≤ k, where k < 1, a contradiction. Now, we prove that

(3.9) holds. We have

∣∣∣∣∣∣
x− 2y

3 −
z − 2t

3

∣∣∣∣∣∣ ≤
1
2 |x− z|+

1
3 |y − t| , ∀(x, y) ∈ XR(z, t)

and ∣∣∣∣∣∣
y − 2x

3 −
t− 2z

3

∣∣∣∣∣∣ ≤
1
2 |y − t|+

1
3 |x− z| ,∀(x, y) ∈ XR(z, t).

By summing up these two relations, we get (3.9) with k =
5
6 < 1.

On the other hand,
x2 − 2y

3 =
y2 − 2x

3
⇔ (x− y)(x+ y + 2) = 0.
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Thus, we have XR(x, y) = {(x, y)(x,−y − 2), (−x − 2, y), (−x − 2,−y − 2)}. Also,
F × F (0, 0) ∈ XR(0, 0). So, by Theorem 3.3.53 we obtain that (0, 0) is a coupled fixed
point of F , and, moreover, it is unique.

Example 3.4.69. Let X = R, the metric d(x, y) = |x− y|, the relation R on X

given by
xRy ⇔ x2 + 4y = y2 + 4x.

Let F : X2 → X be defined by F (x, y) =
x− 2y

4 . So, ∀(x, y) ∈ X2, F has the mixed
R−monotone property, satisfies (3.26), but does not satisfy the contractivity condition
in Asgari and Mousavi’s fixed point Theorem 2.6 in [9].
Let’s suppose that there exists k ∈ [0, 1) such that (3.1.49) holds. This means∣∣∣∣∣∣

x− 2y
4 −

u− 2v
4

∣∣∣∣∣∣ ≤
k

2 (|x− u|+ |y − v|) ,∀(x, y) ∈ XR(u, v).

Letting x = u in the inequality above, we have∣∣∣∣∣∣
y − v

2

∣∣∣∣∣∣ ≤
k

2 |y − v|

which implies
1 ≤ k, which is a contradiction .

Next, we prove that (3.26) holds. We have∣∣∣∣∣∣
x− 2y

4 −
u− 2v

4

∣∣∣∣∣∣ ≤
1
4 |x− u|+

1
2 |y − v| ,∀(x, y) ∈ XR(u, v)

and ∣∣∣∣∣∣
y − 2x

4 −
v − 2u

4

∣∣∣∣∣∣ ≤
1
4 |y − v|+

1
2 |x− u| ,∀(x, y) ∈ XR(u, v).

By summing up, we obtain∣∣∣∣∣∣
x− 2y

4 −
u− 2v

4

∣∣∣∣∣∣+
∣∣∣∣∣∣
y − 2x

4 −
v − 2u

4

∣∣∣∣∣∣ ≤
3
4 (|x− u|+ |y − v|) ,

which is exactly (3.26) for γ(t) =
3t
8 . Note that γ : [0,∞)→ [0,∞), γ(t) =

3t
8 satisfies

conditions i and ii, thus γ is, indeed, a comparison function.
On the other hand,

x2 + 4y = y2 + 4x

⇔ (x− y)(x+ y − 4) = 0.

Thus, we have XR(x, y) = {(x, y)(x, 4−y), (4−x, y), (4−x, 4−y)}. Also, F ×F (0, 0) ∈
XR(0, 0). So, by Theorem 3.3.58, we obtain that F has a (unique) coupled fixed point
(0, 0), but Theorem 3.1.49 cannot be applied to F in this particular example.
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4.2. Applications

In this section we will study the existence and uniqueness of the solution of a first-
order periodic boundary value system, as an application to the results presented in the
previous section.

In a similar context, Berinde in [25], Bhaskar and Lakshmikantham in [36], Lak-
shmikantham and Guo in [70], [71] and Urs in [145], [143] also studied the existence
and uniqueness of solutions for a periodic boundary value problem, in the framework
of a partially ordered metric space. In this case, we will endow the metric space with
a reflexive relation.

Let’s denote the reflexive relation by "R" on C(I) × C(I) and let there be z :=
(x, y) and w := (u, v) two arbitrary elements of C(I) × C(I). Then, by definition,
z ∈ XR(w)⇔ x ≤ u and y ≥ v.

It can easily be checked that (x, x) ∈ XR(x, x) and if (x, y) ∈ XR(u, v)(i.e., z ∈
XR(w)) and (u, v) ∈ XR(x, y)(i.e., w ∈ XR(z)), we have z = w, but the proprerty of
transitivity (necessary for R to be a relation of order) does not hold in this case.

Let’s consider the periodic boundary value system studied in [144]:

(3.34)



x′(t) = f1(t, x(t), y(t))

y′(t) = f2(t, x(t), y(t)), ∀t ∈ I := [0, T ]

x(0) = x(T )

y(0) = y(T )

where T > 0 and f1, f2 : I × R2 → R. We also suppose that :

C.1 there exist λ, µ1, µ2, µ3, µ4 > 0,
µ1 + µ2

1− µ3 − µ4
< 1 such that

0 ≤ [f1(t, x, y) + λx]− [f1(t, u, v) + λu] ≤ λ[µ1(x− u) + µ2(y − v)]− λ[µ3(x−
u) + µ2(y − v)] ≤ [f2(t, x, y) + λx]− [f2(t, u, v) + λu] ≤ 0,

∀t ∈ I and x, y, u, v ∈ R, where f1, f2 are two continuous functions.
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C.2 for each z = (x, y) and w = (u, v) ∈ C(I)×C(I) , if z ∈ XR(w) or w ∈ XR(z), we
have: f2(t, x, y)] ≤ f2(t, u, v)

f1(t, x, y) ≥ f1(t, u, v)
orf2(t, u, v) ≤ f2(t, x, y)

f1(t, u, v) ≥ f1(t, x, y)

C.3 there exists z0 := (z1
0 , z

2
0) ∈ C(I)× C(I) such that:

z
1
0(t) ≤ f1(t, z1

0(t), z2
0(t))

z2
0(t) ≥ f2(t, z1

0(t), z2
0(t))

orf1(t, z1
0(t), z2

0(t)) ≤ z1
0(t)

f2(t, z1
0(t), z2

0(t)) ≥ z2
0(t)

C.4 the following inequalities hold:(1 + λ)
∫ T

0 Gλ(t, s)z1
0(s)ds ≥ z1

0(t)

(1 + λ)
∫ T

0 Gλ(t, s)z2
0(s)ds ≤ z2

0(t),∀t ∈ I.

We recall that the problem (see [144],[36], [125]),x
′(t) = h(t)

x(0) = x(T ), t ∈ I,

where h ∈ C(I) and x ∈ C1(I), is equivalent, for some λ 6= 0 to

x(t) =
∫ T

0
Gλ(t, s)[h(s) + λx(s)]ds,∀t ∈ I,

where Gλ(t, s) is defined (see [144]) by:

Gλ(t, s) =


eλ(T+s−t)

eλT − 1 , 0 ≤ s ≤ t ≤ T

eλ(s−t)

eλT − 1, 0 ≤ t ≤ s ≤ T

Thus, we have that the system (3.34) is equivalent to the coupled fixed point prob-
lem :

x = F1(x, y)

y = F2(x, y),
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where F1, F2 : X2 → X,X = C(I),

F1(x, y)(t) =
∫ T

0
Gλ(t, s)[f1(s, x(s), y(s)) + λx(s)]ds

F2(x, y)(t) =
∫ T

0
Gλ(t, s)[f2(s, x(s), y(s)) + λy(s)]ds

In order to apply the results presented in the previous section, we consider the
complete metric space (X, d), where X = C(I,R and the metric d is induced by the
sup-norm on X,

d(u, v) = sup
t∈I
|u(t)− v(t)| ,∀u, v ∈ C(I).

We also have to link the problem introduced above to the theoretical results recalled
and presented; consequently, if (x, y) ∈ X2 is a coupled point of F , then we have
x(t) = F1(x, y)(t) and, similarly, y(t) = F2(x, y)(t), ∀t ∈ I, where F := (F1, F2).

Theorem 3.4.70. [59] Consider the problem (3.34) under the assumptions (1)-(4).
Then there exists a unique solution (x∗, y∗) of the BVP (3.34).

Proof: In order to reach the conclusion of this results, we will apply Theorem
3.3.61.For this, we have to verify all the assumptions of this Theorem:
We have that (X, d) is a complete metric space, so (ii) from Theorem 3.3.61 is verified.
From the first condition (1), 0 ≤ [f1(t, x, y) + λx] − [f1(t, u, v) + λu] ≤ λ[µ1(x − u) +
µ2(y− v)]−λ[µ3(x−u) +µ2(y− v)] ≤ [f2(t, x, y) +λx]− [f2(t, u, v) +λu] ≤ 0, we have
that

|[F1(x, y)(t)− F1(u, v)(t)| =∣∣∣∣∣
∫ T

0
Gλ(t, s)[f1(s, x(s), y(s)) + λx(s)]ds−

∫ T

0
Gλ(t, s)[f2(s, u(s), v(s)) + λu(s)]ds

∣∣∣∣∣
=
∣∣∣∣∣
∫ T

0
Gλ[(t, s)[f1(s, x(s), y(s))− f1(s, u(s), v(s)) + λx(s)− λu(s)]ds

∣∣∣∣∣
≤ λ

∫ T

0
Gλ(t, s) |(µ1(x(s)− u(s))|+ |µ2(y(s)− v(s))|)ds

≤ µ1d(x, u) + µ2d(y, v).

Applying supt∈I , we get:

(3.35) d(F1(x, y), F1(u, v)) ≤ µ1d(x, u) + µ2d(y, v).

In a similar way, we get

(3.36) d(F2(x, y), F2(u, v)) ≤ µ3d(x, u) + µ4d(y, v).

Summing up relations (3.35) and (3.36), we get:

d(F1(x, y), F1(u, v)) + d(F2(x, y), F2(u, v)) ≤ (µ1 + µ3)d(x, u) + (µ2 + µ4)d(y, v),

where µ1 + µ2 + µ3 + µ4 < 1 follows from condition (1). Consequently, (iv) from The-
orem 3.3.61 is verified.
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From the second condition (2) we have that (f1(t, x, y), f2(t, x, y)) ∈ XR(f1(t, u, v), f2(t, u, v),
∀w ∈ XR(z), z = (x, y), w = (u, v) which is equivalent to f1 × f2(t, x, y) ∈ XR(f1 ×
f2(t, u, v), (t, u, v)). Thus f1 and f2 have the mixed R−monotone property on X, so (i)
from Theorem 3.3.61 is also checked. In a similar way we prove the mixed R−monotone
property of f1 and f2 using the other pair of assumptions in condition (2).
Since f1, f2 have the mixed R−monotone property on X, then there exists (r, s) ∈ X2

such that (x, y), (x0, y0) ∈ XR(r, s), so the additional assumption of 3.3.62 is verified.
Now, from the third condition (3), z1

0(t) ≤ f1(t, z1
0(t), z2

0(t)) and z2
0(t) ≥ f2(t, z1

0(t), z2
0(t)),

where z0 = (z1
0 , z

2
0) we obtain that (f1(t, z1

0(t), z2
0(t)) ∈ XR(z1

0 , z
2
0)↔ f1×f2(t, z1

0(t), z2
0(t)) ∈

XR(z1
0 , z

2
0). It follows that there exists a coupled fixed point, namely z0 = (z1

0 , z
2
0) ∈ X2,

for the pair (f1, f2)(the third hypothesis of Theorem 3.3.61).
Further, it can be easily checked that, for any n ∈ N,

(fn1 (t, z1
0(t), z2

0(t)), fn2 (t, z1
0(t), z2

0(t))) ∈ XR(fn−1
1 (t, z1

0(t), z2
0(t)), fn−1

2 (t, z1
0(t), z2

0(t))).

Using this and the continuity of f1 and f2, it can be easily proved that {fn1 (t, z1
0(t), z2

0(t))}n∈N
and {fn1 (t, z1

0(t), z2
0(t))}n∈N are Cauchy sequences in X, so the last hypothesis of The-

orem 3.3.61 is also checked. Thus, we get that the periodic boundary problem (3.34)
has a unique solution in C(I)× C(I). �

Remark 3.4.71. If, in Theorem 3.4.70 we take R :=≤, we obtain Theorem 3.2 in
[144].

Remark 3.4.72. If, in Theorem 3.4.70, we take R :=≤ and f1(x, y) = F (x, y) and
f2(x, y) = F (y, x), we obtain Theorem 3.7 in [36].



CHAPTER 4

Tripled fixed point theorems in metric spaces
endowed with a reflexive relation

In this chapter, we will extend the results of Asgari and Mousavi [9], using the
tripled fixed points concept introduced by Berinde and Borcut in [28], which are briefly
presented in the following. We will also extend the notions of coupled attractor basin
element, orbital continuity, mixed R−monotony of a mapping, R-coupled fixed point
in the case of tripled fixed points.

1. Preliminaries

1.1. Tripled fixed points of mixed-monotone operators in partially
ordered metric spaces

Definition 4.1.73. [28] Let (X,≤) be a partially ordered space and F : X3 → X.

We say that the operator F has the mixed-monotone property on X if F (x, y, z) is
monotone nondecreasing in x and z and it is monotone nonincreasing in y, that is, for
any x, y, z ∈ X,

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z) ≤ F (x2, y, z)

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z) ≥ F (x, y2, z)

z1, z2 ∈ X, z2 ≤ z1 ⇒ F (x, y, z2) ≥ F (x, y, z1)

Definition 4.1.74. [40] Let X, Y, Z be three nonempty sets and F : X3 → Y ,
G : Y × Y × Y → Z. We define the symmetrical composition (or s−composition) of F
and G, F ∗G : X3 → Z, by

(G ∗ F )(x, y, z) = G(F (x, y, z), F (y, x, y), F (z, y, x)), x, y, z ∈ X.

Definition 4.1.75. [28] We call an element (x, y, z) ∈ X ×X a tripled fixed point
of the mixed-monotone mapping F : X3 → X, if F (x, y, z) = x, F (y, x, y) = y and
F (z, y, x) = z.
If x = y = z and, in consequence, F (x, x, x) = x, then x ∈ X is a fixed point of F .

Remark 4.1.76. Note that in the definition above (y, x, y) is not a permutation of
(x, y, z), like (z, y, x).

44
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Let (X, d) be a complete metric space. The mapping d̃ : X3 → X, given by

d̃((x, y, z), (u, v, w)) = d(x, u) + d(y, v) + d(z, w)

defines a metric on X3, which will be denoted, for convenience by d, too.
The following theorem is the main result in [39] and it establishes the existence of

a tripled fixed point of a mixed monotone operator:

Theorem 4.1.77. [28],[40],[41] Let (X,≤) be a partially ordered set and suppose
there is a metric d on X such that the metric space (X, d) is complete. Let T : X×X×
X → X be a continuous mapping having the mixed monotone property on X. Assume
that there exist k, l,m ∈ [0, 1), k + l +m < 1 such that

d(T (x, y, z), T (u, v, t)) ≤ k · d(x, u) + l · d(y, v) +m · d(z, t),∀x ≥ u, y ≤ v, z ≥ t.

If there exist x0, y0, z0 ∈ X such that

x0 ≤ T (x0, y0, z0), y0 ≥ T (y0, x0, z0) and z0 ≤ T (z0, y0, x0).

Then there exist x, y, z ∈ X such that x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x).

The conclusion of Theorem 4.1.77 holds, even if the mapping is not continuous, by
adding some supplementary conditions to the hypothesis, conditions first introduced
by Nieto and R. Rodríguez-López in [95].

Theorem 4.1.78. [40] Let (X,≤) be a partially ordered space and suppose there
exists a metric d on X, such that (X, d) is a complete metric space. Let F : X ×X ×
X → X be a mixed monotone operator. Suppose there exists a constant k ∈ [0, 1) such
that

(4.37) d(F (x, y, z), F (u, v, w)) ≤
k

3[d(x, u) + d(y, v) + d(z, w)]∀x ≥ u, y ≤ v, z ≥ w.

Let’s suppose that the following properties hold on X:

(i.)

if there exists an increasing sequence {xn} → x, then xn ≤ x for every n,

(ii.)

if there exists a decreasing sequence {yn} → y, then yn ≥ y for every n.

If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X, such that

x = F (x, y, z) , y = F (y, x, y) and z = F (z, y, x) .
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The conclusion of the result holds, even if the contractive condition (4.37) is replaced
by :

d (F (x, y, z) , F (u, v, w)) ≤ jd (x, u) + kd (y, v) + ld (z, w) for all x ≥ u, y ≤ v, z ≥ w,

where j, k, l ∈ [0, 1), j + k + l < 1.

Theorem 4.1.79. [41] Let (X,≤) be a partially ordered space and suppose there
exists a metric d on X, such that (X, d) is a complete metric space. Let F : X ×X ×
X → X be a mixed monotone operator. Suppose there exists the constants j, k, l ∈
[0, 1),where j + k + l < 1 such that

d (F (x, y, z) , F (u, v, w)) ≤ jd (x, u) + kd (y, v) + ld (z, ) for all x ≥ u, y ≤ v, z ≥ w.

Let’s suppose that the following properties hold on X:

(i.)

if there exists an increasing sequence {xn} → x, then xn ≤ x for every n,

(ii.)

if there exists a decreasing sequence {yn} → y, then yn ≥ y for every n.

If there exist x0, y0, z0 ∈ X such that

x0 ≤ F (x0, y0, z0), y0 ≥ F (y0, x0, y0) and z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X such that

x = F (x, y, z), y = F (y, x, y) and z = F (z, y, x).

Several results regarding the uniqueness of the tripled fixed points of mixed mono-
tone continuous or non-continuous mappings were obtained by Borcut, Berinde and
Păcurar, in [28], [42], [39], [40], [41], by endowing the metric space with an additional
property regarding the relation of order, by considering that every triple consisting in
elements from X has an upper bound and a lower bound. We present the following
one:

Theorem 4.1.80. [28] In addition to the hypothesis of Theorem 4.1.77 if we have
that for (x, y, z), (x1, y1, z1) ∈ X×X×X, there exists (u, v, w) ∈ X×X×X comparable
to (x, y, z) and to (x1, y1, z1), then there exists a unique fixed point of F.

1.2. Tripled fixed points of monotone operators in partially ordered
metric spaces

First, we will present the definitions for monotone mappings and tripled fixed points
for these mappings, concepts introduced by Borcut in [39].
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Definition 4.1.81. [39] Let (X,≤) be a partially ordered space and the mapping
F : X3 → X. We say that F is monotone, if F (x, y, z) is monotone increasing in x, y
and z, that is, for every x, y, z, x1, x2, y1, y2, z1, z2 we have

x1, x2 ∈ X, x1 ≤ x2 ⇒ F (x1, y, z) ≤ F (x2, y, z) ,

y1, y2 ∈ X, y1 ≤ y2 ⇒ F (x, y1, z) ≤ F (x, y2, z) ,

and
z1, z2 ∈ X, z1 ≤ z2 ⇒ F (x, y, z1) ≤ F (x, y, z2) .

Definition 4.1.82. [39] An element (x, y, z) ∈ X3 is a tripled fixed point of the
monotone mapping F : X3 → X, if

F (x, y, z) = x, F (y, x, z) = y, and F (z, y, x) = z.

If x = y = z and, in consequence, F (x, x, x) = x, we say that x ∈ X is a fixed point of
F .

Remark 4.1.83. [39] We can remark the fact that, in this context, the tripled fixed
point is different than in the case of mixed-monotone mappings, that is, the triples
(x, y, z), (y, x, z) and (z, y, x) appearing in 4.1.82 are all permutations of (x, y, z).

One of the results regarding the existence of these tripled fixed points presented in
[39] is the following:

Theorem 4.1.84. [39] Let (X,≤) be a partially ordered space and d be a metric
on X, such that the metric space (X, d) is complete. Let F : X3 → X be a continuous,
monotone mapping on X. Let’s suppose that there exists a constant k ∈ [0, 1) , such
that

(4.38) d(F (x, y, z), F (u, v, w)) ≤
k

3[d(x, u) + d(y, v) + d(z, w)]

for all x ≥ u, y ≤ v, z ≥ w.

If there exist x0, y0, z0 ∈ X, such that

x0 ≤ F (x0, y0, z0), y0 ≤ F (y0, x0, z0) and z0 ≤ F (z0, y0, x0),

then there exist x, y, z ∈ X, such that

x = F (x, y, z), y = F (y, x, z) and z = F (z, y, x).

The result regarding the uniqueness of the tripled fixed point in this case is the
following:

Theorem 4.1.85. [39] In addition to the hypothesis of Theorem 4.1.84 we have:
for any (x, y, z), (x1, y1, z1) ∈ X×X×X, there exists (u, v, w) ∈ X×X×X comparable
to (x, y, z) and (x1, y1, z1), then F has a unique tripled fixed point.



484. TRIPLED FIXED POINT THEOREMS IN METRIC SPACES ENDOWED WITH A REFLEXIVE RELATION

In this case too, the conclusion of the theorem holds for non-continuous mappings:

Theorem 4.1.86. [39] Let (X,≤) a partially ordered space and d be a metric on
X, such that (X, d) is a complete metric space. Let F : X3 → X a monotone operator
on X. Suppose that there exists a constant k ∈ [0, 1), such that

d (F (x, y, z) , F (u, v, w)) ≤ k

3 [d (x, u) + d (y, v) + d (z, w)]

for all x ≥ u, y ≤ v, z ≥ w. Suppose that we have the following property on X:

if there exists the increasing sequence {xn} → x, then xn ≤ x for every n.

If there exist x0, y0, z0 ∈ X, such that

x0 ≤ F (x0, y0, z0) , y0 ≤ F (y0, x0, z0) and z0 ≤ F (z0, y0, x0) ,

then there exist x, y, z ∈ X, such that

x = F (x, y, z), y = F (y, x, z) and z = F (z, y, x).

2. Tripled fixed points of mixed-monotone operators

2.1. Definitions

The following concepts are extensions of the notions presented in [9] in the case
of coupled fixed points in the framework of tripled fixed points of mixed monotone
mappings.

Notation 2. Let X be a nonempty set and let F : X×X×X → X be a mapping.
Then

(1) The cartesian product of F and itself is denoted by F × F and it is defined by

F × F (x, y, z) = (F (x, y, z), F (y, x, y), F (z, y, x)).

(2) We will denote by F 0(x, y, z) = x and F n(x, y, z) = F (F n−1(x, y, z),
F n−1(y, x, y), F n−1(z, y, x)), for all x, y, z ∈ X,n ∈ N.

(3) The set XR has the same meaning as it has in X2: XR(x, y, z) = {(t, u, v) ∈
X ×X ×X : tRx ∧ yRu ∧ vRz}.

Definition 4.2.87. [57] Let X be a nonempty set and let R be a reflexive relation
on X, F : X3 → X. The mapping F has the mixed R−monotone property on X
if

F × F (XR(x, y, z)) ⊆ XR(F × F (x, y, z)), for all (x, y, z) ∈ X3.

Definition 4.2.88. [57] An element (x, y, z) ∈ X3 is called lower-R−tripled
fixed point of F , if F × F (x, y, z) ∈ XR(x, y, z).
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Definition 4.2.89. A sequence {(xn, yn, zn)}n∈N ⊆ X3 is called R−monotone
sequence if (xn, yn, zn) ∈ XR(xn−1, yn−1, zn−1).

Definition 4.2.90. [60] Let X be a topological space and F : X3 → X be a
mixed R-monotone mapping. Then an element (x, y, z) ∈ X3 is called a tripled at-
tractor basin element of F with respect to (x∗, y∗, z∗) ∈ X3, if F n(x, y, z) → x∗,
F n(y, x, y)→ y∗ and F n(z, y, x)→ z∗ , as n→∞. The set of these points (x∗, y∗, z∗)
will be denoted by AF (x∗, y∗, z∗), and, when x∗ = y∗ = z∗, by AF (x∗).

Definition 4.2.91. [57] Let X be a topological space and F : X3 → X be a
mixed R-monotone mapping. The mapping F is called orbitally continuous if
(x, y, z), (a, b, c) ∈ X3 and F nk(x, y, z) → a, F nk(y, x, y) → b, F nk(z, y, x) → c, when
k →∞, implies F nk+1(x, y, z)→ F (a, b, c), F nk+1(y, x, y)→ F (b, a, b) and F nk+1(z, y, x)→
F (c, b, a), as k →∞.

2.2. Uniqueness and existence theorems

The following result establishes the existence of a tripled fixed point of the mapping
F : X3 → X.

Theorem 4.2.92. [57] Let (X, d) be a complete metric space and R be a binary
reflexive relation on X such that R and d are compatible. If F : X3 → X is a mapping
such that

(i) F has a lower-R-tripled fixed point;
(ii) F has the mixed R-monotone property on X;
(iii) F is orbitally continuous;
(iv) there exists k ∈ [0, 1) such that

(4.39) d(F (x, y, z), F (t, u, v)) ≤
k

3 · [d(x, t) + d(y, u) + d(z, v)],

∀(x, y, z) ∈ XR(t, u, v), k ∈ [0, 1).

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, y) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

(3) The error estimation that holds is: maxn∈N{d(xn, x), d(yn, y), d(zn, z)}

≤
kn

3(1− k)[d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].
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Proof: Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈
X×X×X be it, we have F×F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the mixed R-
monotone property of F , we have F×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0)) ∈

(4.40) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0)).

We claim that, for n ∈ N

d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

kn

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].(4.41)

For n = 1, we get:

d(F 2(x0, y0, z0), F (x0, y0, z0)) = d(F (F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤
k

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].

Now, we assume that (4.41) holds. Using (iv) from the hypothesis we get:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, y0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))) ≤

≤
k

3 · [d(F n+1(x0, y0, z0), F n(x0, y0, z0))+

d(F n+1(y0, x0, y0), F n(y0, x0, y0)) + d(F n+1(z0, y0, x0), F n(z0, y0, x0)] ≤

≤
kn+1

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), x0)]→ 0, asn→∞.

This implies that {F n(x0, y0, z0)}n∈N is a Cauchy sequence in X.
Similarly, following the same steps, we can prove that {F n(y0, x0, y0)}n∈N
and {F n(z0, y0, x0)}n∈N are also Cauchy sequences in X.
Since X is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0) →
x, F n(y0, x0, y0)→ y, F n(z0, y0, x0)→ z, n→∞.
Let m > n. Then:

d(Fm(x0, y0, z0), F n(x0, y0, z0)) ≤
m−1∑
j=n

d(F j+1(x0, y0, z0), F j(x0, y0, z0)) ≤

≤ (kn−1 +kn+ ...+km−n) · [d(F (x0, y0, z0), x0)+d(F (y0, x0, y0), y0)+d(F (z0, y0, x0), z0)]

=
kn − km

3(1− k) · [d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)] <
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<
kn

3(1− k) · [d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].

But xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn) and zn+1 = F (zn, yn, xn), F n(x0, y0, z0)→
x, F n(y0, x0, y0)→ y, F n(z0, y0, x0)→ z, n→∞ and F is orbitally continuous. Thus,
applying maximum to the last relation, we get:

max
n∈N
{d(xn, x), d(yn, y), d(zn, z)} ≤

kn

3(1− k) · [d(F (x0, y0, z0), x0)+

+d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].

�

Remark 4.2.93. If in Theorem 4.2.92 we know that for all (x, y, z), (x0, y0, z0) ∈
X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t), we can also prove the uniqueness of the tripled fixed point.

Thus, the following result comes as a completion of Theorem 4.2.92, adding to the
conclusion the uniqueness of the tripled fixed point.

Theorem 4.2.94. [60] In addition to the hypothesis of Theorem 4.2.92, we suppose
that, for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then, F is a Picard operator.

Proof: From Theorem 4.2.92 it follows that there exist x, y, z ∈ X such that
F (x, y, z) = x, F (y, x, y) = y, F (z, y, x) = z.
The next step is to show that AF (x, y, z) = X ×X ×X.
Let (x, y, z) ∈ X3. Since F has the mixed R−monotone property on X, then there
exists (r, s, t) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈ XR(r, s, t). From (x0, y0, z0) ∈
XR(r, s, t) and the fact that (X, d) is a complete metric space, it follows that for n ∈ N

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))

∈ XR(F n(r, s, t), F n(s, r, s), F n(t, s, r)).

But F is orbitally continuous, so we have:

d(F n(x0, y0, z0), F n(r, s, t)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)],

d(F n(y0, x0, y0), F n(s, r, s)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)]

and

d(F n(z0, y0, x0), F n(t, s, r)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)].

Now, using the fact that (x0, y0, z0) ∈ AF (x, y, z), it follows that (r, s, t) ∈ AF (x, y, z).
Thus, AF (x, y, z) = X3.
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It is also true that (y, x, y), (z, y, x) ∈ AF (x, y, z). Thus, we have x = y = z. Therefore
AF (x) = X, so F is a Picard operator. �

In [96] and [95] Nieto and Rodríguez-López endow the metric space X with a reg-
ularity condition which assumes the existence of two monotonic sequences, one nonin-
creasing and the other nondecreasing, as presented in Theorems 2.1.18, 2.1.19, 2.1.20,
2.1.21 from Chapter 2. In the case of tripled fixed points of mixed−R−monotone, not
necessarily orbitally continuous operators, the result we obtain is the following:

Theorem 4.2.95. Let (X, d) be a complete metric space and R be a binary reflexive
relation on X such that R and d are compatible. If F : X3 → X is a mapping having
such that

(i) F has a lower-R-tripled fixed point;
(ii) F has the mixed R-monotone property on X;
(iii) if an R-monotone sequence {(xn, yn, zn)}n∈N → (x, y, z), then (xn, yn, zn) ∈ XR(x, y, z),

for all n ∈ N;
(iv) there exists k ∈ [0, 1) such that

(4.42) d(F (x, y, z), F (t, u, v)) ≤
k

3 · [d(x, t) + d(y, u) + d(z, v)],

∀(x, y, z) ∈ XR(t, u, v), k ∈ [0, 1).

Then F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, y) = y, F (z, y, x) = z.

Proof: Following the steps of the proof of Theorem 4.2.92, we only have to prove
that ∃(x, y, z) ∈ X3 such that F (x, y, z) = x, F (y, x, y) = y and F (z, y, x) = z. Since
F n(x0, y0, z0)→ x, F n(y0, x0, y0)→ y and F n(z0, y0, x0)→ z, using (iii) we get

d(F (x, y, z), x) ≤ d(F (x, y, z), F n+1(x0, y0, z0))+

d(F n+1(x0, y0, z0), x) = d(F (x, y, z), F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))+

d(F n+1(x0, y0, z0), x) ≤
k

3[d(x, F n(x0, y0, z0)) + d(y, F n(y0, x0, y0))

+d(z, F n(z0, y0, x0))] + d(F n+1(x0, y0, z0), x)→ 0, as n→∞.

This implies that F (x, y, z) = x. Similarly, we can prove that F (y, x, y) = y and
F (z, y, x) = z. �

In the next result, we obtain the same conclusion as in Theorem 4.2.92, replacing
the orbital continuity of F with an assumption on some R-monotone sequences in X3:

Theorem 4.2.96. Let (X, d) be a metric space and R be a binary reflexive relation
on X such that R and d are compatible. If F : X3 → X is a mapping such that

(i) F has a lower-R-tripled fixed point;
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(ii) F has the mixed R-monotone property on X;
(iii) there exists k ∈ [0, 1) such that, ∀(x, y, z) ∈ XR(t, u, v):

(4.43) d(F (x, y, z), F (t, u, v)) ≤
k

3 · [d(x, t) + d(y, u) + d(z, v)]

(iv) if an R−monotone sequence {(xn, yn, zn)} → (x, y, z), then
(xn, yn, zn) ∈ XR(x, y, z), for all n ∈ N.

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, y) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

(3) The error estimation that holds is: maxn∈N{d(xn, x), d(yn, y), d(zn, z)}

≤
kn

3(1− k)[d(F (x0, y0, z0), x0) + d(F (y0, x0, y0), y0) + d(F (z0, y0, x0), z0)].

Proof: The proof of this theorem follows the steps of the proof of Theorem 4.2.92.
The only thing left to show is the existence of the tripled fixed point (conditioned by
the orbital continuity of F in Theorem 4.2.92.)
From the proof of Theorem 4.2.92, we have that F n(x0, y0, z0)→ x, F n(y0, x0, y0)→ y

and F n(z0, y0, x0)→ z. Now, using (ii) from the hypothesis, we get

d(F (x, y, z), x) ≤ d(F (x, y, z), F n+1(x0, y0, z0)) + d(F n+1(x0, y0, z0), x)

= d(F (x, y, z), F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))) + d(F n+1(x0, y0, z0), x)

≤
k

3 [d(x, F n(x0, y0, z0)) + d(y, F n(y0, x0, y0)) + d(z, F n(z0, y0, x0))]

+d(F n+1(x0, y0, z0), x)→ 0, as n→∞.

This implies that F (x, y, z) = x. Similarly, we can prove that F (y, x, y) = y and
F (z, y, x) = z. �

The following result comes as a completion of Theorem 4.2.92 and Theorem 4.2.96,
respectively, adding to the conclusion of Theorem 4.2.96 the identity of the components
of the tripled fixed point of the mapping F .

Theorem 4.2.97. [60] In addition to the hypothesis of Theorem 4.2.92 (resp. The-
orem 4.2.96), let (x0, y0, z0) ∈ X3 such that for all (x, y, z), (x0, y0, z0) ∈ X3, there
exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then x = y = z.
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Proof: From the mixed R−monotone property of F , we have
(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)) ∈
XR(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)).
Next, it can be verified that, for all n ∈ N,

(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0)) ∈

XR(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0))

By using the contractivity of F we get

d(F n(x0, y0, z0), F n(y0, x0, y0)) = d(F (F n−1(x0, y0, z0), F n−1(y0, x0, y0)),

F (F n−1(y0, x0, y0), F n−1(x0, y0, z0))) ≤ k · d(F n−1(x0, y0, z0),

F n−1(y0, z0, x0)) ≤ ... ≤
kn

3 · d(x0, y0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, y0) = y.
On the other hand,

d(F n(x0, y0, z0), F n(z0, y0, x0)) = d(F (F n−1(x0, y0, z0), F n−1(z0, y0, x0)),

F (F n−1(z0, y0, x0), F n−1(x0, y0, z0))) ≤
k

3 · d(F n−1(x0, y0, z0),

F n−1(z0, y0, x0)) ≤ ... ≤
kn

3 · d(x0, z0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(z0, y0, x0) = z.
In conclusion,

z = lim
n→∞

F n(z0, y0, x0) = x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, y0) = y,

thus we have the identity of the three components of the tripled fixed point. �

Remark 4.2.98. The conclusion of Theorem 4.2.97 is, in fact, equivalent to the
existence of a fixed point of the mapping F , that is F (x, x, x) = x.

If, in Theorem 4.2.92, we replace the contractive condition by a more general, we
obtain the following results:

Theorem 4.2.99. Let (X, d) be a metric space and R be a binary reflexive relation
on X such that R and d are compatible. If F : X3 → X is a mapping such that

(1) F has a lower-R-tripled fixed point;
(2) F has the mixed R-monotone property on X;
(3) F is orbitally continuous;
(4) there exist a, b, c ∈ [0, 1), a+ b+ c < 1 such that
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(4.44)
d(F (x, y, z), F (t, u, v)) ≤ a · d(x, t) + b · d(y, u) + c · d(z, v),

∀(x, y, z) ∈ XR(t, u, v), a+ b+ c < 1.

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, y) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

Proof: Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈
X×X×X be it, we have F×F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the mixed R-
monotone property of F , we have F×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0)) ∈

(4.45) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0)).

We claim that, for n ∈ N

d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

an · d(F (x0, y0, z0), y0) + bn · d(F (y0, x0, y0), y0) + cn · d(F (z0, y0, x0), z0).(4.46)

For n = 1, we get:

d(F 2(x0, y0, z0), F (x0, y0, z0)) = d(F (F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤ a · [d(F (x0, y0, z0), x0) + b · d(F (y0, x0, y0), y0) + c · d(F (z0, y0, x0), z0)].

Now, we assume that (4.46) holds. Using (4), we get:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, y0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))) ≤

≤ a · d(F n+1(x0, y0, z0), F n(x0, y0, z0))+

b · d(F n+1(y0, x0, y0), F n(y0, x0, y0)) + c · d(F n+1(z0, y0, x0), F n(z0, y0, x0) ≤

≤ an+1·d(F (x0, y0, z0), x0)+bn+1·d(F (y0, x0, y0), y0)+cn+1·d(F (z0, y0, x0), z0)→ 0, asn→∞.

This implies that the sequence {F n(x0, y0, z0}n∈N is fundamental in X.
Similarly, following the same steps, it can be proved that {F n(y0, x0, y0)}n∈N and
{F n(z0, y0, x0)}n∈N are also Cauchy sequences in X.
Since X is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0) →
x, F n(y0, x0, y0)→ y, F n(z0, y0, x0)→ z, n→∞.

�
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Theorem 4.2.100. Let (X, d) be a complete metric space and R be a binary reflexive
relation on X such that R and d are compatible. If F : X3 → X is a mapping such
that

(i) F has a lower-R-tripled fixed point;
(ii) F has the mixed R-monotone property on X;
(iii) ∃a, b, c ∈ [0, 1), a+ b+ c < 1 such that, ∀(x, y, z) ∈ XR(t, u, v):

(4.47) d(F (x, y, z), F (t, u, v)) ≤ a · d(x, t) + b · d(y, u) + c · d(z, v)

(iv) if an R−monotone sequence {(xn, yn, zn)} → (x, y, z), then
(xn, yn, zn) ∈ XR(x, y, z), for all n ∈ N.

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, y) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, yn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

Proof: The proof of this theorem follows the steps of the proof of Theorem 4.2.99:
Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈ X×X×X
be it, we have F ×F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the mixed R-monotone
property of F , we have F ×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0)) ∈

(4.48) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0)).

We suppose that, for n ∈ N

(4.49) d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

an · d(F (x0, y0, z0), y0) + bn · d(F (y0, x0, y0), y0) + cn · d(F (z0, y0, x0), z0).

For n = 1, we get:

d(F 2(x0, y0, z0), F (x0, y0, z0)) =

d(F (F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤ a · d(F (x0, y0, z0), x0)+

b · d(F (y0, x0, z0), y0) + c · d(F (z0, y0, x0), z0).
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Now, we assume that (4.49) holds. We obtain:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, y0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))) ≤ a · d(F n+1(x0, y0, z0),

F n(x0, y0, z0)) + b · d(F n+1(y0, x0, y0), F n(y0, x0, y0))+

c · d(F n+1(z0, y0, x0), F n(z0, y0, x0)] ≤
an+1

3 · d(F (x0, y0, z0), x0)+

bn+1

3 · d(F (y0, x0, y0), y0) +
cn+1

3 · d(F (z0, y0, x0), z0)→ 0, as n→∞.

This implies that {F n(x0, y0, z0)}n∈N is a Cauchy sequence in X.
Similarly, following the same steps, we can prove that {F n(y0, x0, y0)}n∈N and {F n(z0, y0, x0)}n∈N
are also Cauchy sequences in X.
Since (X, d) is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0)→
x, F n(y0, x0, y0)→ y, F n(z0, y0, x0)→ z, n→∞.
The only thing left to show is that F (x, y, z) = x, F (y, x, y) = y) and F (z, y, x) = z.
We have

d(F (x, y, z), x) ≤ d(F (x, y, z), F n+1(x0, y0, z0)) + d(F n+1(x0, y0, z0), x)

= d(F (x, y, z), F (F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0)))+

+d(F n+1(x0, y0, z0), x) ≤ a · d(x, F n(x0, y0, z0)) + b · d(y, F n(y0, x0, y0))

+c · d(z, F n(z0, y0, x0)) + d(F n+1(x0, y0, z0), x)→ 0 (n→∞)

This implies that F (x, y, z) = x. Similar to this case we can prove F (y, x, y) = y) and
F (z, y, x) = z. �

Remark 4.2.101. If in Theorem 4.2.99, we know that (x0, y0, z0) ∈ X3 is such that
for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t), then we can also prove the uniqueness of the tripled fixed point.

Thus, the following results comes as a completion of the ones presented above,
adding to the conclusion the uniqueness of the tripled fixed point, respectively the
identity of its’ three components.

Theorem 4.2.102. In addition to the hypothesis of Theorem 4.2.99, we suppose
that, for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈
XR(r, s, t),. Then, F is a Picard operator.

Proof: From Theorem 4.2.99 it follows that there exist x, y, z ∈ X such that
F (x, y, z) = x, F (y, x, y) = y, F (z, y, x) = z.
The next step is to show that AF (x, y, z) = X ×X ×X.
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Let (x, y, z) ∈ X3. Since F has the mixed R−monotone property on X, then there
exists (r, s, t) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈ XR(r, s, t). From (x0, y0, z0) ∈
XR(r, s, t) and the fact that (X, d) is a complete metric space, it follows that for n ∈ N

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))

∈ XR(F n(r, s, t), F n(s, r, s), F n(t, s, r)).

But F is orbitally continuous, so we have:

d(F n(x0, y0, z0), F n(r, s, t)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t),

d(F n(y0, x0, y0), F n(s, r, s)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t)

and
d(F n(z0, y0, x0), F n(t, s, r)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t).

Now, using the fact that (x0, y0, z0) ∈ AF (x, y, z), it follows that (r, s, t) ∈ AF (x, y, z).
Thus, AF (x, y, z) = X3.
It is also true that (y, x, y), (z, y, x) ∈ AF (x, y, z). Thus, we have x = y = z. Therefore
AF (x) = X, so F is a Picard operator. �

Theorem 4.2.103. In addition to the hypothesis of Theorem 4.2.99, let (x0, y0, z0) ∈
X3 such that for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that
(x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then x = y = z

Proof: From the mixed R−monotone property of F , we have
(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)) ∈
XR(F (x0, y0, z0), F (y0, x0, y0), F (z0, y0, x0)).
Next, it can be verified that, for all n ∈ N,

(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0)) ∈

XR(F n−1(x0, y0, z0), F n−1(y0, x0, y0), F n−1(z0, y0, x0))

By using the contractivity of F and letting k := a+ b+ c < 1, we get

d(F n(x0, y0, z0), F n(y0, x0, y0)) = d(F (F n−1(x0, y0, z0), F n−1(y0, x0, y0)),

F (F n−1(y0, x0, y0), F n−1(x0, y0, z0))) ≤ k · d(F n−1(x0, y0, z0),

F n−1(y0, x0, y0)) ≤ ... ≤
kn

3 · d(x0, y0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, y0) = y.
On the other hand,

d(F n(x0, y0, z0), F n(z0, y0, x0)) = d(F (F n−1(x0, y0, z0), F n−1(z0, y0, x0)),

F (F n−1(z0, y0, x0), F n−1(x0, y0, z0))) ≤
k

3 · d(F n−1(x0, y0, z0),
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F n−1(z0, y0, x0)) ≤ ... ≤
kn

3 · d(x0, z0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(z0, y0, x0) = z.
In conclusion, z = lim

n→∞
F n(z0, y0, x0) = x = lim

n→∞
F n(x0, y0, z0) = lim

n→∞
F n(y0, x0, y0) =

y, thus we have the identity of the three components of the tripled fixed point. �

Remark 4.2.104. If, in Theorem 4.2.99, we take R =≤ and assume that F is
continuous, we obtain Theorem 7 in [28].

Remark 4.2.105. If, in Theorem 4.2.92, we take R =≤ and assume that F is
continuous, we obtain Theorem 2.1.10 in [40].

Remark 4.2.106. If, in Theorem 4.2.102, resp. 4.2.103, we take R =≤ and assume
that F is continuous, we obtain Theorem 9, resp. Theorem 10 in [28].

Remark 4.2.107. If, in Theorems 4.2.94, resp. 4.2.97, we take R =≤, we obtain
Theorem 2.1.16, resp. Theorem 2.1.17 in [40].

Remark 4.2.108. If, in Theorem 4.2.95, we take R =≤ and let k := j + k+ l < 1,
we obtain Theorem 8 in [28].

3. Tripled fixed points of monotone operators

3.1. Definitions

The following concepts are extensions of the notions presented in [9] in the case of
coupled fixed points in the framework of tripled fixed points of monotone mappings.

Notation 3. Let X be a nonempty set and let F : X×X×X → X be a mapping.
Then

(1) The cartesian product of F and itself is denoted by F × F and it is defined by

F × F (x, y, z) = (F (x, y, z), F (y, x, z), F (z, y, x)).

(2) We will denote by F 0(x, y, z) = x and F n(x, y, z) = F (F n−1(x, y, z),
F n−1(y, x, y), F n−1(z, y, x)), for all x, y, z ∈ X,n ∈ N.

Remark 4.3.109. Note that cartesian product of the two mappings is different from
the one in Notation 2. In this case we have permutations of (x, y, z) in order to obtain
the tripled fixed points of monotone operators defined by Borcut in Definition 4.1.82

Definition 4.3.110. Let X be a nonempty set, R be a reflexive relation on X

and F : X3 → X be a monotone mapping. The mapping F has the R−monotone
property on X if F × F (XR(x, y, z)) ⊆ XR(F × F (x, y, z)), for all (x, y, z) ∈ X3.
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Definition 4.3.111. An element (x, y, z) ∈ X3 is called lower-R−tripled fixed
point of the R−monotone mapping F , if F×F (x, y, z) ∈ XR(x, y, z), where XR(x, y, z) =
{(t, u, v) ∈ X ×X ×X : tRx ∧ yRu ∧ vRz}.

Definition 4.3.112. Let X be a topological space and F : X3 → X be an R−monotone
mapping. An element (x, y, z) ∈ X3 is called a tripled attractor basin element
of F with respect to (x∗, y∗, z∗) ∈ X3, if F n(x, y, z) → x∗, F n(y, x, z) → y∗ and
F n(z, y, x) → z∗ , as n → ∞. The set of these points (x∗, y∗, z∗) will be denoted by
AF (x∗, y∗, z∗), and, when x∗ = y∗ = z∗, by AF (x∗).

Definition 4.3.113. Let X be a topological space and F : X3 → X be an R−monotone
mapping. The mapping F is called orbitally continuous if (x, y, z), (a, b, c) ∈ X3

and F nk(x, y, z) → a, F nk(y, x, z) → b, F nk(z, y, x) → c, when k → ∞, implies
F nk+1(x, y, z) → F (a, b, c), F nk+1(y, x, z) → F (b, a, b) and F nk+1(z, y, x) → F (c, b, a),
as k →∞.

Remark 4.3.114. Note that the definitions for tripled attractor basin element and
orbital continuity of a mapping are different that in the case of mixed-R-monotone
operators.

3.2. Existence and uniqueness theorems

The following result establishes the existence of a tripled fixed point of the mapping
F : X3 → X.

Theorem 4.3.115. Let (X, d) be a complete metric space and R be a binary reflexive
relation on X such that R and d are compatible. If F : X3 → X is a mapping such
that

(i) F has a lower-R-tripled fixed point;
(ii) F has the R-monotone property on X;
(iii) F is orbitally continuous;
(iv) there exists k ∈ [0, 1) such that

(4.51) d(F (x, y, z), F (t, u, v)) ≤
k

3 · [d(x, t) + d(y, u) + d(z, v)],

∀(x, y, z) ∈ XR(t, u, v), k ∈ [0, 1).

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, z) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, zn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.
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(3) The error estimation that holds is: maxn∈N{d(xn, x), d(yn, y), d(zn, z)}

≤
kn

3(1− k)[d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].

Proof: Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈
X × X × X be it, we have F × F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the R-
monotone property of F , we have F×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0)) ∈

(4.52) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0)).

We claim that, for n ∈ N

d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

kn

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].(4.53)

For n = 1, we get:

d(F 2(x0, y0, z0), F (x0, y0, z0)) = d(F (F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤
k

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].

Now, we assume that (4.53) holds. Using (iv), we get:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, z0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0))) ≤

≤
k

3 · [d(F n+1(x0, y0, z0), F n(x0, y0, z0))+

d(F n+1(y0, x0, z0), F n(y0, x0, z0)) + d(F n+1(z0, y0, x0), F n(z0, y0, x0)] ≤

≤
kn+1

3 · [d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), x0)]→ 0, asn→∞.

This implies that {F n(x0, y0, z0)}n∈N is a Cauchy sequence in X.
Similarly, following the same steps, we can prove that {F n(y0, x0, z0)}n∈N and {F n(z0, y0, x0)}n∈N
are also Cauchy sequences in X.
Since X is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0) →
x, F n(y0, x0, z0)→ y, F n(z0, y0, x0)→ z, n→∞.
Let m > n. Then:

d(Fm(x0, y0, z0), F n(x0, y0, z0)) ≤
m−1∑
j=n

d(F j+1(x0, y0, z0), F j(x0, y0, z0)) ≤

≤ (kn−1 +kn+ ...+km−n) · [d(F (x0, y0, z0), x0)+d(F (y0, x0, z0), y0)+d(F (z0, y0, x0), z0)]
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=
kn − km

3(1− k) · [d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)] <

<
kn

3(1− k) · [d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].

But xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, zn) and zn+1 = F (zn, yn, xn), F n(x0, y0, z0)→
x, F n(y0, x0, z0)→ y, F n(z0, y0, x0)→ z, n→∞ and F is orbitally continuous. Thus,
applying maximum to the last relation, we get:

max
n∈N
{d(xn, x), d(yn, y), d(zn, z)} ≤

kn

3(1− k) · [d(F (x0, y0, z0), x0)+

+d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].

�

Remark 4.3.116. If in Theorem 4.2.92 we know that (x0, y0, z0) ∈ X3 is such that
for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t), then we can also prove tripled fixed point of F is unique.

Thus, the following result comes as a completion of Theorem 4.2.92, adding to the
conclusion the uniqueness of the tripled fixed point.

Theorem 4.3.117. In addition to the hypothesis of Theorem 4.2.92, we suppose
that, for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then F is a Picard operator.

Proof: From Theorem 4.2.92 it follows that there exist x, y, z ∈ X such that
F (x, y, z) = x, F (y, x, z) = y, F (z, y, x) = z.
The next step is to show that AF (x, y, z) = X ×X ×X.
Let (x, y, z) ∈ X3. Since F has the R−monotone property on X, then there exists
(r, s, t) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈ XR(r, s, t). From (x0, y0, z0) ∈ XR(r, s, t)
and the fact that (X, d) is a complete metric space, it follows that for n ∈ N

(F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0))

∈ XR(F n(r, s, t), F n(s, r, t), F n(t, s, r)).

But F is orbitally continuous, so we have:

d(F n(x0, y0, z0), F n(r, s, t)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)],

d(F n(y0, x0, y0), F n(s, r, t)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)]

and

d(F n(z0, y0, x0), F n(t, s, r)) ≤
kn

3 · [d(x0, r) + d(y0, s) + d(z0, t)].
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Now, using the fact that (x0, y0, z0) ∈ AF (x, y, z), it follows that (r, s, t) ∈ AF (x, y, z).
Thus, AF (x, y, z) = X3.
It is also true that (y, x, z), (z, y, x) ∈ AF (x, y, z). Thus, we have x = y = z. Therefore
AF (x) = X, so F is a Picard operator. �

In the next result, we obtain the same conclusion as in Theorem 4.3.115, replacing
the orbital continuity of F with an assumption on some R-monotone sequences in X3:

Theorem 4.3.118. Let (X, d) be a complete metric space and R be a binary reflexive
relation on X such that R and d are compatible. If F : X3 → X is a mapping such
that
(i) F has a lower-R-tripled fixed point;
(ii) F has the R-monotone property on X;
(iii) there exists k ∈ [0, 1) such that, ∀(x, y, z) ∈ XR(t, u, v):

(4.54) d(F (x, y, z), F (t, u, v)) ≤
k

3 · [d(x, t) + d(y, u) + d(z, v)]

(iv) if an R−monotone sequence {(xn, yn, zn)} → (x, y, z), then
(xn, yn, zn) ∈ XR(x, y, z), for all n ∈ N.

Then:
(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =

x, F (y, x, z) = y, F (z, y, x) = z.
(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by

xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, zn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

(3) The error estimation that holds is: maxn∈N{d(xn, x), d(yn, y), d(zn, z)}

≤
kn

3(1− k)[d(F (x0, y0, z0), x0) + d(F (y0, x0, z0), y0) + d(F (z0, y0, x0), z0)].

Proof: The proof of this theorem follows the steps of the proof of Theorem 4.3.115.
The only thing left to show is the existence of the tripled fixed point (conditioned by
the orbital continuity of F in Theorem 4.2.92.)
From the proof of Theorem 4.3.115, we have that F n(x0, y0, z0)→ x, F n(y0, x0, z0)→ y

and F n(z0, y0, x0)→ z. Now, using (iii) from the hypothesis, we get

d(F (x, y, z), x) ≤ d(F (x, y, z), F n+1(x0, y0, z0)) + d(F n+1(x0, y0, z0), x)

= d(F (x, y, z), F (F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0))) + d(F n+1(x0, y0, z0), x)

≤
k

3 [d(x, F n(x0, y0, z0)) + d(y, F n(y0, x0, z0)) + d(z, F n(z0, y0, x0))]

+d(F n+1(x0, y0, z0), x)→ 0, as n→∞.

This implies that F (x, y, z) = x. Similarly, we can prove that F (y, x, z) = y and
F (z, y, x) = z. �
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The following result comes as a completion of Theorem 4.3.115 and Theorem
4.3.118, respectively, adding to the conclusion of Theorem 4.3.118 the identity of the
components of the tripled fixed point of the mapping F .

Theorem 4.3.119. In addition to the hypothesis of Theorem 4.3.115 (resp. The-
orem 4.3.118), let (x0, y0, z0) ∈ X3 such that for all (x, y, z), (x0, y0, z0) ∈ X3, there
exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then x = y = z.

Proof: From the R−monotone property of F , we have
(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)) ∈
XR(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)).
Next, it can be verified that, for all n ∈ N,

(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0)) ∈

XR(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0))

By using the contractivity of F we get

d(F n(x0, y0, z0), F n(y0, x0, z0)) = d(F (F n−1(x0, y0, z0), F n−1(y0, x0, z0)),

F (F n−1(y0, x0, z0), F n−1(x0, y0, z0))) ≤ k · d(F n−1(x0, y0, z0),

F n−1(y0, z0, x0)) ≤ ... ≤
kn

3 · d(x0, y0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, z0) = y.
On the other hand,

d(F n(x0, y0, z0), F n(z0, y0, x0)) = d(F (F n−1(x0, y0, z0), F n−1(z0, y0, x0)),

F (F n−1(z0, y0, x0), F n−1(x0, y0, z0))) ≤
k

3 · d(F n−1(x0, y0, z0),

F n−1(z0, y0, x0)) ≤ ... ≤
kn

3 · d(x0, z0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(z0, y0, x0) = z.
In conclusion,

z = lim
n→∞

F n(z0, y0, x0) = x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, z0) = y,

thus we have the identity of the three components of the tripled fixed point. �

Remark 4.3.120. The conclusion of Theorem 4.3.119 is, in fact, equivalent to the
existence of a fixed point of the mapping F , that is F (x, x, x) = x.

If, in Theorem 4.3.115, we replace the contractive condition by a more general, we
obtain the following results:
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Theorem 4.3.121. Let (X, d) be a complete metric space and R be a binary reflexive
relation on X such that R and d are compatible. If F : X3 → X is a mapping such
that

(1) F has a lower-R-tripled fixed point;
(2) F has the R-monotone property on X;
(3) F is orbitally continuous;
(4) there exist a, b, c ∈ [0, 1), a+ b+ c < 1 such that

(4.55)
d(F (x, y, z), F (t, u, v)) ≤ a · d(x, t) + b · d(y, u) + c · d(z, v),

∀(x, y, z) ∈ XR(t, u, v), a+ b+ c < 1.

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, z) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, zn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

Proof: Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈
X × X × X be it, we have F × F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the R-
monotone property of F , we have F×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0)) ∈

(4.56) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0)).

We claim that, for n ∈ N

d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

an · d(F (x0, y0, z0), y0) + bn · d(F (y0, x0, z0), y0) + cn · d(F (z0, y0, x0), z0).(4.57)

For n = 1, we get:

d(F 2(x0, y0, z0), F (x0, y0, z0)) = d(F (F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤ a · [d(F (x0, y0, z0), x0) + b · d(F (y0, x0, z0), y0) + c · d(F (z0, y0, x0), z0)].

Now, we assume that (4.57) holds. Using the forth assumption from the hypothesis,
(iv), we get:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, z0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0))) ≤

≤ a · d(F n+1(x0, y0, z0), F n(x0, y0, z0))+



664. TRIPLED FIXED POINT THEOREMS IN METRIC SPACES ENDOWED WITH A REFLEXIVE RELATION

b · d(F n+1(y0, x0, z0), F n(y0, x0, z0)) + c · d(F n+1(z0, y0, x0), F n(z0, y0, x0) ≤

≤ an+1·d(F (x0, y0, z0), x0)+bn+1·d(F (y0, x0, z0), y0)+cn+1·d(F (z0, y0, x0), z0)→ 0, as n→∞.

This implies that the sequence {F n(x0, y0, z0}n∈N is fundamental in X.
Similarly, following the same steps, we can show that {F n(y0, x0, y0)}n∈N and {F n(z0, y0, x0)}n∈N
are also Cauchy sequences in X.
Since (X, d) is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0)→
x, F n(y0, x0, z0)→ y, F n(z0, y0, x0)→ z, n→∞.

�

Theorem 4.3.122. Let (X, d) be a metric space and R be a binary reflexive relation
on X such that R and d are compatible. If F : X3 → X is a mapping such that

(i) F has a lower-R-tripled fixed point;
(ii) F has the R-monotone property on X;
(iii) ∃a, b, c ∈ [0, 1), a+ b+ c < 1 such that, ∀(x, y, z) ∈ XR(t, u, v):

(4.58) d(F (x, y, z), F (t, u, v)) ≤ a · d(x, t) + b · d(y, u) + c · d(z, v)

(iv) if an R−monotone sequence {(xn, yn, zn)} → (x, y, z), then
(xn, yn, zn) ∈ XR(x, y, z), for all n ∈ N.

Then:

(1) F has a tripled fixed point, that is, ∃(x, y, z),∈ X3 such that F (x, y, z) =
x, F (y, x, z) = y, F (z, y, x) = z.

(2) The sequences {xn}n∈N, {yn}n∈N, {zn}n∈N, defined by
xn+1 = F (xn, yn, zn), yn+1 = F (yn, xn, zn), zn+1 = F (zn, yn, xn), converge to
x,y and z, respectively.

Proof: The proof of this theorem follows the steps of the proof of Theorem 4.2.99:
Since the mapping F admits a lower-R-tripled fixed point, let (x0, y0, z0) ∈ X×X×X
be it, we have F × F (x0, y0, z0) ∈ XR(x0, y0, z0). Further, using the R-monotone
property of F , we have F ×F (x0, y0, z0) ∈ XR(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)).
Using the induction, we can easily prove that:

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0)) ∈

(4.59) ∈ XR(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0)).

We suppose that, for n ∈ N

(4.60) d(F n+1(x0, y0, z0), F n(x0, y0, z0)) ≤

an · d(F (x0, y0, z0), y0) + bn · d(F (y0, x0, z0), y0) + cn · d(F (z0, y0, x0), z0).

For n = 1, we get:
d(F 2(x0, y0, z0), F (x0, y0, z0)) =
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d(F (F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)),

F (x0, y0, z0)) ≤ a · d(F (x0, y0, z0), x0)+

b · d(F (y0, x0, z0), y0) + c · d(F (z0, y0, x0), z0).

Now, we assume that (4.60) holds. Using (iii), we get:

d(F n+2(x0, y0, z0), F n+1(x0, y0, z0)) =

d(F (F n+1(x0, y0, z0), F n+1(y0, x0, z0), F n+1(z0, y0, x0)),

F (F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0))) ≤ a · d(F n+1(x0, y0, z0),

F n(x0, y0, z0)) + b · d(F n+1(y0, x0, z0), F n(y0, x0, z0))+

c · d(F n+1(z0, y0, x0), F n(z0, y0, x0)] ≤
an+1

3 · d(F (x0, y0, z0), x0)+

bn+1

3 · d(F (y0, x0, z0), y0) +
cn+1

3 · d(F (z0, y0, x0), z0)→ 0 as n→∞.

This implies that {F n(x0, y0, z0)}n∈N is a fundamental sequence in X.
Similarly, following the same steps, we can prove that {F n(y0, x0, z0)}n∈N and {F n(z0, y0, x0)}n∈N
are also Cauchy sequences in X.
Since X is a complete metric space, there exist x, y, z ∈ X such that F n(x0, y0, z0) →
x, F n(y0, x0, z0)→ y, F n(z0, y0, x0)→ z, n→∞.
The only thing left to show is that F (x, y, z) = x, F (y, x, z) = y) and F (z, y, x) = z.
We have

d(F (x, y, z), x) ≤ d(F (x, y, z), F n+1(x0, y0, z0)) + d(F n+1(x0, y0, z0), x)

= d(F (x, y, z), F (F n(x0, y0, z0), F n(y0, x0, z0), F n(z0, y0, x0)))+

+d(F n+1(x0, y0, z0), x) ≤ a · d(x, F n(x0, y0, z0)) + b · d(y, F n(y0, x0, z0))

+c · d(z, F n(z0, y0, x0)) + d(F n+1(x0, y0, z0), x)→ 0 (n→∞)

This implies that F (x, y, z) = x. Similar to this case we can prove F (y, x, z) = y) and
F (z, y, x) = z. �

Remark 4.3.123. If in Theorem 4.3.121, we know that (x0, y0, z0) ∈ X3 is such
that for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t), then we can also prove the uniqueness of the tripled fixed point.

Thus, the following results comes as a completion of the ones presented above,
adding to the conclusion the uniqueness of the tripled fixed point, respectively the
identity of its’ three components.

Theorem 4.3.124. In addition to the hypothesis of Theorem 4.3.121, we suppose
that, for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then F is a Picard operator.
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Proof: From Theorem 4.2.99 it follows that there exist x, y, z ∈ X such that
F (x, y, z) = x, F (y, x, z) = y, F (z, y, x) = z.
The next step is to show that AF (x, y, z) = X ×X ×X.
Let (x, y, z) ∈ X3. Since F has the R−monotone property on X, then there exists
(r, s, t) ∈ X3 such that (x, y, z), (x0, y0, z0) ∈ XR(r, s, t). From (x0, y0, z0) ∈ XR(r, s, t)
and the fact that (X, d) is a complete metric space, it follows that for n ∈ N

(F n(x0, y0, z0), F n(y0, x0, y0), F n(z0, y0, x0))

∈ XR(F n(r, s, t), F n(s, r, t), F n(t, s, r)).

But F is orbitally continuous, so we have:

d(F n(x0, y0, z0), F n(r, s, t)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t),

d(F n(y0, x0, y0), F n(s, r, t)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t)

and
d(F n(z0, y0, x0), F n(t, s, r)) ≤ an · d(x0, r) + bn · d(y0, s) + cn · d(z0, t).

Now, using the fact that (x0, y0, z0) ∈ AF (x, y, z), it follows that (r, s, t) ∈ AF (x, y, z).
Thus, AF (x, y, z) = X3.
It is also true that (y, x, z), (z, y, x) ∈ AF (x, y, z). Thus, we have x = y = z. Therefore
AF (x) = X, so F is a Picard operator. �

Theorem 4.3.125. In addition to the hypothesis of Theorem 4.3.121, suppose that
for all (x, y, z), (x0, y0, z0) ∈ X3, there exists (r, s, t) ∈ X3 such that (x, y, z),
(x0, y0, z0) ∈ XR(r, s, t). Then x = y = z

Proof: From the R−monotone property of F , we have
(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)) ∈
XR(F (x0, y0, z0), F (y0, x0, z0), F (z0, y0, x0)).
Next, it can be verified that, for all n ∈ N,

(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0)) ∈

XR(F n−1(x0, y0, z0), F n−1(y0, x0, z0), F n−1(z0, y0, x0))

By using the contractivity of F and letting k := a+ b+ c < 1, we get

d(F n(x0, y0, z0), F n(y0, x0, z0)) = d(F (F n−1(x0, y0, z0), F n−1(y0, x0, z0)),

F (F n−1(y0, x0, z0), F n−1(x0, y0, z0))) ≤ k · d(F n−1(x0, y0, z0),

F n−1(y0, x0, z0)) ≤ ... ≤
kn

3 · d(x0, y0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(y0, x0, z0) = y.
On the other hand,

d(F n(x0, y0, z0), F n(z0, y0, x0)) = d(F (F n−1(x0, y0, z0), F n−1(z0, y0, x0)),
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F (F n−1(z0, y0, x0), F n−1(x0, y0, z0))) ≤
k

3 · d(F n−1(x0, y0, z0),

F n−1(z0, y0, x0)) ≤ ... ≤
kn

3 · d(x0, z0)→ 0 (n→∞)

This implies x = lim
n→∞

F n(x0, y0, z0) = lim
n→∞

F n(z0, y0, x0) = z.
In conclusion, z = lim

n→∞
F n(z0, y0, x0) = x = lim

n→∞
F n(x0, y0, z0) = lim

n→∞
F n(y0, x0, z0) =

y, thus we have the identity of the three components of the tripled fixed point. �

Remark 4.3.126. If, in Theorem 4.3.121, we take R =≤, we obtain Theorem 2.2.26
in from [39].

Remark 4.3.127. If, in Theorem 4.3.115, we take R =≤ and assume that F is
continuous, we obtain Theorem 4.1.84 from [39].

Remark 4.3.128. If, in Theorem 4.3.124, resp. 4.3.125, we take R =≤, we obtain
Theorem 2.2.30, resp. Theorem 2.2.31 in [40], from [39].

4. Examples and applications

4.1. Examples

Example 4.4.129. Let X = R, the metric d(x, y) = |x− y|, the relation R on X

given by
(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,

where xRt⇔ x2 + 2x = t2 + 2t Let F : X3 → X be defined by F (x, y, z) =
x+ y + 4z

7 .

So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x, y + 2, z), (x+ 2, y, z), (x+ 2, y + 2, z), (x, y, z + 2),

(x+ 2, y + 2, z + 2), (x+ 2, y, z + 2), (x, y + 2, z + 2)}.

F × F (XR(x, y, z)) = {F × F (x, y, z)} ⊆ XR(F × F (x, y, z)).

Next, we will check the conditions of Theorem 4.3.124. The system

(4.62)


F (x, y, z) = x

F (y, x, z) = y

F (z, y, x) = z

admits the unique solution (0, 0, 0).
The contractive condition (4.55) holds:

d(F (x, y, z), F (t, u, v)) =

∣∣∣∣∣∣
x+ y + 4z

7 −
t+ u+ 4v

7

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
7(x− t) +

1
7(y − u) +

4
7(z − v)

∣∣∣∣∣∣ ≤
1
7 |x− t|+

1
7 |y − u|+

4
7 |z − v| ,
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which is condition (4.55) for a =
1
7, b =

1
7 and c =

4
7. Indeed, a + b + c =

6
7 < 1.

It is clear that F has the R−monotone property. Furthermore, F is continuous and
∃(0, 0, 0) ∈ X3 such that F (0, 0, 0) ∈ XR(0, 0, 0). Therefore, the hypotheses of the
Theorem 4.3.121 are satisfied, whereas Theorem 2.2.26 from [40] (resp. [39]) cannot
be applied because R is not antisymmetric, thus metric space is not partially ordered.
The (unique) tripled fixed point of F is (0, 0, 0).

Example 4.4.130. Let X = [0,∞], the metric d(x, y) = |x− y|, the relation R on
X given by

(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,

where xRt ⇔ x2 + 4x − 9 = t2 + 4t − 9. Let F : X3 → X be defined by F (x, y, z) =
x− 4y + 9z

15 . So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x,−4− y, z), (−4− x, y, z), (−4− x,−4− y, z),

(x, y,−4− z), (−4− x,−4− y,−4− z), (−4− x, y,−4− y), (x,−4− y,−4− z)}.

Next, we will check the conditions of Theorem 4.2.102. The system

(4.63)


F (x, y, z) = x

F (y, x, y) = y

F (z, y, x) = z

admits the unique solution (0, 0, 0). The contractive condition (4.44) holds:

d(F (x, y, z), F (t, u, v)) =

∣∣∣∣∣∣
x− 4y + 9z

15 −
t− 4u+ 9v

15

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
15(x− t) +

4
15(u− y) +

9
15(z − v)

∣∣∣∣∣∣ ≤
1
15 |x− t|+

4
15 |y − u|+

9
15 |z − v| ,

which is condition (4.44) for a =
1
15, b =

4
15 and c =

9
15. Indeed, a + b + c =

14
5 < 1. It is clear that F has the mixed R−monotone property. Furthermore, F is
orbitally continuous and ∃(0, 0, 0) ∈ X3 such that F (0, 0, 0) ∈ XR(0, 0, 0). Therefore,
the hypotheses of the Theorem 4.2.99 are satisfied. The (unique) tripled fixed point of
F is (0, 0, 0).

4.2. Applications

Nonlinear matrix equations present great interest in the field among researchers.
Many recent papers were dedicated to this topic (see [32], [33],[90]). In this section,
we will study the following nonlinear matrix equation, which is an extension of the
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cases presented by Ran and Reurings in [113], and Asgari and Mousavi in [10] and [9],
for the case of tripled fixed points:

(4.64) X = C +
p∑
i=1

A∗iF (X)Ai −
q∑
j=1

B∗jG(X)Bj −
r∑

k=1
C∗kH(X)Ck,

where C ∈ P(n) is a positive definite matrix (we denote C > 0), Ai, Bj, Ck are arbi-
trary n×n matrices and F,G,H are three continuous order preserving mappings from
H(n) into P(n), such that F (0) = G(0) = H(0) = 0, whereM(n) denotes the set of
all n × n matrices, H(n) the set of all n × n Hermitian matrices and P(n) the set of
all n× n positive definite matrices, P(n) ⊂ H(n) ⊂M(n).

If, in H(n), we introduce a relation of order "≥", we get a partially ordered set
where every matrix has a lower and an upper bound. Furthermore, to take advantage
of the results presented above (that is, Theorems 4.2.92-4.2.97), let T : H(n)×H(n)×
H(n)→ H(n) be a mapping having the mixed monotone property, T (X, Y, Z) = C +∑p
i=1 A

∗
iF (X)Ai −

∑q
j=1 B

∗
jG(Y )Bj −

∑r
k=1 C

∗
kH(Z)Ck (see equation (4.64)).Thus,the

fixed points of T are, in fact, the solutions of equation (4.64).
In the following results we will discuss the existence and uniqueness of a solution of
equation (4.64).In order to prove our results, we need the following lemmas presented
in [113]:

Lemma 4.4.131. [113] Let A and B be two positive semidefinite matrices. Then
0 ≤ tr(AB) ≤ ‖A‖ · tr(B).

Lemma 4.4.132. [113] Let A ∈ H(n) satisfy A < I (that is, I − A is a positive
definite matrix) , where H(n) is the set of all n×n Hermitian matrices. Then ‖A‖ < 1.

The next theorem assures the existence of a tripled fixed point of the mapping T .

Theorem 4.4.133. [60] Let C ∈ P(n) and M a positive number such that:
(i)∀(X, Y, Z) ∈ H(n)≤(U, V,W ), we have

|tr(F (U)− F (X))| ≤ 1
M
|tr(U −X)|

|tr(G(Y )−G(V ))| ≤ 1
M
|tr(Y − V )|

|tr(H(W )− F (Z))| ≤ 1
M
|tr(W − Z)|

(ii) ∑p
i=1 A

∗
iAi <

M

2 In, ;
∑q
j=1 B

∗
jBj <

M

2 In and ∑r
k=1 C

∗
kCk <

M

2 In.
(iii) ∑p

i=1 A
∗
iF (2C)Ai < C ; ∑q

j=1 B
∗
jG(2Q)Bj < Q and ∑r

k=1 C
∗
kH(2Q)Ck < Q. Then

there exist X∗, Y ∗, Z∗ ∈ H(n) such that T (X∗, Y ∗, Z∗) = X∗,

T (Y ∗, X∗, Y ∗) = Y ∗ and T (Z∗, Y ∗, X∗) = Z∗.
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Proof: Let (X, Y, Z) ∈ H(n)≤(U, V,W ). Then F (X) ≤ F (U), G(Y ) ≥ G(V ) and
H(Z) ≤ H(W ). Thus, we have

‖T (U, V,W )− T (X, Y, Z)‖1 = tr(T (U, V,W )− T (X, Y, Z)) =
p∑
i=1

tr(A∗i (F (U)− F (X))Ai) +
q∑
j=1

tr(B∗j (G(Y )−G(V ))Bj)

+
r∑

k=1
tr(C∗k(H(W )−H(Z))Bk) =

p∑
i=1

tr(A∗iAi(F (U)− F (X)))+

q∑
j=1

tr(BjB
∗
j (G(Y )− F (V ))) +

r∑
k=1

tr(CkC∗k(H(W )−H(Z))) =

tr((
p∑
i=1

AiA
∗
i )(F (U)− F (X))) + tr((

q∑
j=1

BjB
∗
j )(G(Y )− F (V )))+

tr((
r∑

k=1
CkC

∗
k(H(W )−H(Z))) ≤

∥∥∥∥∥
p∑
i=1

AiA
∗
i

∥∥∥∥∥
‖F (U)− F (X)‖1 +

∥∥∥∥∥∥
q∑
j=1

BjB
∗
j

∥∥∥∥∥∥ ‖G(Y )−G(V )‖1

+
∥∥∥∥∥

r∑
k=1

CkC
∗
k

∥∥∥∥∥ ‖H(W )−H(Z)‖1 ≤

‖∑p
i=1 AiA

∗
i ‖

M
‖U −X‖1 +

∥∥∥∑q
j=1 BjB

∗
j

∥∥∥
M

‖Y − V ‖1 +

‖∑r
k=1 CkC

∗
k‖

M
‖W − Z‖1 ≤

λ

2(‖U −X‖1 + ‖Y − V ‖1 + ‖W − Z‖1),

λ = 2 ·max
‖∑p

i=1 AiA
∗
i ‖

M
,

∥∥∥∑q
j=1 BjB

∗
j

∥∥∥
M

,
‖∑r

k=1 CkC
∗
k‖

M
.

From the second assumption and Lemma 4.4.132, we have λ < 1, so the contractive
condition of Theorem 4.2.92 is satisfied, ∀(X, Y, Z) ∈ H(n)≤(U, V,W ). From the mixed
monotone property of T and the last assumption we get the conclusion of the theorem,
that is, there exist X∗, Y ∗, Z∗ ∈ H(n) such that T (X∗, Y ∗, Z∗) = X∗, T (Y ∗, X∗, Y ∗) =
Y ∗ and T (Z∗, Y ∗, X∗) = Z∗. �

Theorem 4.4.134. [60] Under the assumptions of Theorem 4.4.133, the equation
(4.64) has a unique solution X ∈ H(n).

Proof: It is known that everyX, Y, Z ∈ H(n) has an upper and a lower bound.Thus,
for any (X1, Y1, Z1), (X2, Y2, Z2) ∈ H(n) × H(n) × H(n) there exists (U, V,W ) ∈
H(n) × H(n) × H(n) such that (X1, Y1, Z1), (X2, Y2, Z2) ∈ H(n)≤(U, V,W ). Now,
from Theorem 4.2.94 we get that X∗, Y ∗, Z∗ from Theorem 4.4.133 are unique and
X∗ = Y ∗ = Z∗ = X. �



CHAPTER 5

Coupled coincidence point theorems in metric
spaces endowed with a reflexive relation

1. Coincidence points of operators in partially ordered metric spaces-
Preliminaries

In this paragraph we will present some basic concepts and fundamental results
regarding coupled and tripled coincidence points. Coupled coincidence points were
introduced by Ćirić and Lakshmikantham in [53], by generalizing the notion of coupled
fixed point. The tripled coincidence points we present are obtained by Borcut in [37],
[38] , [41].

Definition 5.1.135. [53] Let (X,≤) a partially ordered space, the operator F :
X3 → X and the mapping g : X → X. We say that F is mixed g-monotone if F (x, y, z)
is g-monotone increasing in x and it is g-monotone decreasing in y, that is, for any
x, y ∈ X, we have

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1) ≥ F (x, y2).

Similarly, we have the following definition in [37]:

Definition 5.1.136. [37] Let (X,≤) a partially ordered space , the operator F :
X3 → X and the mapping g : X → X. We say that F is mixed g-monotone if F (x, y, z)
is g-monotone increasing in x and z and it is g-monotone decreasing in y, that is, for
any x, y, z ∈ X, we have

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y, z) ≤ F (x2, y, z),

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1, z) ≥ F (x, y2, z)

and

z1, z2 ∈ X, g(z2) ≤ g(z1)⇒ F (x, y, z2) ≤ F (x, y, z1).

Note that if g is the identity mapping, by Definitions 5.1.135 and 5.1.136, we obtain
Definition 3.1.32 of mixed monotone mappings presented in [36], and, respectively, in
[28].

73
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Definition 5.1.137. [53] An element (x, y) ∈ X2 is called coupled coincidence
point for the operator F : X2 → X and the mapping g : X → X if

F (x, y) = g(x), F (y, x) = g(y).

Definition 5.1.138. [38] An element (x, y) ∈ X2 is called tripled coincidence point
for the mixed g-monotone operator F : X ×X × x→ X and g : X → X if

F (x, y, z) = g(x), F (y, x, y) = g(y) and F (z, y, x) = g(z).

Similarly , if g is the identity mapping, by Definitions 5.1.137 and 5.1.138, we obtain
the classical definition of coupled fixed points from [70] and, respectively tripled fixed
point for mixed monotone mappings in [28].

Definition 5.1.139. [53] Let X be a nonempty set, F : X2 → X and operator and
g : X → X a mapping. We say that F and g commute if:

g(F (x, y)) = F (g(x), g(y)),∀x, y ∈ X.

Borcut provides similar definitions for commuting operators and mappings in [37]
and [38]:

Definition 5.1.140. [38] Let X be a nonempty set and let F : X3 → X and
g : X → X. We say that F and g commute if g(F (x, y, z)) = F (g(x), g(y), g(z)).

The main results in [53] and [88] are given by the next theorems:

Theorem 5.1.141. [88] Let (X,≤) be a partially ordered metric space and d a
metric on X such that (X, d) is a complete metric space. Let F : X2 → X be an
operator and g : X → X be a function, where F is mixed g-monotone. Suppose that
there exists the constant k ∈ [0, 1) such that

(5.65) d (F (x, y) , F (u, v)) ≤ k

2 [d(g(x), g(u)) + d(g(y), g(v))]

for every x, y, u, v ∈ X with g (x) ≤ g (u) , g (y) ≥ g (v).
Suppose that F (X2) ⊆ g (X) , g is continuous and it commutes with F and the

following hold:
(a) F is continuous or
(b) X has the following properties:

(i) if there exists the increasing sequence {xn} → x, then xn ≤ x for all n,

(ii) if there exists the decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0 ∈ X such that

g (x0) ≤ F (x0, y0) and g (y0) ≥ F (y0, x0) ,

then there exist x, y ∈ X such that

g (x) = F (x, y) and g (y) = F (y, x) .
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Theorem 5.1.142. [53] Let (X,≤) a partially ordered space and let d be a metric on
X such that the metric space (X, d) is complete. Suppose that there exists the mapping
ϕ : [0,∞) → [0,∞), where ϕ(t) < t and lim

r→t
ϕ(r) < t for any t > 0. Let F : X2 → X

be an operator and g : X → X a function where F is mixed g-monotone and

(5.66) d(F (x, y), F (u, v)) ≤ ϕ

d(g(x), g(u)) + d(g(y), g(v))
2

 ,
for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v).

We suppose that F (X2) ⊆ g(X), g is continuous and it commutes with F and the
following hold:

(1) F is continuous or
(2) X has the following properties:

• if there exists an increasing sequence {xn} → x, then xn ≤ x for all n;
• if there exists a decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0),

then there exist x, y ∈ X such that

g(x) = F (x, y) and g(y) = F (y, x).

Theorem 5.1.143. [53] In addition to the hypothesis of Theorem 5.1.142, suppose
that for every (x, y), (x∗, y∗) ∈ X2 there exists (u, v) ∈ X×X, such that (F (u, v), F (v, u))
is comparable to (F (x, y), F (y, x)) and to (F (x∗, y∗), F (y∗, x∗)). Then F and g have a
unique coincidence point, that is, there exists a unique point (x, y) ∈ X2, such that

x = g(x) = F (x, y) and y = g(y) = F (y, x).

Berinde extends and generalizes these results in [26] and [27] by considering weaker
symmetric contractive conditions:

Theorem 5.1.144. [26] Let (X,≤) a partially ordered space and let d be a metric
on X such that (X, d) is a complete metric space. Letg : X → X and F : X2 → X be
a mixed g-monotone mapping for which there exists ϕ : [0,∞)→ [0,∞) where ϕ(t) < t

and lim
r→t

ϕ(r) < t for any t > 0 and

(5.67) d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ 2ϕ
d(g(x), g(u)) + d(g(y), g(v))

2

 ,
for all x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v).

We suppose that F (X2) ⊆ g(X), g is continuous and it commutes with F and also
suppose either:

(1) F is continuous or;



765. COUPLED COINCIDENCE POINT THEOREMS IN METRIC SPACES ENDOWED WITH A REFLEXIVE RELATION

(2) X has the following properties:
• if there exists an increasing sequence {xn} → x, then xn ≤ x for all n;
• if there exists a decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0),

then there exist x, y ∈ X such that
g(x) = F (x, y) and g(y) = F (y, x), that is, F and g have a coupled coincidence point.

Theorem 5.1.145. [26] Let (X,≤) a partially ordered space and let d be a metric
on X such that (X, d) is a complete metric space. Let g : X → X and F : X2 → X

be a mixed g-monotone mapping for which there exists k ∈ [0, 1) such that for all
x, y, u, v ∈ X with g(x) ≤ g(u), g(y) ≥ g(v),

(5.68) d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k[d(g(x), g(u)) + d(g(y), g(v))].

Suppose F (X2) ⊆ g(X), g is continuous and it commutes with F and also suppose
either:

(1) F is continuous or;
(2) X has the following properties:

• if there exists an increasing sequence {xn} → x, then xn ≤ x for all n;
• if there exists a decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0 ∈ X such that

g(x0) ≤ F (x0, y0) and g(y0) ≥ F (y0, x0),

then there exist x, y ∈ X such that
g(x) = F (x, y) and g(y) = F (y, x), that is, F and g have a coupled coincidence point.

The following results are obtained by Borcut in the case of tripled coincidence points
in [37], [38], [40]:

Theorem 5.1.146. [37] Let (X,≤) a partially ordered space and let d be a metric
on X such that (X, d) is a complete metric space. Letg : X → X and F : X3 → X be
a mixed g-monotone mapping.
Suppose there exist j, k, l ∈ [0, 1), j + k + l < 1, such that

(5.69) d(F (x, y, z), F (u, v, w)) ≤ j · d(g(x), g(u)) + k · d(g(y), g(v)) + l · d(g(z), g(w))

for all x, y, z, u, v, w ∈ X with g(x) ≤ g(u), g(y) ≥ g(v) and g(z) ≤ g(w).
We suppose that F (X2) ⊆ g(X), g is continuous and it commutes with F and also

suppose either:

(1) F is continuous or
(2) X has the following properties:
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• if there exists an increasing sequence {xn} → x, then xn ≤ x for all n;
• if there exists a decreasing sequence {yn} → y, then yn ≥ y for all n.

If there exist x0, y0, z0 ∈ X such that

g(x0) ≤ F (x0, y0, z0), g(y0) ≥ F (y0, x0, y0) and g(z0) ≤ F (z0, y0, x0)

then there exist x, y ∈ X such that
g(x) = F (x, y, z) and g(y) = F (y, x, y) and g(z) = F (z, y, x), that is, F and g have a
coupled coincidence point.

Theorem 5.1.147. [37] In addition to the hypothesis of Theorem 5.1.146, sup-
pose that for every (x, y, z), (x∗, y∗, z∗) ∈ X3 there exists (u, v, w) ∈ X3, such that
(F (u, v, w), F (v, u, w), F (w, v, u)) is comparable to (g(x), g(y), g(z)) and to (g(x∗), g(y∗), g(z∗)).
Then F and g have a unique coincidence point, that is, there exists a unique point
(x, y, z) ∈ X ×X, such that

x = g(x) = F (x, y, z), y = g(y) = F (y, x, y) and z = g(z) = F (z, y, x).

Similar results are obtained in the case of g-monotone operators by Borcut in [38]:

Definition 5.1.148. [38] Let (X,≤) a partially ordered space, the operator F :
X3 → X and the mapping g : X → X. We say that F is g-monotone, if F (x, y, z) is
g-monotone increasing (decreasing) in x, y, z , that is for every x, y, z ∈ X, we have

x1, x2 ∈ X, g (x1) ≤ g (x2)⇒ F (x1, y, z) ≤ F (x2, y, z) ,

y1, y2 ∈ X, g (y1) ≤ g (y2)⇒ F (x, y1, z) ≤ F (x, y2, z)

and
z1, z2 ∈ X, g (z2) ≤ g (z1)⇒ F (x, y, z2) ≥ F (x, y, z1) .

Definition 5.1.149. [38] An element (x, y, z) ∈ X3 is a tripled coincidence point
for the g-monotone operator F and the mapping g if

F (x, y, z) = g (x) , F (y, x, z) = g (y) , F (z, y, x) = g (z) .

Remark 5.1.150. Note that the concept of tripled coincidence point for g-monotone
operators is different of that for mixed g-monotone operators.

Borcut also provides a result regarding the existence of a tripled coincidence point
for this kind of operators:

Theorem 5.1.151. [38] Let (X,≤) a partially ordered space and d a metric on
X, such that (X, d) is a complete metric space. Let F : X3 → X be an operator and
g : X → X a mapping such that F is g-monotone. Suppose that there exist j, k, l ∈ [0, 1)
with j + k + l < 1, such that

d (F (x, y, z) , F (u, v, w)) ≤ jd (g (x) , g (u)) + kd (g (y) , g (v))
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+ld (g (z) , g (w)) ,

for every x, y, z, u, v, w ∈ X cu g (x) ≤ g (u) , g (y) ≥ g (v) , g (z) ≤ g (w).
Suppose that F (X3) ⊆ g (X), g is continuous and it commutes with F and one of

the following hold :
• F is continuous
• X has the following property:

(5.70) if we have the increasing sequence {xn} → x, cu xn ≤ x for any n,

If there exist x0, y0, z0 ∈ X, such that

g (x0) ≤ F (x0, y0, z0) , g (y0) ≤ F (y0, x0, z0) and g (z0) ≤ F (z0, y0, x0)

then there exist x, y, z ∈ X, such that

g (x) = F (x, y, z) , g (y) = F (y, x, z) and g (z) = F (z, y, x) .

The author also presents many variations of this result, based on this last theorem,
by replacing the contractive condition by weaker ones, using one constant instead of
three.(see [38]).

The following result establishes the uniqueness of the tripled coincidence point:

Theorem 5.1.152. [38] In addition to the hypothesis of Theorem 5.1.151, if, for
every (x, y, z), (x∗, y∗, z∗) ∈ X3, there exists (u, v, w) ∈ X3 such that
(F (u, v, w), F (v, u, w), F (w, v, u)) is comparable to (g(x), g(y), g(z)) and to (g(x∗), g(y∗), g(z∗)),
then F and g have a unique tripled coincidence point.

Another important result is provided in [13] by Aydi, Karapinar and Postolache,
in the case of mixed−g−monotone operators. The improvement they brought to the
results of Borcut is the symmetrization of the contractive condition, following the idea
of Berinde in [25].

Theorem 5.1.153. [13] Let (X,≤) a partially ordered set and let d be a metric on
X such that (X, d) is a complete metric space. Letg : X → X and F : X3 → X be a
mixed g-monotone mapping Suppose there exist ϕ ∈ Φ, such that

(5.71) d(F (x, y, z), F (u, v, w)) + d(F (y, x, y), F (v, u, v)) + d(F (z, y, x), F (w, v, u))

≤ 3 · ϕ
d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(w))

3


for all x, y, z, u, v, w ∈ X with g(x) ≤ g(u), g(y) ≥ g(v) and g(z) ≤ g(w).

We suppose that F (X3) ⊂ g(X), g is continuous and it commutes with F and F is
continuous.
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If there exist x0, y0, z0 ∈ X such that

g(x0) ≤ F (x0, y0, z0), g(y0) ≥ F (y0, x0, y0) and g(z0) ≤ F (z0, y0, x0)

then there exist x, y ∈ X such that
g(x) = F (x, y, z) and g(y) = F (y, x, y) and g(z) = F (z, y, x), that is F and g have a
coupled coincidence point.

2. Definitions

In this paragraph we will present the definitions of lower-R-coupled coincidence
point, mixed g − R−monotony of a mapping and related concepts used for obtaining
the results presented in the next section.

Notation 4. Let X be a nonempty set and let f : X ×X → X and g : X → X be
two mappings. Then

(1) The cartesian product of f and itself is denoted by f × f and it is defined by

f × f(x, y) = (f(x, y), f(y, x)).

(2) We will denote by f 0(x, y) = x and fn(x, y) = f(fn−1(x, y), fn−1(y, x)), for
all x, y ∈ X,n ∈ N.

(3) The cartesian product of f and g is denoted by f × g and is defined by

(f × g)(x, y) = (g(f(x, y)), g(f(y, x)))

(4) We will denote by g0(x) = x and gn(x) = g(xn−1(x)), for all x ∈ X,n ∈ N.

Definition 5.2.154. [58] Let X be a nonempty set and let R be a reflexive relation
on X, f : X2 → X, g : X → X. The mapping f has the mixed g − R−monotone
property on X if (f × g)(XR(x, y)) ⊆ XR((f × g)(x, y)), for all (x, y) ∈ X2.

Definition 5.2.155. [58] An element (x, y) ∈ X2 is called lower-R−coupled
coincidence point for f and g, if (f × g)(x, y) ∈ XR(x, y).

Next, starting from the orbital continuity presented in [9], we will define the orbital
g-continuity of a mapping f .

Definition 5.2.156. [58] The mapping f is called orbitally g-continuous if
(x, y), (a, b) ∈ X2 and fnk(x, y)→ a, fnk(y, x)→ b, when k →∞, implies fnk+1(x, y)→
g(a) and fnk+1(y, x)→ g(b) when k →∞.
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3. Existence and uniqueness theorems

Theorem 5.3.157. [58] Let (X, d) be a complete metric space, R be a binary re-
flexive relation on X such that R and d are compatible. If f : X2 → X and g : X → X

are two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii) there exist k, l ∈ [0, 1), k + l < 1 such that

d(f(x, y), f(z, t)) ≤ k · d(g(x), g(z)) + l · d(g(y), g(t)),∀(x, y) ∈ XR(z, t);(5.72)

(iv) f and g have a lower-R-coupled coincidence point;
(v) f(X2) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a coupled coincidence point, that is, there exists (x, y) ∈ X2

such that f(x, y) = g(x) and f(y, x) = g(y).

Proof: Since f and g have a lower-R-coupled coincidence point, let (x0, y0) be it.
Thus, (f × g)(x0, y0) ∈ XR(x0, y0).
From (i) we have that (f × g)(XR(x0, y0)) ⊆ XR((f × g)(x0, y0)).
Further, it can easily be checked that
(gn(f(x0, y0)), gn(f(y0, x0))) ∈ XR(gn−1(f(x0, y0)), gn−1(f(y0, x0))).
Since f(X2) ⊆ g(X), let x1, y1 ∈ X such that g(x1) = f(x0, y0), g(y1) = f(y0, x0) and
so on. Step by step, we obtain the sequences {xn} and {yn} such that

(5.73) g(xn+1) = f(xn, yn), g(yn+1) = f(yn, xn)

Now, using (iii), we have that

d(f(gn(f(x0, y0)), gn(f(y0, x0))), f(gn−1(f(x0, y0)), gn−1(f(y0, x0))))

≤ kn ·d(g(gn(f(x0, y0))), g(gn−1(f(x0, y0)))) + ln ·d(g(gn(f(y0, x0))), g(gn−1(f(y0, x0))))

⇔ d(f(gn(f(x0, y0)), gn(f(y0, x0))), f(gn−1(f(x0, y0)), gn−1(f(y0, x0))))

≤ kn · d(gn+1(f(x0, y0)), gn(f(x0, y0))) + ln · d(gn+1(f(y0, x0))), gn(f(y0, x0))

⇔ d(f(gn(g(x1)), gn(g(y1))), f(gn−1(g(x1)), gn−1(g(y1))))

≤ kn · d(gn+1(g(x1)), gn(g(x1))) + ln · d(gn+1(g(y1)), gn(g(y1)))

⇔ d(f(gn+1(x1), gn+1(y1)), f(gn(x1), gn(y1)))

≤ kn · d(gn+2(x1), gn+1(x1)) + ln · d(gn+2(y1), gn+1(y1))

For n = 0, we get

d(f(g(x1), g(y1)), f(x1, y1))) ≤ d(g2(x1), g(x1)) + d(g2(y1), g(y1))
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If n→∞, we get

d(f(gn+1(x1), gn+1(y1)), f(gn(x1), gn(y1))) ≤ 0

But d(x, y) ≥ 0,∀x, y ∈ R. We get :f(gn+1(x1), gn+1(y1)) = f(gn(x1), gn(y1)), so
g(x1) = x1 = f(x0, y0) This implies that {gn(x1)}n∈N is a Cauchy sequence in X.
Similarly, we get that {gn(y1)}n∈N is a Cauchy sequence in X.
Now, because (X, d) is complete, there exist x, y ∈ X such that

(5.74) lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y.

From the continuity of g, we get

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y).

Because f and g commute, and from (5.73), we have

g(g(xn+1)) = g(f(xn, yn)) = f(g(xn), g(yn))

and
g(g(yn+1)) = g(f(yn, xn)) = f(g(yn), g(xn)).

From (5.74) and the orbital continuity of f we get

g(x) = f(x, y)

and
g(y) = f(y, x).

�

Corollary 5.3.158. [58] Let (X, d) be a complete metric space, R be a binary
reflexive relation on X such that R and d are compatible. If f : X2 → X and g : X →
X are two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii) there exist α ∈ [0, 1) such that

d(f(x, y), f(z, t)) ≤
α

2[d(g(x), g(z)) + d(g(y), g(t))],∀(x, y) ∈ XR(z, t);(5.75)

(iv) f and g have a lower-R-coupled coincidence point;
(v) f(X2) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a coupled coincidence point, that is, there exists (x, y) ∈ X2 such
that f(x, y) = g(x) and f(y, x) = g(y).
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Proof: From the proof of Theorem 5.3.157, for k = l =
α

2, α ∈ [0, 1), there exist
x, y ∈ X such that

g(x) = f(x, y)

and
g(y) = f(y, x).

�

Theorem 5.3.159. [58] In addition to the hypothesis of Theorem 5.3.157, suppose
that for every (x, y), (x, y) ∈ X2, there exists (u, v) ∈ X2 such that (g(x), g(y)), (g(x), g(y)) ∈
XR(f(u, v), f(v, u)). Then f and g have a unique coupled coincidence point.

Proof: According to the proof of Theorem 5.3.157, there exist x, y ∈ X such that
f(x, y) = g(x) and f(y, x) = g(y). We have to show that, if (x, y) is another coincidence
point for f and g,

d((g(x), g(y)), (g(x), g(y))) = 0.

Because both (x, y) and (x, y) are coupled coincidence points, we have

g(x) = f(x, y), g(y) = f(y, x)

and
g(x) = f(x, y), g(y) = f(y, x).

Now, let u0 = u and v0 = v. Then, there exist u1, v1 ∈ X2 such that g(u1) = f(u0, v0),
g(v1) = f(v0, u0). Using the same procedure as in the proof of Theorem 5.3.157, we
obtain the sequences {un}n∈N and {vn}n∈N, where

g(un+1) = f(un, vn) and g(vn+1) = f(vn, un).

Furthermore, let x0 = x, y0 = y and x0 = x, y0 = y. Thus, we obtain the sequences
{xn}n∈N , {yn}n∈N , {xn}n∈N and {yn}n∈N such that

g(xn) = f(x, y), g(yn) = f(y, x)

and
g(xn) = f(x, y), g(yn) = f(y, x).

From the hypothesis, we have that there exists (u, v) ∈ X2 such that

(g(x), g(y)), (g(x), g(y)) ∈ XR(f(u, v), f(v, u)).

From (g(x0), g(y0)) ∈ XR(f(u, v), f(v, u)) and the completeness of the metric space it
follows that

(fn(g(x0), g(y0)), fn(g(y0), g(x0))) ∈ XR(fn+1(u, v), fn+1(v, u))
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Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0)), fn+1(u, v)) ≤ kn · d(g(x0), f(u, v)) + ln · d(g(y0), f(v, u))

and

d(fn(g(y0), g(x0)), fn+1(v, u)) ≤ kn · d(g(x0), f(u, v)) + ln · d(g(y0), f(v, u)).

Summing up, we obtain that

d(fn(g(x0), g(y0)), fn+1(u, v)) + d(fn(g(y0), g(x0)), fn+1(v, u)) ≤

2kn · d(g(x0), f(u, v)) + 2ln · d(g(y0), f(v, u)).

But x0 = x and y0 = y. We obtain

d(fn(g(x), g(y)), fn+1(u, v)) + d(fn(g(y), g(x)), fn+1(v, u)) ≤

2kn · d(g(x), f(u, v)) + 2ln · d(g(y), f(v, u)).

Letting n→∞ we obtain that

lim
n→∞

d(g(x), f(u, v)) = 0 and lim
n→∞

d(g(y), f(v, u)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(u, v)) = 0 and lim
n→∞

d(g(y), f(v, u)) = 0.

Now, using the triangle inequality, we have

d(g(x), g(x)) ≤ d(g(x), f(u, v)) + d(f(u, v), g(x))→ 0, when n→∞

and
d(g(y), g(y)) ≤ d(g(y), f(v, u)) + d(f(v, u), g(y))→ 0, when n→∞,

so the proof of the theorem is complete. �

Now, let’s recall the definition of a mapping ϕ introduced in [53] by Ćirić and
Lakshmikantham: Let ϕ : [0,∞)→ [0,∞) satisfying :
i) ϕ(t) < t,∀t ∈ (0,∞);
ii) lim

r→t+
ϕ(r) < t,∀t ∈ (0,∞);

The set of all these mappings ϕ is denoted by Φ.

Replacing the contraction condition (5.72) with one that uses the mapping ϕ defined
above, following the idea in [53], we obtain:

Theorem 5.3.160. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X2 → X and g : X → X are
two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
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(iii)

d(f(x, y), f(z, t)) ≤ ϕ

d(g(x), g(z)) + d(g(y), g(t))
2

 ,∀(x, y) ∈ XR(z, t),(5.76)

where ϕ ∈ Φ;
(iv) f and g have a lower-R-coupled coincidence point;
(v) f(X2) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a coupled coincidence point, that is, there exists (x, y) ∈ X2 such
that f(x, y) = g(x) and f(y, x) = g(y).

Proof: Since f and g have a lower-R-coupled coincidence point, let (x0, y0) be it.
Thus, (f × g)(x0, y0) ∈ XR(x0, y0).
From (i) we have that (f × g)(XR(x0, y0)) ⊆ XR((f × g)(x0, y0)).
Further, it can easily be checked that

(5.77) (gn(f(x0, y0)), gn(f(y0, x0))) ∈ XR(gn−1(f(x0, y0)), gn−1(f(y0, x0))).

Since f(X2) ⊆ g(X), let x1, y1 ∈ X such that g(x1) = f(x0, y0), g(y1) = f(y0, x0) and
so on. Step by step, we obtain the sequences {xn} and {yn} such that

(5.78) g(xn+1) = f(xn, yn), g(yn+1) = f(yn, xn)

Let’s consider the nonnegative sequence {zn}n∈N∗ such that zn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)), n ∈ N∗.
Now, using (5.76), (5.77) and letting x := xn and y := yn, z := xn−1 and t := yn−1, we
obtain

d(g(xn+1), g(xn)) = d(f(xn, yn), f(xn−1, yn−1)) ≤ ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))
2

 =

ϕ

zn−1

2


and

d(g(yn+1), g(yn)) = d(f(yn, xn), f(yn−1, xn−1)) ≤ ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))
2

 =

ϕ

zn−1

2

 .
By summing up the last two relations, we get that

d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) = zn ≤ 2 · ϕ
zn−1

2

 .
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Now, using the properties of ϕ, we have that

(5.79) zn ≤ 2 · ϕ
zn−1

2

 < 2 ·
zn−1

2 = zn−1.

Thus, the sequence {zn}n∈N∗ is decreasing and nonnegative. Therefore, there exists
ε0 ≥ 0 such that

lim
n→∞

zn = ε0.

Now, we will prove that ε0 = 0. In (5.79), let n→∞. Using (ii) (the second condition
satisfied by ϕ), we have

ε0 = lim
n→∞

zn ≤ 2 · lim
n→∞

ϕ

zn−1

2

 = 2 · lim
zn−1→ε0+

ϕ

zn−1

2

 < ε0,

which is a contradiction. Thus, limn→∞ zn = 0 and, consequently, lim
n→∞

d(g(xn+1), g(xn)) =
0 and lim

n→∞
d(g(yn+1), g(yn)) = 0.

Next, we will prove that {g(xn)}n∈N and {g(yn)}n∈N are Cauchy sequences. Suppose
that at least one of them is not a Cauchy sequence. Then, there exists a constant δ > 0
and two integer sequences {n1(k)} and {n2(k)}, such that

(5.80) sk := d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) ≥ δ,

where n1(k) > n2(k) ≥ k, k ∈ N∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (5.80). Then, we have

(5.81) d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) < δ.

Now, using the triangle inequality and the last two inequalities ((5.80) and (5.81)), we
have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) + d(g(xn2(k)), g(xn1(k)))

+d(g(yn2(k)), g(yn1(k))) ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))] = δ.

Now we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)), g(yn1(k)+1))

+d(g(yn1(k)+1), g(yn2(k))) = zn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k)))

(5.82) ≤ zn1(k) + zn2(k) + d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1)).

But
d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1))
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= d(f(xn1(k), yn1(k)), f(xn2(k), yn2(k))) + d(f(yn1(k), xn1(k)), f(yn2(k), xn2(k)))

≤ 2 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k))

2



≤ 2 · ϕ
sk

2

 .
Now, returning to (5.82), we have

sk ≤ zn1(k) + zn2(k) + 2 · ϕ
sk

2

 .
Let k →∞. Thus, using property ii of ϕ, we obtain

δ ≤ 2 · lim
k→∞

ϕ

sk
2

 = 2 · lim
sk→δ+

ϕ(
k

2) < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N and {g(yn)}n∈N are Cauchy sequences in the complete metric
space (X, d). Since X is complete, there exist x and y such that gn(xn) → x and
gn(yn) → y as n → ∞. Which means that fn−1(xn, yn) → x and fn−1(yn, xn) → y,
as n → ∞. Using the orbital g-continuity of f , we get that fn(xn, yn) → g(x) and
fn(yn, xn) → g(y), as n → ∞, that is, (x, y) is a coupled coincidence point for f and
g. �

Theorem 5.3.161. In addition to the hypothesis of Theorem 5.3.160, suppose that
for every (x∗, y∗), (x, y) ∈ X2, there exists (u, v) ∈ X2 such that (g(x∗), g(y∗)), (g(x), g(y)) ∈
XR(f(u, v), f(v, u)). Then f and g have a unique coupled coincidence point.

Proof: From Theorem 5.3.160, there exist x, y ∈ X such that f(x, y) = g(x) and
f(y, x) = g(y). We have to show that, if (x∗, y∗) is another coincidence point for f and
g,

d((g(x), g(y)), (g(x∗), g(y∗))) = 0.

Since (x∗, y∗) and (x, y) are both coupled coincidence points, it follows that

g(x∗) = f(x∗, y∗), g(y∗) = f(y∗, x∗)

and
g(x) = f(x, y), g(y) = f(y, x).

Now, using the hypothesis of Theorem 5.3.160, from f(X2) ⊆ g(x), there exist u1, v1 ∈
X2 such that g(u1) = f(u0, v0), g(v1) = f(v0, u0). Using the same procedure as in the
proof of Theorem 5.3.157, we build the sequences {un}n∈N and {vn}n∈N, where

g(un+1) = f(un, vn) and g(vn+1) = f(vn, un).
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Next, let x0 = x∗, y0 = y∗ and x0 = x, y0 = y. Thus, we obtain the sequences
{x∗n}n∈N , {y∗n}n∈N , {xn}n∈N and {yn}n∈N such that

g(x∗n) = f(x∗, y∗), g(y∗n) = f(y∗, x∗)

and
g(xn) = f(x, y), g(yn) = f(y, x).

From the hypothesis, we know that there exists (u, v) ∈ X2 such that

(g(x∗), g(y∗)), (g(x), g(y)) ∈ XR(f(u, v), f(v, u)).

From (g(x0), g(y0)) ∈ XR(f(u, v), f(v, u)) and the completeness of the metric space it
follows that

(fn(g(x0), g(y0)), fn(g(y0), g(x0))) ∈ XR(fn+1(u, v), fn+1(v, u))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0)), fn+1(u, v)) ≤ ϕ

d(g(x0), f(u, v)) + d(g(y0), f(v, u))
2


and

d(fn(g(y0), g(x0)), fn+1(v, u)) ≤ ϕ

d(g(x0), f(u, v)) + d(g(y0), f(v, u))
2

 .
Summing up, we obtain that

d(fn(g(x0), g(y0)), fn+1(u, v)) + d(fn(g(y0), g(x0)), fn+1(v, u)) ≤

2 · ϕ
d(g(x0), f(u, v)) + d(g(y0), f(v, u))

2

 .
But x0 = x∗ and y0 = y∗. We obtain

d(fn(g(x∗), g(y∗)), fn+1(u, v)) + d(fn(g(y∗), g(x∗)), fn+1(v, u)) ≤

2 · ϕ
d(g(x∗), f(u, v)) + d(g(y∗), f(v, u))

2

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(u, v)) = 0 and lim
n→∞

d(g(y∗), f(v, u)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(u, v)) = 0 and lim
n→∞

d(g(y), f(v, u)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(u, v)) + d(f(u, v), g(x))→ 0, when n→∞

and

d(g(y∗), g(y)) ≤ d(g(y∗), f(v, u)) + d(f(v, u), g(y))→ 0, when n→∞,
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so the proof of the theorem is complete. �

Now, by symmetrizing the contraction, using the idea in [26], we obtain the follow-
ing result:

Theorem 5.3.162. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X2 → X and g : X → X are
two mappings such that
(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii)

d(f(x, y), f(z, t)) + d(f(x, y), f(t, z)) ≤ 2 · ϕ
d(g(x), g(z)) + d(g(y), g(t))

2

 ,∀(x, y) ∈ XR(z, t),

(5.83)

where ϕ ∈ Φ;
(iv) f and g have lower-R-coupled coincidence point;
(v) f(X2) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.
Then f and g have a coupled coincidence point, that is, there exists (x, y) ∈ X2 such
that f(x, y) = g(x) and f(y, x) = g(y).

Proof: The proof of this theorem follows the steps of Theorem 5.3.160: Since f and
g have a lower-R-coupled coincidence point, let (x0, y0) be it. Thus, (f × g)(x0, y0) ∈
XR(x0, y0).
From (i) we have that (f × g)(XR(x0, y0)) ⊆ XR((f × g)(x0, y0)).
Further, it can easily be checked that

(5.84) (gn(f(x0, y0)), gn(f(y0, x0))) ∈ XR(gn−1(f(x0, y0)), gn−1(f(y0, x0))).

Since f(X2) ⊆ g(X), let x1, y1 ∈ X such that g(x1) = f(x0, y0), g(y1) = f(y0, x0) and
so on. Step by step, we obtain the sequences {xn} and {yn} such that

(5.85) g(xn+1) = f(xn, yn), g(yn+1) = f(yn, xn)

Let’s consider the nonnegative sequence {zn}n∈N∗ such that zn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)), n ∈ N∗.
Now, using (5.76), (5.84) and letting x := xn and y := yn, z := xn−1 and t := yn−1, we
obtain

d(f(xn, yn), f(xn−1, yn−1))+d(f(yn, xn), f(yn−1, xn−1)) = d(g(xn+1), g(xn))+d(g(yn+1), g(yn)) ≤

2 · ϕ
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))

2

 =
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ϕ

zn
2


Thus, we have that

(5.86) zn+1 ≤ 2 · ϕ
zn

2


Using the proof of Theorem 5.3.160 we have that {zn}n∈N∗ is decreasing and nonnega-
tive. Therefore, there exists ε0 ≥ 0 such that

lim
n→∞

zn = ε0.

Now, we will prove that ε0 = 0. In (5.86), let n→∞. Using (i), we have

ε0 = lim
n→∞

zn+1 ≤ 2 · lim
n→∞

ϕ

zn
2

 = 2 · lim
zn→ε0+

ϕ

zn
2

 < ε0.

So we have that ε0 < εo, which is, clearly, a contradiction.
Thus, lim

n→∞
zn = 0 and, consequently, lim

n→∞
d(g(xn+1), g(xn)) = 0 and

lim
n→∞

d(g(yn+1), g(yn)) = 0.

Next, we will prove that {g(xn)}n∈N and {g(yn)}n∈N are Cauchy sequences. Suppose
that at least one of them is not a Cauchy sequence. Then, there exists a constant δ > 0
and two integer sequences {n1(k)} and {n2(k)}, such that

(5.87) sk := d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) ≥ δ,

where n1(k) > n2(k) ≥ k, k ∈ N∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (5.87). Then, we have

(5.88) d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) < δ.

Now, using the triangle inequality and the last two inequalities ((5.87) and (5.88)), we
have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) + d(g(yn2(k)), g(yn1(k)))+

d(g(xn2(k)), g(xn1(k))) ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))] = δ.

Now we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)), g(yn1(k)+1))

+d(g(yn1(k)+1), g(yn2(k))) = zn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k)))
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(5.89) ≤ zn1(k) + zn2(k) + d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1))

= d(f(xn1(k), yn1(k)), f(xn2(k), yn2(k))) + d(f(yn1(k), xn1(k)), f(yn2(k), xn2(k)))

≤ 2 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k)))

2



≤ 2 · ϕ
sk

2

 .
Now, returning to (5.89), we have

sk ≤ zn1(k) + zn2(k) + 2 · ϕ
sk

2

 .
Let k →∞. Thus, using the property ii of ϕ, we obtain

δ ≤ 2 · lim
k→∞

ϕ

sk
2

 = 2 · lim
sk→δ+

ϕ

sk
2

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N and {g(yn)}n∈N are Cauchy sequences in the complete metric
space (X, d). Since X is complete, there exist x and y such that gn(xn) → x and
gn(yn) → y as n → ∞. Which means that fn−1(xn, yn) → x and fn−1(yn, xn) → y,
as n → ∞. Using the orbital g-continuity of f , we get that fn(xn, yn) → g(x) and
fn(yn, xn) → g(y), as n → ∞, that is, (x, y) is a coupled coincidence point for f and
g. �

Theorem 5.3.163. In addition to the hypothesis of Theorem 5.3.162, suppose that
for every (x∗, y∗), (x, y) ∈ X2, there exists (u, v) ∈ X2 such that (g(x∗), g(y∗)), (g(x), g(y)) ∈
XR(f(u, v), f(v, u)). Then f and g have a unique coupled coincidence point.

Proof: According to Theorem 5.3.162, there exist x, y ∈ X such that f(x, y) = g(x)
and f(y, x) = g(y). We have to show that, if (x∗, y∗) is another coincidence point for
f and g,

d((g(x), g(y)), (g(x∗), g(y∗))) = 0.

Because both (x∗, y∗) and (x, y) are coupled coincidence points, we have

g(x∗) = f(x∗, y∗), g(y∗) = f(y∗, x∗)

and

g(x) = f(x, y), g(y) = f(y, x).
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From f(X2) ⊆ g(X), there exist u0, v0 in X such that g(u1) = f(u0, v0), g(v1) =
f(v0, u0). Following the procedure used in the proof of Theorem 5.3.157, we obtain the
sequences {un}n∈N and {vn}n∈N, where

g(un+1) = f(un, vn) and g(vn+1) = f(vn, un).

Furthermore, let x∗0 = x∗, y∗0 = y∗ and x0 = x, y0 = y. Thus, we obtain the sequences
{x∗n}n∈N , {y∗n}n∈N , {xn}n∈N and {yn}n∈N such that

g(x∗n) = f(x∗, y∗), g(y∗n) = f(y∗, x∗)

and
g(xn) = f(x, y), g(yn) = f(y, x).

From the hypothesis, we have that there exists (u, v) ∈ X2 such that

(g(x∗), g(y∗)), (g(x), g(y)) ∈ XR(f(u, v), f(v, u)).

From (g(x0), g(y0)) ∈ XR(f(u, v), f(v, u)) and the completeness of the metric space it
follows that

(fn(g(x0), g(y0)), fn(g(y0), g(x0))) ∈ XR(fn+1(u, v), fn+1(v, u))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0)), fn+1(u, v)) + d(fn(g(y0), g(x0)), fn+1(v, u)) ≤

ϕ

d(g(x0), f(u, v)) + d(g(y0), f(v, u))
2

 .
But x∗0 = x∗ and y∗0 = y∗. We obtain

d(fn(g(x∗), g(y∗)), fn+1(u, v)) + d(fn(g(y∗), g(x∗)), fn+1(v, u)) ≤

ϕ

d(g(x∗), f(u, v)) + d(g(y∗), f(v, u))
2

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(u, v)) = 0 and lim
n→∞

d(g(y∗), f(v, u)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(u, v)) = 0 and lim
n→∞

d(g(y), f(v, u)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(u, v)) + d(f(u, v), g(x))→ 0, when n→∞

and

d(g(y∗), g(y)) ≤ d(g(y∗), f(v, u)) + d(f(v, u), g(y))→ 0, when n→∞,

which means that
g(x∗) = g(x)



925. COUPLED COINCIDENCE POINT THEOREMS IN METRIC SPACES ENDOWED WITH A REFLEXIVE RELATION

and

g(y∗) = g(y).

�

Next, we let ϕ(t) = kt, k ∈ [0, 1). It is easy to check that conditions (i) and (ii)
still hold. We obtain the following result:

Theorem 5.3.164. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X2 → X and g : X → X are
two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g−continuous;
(iii) there exist k ∈ [0, 1) such that

d(f(x, y), f(z, t)) + d(f(y, x), f(t, z)) ≤ k · [d(g(x), g(z)) + d(g(y), g(t))],∀(x, y) ∈ XR(z, t);
(5.90)

(iv) f and g have a lower-R-coupled coincidence point;
(v) f(X2) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a coupled coincidence point, that is, there exists (x, y) ∈ X2 such
that f(x, y) = g(x) and f(y, x) = g(y).

Proof: In Theorem 5.3.162, let ϕ(t) = kt, k ∈ [0, 1). �

Theorem 5.3.165. In addition to the hypothesis of Theorem 5.3.164, suppose that
for every (x, y), (x, y) ∈ X2, there exists (u, v) ∈ X2 such that (g(x), g(y)), (g(x), g(y)) ∈
XR(f(u, v), f(v, u)). Then f and g have a unique coupled coincidence point.

Proof: In Theorem 5.3.161, let ϕ(t) = kt, k ∈ [0, 1). �

Remark 5.3.166. If, in Theorem 5.3.158 we take R =≤ and we assume that f is
continuous, we obtain Theorem 5.1.141 from [53].

Remark 5.3.167. If, in Theorem 5.3.159, we take R =≤, we obtain Theorem
5.1.143 from [53].

Remark 5.3.168. If, in Theorem 5.3.162, resp. 5.3.164, we take R =≤ and we
assume that f is continuous, we obtain Theorem 5.1.144, resp. 5.1.145 from [26].
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4. Examples and applications

4.1. Examples

Example 5.4.169. Let X = R, the metric d(x, y) = |x− y|, the relation R on X

given by

xRy ⇔
x2 − 2y

3 =
y2 − 2x

3
⇔ (x− y)(x+ y + 2) = 0.

Thus, we have XR(x, y) = (x, y)(x,−y − 2), (−x− 2, y), (−x− 2,−y − 2). Let f :
X2 → X be defined by

f(x, y) =
2x− 3y + 1

6
and g : X → X, where

g(x) =
2x
3 .

Hence, f has the mixed g−R−monotone property. It can easily be checked that f and
g satisfy all the other conditions of Theorem 5.3.157. The contraction also holds for

k =
1
2 and l =

3
4:

d(f(x, y), f(z, t)) =

∣∣∣∣∣∣
2x− 3y + 1

6 −
2z − 3t+ 1

6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2(x− z)− 3(y − t)

6

∣∣∣∣∣∣ ≤
3
4 |g(x)− g(z)|+

1
2 |g(y)− g(t)|

=
1
2d(g(x), g(z)) +

3
4d(g(y), g(t)),∀(x, y) ∈ XR(z, t).

So, by Theorem 5.3.157, we obtain that f and g have a coupled coincidence point,1
5,

1
5

. Note that, in this case, Theorem 5.1.141 from [88] cannot be applied because

R is not antisymmetric, so it is not a relation of partial order.

Example 5.4.170. Let X = R+, the metric d(x, y) = |x− y|, the relation R on X
given by

xRy ⇔ x2 − x = y2 − y.

Let f : X2 → X be defined by

f(x, y) =
3x− 8y + 1

12
and g : X → X, where

g(x) = x− 1.
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So, ∀(x, y) ∈ X2, we have :

XR(x, y) = {(x, y), (x, 1− y), (1− x, y), (1− x, 1− y)}.

f × g(XR(x, y)) ⊆ XR(f × g(x, y))

So, f has the mixed g − R−monotone property. It can easily be checked that f and g
satisfy all the other conditions of Theorem 5.3.164.
Condition (5.90) is also satisfied by f and g, whereas (5.75) in Theorem 5.3.158 does
not hold. Let’s assume, to the contrary, that there exists α ∈ [0, 1), such that (5.75)
holds. This means

d(f(x, y), f(z, t)) =

∣∣∣∣∣∣
3x− 8y + 1

12 −
3z − 8t+ 1

12

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3(x− z)− 8(y − t)

12

∣∣∣∣∣∣
≤
α

2[|x− z|+ |y − t|],∀(x, y) ∈ XR(z, t)

For x = z, we have :
2
3 |y − t| ≤

α

2 |y − t| , y 6= t

which would imply
2
3 ≤

α

2 ⇔
4
3 ≤ α < 1, a contradiction.

For x 6= z, we have Next, let’s prove that, in this case, (5.90) holds:∣∣∣∣∣∣
3x+ 8y + 1

12 −
3z + 8t+ 1

12

∣∣∣∣∣∣ ≤
1
4 |x− z|+

2
3 |y − t| ,∀(x, y) ∈ XR(z, t)

and ∣∣∣∣∣∣
3y − 8x+ 1

12 −
3t− 8z + 1

12

∣∣∣∣∣∣ ≤
1
4 |y − t|+

2
3 |x− z| ,∀(x, y) ∈ XR(z, t).

By summing up, we obtain:

d(f(x, y), f(z, t))+d(f(y, x), f(t, z)) ≤
11
12·[d(g(x), g(z))+d(g(y), g(t))], ∀(x, y) ∈ XR(z, t),

which is exactly (5.90), for k =
11
12 < 1. So, by Theorem 5.3.164, we obtain that f and

g have a coupled coincidence point,
13

17,
13
17

.
Example 5.4.171. Let X = [−2,∞), the metric d(x, y) = |x− y|, the relation R

on X given by
xRy ⇔ x2 + x = y2 + y.
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Let f : X2 → X be defined by

f(x, y) =
x− 2y + 2

8
and g : X → X, where

g(x) = x+ 1.

So, ∀(x, y) ∈ X2, we have :

XR(x, y) = {(x, y), (x,−1− y), (−1− x, y), (−1− x,−1− y)}.

f × g(XR(x, y)) ⊆ XR(f × g(x, y))

So, f is mixed g − R−monotone. It can easily be checked that f and g satisfy all the
other conditions of Theorem 5.3.160. Next, we will show that f and g satisfy condition
(5.76):

d(f(x, y), f(z, t)) =

∣∣∣∣∣∣
x− 2y + 2

8 −
z − 2t+ 2

8

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(x− z)− 2(y − t)

8

∣∣∣∣∣∣ ≤
1
8d(g(x), g(z)) +

1
4d(g(y), g(t))

<
1
4d(g(x), g(z))+

1
4d(g(y), g(t)) = ϕ

d(g(x), g(z)) + d(g(y), g(t))
2

 ,∀(x, y) ∈ XR(z, t),

which is exactly (5.76) for ϕ(t) =
t

2. So, by Theorem 5.3.164, we obtain that f and g

have a coupled coincidence point,
−30

53,−
30
53

.
4.2. An application

Let us consider the following nonlinear matrix equation:

(5.91) G(X) = Q+
p∑
i=1

A∗iT (X)Ai −
q∑
j=1

B∗jK(X)Bj

where Q ∈ P(n) is a positive definite matrix (we denote Q > 0), Ai, Bj are arbitrary
n × n matrices and G,K, T : H(n) → P(n), are three continuous order preserving
mappings such that T (0) = G(0) = K(0) = 0, whereM(n) denotes the set of all n×n
matrices, H(n) the set of all n × n Hermitian matrices and P(n) the set of all n × n
positive definite matrices, P(n) ⊂ H(n) ⊂M(n).

If, in H(n), we introduce a relation of order "≤", we get a partially ordered set
where every matrix has a lower and an upper bound. Furthermore, let F : H(n) ×
H(n) → H(n) be a mapping having the mixed monotone property, F (X, Y ) = Q +∑p
i=1 A

∗
iT (X)Ai−

∑q
j=1 B

∗
jK(Y )Bj (see Equation (5.91)).Thus,the coupled coincidence
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points of F and G are, in fact, the solutions of Equation(5.91).

In the following results we will discuss the existence and uniqueness of a solution
of Equation (5.91).

Theorem 5.4.172. Let C ∈ P(n) and M a positive number such that:

(1) ∀(X, Y ) ∈ H(n)≤(U, V ), we have

|tr(T (U)− T (X))| ≤ 1
M
|tr(U −X)|

and
|tr(K(Y )−K(V ))| ≤ 1

M
|tr(Y − V )| ;

(2) ∑p
i=1 A

∗
iAi <

M

2 In, and ∑q
j=1 B

∗
jBj <

M

2 In;
(3) ∑p

i=1 A
∗
iF (2C)Ai < C, and ∑q

j=1 B
∗
jG(2Q)Bj < Q.

Then there exist X∗, Y ∗ ∈ H(n) such that F (X∗, Y ∗) = G(X∗), and F (Y ∗, X∗) =
G(Y ∗).

Proof: Let (X, Y ) ∈ H(n)≤(U, V ). Then T (X) ≤ T (U) and K(Y ) ≥ K(V ). Thus,
we have

‖F (U, V )− F (X, Y )‖1 = tr(F (U, V )− F (X, Y )) =
p∑
i=1

tr(A∗i (T (U)− T (X))Ai) +
q∑
j=1

tr(B∗j (K(Y )−K(V ))Bj) =

p∑
i=1

tr(A∗iAi(T (U)− T (X))) +
q∑
j=1

tr(BjB
∗
j (K(Y )−K(V ))) =

tr((
p∑
i=1

AiA
∗
i )(T (U)− T (X))) + tr((

q∑
j=1

BjB
∗
j )(K(Y )−K(V ))) ≤

∥∥∥∥∥
p∑
i=1

AiA
∗
i

∥∥∥∥∥ ‖T (U)− T (X)‖1 +∥∥∥∥∥∥
q∑
j=1

BjB
∗
j

∥∥∥∥∥∥ ‖K(Y )−K(V )‖1 ≤

‖∑p
i=1 AiA

∗
i ‖

M
‖U −X‖1 +

∥∥∥∑q
j=1 BjB

∗
j

∥∥∥
M

‖Y − V ‖1 ,

λ = 2 ·max
‖∑p

i=1 AiA
∗
i ‖

M
,

∥∥∥∑q
j=1 BjB

∗
j

∥∥∥
M

.

From the second assumption and Lemma 4.4.132, we have λ < 1, so the contractive
condition of Theorem 5.3.158 is satisfied, ∀(X, Y ) ∈ H(n)≤(U, V ). From the mixed
monotone property of F and the last assumption we get the conclusion of the theorem,
that is, there exist X∗, Y ∗ ∈ H(n) such that F (X∗, Y ∗) = G(X∗), and T (Y ∗, X∗) =
G(Y ∗). �
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Theorem 5.4.173. Under the assumptions of Theorem 5.4.172, the Equation (5.91)
has a unique solution X ∈ H(n).

Proof: It is known that every matrix X ∈ H(n) has an upper bound and a lower
bound. In consequence, for any matrix pairs (X1, Y1), (X2, Y2) ∈ H(n) × H(n) there
exists a pair (U, V ) ∈ H(n) × H(n) such that (X1, Y1), (X2, Y2) ∈ H(n)≤(U, V ). The
conclusion follows using Theorem 5.3.159. Thus, we get that X∗, Y ∗ from Theorem
5.4.172 are unique and X∗ = Y ∗ = X. �

Remark 5.4.174. If, in Theorem 5.4.172, resp. 5.4.173 we let G(X) = X, we
obtain Theorem 3.3, resp. 3.5 in [9].



CHAPTER 6

Tripled coincidence point theorems in metric spaces
endowed with a reflexive relation

1. Tripled coincidence points of mixed g −R−monotone operators

The following concepts are extensions of the notions presented in [37] and [38] for
the case of tripled coincidence points in metric spaces endowed with a reflexive relation.

1.1. Definitions

In this section we extend and generalize notions related to coupled and tripled
coincidence points in partially ordered metric spaces for the case of tripled coincidence
points in metric spaces endowed with a reflexive relation.

Notation 5. Let X be a nonempty set and let f : X×X×X → X and g : X → X

be two mappings. Then

(1) We will denote by f 0(x, y, z) = x and

fn(x, y, z) = f(fn−1(x, y, z), fn−1(y, x, y), fn−1(z, y, x)),

for all x, y, z ∈ X,n ∈ N.
(2) We will denote by g0(x) = x and gn(x) = g(xn−1(x)), for all x ∈ X,n ∈ N.
(3) The cartesian product of f and itself is denoted by f × f and it is defined by

f × f(x, y, z) = (f(x, y, z), f(y, x, y), f(z, y, x)).

(4) The cartesian product of f and g is denoted by f × g and is defined by

(f × g)(x, y, z) = (g(f(x, y, z)), g(f(y, x, y)), g(f(z, y, x)))

Definition 6.1.175. Let X be a nonempty set and let R be a reflexive relation on
X, f : X3 → X, g : X → X. The mapping f has the mixed-g − R−monotone
property on X if (f × g)(XR(x, y, z)) ⊆ XR((f × g)(x, y, z)), for all (x, y, z) ∈ X3.

Definition 6.1.176. An element (x, y, z) ∈ X3 is called lower-R−tripled coin-
cidence point for f and g, if (f × g)(x, y, z) ∈ XR(x, y, z).

Next, starting from the orbital continuity presented in [9], we will define the orbital
g-continuity of a mapping f .

98
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Definition 6.1.177. Let X be a topological space and f : X3 → X be a mixed
g − R−monotone mapping, g : X → X. We say that f is orbitally g-continuous
if (x, y, z), (a, b, c) ∈ X3 and fnk(x, y, z) → a, fnk(y, x, y) → b, fnk(z, y, x) → c, when
k →∞, implies fnk+1(x, y, z)→ g(a), fnk+1(y, x, y)→ g(b) and fnk+1(z, y, x)→ g(c),
when k →∞.

1.2. Existence and uniqueness theorems

Theorem 6.1.178. [61] Let (X, d) be a complete metric space, R be a binary re-
flexive relation on X such that R and d are compatible. If f : X3 → X and g : X → X

are two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii) there exist k, l,m ∈ [0, 1), k + l +m < 1 such that

(6.92) d(f(x, y, z), f(t, u, v)) ≤ k · d(g(x), g(t)) + l · d(g(y), g(u)) +m · d(g(z), g(v)),

∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof: Since f and g have a lower-R-tripled coincidence point, let (x0, y0, z0) be
it. Thus, (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we have that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(z0, y0, x0))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0))gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, y0), g(z1) = f(z0, y0, x0) and so on. Step by step, we obtain the sequences
{xn}, {yn} and {zn} such that

(6.93) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, yn), g(zn+1) = f(zn, yn, xn).

Now, using (iii), we have that

d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(z0, y0, x0)),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn−1(f(z0, y0, x0))))
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≤ kn · d(g(gn(f(x0, y0, z0))), g(gn−1(f(x0, y0, z0))))+

ln · d(g(gn(f(y0, x0, y0))), g(gn−1(f(y0, x0, y0))))

+mn · d(g(gn(f(z0, y0, x0))), g(gn−1(f(z0, y0, x0))))

⇔ d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(f(z0, y0, x0))),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn(f(z0, y0, x0))))

≤ kn · d(gn+1(f(x0, y0, z0)), gn(f(x0, y0, z0)), gn(f(x0, y0, z0)))+

ln · d(gn+1(f(y0, x0, y0)), gn(f(y0, x0, y0)), gn(f(y0, x0, y0)))

+mn · d(gn+1(f(z0, y0, x0)), gn(f(z0, y0, x0)), gn(f(z0, y0, x0)))

⇔ d(f(gn(g(x1)), gn(g(y1)), gn(g(z1))), f(gn−1(g(x1)), gn−1(g(y1)), gn−1(g(z1))))

≤ kn·d(gn+1(g(x1)), gn(g(x1)))+ln·d(gn+1(g(y1)), gn(g(y1)))+mnd(gn+1(g(z1)), gn(g(z1)))

⇔ d(f(gn+1(x1), gn+1(y1), gn+1(z1)), f(gn(x1), gn(y1)gn(z1)))

≤ kn · d(gn+2(x1), gn+1(x1)) + ln · d(gn+2(y1), gn+1(y1)) +mn · d(gn+2(z1), gn+1(z1))

This implies that {gn(x1)}n∈N is a fundamental sequence in X.
Now, because (X, d) is a complete metric space, there exist x, y, z ∈ X such that

(6.94) lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y, lim
n→∞

g(zn) = z.

From the continuity of g, we get

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y), lim
n→∞

g(g(zn)) = g(z).

Because f and g commute, and from (6.93), we have

g(g(xn+1)) = g(f(xn, yn, zn)) = f(g(xn), g(yn), g(zn)),

g(g(yn+1)) = g(f(yn, xn, yn)) = f(g(yn), g(xn), g(yn)

and
g(g(zn+1)) = g(f(zn, yn, xn)) = f(g(zn), g(yn), g(xn)

From (6.94) and the orbital continuity of f we get

g(x) = f(x, y, z),

g(y) = f(y, x, y)

and
g(z) = f(z, y, x).

�

Corollary 6.1.179. [61] Let (X, d) be a complete metric space, R be a binary
reflexive relation on X such that R and d are compatible. If f : X3 → X and g : X →
X are two mappings such that
(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
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(iii) there exist α ∈ [0, 1) such that

d(f(x, y, z), f(t, u, v)) ≤
α

3 · [d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(t))],∀(x, y, z) ∈ XR(t, u, v);

(6.95)

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof: From the proof of Theorem 6.1.178, for k = l = m =
α

3, α ∈ [0, 1), there
exist x, y, z ∈ X such that

g(x) = f(x, y, z),

g(y) = f(y, x, y)

and
g(z) = f(z, y, x).

�

Theorem 6.1.180. In addition to the hypothesis of Theorem 6.1.178, suppose that
for every (x, y, z), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x), g(y), g(z)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: According to the proof of Theorem 6.1.178, there exist x, y, z ∈ X such
that f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z). We have to show that, if
(x, y, z) is another coincidence point for f and g,

d((g(x), g(y), g(z), (g(x), g(y), g(z))) = 0.

Because both (x, y, z) and (x, y, z) are tripled coincidence points, we have

g(x) = f(x, y, z), g(y) = f(y, x, y), g(z) = f(z, y, x)

and
g(x) = f(x, y, z), g(y) = f(y, x, y),

g(z) = f(z, y, x).

Now, let u0 = u, v0 = v and t0 = t. Then, there exist t1, u1, v1 ∈ X such that g(t1) =
f(t0, u0, v0), g(u1) = f(u0, t0, u0) and g(v1f(v0, u0, t0). Using the same procedure as in
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the proof of Theorem 6.1.178, we obtain the sequences {un}n∈N, {vn}n∈N and {tn}n∈N
where

g(tn+1 = f(tn, un, vn), g(un+1) = f(un, tn, un) and g(vn+1) = f(vn, un, tn).

Furthermore, let x0 = x, y0 = y, z0 = z and x0 = x, y0 = y, z0 = z. Thus, we obtain
the sequences {xn}n∈N , {yn}n∈N , {zn}n∈N and {xn}n∈N , {yn}n∈N , {zn}n∈N such that

g(xn) = f(x, y, z), g(yn) = f(y, x, y), g(zn) = f(z, y, x)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, y), g(zn) = f(z, y, x).

From the hypothesis, we have that there exists (t, u, v) ∈ X3 such that

(g(x), g(y), g(z)), (g(x), g(y), g(z) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)).

From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(y0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, u), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d((fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) ≤ kn ·d(g(x0), f(t, u, v)) + ln ·d(g(y0), f(u, t, u))

+mn · d(g(z0), f(v, u, t)),

d((fn(g(y0), g(x0), g(y0)), fn+1(u, t, u)) ≤ kn ·d(g(x0), f(t, u, v)) + ln ·d(g(y0), f(u, t, u))

+mn · d(g(z0), f(v, u, t))

and

d((fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤ kn ·d(g(x0), f(t, u, v)) + ln ·d(g(y0), f(u, t, u))

+mn · d(g(z0), f(v, u, t)).

Summing up, we obtain that

d((fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d((fn(g(y0), g(x0), g(y0)), fn+1(u, t, u))+

d((fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤ 3kn · d(g(x0), f(t, u, v))

+3ln · d(g(y0), f(u, t, u)) + 3mn · d(g(z0), f(v, u, t)).

But x0 = x, y0 = y and z0 = z. We obtain

d((fn(g(x), g(y), g(z)), fn+1(t, u, v)) + d((fn(g(y), g(x), g(y)), fn+1(u, t, u))+

d((fn(g(z), g(y), g(x)), fn+1(v, u, t)) ≤ 3kn · d(g(x), f(t, u, v))

+3ln · d(g(y), f(u, t, u)) + 3mn · d(g(z), f(v, u, t)).
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Letting n→∞ we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, u)) = 0

and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, u)) = 0

and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x), g(x)) ≤ d(g(x), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y), g(y)) ≤ d(g(y), f(u, v, t)) + d(f(u, t, u), g(y))→ 0, when n→∞

and

d(g(z), g(z)) ≤ d(g(z), f(v, t, u)) + d(f(v, u, t), g(z))→ 0, when n→∞,

so the proof of the theorem is complete. �

The next result is obtained by replacing the contraction (6.92) with one that uses
the mapping ϕ defined in Chapter 5, following the idea in [53]. Thus, we obtain :

Theorem 6.1.181. [61] Let (X, d) be a complete metric space, R be a binary re-
flexive relation on X such that R and d are compatible. If f : X3 → X and g : X → X

are two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii)

d(f(x, y, z), f(t, u, v)) ≤ ϕ

d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))
3

 ,∀(x, y, z) ∈ XR(t, u, v),

(6.96)

where ϕ ∈ Φ;
(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).
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Proof: From the hypothesis, we know that f and g have a lower-R-triple coin-
cidence point; let (x0, y0, z0) be it. Thus, using the definition of the lower-R-tripled
coincidence point, it follows that (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we know that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(f(z0, y0, x0)))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, y0), g(z0) = f(z0, y0, x0) and so on. Thus, we obtain the sequences {xn},{yn}
and {zn} such that

(6.97) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, yn) and g(zn+1 = f(zn, yn, xn).

Let’s consider the nonnegative sequence {ηn}n∈N∗ such that ηn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)) + d(g(zn+1, g(zn)), n ∈ N∗.
Now, using (6.96), (1.2) and letting x := xn, y := yn and z := zn, t := xn−1, u := yn−1

and v := zn−1, we obtain

d(g(xn+1), g(xn)) = d(f(xn, yn, zn), f(xn−1, yn−1, zn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 ,
d(g(yn+1), g(yn)) = d(f(yn, xn, yn), f(yn−1, xn−1, yn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 .
and

d(g(zn+1), g(zn)) = d(f(zn, yn, xn), f(zn−1, yn−1, xn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 .
By summing up the last three relations, we obtain that

d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) + d(g(zn+1), g(zn)) = ηn ≤ 3 · ϕ
ηn−1

3

 .
Now, using the properties of ϕ, we have that

(6.98) ηn ≤ 3 · ϕ
ηn−1

3

 < 3 ·
ηn−1

3 = ηn−1.

Thus, {ηn}n∈N∗ is a decreasing and nonnegative sequence. Therefore, there exists ε0 ≥ 0
such that

lim
n→∞

ηn = ε0.
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Now, we will prove that ε0 = 0. In (6.98), let n→∞. Using (ii) (the second condition
satisfied by ϕ) from Chapter 5, we have

ε0 = lim
n→∞

ηn ≤ 3 · lim
n→∞

ϕ

ηn−1

3

 = 3 · lim
ηn−1→ε0+

ϕ

ηn−1

3

 < ε0,

which is a contradiction. Thus, lim
n→∞

ηn = 0 and, consequently, lim
n→∞

d(g(xn+1), g(xn)) =
0, lim
n→∞

d(g(yn+1), g(yn)) = 0 and lim
n→∞

d(g(zn+1), g(zn)) = 0.
Next, we will prove that {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences.
Suppose that at least one of them is not a Cauchy sequence. Then, there exists a
constant δ > 0 and two integer sequences {n1(k)} and {n2(k)}, such that

(6.99) sk := d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k))) ≥ δ,

where n1(k) > n2(k) ≥ k, k ∈ N∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (6.99). Then, we have

(6.100) d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) + d(g(zn2(k)), g(zn1(k)−1) < δ.

Now, using the triangle inequality and the last two inequalities ((6.99) and (6.100)),
we have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(xn1(k)), g(xn2(k)))

+d(g(yn2(k)), g(yn1(k)−1)) + d(g(yn1(k)), g(yn2(k)))

d(g(zn2(k)), g(zn1(k)−1)) + d(g(zn1(k)), g(zn2(k)))

≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k)))] = δ.

Next, we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)+1)) + d(g(yn1(k)+1), g(yn2(k)))

+d(g(zn1(k)), g(zn1(k)+1)) + d(g(zn1(k)+1), g(zn2(k)))

= ηn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k))) + d(g(zn1(k)+1), g(zn2(k)))

(6.101)
≤ ηn1(k)+ηn2(k)+d(g(xn1(k)+1), g(xn2(k)+1))+d(g(yn1(k)+1), g(yn2(k)+1))+d(g(zn1(k)+1), g(zn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1))d(g(zn1(k)+1), g(zn2(k)+1))
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= d(f(xn1(k), yn1(k), zn1(k)), f(xn2(k), yn2(k), zn2(k)))

+d(f(yn1(k), xn1(k), yn1(k)), f(yn2(k), xn2(k), yn2(k)))

+d(f(zn1(k), yn1(k), xn1(k)), f(zn2(k), yn2(k), xn2(k)))

≤ 2 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k)) + d(g(zn1(k)), g(zn2(k))

3

+

≤ 2 · ϕ
sk

3

 .
Now, returning to (6.101), we have

sk ≤ ηn1(k) + ηn2(k) + 2 · ϕ
sk

3

 .
Let k →∞. We obtain

δ ≤ 3 · lim
k→∞

ϕ

sk
3

 = 3 · lim
sk→δ+

ϕ

sk
3

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences in the
complete metric space (X, d). Since X is complete, there exist x,y and z such that
gn(xn)→ x, gn(yn)→ y and gn(zn)→ y as n→∞. Which means that fn−1(xn, yn, zn)→
x, fn−1(yn, xn, yn) → y and fn−1(zn, yn, xn) → z, as n → ∞. Using the orbital g-
continuity of f , we get that fn(xn, yn, zn)→ g(x), fn(yn, xn, yn)→ g(y) and fn(zn, yn, xn)→
g(z), as n→∞, that is, (x, y, z) is a tripled coincidence point for f and g. �

Theorem 6.1.182. [61] In addition to the hypothesis of Theorem 6.1.181, sup-
pose that for every (x∗, y∗, z∗), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that
(g(x∗), g(y∗), g(z∗)), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)). Then f and
g have a unique tripled coincidence point.

Proof: From Theorem 6.1.181, there exist x, y, z ∈ X such that f(x, y, z) = g(x),
f(y, x, y) = g(y) and f(, z, y, x) = g(z). We have to show that, if (x∗, y∗, z∗) is another
coincidence point for f and g,

d((g(x), g(y), g(z), (g(x∗), g(y∗), g(z∗))) = 0.

Since (x∗, y∗, z∗) and (x, y, z) are both tripled coincidence points, it follows that

g(x∗) = f(x∗, y∗, z∗), g(y∗) = f(y∗, x∗, y∗), g(z∗) = f(z∗, y∗, x∗)

and
g(x) = f(x, y, z), g(y) = f(y, x, y), g(z) = f(z, y, x).

Now, using the hypothesis of Theorem 6.1.181, from f(X3) ⊆ g(x), there exist t1, u1, v1 ∈
X3 such that g(t1) = f(t0, u0, v0), g(u1) = f(u0, t0, u0), g(v1) = f(v0, u0, t0) . Using the
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same procedure as in the proof of Theorem 6.1.178, we build the sequences {un}n∈N
and {vn}n∈N, where

g(tn+1) = f(tn, un, vn), g(un+1) = f(un, tn, un) and g(vn+1) = f(vn, un, tn).

Next, let x0 = x∗, y0 = y∗, z0 = z∗ and x0 = x, y0 = y, z0 = y. Thus, we obtain the
sequences {x∗n}n∈N , {y∗n}n∈N , {z∗n}n∈N {xn}n∈N, {yn}n∈N and {zn}n∈N such that

g(x∗n) = f(x∗, y∗, z∗), g(y∗n) = f(y∗, x∗, y∗), g(z∗n) = f(z∗, y∗, x∗)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, y), g(zn) = f(z, y, x).

From the hypothesis, we know that there exists (t, u, v) ∈ X3 such that

(g(x∗), g(y∗), g(z∗), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)).

From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(y0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, u), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))
3

 ,
d(fn(g(y0), g(x0), g(y0)), fn+1(u, t, u)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))
3


and

d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))
3

 .
By summing up, we obtain that

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d(fn(g(y0), g(x0), g(y0)), fn+1(u, t, u))

+d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t))

≤ 3 · ϕ
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))

3

 .
But x0 = x∗, y0 = y∗ and z0 = z∗. We obtain

d(fn(g(x∗), g(y∗), g(z∗)), fn+1(t, u, v)) + d(fn(g(y∗), g(x∗), g(y∗)), fn+1(u, t, u))

+d(fn(g(z∗), g(y∗), g(x∗)), fn+1(v, u, t)) ≤
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3 · ϕ
d(g(x∗), f(t, u, v)) + d(g(y∗), f(u, t, u)) + d(g(z∗), f(v, u, t))

3

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(t, u, v)) = 0, lim
n→∞

d(g(y∗), f(u, t, u)) = 0 and lim
n→∞

d(g(z∗), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(z), f(u, t, u)) = 0 and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y∗), g(y)) ≤ d(g(y∗), f(u, t, u)) + d(f(u, t, u), g(y))→ 0, when n→∞,

and

d(g(z∗), g(z)) ≤ d(g(z∗), f(v, u, t)) + d(f(v, u, t), g(z))→ 0, when n→∞,

so the proof of the theorem is complete. �

Now, by symmetrizing the contraction condition, using the idea in [26], we obtain
the following result:

Theorem 6.1.183. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g-continuous;
(iii)

d(f(x, y, z), f(t, u, v)) + d(f(y, x, y), f(u, t, u)) + d(f(z, y, x), f(v, u, t) ≤(6.102)

3 · ϕ
d(g(x), g(t)) + d(g(y), g(y)) + d(g(z), g(v))

3

 , ∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof: The prove this result, we will follow the steps from the proof of Theorem
6.1.181: Since f and g have lower-R-tripled coincidence point, let (x0, y0, z0) be it.
Thus, (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
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From (i) we have that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(f(z0, y0, x0))) ∈(6.103)

XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, y0)), gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, y0), g(z1) = f(z0, y0, x0) and so on. Step by step, we obtain the sequences
{xn}, {yn} and {zn} such that

(6.104) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, yn), g(zn+1) = f(zn, yn, xn)

Let’s consider the nonnegative sequence {ηn}n∈N∗ such that ηn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)) + d(g(zn+1, g(zn)), n ∈ N∗.
Now, using (6.102), (6.103) and letting x := xn, y := yn and z := zn, t := xn−1,
u := yn−1 and v := zn−1, we obtain

d(f(xn, yn, zn), f(xn−1, yn−1, zn−1)) + d(f(yn, xn, yn), f(yn−1, zn−1, xn−1))

+d(f(zn, yn, xn), f(zn−1, xn−1, yn−1)) = d(g(xn+1), g(xn))

+d(g(yn+1), g(yn)) + d(g(zn+1), g(zn)) ≤

3ϕ
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))d(g(zn), g(zn−1))

3

 = ϕ

ηn
3


Thus, we have that

(6.105) ηn+1 ≤ 3 · ϕ
ηn

3


Using the proof of Theorem 6.1.181 we have that {ηn}n∈N∗ is decreasing and nonnega-
tive. Therefore, there exists ε0 ≥ 0 such that

lim
n→∞

ηn = ε0.

Now, we will prove that ε0 = 0. In (6.105), let n→∞. Using (ii) (the second condition
satisfied by ϕ) from Chapter 5, we have

ε0 = lim
n→∞

ηn+1 ≤ 3 · lim
n→∞

ϕ

ηn
3

 = 3 · lim
ηn→ε0+

ϕ

ηn
3

 < ε0.

So we have that ε0 < εo, which is, clearly, a contradiction.
Thus, lim

n→∞
ηn = 0 and, consequently, lim

n→∞
d(g(xn+1), g(xn)) = 0,

lim
n→∞

d(g(yn+1), g(yn)) = 0 and lim
n→∞

d(g(zn+1), g(zn)) = 0.
Next, we will prove that {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences.
Suppose that at least one of them is not a Cauchy sequence. Then, there exists a
constant δ > 0 and two integer sequences {n1(k)} and {n2(k)}, such that

(6.106) sk := d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k))) ≥ δ,
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where n1(k) > n2(k) ≥ k, k ∈ N∗. Next, let’s chose n1(k) to be the smallest integer
satisfying n1(k) > n2(k) ≥ k and (6.106). Then, we have

(6.107) d(g(xn2(k)), g(xn1(k)−1))+d(g(yn2(k)), g(yn1(k)−1))+d(g(zn2(k)), g(zn1(k)−1)) < δ.

Now, using the triangle inequality and the last two inequalities ((6.106) and (6.107)),
we have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(xn(k)), g(xn2(k)))

+d(g(yn2(k)), g(yn1(k)−1)) + d(g(yn1(k)), g(yn2(k)))

d(g(zn2(k)), g(zn1(k)−1)) + d(g(zn1(k)), g(zn2(k)))

≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k)))] = δ.

Now we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)+1)) + d(g(yn1(k)+1), g(yn2(k)))

+d(g(zn1(k)), g(zn1(k)+1)) + d(g(zn1(k)+1), g(zn2(k)))

= ηn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k))) + d(g(zn1(k)+1), g(zn2(k)))

(6.108)
≤ ηn1(k)+ηn2(k)+d(g(xn1(k)+1), g(xn2(k)+1))+d(g(yn1(k)+1), g(yn2(k)+1))+d(g(zn1(k)+1), g(zn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1)) + d(g(zn1(k)+1), g(zn2(k)+1))

= d(f(xn1(k), yn1(k), zn1(k)), f(xn2(k), yn2(k), zn1(k)))

+d(f(yn1(k), xn1(k), yn1(k)), f(yn2(k), xn2(k), yn2(k)))

+d(f(zn1(k), yn1(k), xn1(k)), f(zn2(k), yn2(k)), xn2(k)))

≤ 3 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k))) + d(g(zn1(k)), g(zn2(k)))

3


≤ 3 · ϕ

sk
3

 .
Now, returning to (6.108), we have

sk ≤ ηn1(k) + ηn2(k) + 3 · ϕ
sk

3

 .
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Let k →∞. We obtain

δ ≤ 3 · lim
k→∞

ϕ

sk
3

 = 3 · lim
sk→δ+

ϕ

sk
3

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N,{g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences in the
complete metric space (X, d). Since (X, d) is complete, there exist x and y such
that gn(xn) → x, gn(yn) → y and gn(zn) → z as n → ∞. Which means that
fn−1(xn, yn, zn)→ x, fn−1(yn, xn, yn)→ y and fn−1(zn, yn, xn)→ z, as n→∞. Using
the orbital g-continuity of f , we get that fn(xn, yn, zn) → g(x), fn(yn, xn, yn) → g(y)
and fn(zn, yn, xn)→ g(z), as n→∞, that is, (x, y, z) is a tripled coincidence point for
f and g.

�

Theorem 6.1.184. In addition to the hypothesis of Theorem 6.1.183, suppose that
for every (x∗, y∗, z∗), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x∗), g(y∗), g(z∗)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: According to Theorem 6.1.183, there exist x, y, z ∈ X such that f(x, y, z) =
g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z). We have to show that, if (x∗, y∗, z∗) is
another coincidence point for f and g,

d((g(x), g(y), g(z), (g(x∗), g(y∗), g(z∗))) = 0.

Because both (x∗, y∗, z∗) and (x, y, z) are tripled coincidence points, we have

g(x∗) = f(x∗, y∗, z∗), g(y∗) = f(y∗, x∗, y∗), g(z∗) = f(z∗, y∗, x∗)

and
g(x) = f(x, y, z), g(y) = f(y, x, y), g(z) = f(z, y, x).

From f(X3) ⊆ g(X), there exist t0, u0, v0 in X such that g(t1) = f(t0, u0, v0), g(u1) =
f(u0, t0, u0), g(v1) = f(v0, u0, t0). Following the procedure used in the proof of Theorem
6.1.178, we obtain the sequences {tn}n∈N, {un}n∈N and {vn}n∈N, where

g(tn+1) = f(tn, un, vn), g(un+1) = f(un, tn, un) and g(vn+1) = f(vn, un, tn).

Furthermore, let x∗0 = x∗, y∗0 = y∗, z∗0 = z∗ and x0 = x, y0 = y, z0 = z. Thus, we obtain
the sequences {x∗n}n∈N , {y∗n}n∈N , {z∗n}n∈N , {xn}n∈N, {yn}n∈N and {zn}n∈N such that

g(x∗n) = f(x∗, y∗, z∗), g(y∗n) = f(y∗, x∗, y∗), g(z∗n) = f(z∗, y∗, x∗)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, y), g(zn) = f(z, y, x).
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From the hypothesis, we have that there exists (t, u, v) ∈ X3 such that

(g(x∗), g(y∗), g(z∗), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)).

From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(z0), g(x0)), fn(g(z0), g(x0), g(y0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, u), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d(fn(g(y0), g(z0), g(x0)), fn+1(u, t, u))

+d(fn(g(z0), g(x0), g(y0)), fn+1(v, u, t)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, u)) + d(g(z0), f(v, u, t))
3

 .
But x∗0 = x∗, y∗0 = y∗ and z∗0 = z∗. We obtain

d(fn(g(x∗), g(y∗), g(z∗)), fn+1(t, u, v)) + d(fn(g(y∗), g(x∗), g(y∗)), fn+1(u, t, u))

+d(fn(g(z∗), g(y∗), g(x∗)), fn+1(v, u, t)) ≤

ϕ

d(g(x∗), f(t, u, v)) + d(g(y∗), f(u, t, u)) + d(g(z∗), f(v, u, t))
3

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(t, u, v)) = 0, lim
n→∞

d(g(y∗), f(u, t, u)) = 0 and lim
n→∞

d(g(z∗), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, u)) = 0 and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y∗), g(y)) ≤ d(g(y∗), f(u, t, u)) + d(f(u, t, u), g(y))→ 0, when n→∞

and

d(g(z∗), g(z)) ≤ d(g(z∗), f(v, u, t)) + d(f(v, u, t), g(z))→ 0, when n→∞

which means that
g(x∗) = g(x),

g(y∗) = g(y)

and
g(z∗) = g(z).

�
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Next, we let ϕ(t) = kt, k ∈ [0, 1). It is easy to check that conditions (i) and (ii)
still hold. We obtain the following result:

Theorem 6.1.185. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is mixed g −R-monotone;
(ii) f is orbitally g−continuous;
(iii) there exist k ∈ [0, 1), k < 1 such that

d(f(x, y, z), f(t, u, v)) + d(f(y, x, y), f(u, t, u)) + d(f(z, y, x), f(v, u, t))(6.109)

≤ k · [d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))],∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z).

Proof: In Theorem 6.1.183, let ϕ(t) = kt, k ∈ [0, 1). �

Theorem 6.1.186. In addition to the hypothesis of Theorem 6.1.185, suppose that
for every (x, y, z), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x), g(y), g(z)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, u), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: In Theorem 6.1.182, let ϕ(t) = kt, k ∈ [0, 1). �

Remark 6.1.187. If, in Theorem 6.1.178, resp 6.1.180 we let R =≤, assume that
either f is continuous or the regularity condition 2 holds, we obtain Theorems 5.1.146,
resp. 5.1.147 from [37].

Remark 6.1.188. If, in Theorem 6.1.183, we let R =≤ and we assume that f is
continuous, we obtain Theorem 5.1.153 from [13].

2. Tripled coincidence points of R−monotone operators

The following concepts are extensions of the notions presented in [37] and [38] for
the case of tripled coincidence points in metric spaces endowed with a reflexive relation.
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2.1. Definitions

In this section we extend and generalize notions related to coupled and tripled
coincidence points in partially ordered metric spaces for the case of tripled coincidence
points in metric spaces endowed with a reflexive relation.

Notation 6. Let X be a nonempty set and let f : X×X×X → X and g : X → X

be two mappings. Then

(1) We will denote by f 0(x, y, z) = x and

fn(x, y, z) = f(fn−1(x, y, z), fn−1(y, x, z), fn−1(z, y, x)),

for all x, y, z ∈ X,n ∈ N.
(2) We will denote by g0(x) = x and gn(x) = g(xn−1(x)), for all x ∈ X,n ∈ N.
(3) The cartesian product of f and itself is denoted by f × f and it is defined by

f × f(x, y, z) = (f(x, y, z), f(y, x, z), f(z, y, x)).

(4) The cartesian product of f and g is denoted by f × g and is defined by

(f × g)(x, y, z) = (g(f(x, y, z)), g(f(y, x, z)), g(f(z, y, x)))

Remark 6.2.189. Note that the cartesian product of two mappings is different to
the one in Notation 5. In this case we have permutations of (x, y, z) in order to obtain
the tripled coincidence points of monotone operators defined by Borcut in Definition
5.1.149.

Definition 6.2.190. Let X be a nonempty set and let R be a reflexive relation on
X, f : X3 → X, g : X → X. The mapping f has the g − R−monotone property
on X if (f × g)(XR(x, y, z)) ⊆ XR((f × g)(x, y, z)), for all (x, y, z) ∈ X3.

Next, starting from the orbital continuity presented in [9], we will define the orbital
g-continuity of an R−monotone mapping f .

Definition 6.2.191. Let X be a topological space and f : X3 → X be a g −
R−monotone mapping, g : X → X. We say that f is orbitally g-continuous if
(x, y, z), (a, b, c) ∈ X3 and fnk(x, y, z) → a, fnk(y, x, z) → b, fnk(z, y, x) → c, when
k →∞, implies fnk+1(x, y, z)→ g(a), fnk+1(y, x, z)→ g(b) and fnk+1(z, y, x)→ g(c),
when k →∞.

Remark 6.2.192. Note that the orbital g−continuity of the g −R-monotone map-
ping f is different than in the case of mixed g −R−monotone operators.
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2.2. Existence and uniqueness theorems

Theorem 6.2.193. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is g −R-monotone;
(ii) f is orbitally g-continuous;
(iii) there exist k, l,m ∈ [0, 1), k + l +m < 1 such that

(6.110) d(f(x, y, z), f(t, u, v)) ≤ k · d(g(x), g(t)) + l · d(g(y), g(u)) +m · d(g(z), g(v)),

∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence points, i.e., there exists (x, y, z) ∈ X3 such
that f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z).

Proof: Since f and g have a lower-R-tripled coincidence point, let (x0, y0, z0) be
it. Thus, (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we have that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, z0)), gn(z0, y0, x0))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, z0))gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, z0), g(z1) = f(z0, y0, x0) and so on. Step by step, we obtain the sequences
{xn}, {yn} and {zn} such that

(6.111) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, zn), g(zn+1) = f(zn, yn, xn).

Now, using (iii), we have that

d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, y0)), gn(z0, y0, x0)),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, z0)), gn−1(f(z0, y0, x0))))

≤ kn · d(g(gn(f(x0, y0, z0))), g(gn−1(f(x0, y0, z0))))+

ln · d(g(gn(f(y0, x0, y0))), g(gn−1(f(y0, x0, z0))))

+mn · d(g(gn(f(z0, y0, x0))), g(gn−1(f(z0, y0, x0))))

⇔ d(f(gn(f(x0, y0, z0)), gn(f(y0, x0, z0)), gn(f(z0, y0, x0))),

f(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, z0)), gn(f(z0, y0, x0))))
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≤ kn · d(gn+1(f(x0, y0, z0)), gn(f(x0, y0, z0)), gn(f(x0, y0, z0)))+

ln · d(gn+1(f(y0, x0, z0)), gn(f(y0, x0, z0)), gn(f(y0, x0, z0)))

+mn · d(gn+1(f(z0, y0, x0)), gn(f(z0, y0, x0)), gn(f(z0, y0, x0)))

⇔ d(f(gn(g(x1)), gn(g(y1)), gn(g(z1))), f(gn−1(g(x1)), gn−1(g(y1)), gn−1(g(z1))))

≤ kn·d(gn+1(g(x1)), gn(g(x1)))+ln·d(gn+1(g(y1)), gn(g(y1)))+mnd(gn+1(g(z1)), gn(g(z1)))

⇔ d(f(gn+1(x1), gn+1(y1), gn+1(z1)), f(gn(x1), gn(y1)gn(z1)))

≤ kn · d(gn+2(x1), gn+1(x1)) + ln · d(gn+2(y1), gn+1(y1)) +mn · d(gn+2(z1), gn+1(z1))

This implies that {gn(x1)}n∈N is a Cauchy sequence in X.
Now, because (X, d) is a complete metric space, there exist x, y, z ∈ X such that

(6.112) lim
n→∞

g(xn) = x, lim
n→∞

g(yn) = y, lim
n→∞

g(zn) = z.

From the continuity of g, we get

lim
n→∞

g(g(xn)) = g(x), lim
n→∞

g(g(yn)) = g(y), lim
n→∞

g(g(zn)) = g(z).

Because f and g commute, and from (6.93), we have

g(g(xn+1)) = g(f(xn, yn, zn)) = f(g(xn), g(yn), g(zn)),

g(g(yn+1)) = g(f(yn, xn, zn)) = f(g(yn), g(xn), g(yn)

and
g(g(zn+1)) = g(f(zn, yn, xn)) = f(g(zn), g(yn), g(xn)

From (6.94) and the orbital continuity of f we get

g(x) = f(x, y, z),

g(y) = f(y, x, z)

and
g(z) = f(z, y, x).

�

Corollary 6.2.194. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is g −R-monotone;
(ii) f is orbitally g-continuous;
(iii) there exist α ∈ [0, 1) such that

d(f(x, y, z), f(t, u, v)) ≤
α

3 · [d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(t))],∀(x, y, z) ∈ XR(t, u, v);

(6.113)

(iv) f and g have a lower-R-tripled coincidence point;
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(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z).

Proof: From the proof of Theorem 6.2.193, for k = l = m =
α

3, α ∈ [0, 1), there
exist x, y, z ∈ X such that

g(x) = f(x, y, z),

g(y) = f(y, x, z)

and
g(z) = f(z, y, x).

�

Theorem 6.2.195. In addition to the hypothesis of Theorem 6.2.193, suppose that
for every (x, y, z), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x), g(y), g(z)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: According to the proof of Theorem 6.2.193, there exist x, y, z ∈ X such
that f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z). We have to show that, if
(x, y, z) is another coincidence point for f and g,

d((g(x), g(y), g(z), (g(x), g(y), g(z))) = 0.

Because both (x, y, z) and (x, y, z) are tripled coincidence points, we have

g(x) = f(x, y, z), g(y) = f(y, x, z), g(z) = f(z, y, x)

and
g(x) = f(x, y, z), g(y) = f(y, x, z),

g(z) = f(z, y, x).

Now, let u0 = u, v0 = v and t0 = t. Then, there exist t1, u1, v1 ∈ X such that g(t1) =
f(t0, u0, v0), g(u1) = f(u0, t0, v0) and g(v1f(v0, u0, t0). Using the same procedure as in
the proof of Theorem 6.1.178, we obtain the sequences {un}n∈N, {vn}n∈N and {tn}n∈N
where

g(tn+1 = f(tn, un, vn), g(un+1) = f(un, tn, vn) and g(vn+1) = f(vn, un, tn).

Furthermore, let x0 = x, y0 = y, z0 = z and x0 = x, y0 = y, z0 = z. Thus, we obtain
the sequences {xn}n∈N , {yn}n∈N , {zn}n∈N and {xn}n∈N , {yn}n∈N , {zn}n∈N such that

g(xn) = f(x, y, z), g(yn) = f(y, x, z), g(zn) = f(z, y, x)
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and
g(xn) = f(x, y, z), g(yn) = f(y, x, z), g(zn) = f(z, y, x).

From the hypothesis, we have that there exists (t, u, v) ∈ X3 such that

(g(x), g(y), g(z)), (g(x), g(y), g(z) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)).

From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(z0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, u), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d((fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) ≤ kn · d(g(x0), f(t, u, v)) + ln · d(g(y0), f(u, t, v))

+mn · d(g(z0), f(v, u, t)),

d((fn(g(y0), g(x0), g(z0)), fn+1(u, t, u)) ≤ kn ·d(g(x0), f(t, u, v)) + ln ·d(g(y0), f(u, t, v))

+mn · d(g(z0), f(v, u, t))

and

d((fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤ kn · d(g(x0), f(t, u, v)) + ln · d(g(y0), f(u, t, v))

+mn · d(g(z0), f(v, u, t)).

Summing up, we obtain that

d((fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d((fn(g(y0), g(x0), g(z0)), fn+1(u, t, v))+

d((fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤ 3kn · d(g(x0), f(t, u, v))

+3ln · d(g(y0), f(u, t, v)) + 3mn · d(g(z0), f(v, u, t)).

But x0 = x, y0 = y and z0 = z. We obtain

d((fn(g(x), g(y), g(z)), fn+1(t, u, v)) + d((fn(g(y), g(x), g(z)), fn+1(u, t, v))+

d((fn(g(z), g(y), g(x)), fn+1(v, u, t)) ≤ 3kn · d(g(x), f(t, u, v))

+3ln · d(g(y), f(u, t, v)) + 3mn · d(g(z), f(v, u, t)).

Letting n→∞ we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, v)) = 0

and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, v)) = 0

and lim
n→∞

d(g(z), f(v, u, t)) = 0.
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Now, using the triangle inequality, we have

d(g(x), g(x)) ≤ d(g(x), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y), g(y)) ≤ d(g(y), f(u, v, t)) + d(f(u, t, v), g(y))→ 0, when n→∞

and

d(g(z), g(z)) ≤ d(g(z), f(v, t, u)) + d(f(v, u, t), g(z))→ 0, when n→∞,

so the proof of the theorem is complete. �

The next result is obtained by replacing the contraction (6.110) with one that uses
the mapping ϕ defined in Chapter 5, following the idea in [53]. Consequently, we have:

Theorem 6.2.196. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is g −R-monotone;
(ii) f is orbitally g-continuous;
(iii)

d(f(x, y, z), f(t, u, v)) ≤ ϕ

d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))
3

 ,∀(x, y, z) ∈ XR(t, u, v),

(6.114)

where ϕ ∈ Φ;
(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z).

Proof: From the hypothesis, we know that f and g have lower-R-triple coincidence
point; let (x0, y0, z0) be it. Thus, using the definition of the lower-R-tripled coincidence
point, it follows that (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we know that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, z0)), gn(f(z0, y0, x0)))

∈ XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, z0)), gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, z0), g(z0) = f(z0, y0, x0) and so on. Thus, we obtain the sequences {xn},{yn}
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and {zn} such that

(6.115) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, zn) and g(zn+1 = f(zn, yn, xn).

Let’s consider the nonnegative sequence {ηn}n∈N∗ such that ηn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)) + d(g(zn+1, g(zn)), n ∈ N∗.
Now, using (6.114), (2.2) and letting x := xn, y := yn and z := zn, t := xn−1, u := yn−1

and v := zn−1, we obtain

d(g(xn+1), g(xn)) = d(f(xn, yn, zn), f(xn−1, yn−1, zn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 ,
d(g(yn+1), g(yn)) = d(f(yn, xn, zn), f(yn−1, xn−1, zn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 .
and

d(g(zn+1), g(zn)) = d(f(zn, yn, xn), f(zn−1, yn−1, xn−1)) ≤

ϕ

d(g(xn), g(xn−1)) + d(g(yn), g(yn−1)) + d(g(zn), g(zn−1))
3

 = ϕ

ηn−1

3

 .
By summing up the last three relations, we obtain that

d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) + d(g(zn+1), g(zn)) = ηn ≤ 3 · ϕ
ηn−1

3

 .
Now, using the properties of ϕ, we have that

(6.116) ηn ≤ 3 · ϕ
ηn−1

3

 < 3 ·
ηn−1

3 = ηn−1.

Thus, {ηn}n∈N∗ is a decreasing and nonnegative sequence. Therefore, there exists ε0 ≥ 0
such that

lim
n→∞

ηn = ε0.

Now, we will prove that ε0 = 0. In (6.116), let n→∞. Using (ii) (the second condition
satisfied by ϕ) from Chapter 5, we have

ε0 = lim
n→∞

ηn ≤ 3 · lim
n→∞

ϕ

ηn−1

3

 = 3 · lim
ηn−1→ε0+

ϕ

ηn−1

3

 < ε0,

which is a contradiction. Thus, lim
n→∞

ηn = 0 and, consequently, lim
n→∞

d(g(xn+1), g(xn)) =
0, lim
n→∞

d(g(yn+1), g(yn)) = 0 and lim
n→∞

d(g(zn+1), g(zn)) = 0.
Next, we will prove that {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences.
Suppose that at least one of them is not a Cauchy sequence. Then, there exists a
constant δ > 0 and two integer sequences {n1(k)} and {n2(k)}, such that

(6.117) sk := d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k))) ≥ δ,
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where n1(k) > n2(k) ≥ k, k ∈ Z∗. We chose n1(k) to be the smallest integer satisfying
n1(k) > n2(k) ≥ k and (6.99). Then, we have

(6.118) d(g(xn2(k)), g(xn1(k)−1)) + d(g(yn2(k)), g(yn1(k)−1)) + d(g(zn2(k)), g(zn1(k)−1) < δ.

Now, using the triangle inequality and the last two inequalities ((6.117) and (6.118)),
we have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(xn1(k)), g(xn2(k)))

+d(g(yn2(k)), g(yn1(k)−1)) + d(g(yn1(k)), g(yn2(k)))

d(g(zn2(k)), g(zn1(k)−1)) + d(g(zn1(k)), g(zn2(k)))

≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k)))] = δ.

Next, we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)+1)) + d(g(yn1(k)+1), g(yn2(k)))

+ + d(g(zn1(k)), g(zn1(k)+1)) + d(g(zn1(k)+1), g(zn2(k)))

= ηn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k))) + d(g(zn1(k)+1), g(zn2(k)))

(6.119)
≤ ηn1(k)+ηn2(k)+d(g(xn1(k)+1), g(xn2(k)+1))+d(g(yn1(k)+1), g(yn2(k)+1))+d(g(zn1(k)+1), g(zn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1))d(g(zn1(k)+1), g(zn2(k)+1))

= d(f(xn1(k), yn1(k), zn1(k)), f(xn2(k), yn2(k), zn2(k)))

+d(f(yn1(k), xn1(k), zn1(k)), f(yn2(k), xn2(k), zn2(k)))

+d(f(zn1(k), yn1(k), xn1(k)), f(zn2(k), yn2(k), xn2(k)))

≤ 2 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k)) + d(g(zn1(k)), g(zn2(k))

3

+

≤ 2 · ϕ
sk

3

 .
Now, returning to (6.119), we have

sk ≤ ηn1(k) + ηn2(k) + 2 · ϕ
sk

3

 .
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Let k →∞. We obtain

δ ≤ 3 · lim
k→∞

ϕ

sk
3

 = 3 · lim
sk→δ+

ϕ

sk
3

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences in the
complete metric space (X, d). Thus, there exist x,y and z such that gn(xn) → x,
gn(yn) → y and gn(zn) → y as n → ∞. Which means that fn−1(xn, yn, zn) → x,
fn−1(yn, xn, zn) → y and fn−1(zn, yn, xn) → z, as n → ∞. Using the orbital g-
continuity of f , we get that fn(xn, yn, zn)→ g(x), fn(yn, xn, zn)→ g(y) and fn(zn, yn, xn)→
g(z), as n→∞, that is, (x, y, z) is a tripled coincidence point of f and g. �

Theorem 6.2.197. In addition to the hypothesis of Theorem 6.2.196, suppose that
for every (x∗, y∗, z∗), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x∗), g(y∗), g(z∗)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: From Theorem 6.2.196, there exist x, y, z ∈ X such that f(x, y, z) = g(x),
f(y, x, z) = g(y) and f(, z, y, x) = g(z). We have to show that, if (x∗, y∗, z∗) is another
coincidence point for f and g,

d((g(x), g(y), g(z), (g(x∗), g(y∗), g(z∗))) = 0.

Since (x∗, y∗, z∗) and (x, y, z) are both tripled coincidence points, it follows that

g(x∗) = f(x∗, y∗, z∗), g(y∗) = f(y∗, x∗, z∗), g(z∗) = f(z∗, y∗, x∗)

and
g(x) = f(x, y, z), g(y) = f(y, x, z), g(z) = f(z, y, x).

Now, using the hypothesis of Theorem 6.2.196, from f(X3) ⊆ g(x), there exist t1, u1, v1 ∈
X3 such that g(t1) = f(t0, u0, v0), g(u1) = f(u0, t0, v0), g(v1) = f(v0, u0, t0) . Using the
same procedure as in the proof of Theorem 6.2.193, we build the sequences {un}n∈N
and {vn}n∈N, where

g(tn+1) = f(tn, un, vn), g(un+1) = f(un, tn, vn) and g(vn+1) = f(vn, un, tn).

Next, let x0 = x∗, y0 = y∗, z0 = z∗ and x0 = x, y0 = y, z0 = y. Thus, we obtain the
sequences {x∗n}n∈N , {y∗n}n∈N , {z∗n}n∈N {xn}n∈N, {yn}n∈N and {zn}n∈N such that

g(x∗n) = f(x∗, y∗, z∗), g(y∗n) = f(y∗, x∗, z∗), g(z∗n) = f(z∗, y∗, x∗)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, z), g(zn) = f(z, y, x).

From the hypothesis, we know that there exists (t, u, v) ∈ X3 such that

(g(x∗), g(y∗), g(z∗), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)).
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From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(z0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, v), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, v)) + d(g(z0), f(v, u, t))
3

 ,
d(fn(g(y0), g(x0), g(z0)), fn+1(u, t, u)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, v)) + d(g(z0), f(v, u, t))
3


and

d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤

ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, v)) + d(g(z0), f(v, u, t))
3

 .
By summing up, we obtain that

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d(fn(g(y0), g(x0), g(z0)), fn+1(u, t, v))

+d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t))

≤ 3 · ϕ
d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, v)) + d(g(z0), f(v, u, t))

3

 .
But x0 = x∗, y0 = y∗ and z0 = z∗. We obtain

d(fn(g(x∗), g(y∗), g(z∗)), fn+1(t, u, v)) + d(fn(g(y∗), g(x∗), g(z∗)), fn+1(u, t, v))

+d(fn(g(z∗), g(y∗), g(x∗)), fn+1(v, u, t)) ≤

3 · ϕ
d(g(x∗), f(t, u, v)) + d(g(y∗), f(u, t, v)) + d(g(z∗), f(v, u, t))

3

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(t, u, v)) = 0, lim
n→∞

d(g(y∗), f(u, t, v)) = 0 and lim
n→∞

d(g(z∗), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(z), f(u, t, v)) = 0 and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y∗), g(y)) ≤ d(g(y∗), f(u, t, v)) + d(f(u, t, v), g(y))→ 0, when n→∞,
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and

d(g(z∗), g(z)) ≤ d(g(z∗), f(v, u, t)) + d(f(v, u, t), g(z))→ 0, when n→∞,

so the proof of the theorem is complete. �

Now, by symmetrizing the contraction, we obtain the following result:

Theorem 6.2.198. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is g −R-monotone;
(ii) f is orbitally g-continuous;
(iii)

d(f(x, y, z), f(t, u, v)) + d(f(y, x, z), f(u, t, v)) + d(f(z, y, x), f(v, u, t) ≤(6.120)

3 · ϕ
d(g(x), g(t)) + d(g(y), g(y)) + d(g(z), g(v))

3

 ,∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z).

Proof: The prove this result, we will follow the steps from the proof of Theorem
6.2.196: Since f and g have lower-R-tripled coincidence point, let (x0, y0, z0) be it.
Thus, (f × g)(x0, y0, z0) ∈ XR(x0, y0, z0).
From (i) we have that (f × g)(XR(x0, y0, z0)) ⊆ XR((f × g)(x0, y0, z0)).
Further, it can easily be checked that

(gn(f(x0, y0, z0)), gn(f(y0, x0, z0)), gn(f(z0, y0, x0))) ∈(6.121)

XR(gn−1(f(x0, y0, z0)), gn−1(f(y0, x0, z0)), gn−1(f(z0, y0, x0))).

Since f(X3) ⊆ g(X), let x1, y1, z1 ∈ X such that g(x1) = f(x0, y0, z0), g(y1) =
f(y0, x0, z0), g(z1) = f(z0, y0, x0) and so on. Step by step, we obtain the sequences
{xn}, {yn} and {zn} such that

(6.122) g(xn+1) = f(xn, yn, zn), g(yn+1) = f(yn, xn, zn), g(zn+1) = f(zn, yn, xn)

Let’s consider the nonnegative sequence {ηn}n∈N∗ such that ηn = d(g(xn+1), g(xn)) +
d(g(yn+1), g(yn)) + d(g(zn+1, g(zn)), n ∈ N∗.
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Now, using (6.120), (6.121) and letting x := xn, y := yn and z := zn, t := xn−1,
u := yn−1 and v := zn−1, we obtain

d(f(xn, yn, zn), f(xn−1, yn−1, zn−1)) + d(f(yn, xn, zn), f(yn−1, zn−1, xn−1))

+d(f(zn, yn, xn), f(zn−1, xn−1, yn−1)) = d(g(xn+1), g(xn))

+d(g(yn+1), g(yn)) + d(g(zn+1), g(zn)) ≤

3ϕ
d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))d(g(zn), g(zn−1))

3

 = ϕ

ηn
3


Thus, we have that

(6.123) ηn+1 ≤ 3 · ϕ
ηn

3


Using the proof of Theorem 6.2.196 we have that {ηn}n∈N∗ is decreasing and nonnega-
tive. Therefore, there exists ε0 ≥ 0 such that

lim
n→∞

ηn = ε0.

Now, we will prove that ε0 = 0. In (6.105), let n→∞. Using (ii) (the second condition
satisfied by ϕ) from Chapter 5, we have

ε0 = lim
n→∞

ηn+1 ≤ 3 · lim
n→∞

ϕ

ηn
3

 = 3 · lim
ηn→ε0+

ϕ

ηn
3

 < ε0.

So we have that ε0 < εo, which is, clearly, a contradiction.
Thus, lim

n→∞
ηn = 0 and, consequently, lim

n→∞
d(g(xn+1), g(xn)) = 0,

lim
n→∞

d(g(yn+1), g(yn)) = 0 and lim
n→∞

d(g(zn+1), g(zn)) = 0.
Next, we will prove that {g(xn)}n∈N, {g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences.
Suppose that at least one of them is not a Cauchy sequence. Then, there exists a
constant δ > 0 and two integer sequences {n1(k)} and {n2(k)}, such that

(6.124) sk := d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k))) ≥ δ,

where n1(k) > n2(k) ≥ k, k ∈ Z∗. Next, let’s chose n1(k) to be the smallest integer
satisfying n1(k) > n2(k) ≥ k and (6.106). Then, we have

(6.125) d(g(xn2(k)), g(xn1(k)−1))+d(g(yn2(k)), g(yn1(k)−1))+d(g(zn2(k)), g(zn1(k)−1)) < δ.

Now, using the triangle inequality and the last two inequalities ((6.124) and (6.125)),
we have

δ ≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn2(k)), g(xn1(k)−1)) + d(g(xn1(k)), g(xn2(k)))

+d(g(yn2(k)), g(yn1(k)−1)) + d(g(yn1(k)), g(yn2(k)))

d(g(zn2(k)), g(zn1(k)−1)) + d(g(zn1(k)), g(zn2(k)))
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≤ d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + +d(g(zn2(k)), g(zn1(k))) + δ.

For k →∞ we obtain

lim
k→∞

sk = lim
k→∞

[d(g(xn2(k)), g(xn1(k)))+d(g(yn2(k)), g(yn1(k)))+d(g(zn2(k)), g(zn1(k)))] = δ.

Now we will show that δ = 0. Supposing the contrary, we have

sk = d(g(xn2(k)), g(xn1(k))) + d(g(yn2(k)), g(yn1(k))) + d(g(zn2(k)), g(zn1(k)))

≤ d(g(xn1(k)), g(xn1(k)+1)) + d(g(xn1(k)+1), g(xn2(k)))

+d(g(yn1(k)), g(yn1(k)+1)) + d(g(yn1(k)+1), g(yn2(k)))

+d(g(zn1(k)), g(zn1(k)+1)) + d(g(zn1(k)+1), g(zn2(k)))

= ηn1(k) + d(g(xn1(k)+1), g(xn2(k))) + d(g(yn1(k)+1), g(yn2(k))) + d(g(zn1(k)+1), g(zn2(k)))

(6.126)
≤ ηn1(k)+ηn2(k)+d(g(xn1(k)+1), g(xn2(k)+1))+d(g(yn1(k)+1), g(yn2(k)+1))+d(g(zn1(k)+1), g(zn2(k)+1)).

But

d(g(xn1(k)+1), g(xn2(k)+1)) + d(g(yn1(k)+1), g(yn2(k)+1)) + d(g(zn1(k)+1), g(zn2(k)+1))

= d(f(xn1(k), yn1(k), zn1(k)), f(xn2(k), yn2(k), zn1(k)))

+d(f(yn1(k), xn1(k), zn1(k)), f(yn2(k), xn2(k), zn2(k)))

+d(f(zn1(k), yn1(k), xn1(k)), f(zn2(k), yn2(k)), xn2(k)))

≤ 3 · ϕ
d(g(xn1(k), g(xn2(k))) + d(g(yn1(k)), g(yn2(k))) + d(g(zn1(k)), g(zn2(k)))

3


≤ 3 · ϕ

sk
3

 .
Now, returning to (6.108), we have

sk ≤ ηn1(k) + ηn2(k) + 3 · ϕ
sk

3

 .
Let k →∞. We obtain

δ ≤ 3 · lim
k→∞

ϕ

sk
3

 = 3 · lim
sk→δ+

ϕ

sk
3

 < δ

Thus, we have that δ < δ which is clearly a contradiction.
Consequently, {g(xn)}n∈N,{g(yn)}n∈N and {g(zn)}n∈N are Cauchy sequences in the
complete metric space (X, d). Since (X, d) is complete, there exist x and y such
that gn(xn) → x, gn(yn) → y and gn(zn) → z as n → ∞. Which means that
fn−1(xn, yn, zn)→ x, fn−1(yn, xn, zn)→ y and fn−1(zn, yn, xn)→ z, as n→∞. Using
the orbital g-continuity of f , we get that fn(xn, yn, zn) → g(x), fn(yn, xn, zn) → g(y)
and fn(zn, yn, xn)→ g(z), as n→∞, that is, (x, y, z) is a tripled coincidence point of
f and g.
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�

Theorem 6.2.199. In addition to the hypothesis of Theorem 6.2.198, suppose that
for every (x∗, y∗, z∗), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x∗), g(y∗), g(z∗)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: According to Theorem 6.2.198, there exist x, y, z ∈ X such that f(x, y, z) =
g(x), f(y, x, y) = g(y) and f(z, y, x) = g(z). We have to show that, if (x∗, y∗, z∗) is
another coincidence point for f and g,

d((g(x), g(y), g(z)), (g(x∗), g(y∗), g(z∗))) = 0.

Because both (x∗, y∗, z∗) and (x, y, z) are tripled coincidence points, we have

g(x∗) = f(x∗, y∗, z∗), g(y∗) = f(y∗, x∗, z∗), g(z∗) = f(z∗, y∗, x∗)

and
g(x) = f(x, y, z), g(y) = f(y, x, z), g(z) = f(z, y, x).

From f(X3) ⊆ g(X), there exist t0, u0, v0 in X such that g(t1) = f(t0, u0, v0), g(u1) =
f(u0, t0, v0), g(v1) = f(v0, u0, t0). Following the procedure used in the proof of Theorem
6.2.193, we obtain the sequences {tn}n∈N, {un}n∈N and {vn}n∈N, where

g(tn+1) = f(tn, un, vn), g(un+1) = f(un, tn, vn) and g(vn+1) = f(vn, un, tn).

Furthermore, let x∗0 = x∗, y∗0 = y∗, z∗0 = z∗ and x0 = x, y0 = y, z0 = z. Thus, we obtain
the sequences {x∗n}n∈N , {y∗n}n∈N , {z∗n}n∈N , {xn}n∈N, {yn}n∈N and {zn}n∈N such that

g(x∗n) = f(x∗, y∗, z∗), g(y∗n) = f(y∗, x∗, z∗), g(z∗n) = f(z∗, y∗, x∗)

and
g(xn) = f(x, y, z), g(yn) = f(y, x, z), g(zn) = f(z, y, x).

From the hypothesis, we have that there exists (t, u, v) ∈ X3 such that

(g(x∗), g(y∗), g(z∗), (g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)).

From (g(x0), g(y0), g(z0)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)) and the completeness of
the metric space it follows that

(fn(g(x0), g(y0), g(z0)), fn(g(y0), g(x0), g(z0)), fn(g(z0), g(y0), g(x0)))

∈ XR(fn+1(t, u, v), fn+1(u, t, v), fn+1(v, u, t))

Also, by using the contractivity condition, we have

d(fn(g(x0), g(y0), g(z0)), fn+1(t, u, v)) + d(fn(g(y0), g(x0), g(z0)), fn+1(u, t, v))

+ + d(fn(g(z0), g(y0), g(x0)), fn+1(v, u, t)) ≤
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ϕ

d(g(x0), f(t, u, v)) + d(g(y0), f(u, t, v)) + d(g(z0), f(v, u, t))
3

 .
But x∗0 = x∗, y∗0 = y∗ and z∗0 = z∗. We obtain

d(fn(g(x∗), g(y∗), g(z∗)), fn+1(t, u, v)) + d(fn(g(y∗), g(x∗), g(z∗)), fn+1(u, t, v))

+d(fn(g(z∗), g(y∗), g(x∗)), fn+1(v, u, t)) ≤

ϕ

d(g(x∗), f(t, u, v)) + d(g(y∗), f(u, t, v)) + d(g(z∗), f(v, u, t))
3

 .
Letting n→∞ we obtain that

lim
n→∞

d(g(x∗), f(t, u, v)) = 0, lim
n→∞

d(g(y∗), f(u, t, v)) = 0 and lim
n→∞

d(g(z∗), f(v, u, t)) = 0.

Similarly, we obtain that

lim
n→∞

d(g(x), f(t, u, v)) = 0, lim
n→∞

d(g(y), f(u, t, v)) = 0 and lim
n→∞

d(g(z), f(v, u, t)) = 0.

Now, using the triangle inequality, we have

d(g(x∗), g(x)) ≤ d(g(x∗), f(t, u, v)) + d(f(t, u, v), g(x))→ 0, when n→∞,

d(g(y∗), g(y)) ≤ d(g(y∗), f(u, t, u)) + d(f(u, t, v), g(y))→ 0, when n→∞

and

d(g(z∗), g(z)) ≤ d(g(z∗), f(v, u, t)) + d(f(v, u, t), g(z))→ 0, when n→∞

which means that

g(x∗) = g(x),

g(y∗) = g(y)

and

g(z∗) = g(z).

�

Next, we let ϕ(t) = kt, k ∈ [0, 1). It is easy to check that conditions (i) and (ii)
still hold. We obtain the following result:

Theorem 6.2.200. Let (X, d) be a complete metric space, R be a binary reflexive
relation on X such that R and d are compatible. If f : X3 → X and g : X → X are
two mappings such that

(i) f is g −R-monotone;
(ii) f is orbitally g−continuous;
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(iii) there exist k ∈ [0, 1) such that

d(f(x, y, z), f(t, u, v)) + d(f(y, x, z), f(u, t, v)) + d(f(z, y, x), f(v, u, t))(6.127)

≤ k · [d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))],∀(x, y, z) ∈ XR(t, u, v);

(iv) f and g have a lower-R-tripled coincidence point;
(v) f(X3) ⊆ g(X);
(vi) g is continuous ;
(vii) f and g commute.

Then f and g have a tripled coincidence point, i.e., there exists (x, y, z) ∈ X3 such that
f(x, y, z) = g(x), f(y, x, z) = g(y) and f(z, y, x) = g(z).

Proof: In Theorem 6.2.198, let ϕ(t) = kt, k ∈ [0, 1). �

Theorem 6.2.201. In addition to the hypothesis of Theorem 6.2.200, suppose that
for every (x, y, z), (x, y, z) ∈ X3, there exists (t, u, v) ∈ X3 such that (g(x), g(y), g(z)),
(g(x), g(y), g(z)) ∈ XR(f(t, u, v), f(u, t, v), f(v, u, t)). Then f and g have a unique
tripled coincidence point.

Proof: In Theorem 6.2.197, let ϕ(t) = kt, k ∈ [0, 1). �

Remark 6.2.202. If, in Theorem 6.2.193, resp 6.2.195 we let R =≤, suppose that
either the mapping f is only continuous or the condition 5.70 holds, we obtain Theorems
5.1.151, resp. 5.1.152 from [37].

3. Examples and applications

3.1. Examples

Next, we will present some examples for the results presented above:

Example 6.3.203. Let X = R, d = |x− y|,t he relation R on X given by

(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,

where xRt⇔ x2 + 2x = t2 + 2t. Let f : X3 → X be defined by

f(x, y, z) =
x+ y + 2z − 1

6
and g : X → X, where

g(x) = 2x− 1.

So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x, y + 2, z), (x+ 2, y, z), (x+ 2, y + 2, z), (x, y, z + 2),

(x+ 2, y + 2, z + 2), (x+ 2, y, z + 2), (x, y + 2, z + 2)}.
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f × g(XR(x, y, z)) ⊆ XR(f × g(x, y, z))

So, f has the g − R−monotone property. It can easily be checked that f and g satisfy

all the other conditions of Theorem 6.2.193. The contraction also holds for k = l =
1
6

and m =
1
3:

d(f(x, y, z), f(t, u, v)) =

∣∣∣∣∣∣
x+ y + 2z − 1

6 −
t+ u+ 2v − 1

6

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
6(x− t) +

1
6(y − u) +

1
3(z − v)

∣∣∣∣∣∣ < 2

∣∣∣∣∣∣
1
6(x− t) +

1
6(y − u) +

1
3(z − v)

∣∣∣∣∣∣
≤

1
3 |x− t|+

1
3 |y − u|+

2
3 |z − v|

=
1
6 |g(x)− g(t)|+

1
6 |g(y)− g(u)|+

1
3 |g(z)− g(v)|

=
1
6d(g(x), g(t)) +

1
6d(g(y), g(u)) +

1
3d(g(z), g(v)),

where, clearly,
1
6 +

1
6 +

1
3 =

2
3 < 1.

So, by Theorem 6.2.193, we obtain that f and g have a (unique) tripled coincidence

point,
5

8,
5
8,

5
8

, obtained by solving the following system of equations:

(6.128)


f(x, y, z) = g(x)

f(y, x, y) = g(y)

f(z, y, x) = g(z).

It can easily be checked that for solving the system above, we use Cramer’s rule (so its’
solution is unique and so is the tripled coincidence point of the two mappings).

Example 6.3.204. Let X = R, d = |x− y|, the relation R on X given by

(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,

where xRt⇔ x2 + x = t2 + t. Let f : X3 → X be defined by

f(x, y, z) =
x− y + 3z − 2

6
and g : X → X, where

g(x) = x− 1.

So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x,−y − 1, z), (−x− 1, y, z), (−x− 1,−x− 1, z), (x, y,−z − 1),
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(−x− 1,−y − 1,−z − 1), (−x− 1, y,−z − 1), (x,−y − 1,−z − 1)}.

f × g(XR(x, y, z)) ⊆ XR(f × g(x, y, z))

So, f has the mixed g − R−monotone property. It can easily be checked that f and
g satisfy all the other conditions of Theorem 6.1.181. The contraction also holds for

ϕ(t) =
kt

3 , k ∈ [0, 1). So, by Theorem 6.1.181, we obtain that f and g have a (unique)

tripled coincidence point,
4

3,
4
3,

4
3

, obtained by solving the following system of equa-

tions:

(6.129)


f(x, y, z) = g(x)

f(y, x, y) = g(y)

f(z, y, x) = g(z).

The determinant of the matrix associated to the system above is ∆ = −144 6= 0, so the
solution is, indeed, unique.

Example 6.3.205. Let X = R, d = |x− y|, the relation R on X given by

(x, y, z)R(t, u, v)⇔ xRt ∧ yRu ∧ zRv,

where xRt⇔ x2 + 2x = t2 + 2t. Let f : X3 → X be defined by

f(x, y, z) =
2x+ 2y − 3z + 1

18
and g : X → X, where

g(x) =
2x
3 .

So, ∀(x, y, z) ∈ X3, we have :

XR(x, y, z) = {(x, y, z), (x, y + 2, z), (x+ 2, y, z), (x+ 2, y + 2, z), (x, y, z + 2),

(x+ 2, y + 2, z + 2), (x+ 2, y, z + 2), (x, y + 2, z + 2)}.

f × g(XR(x, y, z)) ⊆ XR(f × g(x, y, z))

So, f has the mixed g − R−monotone property. It can easily be checked that f and g
satisfy all the other conditions of Theorem 6.1.185.
Condition (6.109) is also satisfied by f and g, whereas (6.95) in Theorem 6.1.179 does
not hold. Let’s assume, to the contrary, that there exists α ∈ [0, 1), such that (6.95)
holds. This means

d(f(x, y, z), f(t, u, v)) =

∣∣∣∣∣∣
2x+ 2y − 3z + 1

18 −
2t+ 2u− 3v + 1

18

∣∣∣∣∣∣ =

≤
α

3[
2
3 |x− t|+

2
3 |y − u|+

2
3 |z − v|]
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For x = t, we have :
∣∣∣∣∣∣
2(y − u)− 3(z − v)

18

∣∣∣∣∣∣ ≤
2α
9 [|y − u|+ |z − v|]

Next, for y = u, we obtain
∣∣∣∣∣∣
− 3(z − v)

18

∣∣∣∣∣∣ ≤
2α
9 |z − v|

⇔

∣∣∣∣∣∣
(v − z)

6

∣∣∣∣∣∣ ≤
2α
9 |z − v|

a contradiction,∀α ∈ [0, 1). Hence, f and g do not satisfy (6.95).
Next, we will prove that (6.109) holds.
∣∣∣∣∣∣
2x+ 2y − 3z + 1

18 −
2t+ 2u− 3v + 1

18

∣∣∣∣∣∣ ≤
1
6 |g(x)− g(t)|+

1
6 |g(y)− g(u)|+

1
4 |g(z)− g(v)| ,

∣∣∣∣∣∣
2y + 2z − 3x+ 1

18 −
2u+ 2v − 3t+ 1

18

∣∣∣∣∣∣ ≤
1
6 |g(y)− g(u)|+

1
6 |g(z)− g(v)|+

1
4 |g(x)− g(t)|

and∣∣∣∣∣∣
2z + 2x− 3y + 1

18 −
2v + 2t− 3u+ 1

18

∣∣∣∣∣∣ ≤
1
6 |g(z)− g(v)|+

1
6 |g(x)− g(t)|+

1
4 |g(y)− g(u)| .

By summing up these three inequalities, we obtain exactly (6.109), i.e.,

d(f(x, y, z), f(t, u, v)) + d(f(y, x, y), f(u, t, u)) + d(f(z, y, x), f(v, u, t))

≤ k[d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))],

where k =
7
12 < 1. So, by Theorem 6.1.185, we obtain that f and g have a (unique)

tripled coincidence point,
 1

11,
1
11,

1
11

, obtained by solving the following system of

equations

(6.130)


f(x, y, z) = g(x)

f(y, x, y) = g(y)

f(z, y, x) = g(z).
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3.2. An application

Motivated by the work of Eshi, Das and Debnath in [63], let us consider the fol-
lowing system of integral equations:

(6.131)


x(t) =

∫ T
0 f(t, x(s), y(s), z(s))ds, t ∈ [0, T ]

y(t) =
∫ T

0 f(t, y(s), x(s), y(s))ds, t ∈ [0, T ]

z(t) =
∫ T

0 f(t, z(s), y(s), x(s))ds, t ∈ [0, T ]

where T ∈ R+ and f : [0, T ]× R3 → R.

Let X = C([0, T ],R) and define a metric d on X such that

d(x, y) = sup
t∈[0,T ]

|x(t)− y(t)| ,∀x, y ∈ X

Further, we define the relation R using partial order:

xRy ⇔ x(t) ≤ y(t), t ∈ [0, T ].

It is easy to check that (X, d) is a complete metric space and that R is a reflexive
relation.

Theorem 6.3.206. Considering the system of integral equations (6.131), let us
suppose that the following hold:

i). f is continuous;
ii). for all t ∈ [0, T ] and x, y, z, u, v, w ∈ R we have x ≤ u, y ≥ v, z ≤ w and

f(t, x, y, z) ≤ f(t, u, v, w);
iii). for each t ∈ [0, T ] and x, y, z, u, v, w ∈ R, with x ≤ u, y ≥ v, z ≤ w, there exists

k ∈ [0, 1) such that

|f(t, x, y, z)− f(t, u, v, w)| ≤
k

3T (|x− u|+ |y − v|+ |z − w|) ;

iv). there exists (x0, y0, z0) ∈ X3 such that, ∀t ∈ [0, T ] we have

x0(t) ≤
∫ T

0
f(t, x0(s), y0(s), z0(s))ds,

y0(t) ≥
∫ T

0
f(t, y0(s), x0(s), y0(s))ds

and
z0(t) ≤

∫ T

0
f(t, z0(s), y0(s), x0(s))ds.

Then (6.131) has at least one solution.

Proof: Let f : X3 → X and g : X → X,

f(x, y, z) =
∫ T

0
f(t, x(s), y(s), z(s))ds, t ∈ [0, T ]
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and
g(x(t)) = x(t).

Using these notations, (6.131) becomes:

(6.132)


g(x) = f(x, y, z)

g(y) = f(y, x, y)

g(z) = f(z, x, y).

This means that the solution of (6.131) is, in fact, the tripled coincidence point for f
and g, provided the fact that the hypothesis of Theorem 6.1.179 is checked.
Suppose that x, y, z, u, v, w ∈ X such that g(x) ≤ g(u), g(y) ≥ g(v), g(z) ≤ g(w).
Then, we have

f(x, y, z)(t) =
∫ T

0
f(t, x(s), y(s), z(s))ds

=
∫ T

0
f(t, g(x(s)), g(y(s)), g(z(s)))ds

≤
∫ T

0
f(t, g(u(s)), g(v(s)), g(w(s)))ds

= f(u, v, w)(t), for each t ∈ [0, T ].

This means that f(x, y, z)(t) ≤ f(u, v, w)(t),∀t ∈ [0, T ]. Similarly, we can prove that
f(y, x, y)(t) ≥ f(v, u, v)(t) and f(z, x, y)(t) ≤ f(w, v, u)(t),∀t ∈ [0, T ]. Thus, f is
mixed g−R−monotone. Next, we will show that the contractive condition in Theorem
6.1.179 holds:

|f(x, y, z)(t)− f(u, v, w)(t)| =∣∣∣∣∣
∫ T

0
f(t, x(s), y(s), z(s))ds−

∫ T

0
f(t, u(s), v(s), w(s))ds

∣∣∣∣∣
≤
∫ T

0
|f(t, x(s), y(s), z(s))− f(t, u(s), v(s), w(s))| ds

≤
k

3T

∫ T

0
(|x(s)− u(s)|+ |y(s)− v(s)|+ |z(s)− w(s)|) ds

≤
k

3T

∫ T

0

(
sup
n∈[0,T ]

|x(n)− u(n)|+ sup
n∈[0,T ]

|y(n)− v(n)|+ sup
n∈[0,T ]

|z(n)− w(n)|
)
ds

≤
k

3T

(
sup
n∈[0,T ]

|x(n)− u(n)|+ sup
n∈[0,T ]

|y(n)− v(n)|+ sup
n∈[0,T ]

|z(n)− w(n)|
)
,

which means that

d(f(x, y, z), f(u, v, w)) ≤
k

3 · [d(g(x), g(u)) + d(g(y), g(v)) + d(g(z), g(w))],

∀(x, y, z) ∈ XR(u, v, w), where R =≤ .

Next, from condition (iv), we have

x0(t) ≤
∫ T

0
f(t, x0(s), y0(s), z0(s))ds,



3. EXAMPLES AND APPLICATIONS 135

y0(t) ≥
∫ T

0
f(t, y0(s), x0(s), y0(s))ds

and
z0(t) ≤

∫ T

0
f(t, z0(s), y0(s), x(s))ds,

∀t ∈ [0, T ].

But x0(t) = g(x0(t)), y0(t) = g(y0(t)) and z0(t) = g(z0(t)). Then, g(x0) ≤ f(x0, y0, z0), g(y0) ≥
f(y0, x0, y0) and g(z0) ≤ f(z0, y0, x0), which means that f and g admit an R-tripled
coincidence point.
It can also be easily checked that f and g commute and f(X3) ⊆ g(X).
Also, condition (ii) in Theorem 6.1.179 follows from condition (i) in the hypothesis.
Thus, all the conditions in the hypothesis of Theorem 6.1.179 are fulfilled.
Hence, there exists a point (x∗, y∗, z∗) ∈ X3 such that

g(x∗) = f(x∗, y∗, z∗),

g(y∗) = f(y∗, z∗, x∗

and
g(z∗) = f(z∗, y∗, x∗).

Now, using the definition of g, we have

x∗ = g(x∗) = f(x∗, y∗, z∗),

y∗ = g(y∗) = f(y∗, z∗, x∗

and
z∗ = g(z∗) = f(z∗, y∗, x∗),

which means that (x∗, y∗, z∗) is a solution for (6.131). �

Remark 6.3.207. If, in Theorem 6.3.206, we take R =≤ we obtain an extension
in the case of tripled coincidence points for Theorem 3.1 in [63].



CHAPTER 7

Conclusions

As presented in the beginning of this thesis, the fixed point theory is one of the
most productive and dynamic sub-domains of nonlinear analysis, meeting a great de-
velopment in the last decades. Undoubtedly, the cornerstone of this vast theory is
the Banach-Cacciappoli-Picard principle, a result intensively extended and general-
ized by researchers in various contexts, with several applications in integral equations,
nonlinear matrix equations, differential equations , systems of functional equations, etc.

An important step in the development of this theory was made by Ran and Reur-
ings in [113], when extending the famous contraction principle in partially ordered
(complete) metric spaces, followed by Nieto and Rodríguez-López [96], [95], [94] who
refined the results in [113] by removing the continuity of the mapping in the case of
nonincreasing and nondecreasing, respectively, mappings. Not much later, Guo and
Lakshmikantham, in [70], then Bhaskar and Lakshmikantham, in [36], define the cou-
pled fixed points for mixed-monotone mappings, in a similar context, as in partially
ordered metric spaces. Related to these concepts, coupled common and coincidence
points of two mappings were shortly after introduced and discussed by Ćirić and Lak-
shmikantham in [53] and Jungck and Rhoades in [75]. It is important to mention that
coupled fixed points were first studied by Opoitsev in [97], [99], [98].

Berinde and Borcut, in [28], laid the foundation of a new chapter in the metrical
theory of fixed points, when introducing the tripled fixed points of a mapping. These
were studied for mixed-monotone mappings in [28], [40], [42] and for monotone map-
pings in [39], [41] in partially ordered metric spaces. Tripled coincidence points were
also introduced by Borcut in [37], [38].

Despite the three major directions that the development of fixed point theory fol-
lowed, presented in Chapter 1, (theorems in metric spaces, topological spaces, ordered
sets), a great part of the results in the field reveal the same tendency: they were ob-
tained in metric spaces endowed with a relation of (partial) order. It was interesting
to discover the articles and books where this relation was replaced by an amorphous
binary one, a reflexive one, or a transitive one as presented in [19], [10], [126] and

136
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others. This was one of the ideas that lead to the results presented in this thesis.

Another fructuous way to obtain more general results and extend famous ones is
by weakening the contraction condition. One of the pioneers of this idea is Berinde,
obtaining important results for coupled fixed points and coupled coincidence points
in [27], [20], [26],[23] and others. An example of contraction used for coupled fixed
points is

d(f(x, y), f(t, u)) + d(f(y, x), f(u, t)) ≤ k[d(x, t) + d(y, u)], where k ∈ [0, 1)

and for coupled coincidence points,

d(f(x, y), f(t, u)+d(f(y, x), f(u, t)) ≤ k[d(g(x), g(t))+d(g(y), g(u))], where k ∈ [0, 1).

Following these directions, we introduced R-tripled fixed points, R-coupled and
tripled coincidence points and extended related notions(R-monotone sequence, mixed
R-monotony of a mapping, orbital continuity of a mapping,inX3, mixed g−R−continuity
of a mapping and others, see Definitions 4.2.90-4.2.89, 5.2.154-5.2.156, 6.1.175-6.1.177).

As seen in Chapters 3-6, we also provided existence and uniqueness theorems for
them, using different types of contractions, as listed below :

d(F (x, y), F (z, t)) + d(F (y, x), F (t, z)) ≤ k[d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t);

d(f1(x, y), f1(z, t)) + d(f2(x, y), f2(z, t)) ≤ k · [d(x, z) + d(y, t)],∀(x, y) ∈ XR(z, t);

d(F (x, y, z), F (t, u, v)) ≤
k

3 ·[d(x, t)+d(y, u)+d(z, v)],∀(x, y, z) ∈ XR(t, u, v), k ∈ [0, 1);

d(F (x, y, z), F (t, u, v)) ≤ a·d(x, t)+b·d(y, u)+c·d(z, v),∀(x, y, z) ∈ XR(t, u, v), a+b+c < 1;

d(f(x, y), f(z, t))+d(f(y, x), f(t, z)) ≤ k·[d(g(x), g(z))+d(g(y), g(t))], ∀(x, y) ∈ XR(z, t);

d(f(x, y), f(z, t)) + d(f(x, y), f(t, z))

≤ 2 · ϕ
d(g(x), g(z)) + d(g(y), g(t))

2

 ,∀(x, y) ∈ XR(z, t);

d(f(x, y), f(z, t)) ≤ ϕ

d(g(x), g(z)) + d(g(y), g(t))
2

 ,∀(x, y) ∈ XR(z, t);

d(f(x, y), f(z, t)) ≤
α

2[d(g(x), g(z)) + d(g(y), g(t))],∀(x, y) ∈ XR(z, t);

d(f(x, y), f(z, t)) ≤ k · d(g(x), g(z)) + l · d(g(y), g(t)),∀(x, y) ∈ XR(z, t);

d(f(x, y, z), f(t, u, v)) ≤ k·d(g(x), g(t))+l·d(g(y), g(u))+m·d(g(z), g(v)),∀(x, y, z) ∈ XR(t, u, v);

d(f(x, y, z), f(t, u, v)) ≤
α

3·[d(g(x), g(u))+d(g(y), g(v))+d(g(z), g(t))], ∀(x, y, z) ∈ XR(t, u, v);

d(f(x, y, z), f(t, u, v)) ≤ ϕ

d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))
3

 ,∀(x, y, z) ∈ XR(t, u, v);



138 7. CONCLUSIONS

d(f(x, y, z), f(t, u, v)) + d(f(y, z, x), f(u, v, t)) + d(f(z, y, x), f(v, t, u)) ≤

3 · ϕ
d(g(x), g(t)) + d(g(y), g(y)) + d(g(z), g(v))

3

 , ∀(x, y) ∈ XR(z, t);

d(f(x, y, z), f(t, u, v)) + d(f(y, z, x), f(u, v, t)) + d(f(z, x, y), f(v, t, u))

≤ k · [d(g(x), g(t)) + d(g(y), g(u)) + d(g(z), g(v))],∀(x, y, z) ∈ XR(t, u, v),

where ϕ is the one recalled in Chapter 5.

We consider that our results present great importance from the perspective of their
applicability in solving different types of problems. To sustain this idea, we presented
applications in first-order periodic boundary systems in Chapter 3, nonlinear matrix
equations in Chapters 4, 5, integral equations in Chapter 6 and provided illustrative
examples for our results (see Examples 3.4.68, 3.4.69, 4.4.129, 4.4.130, 5.4.169, 5.4.170,
6.3.203, 6.3.204, 6.3.205).

Also, our research can be extended in the following directions:

(1) extending the results for quadrupled fixed points, as introduced in [83],[84],[80]
or for higher dimensional points, as presented in [35], [127];

(2) using other types of contractions, for example:
• Chatterjea, in [48]:

d(Tx, Ty) ≤ b · [d(x, Ty) + d(y, Tx)], where b ∈
0,

1
2

 , x, y ∈ X;

• Zamfirescu, in [150]:
One of the following holds:

d(Tx, Ty) ≤ a · d(x, y);

d(Tx, Ty) ≤ b · [d(x, Tx) + d(y, Ty)];

d(Tx, Ty) ≤ c · [d(x, Ty) + d(y, Tx)],

where 0 ≤ a < 1, b <
1
2, c <

1
2, for every x, y ∈ X.

• Rus, in [120]:

d(Tx, Ty) ≤ a · d(x, y) + b · [d(x, Tx) + d(y, Ty)],∀x, y ∈ X, a+ 2b < 1;

• Agarwal, El-Gebeily and O’Regan in [1] and [2]:

d(fx, fy) ≤ ϕ

max
d(x, y), d(x, fx), d(y, fy),

1
2[d(x, fy) + d(y, fx)]


 ,∀x, y ∈ X, x ≥ y;
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• Hardy and Rogers, in [72]:

d(Tx, Ty) ≤ a · d(x, Tx) + b · d(y, Ty) + c · d(x, Ty) + e · d(y, Tx)

+f · d(x, y),∀x, y ∈ X, a+ b+ c+ e+ f < 1;

• Babu et. al. in [16]:

d(Tx, Ty) ≤ δ · d(x, y) + L ·min {d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

0 < δ < 1, L ≥ 0, x, y ∈ X

(3) extending our results in the case of a metric space endowed with a transitive
relation, or an amorphous relation, following the ideas in [126], [19] and re-
defining all the related concepts for that particular case (i.e. coupled fixed
point, mixed-monotony);

(4) following the approach in [108] and [145] regarding coupled fixed points, ex-
tending tripled fixed points using three operators, instead of one. An example
for this kind of approach could be

f1(x, y, z) = x, f2(x, y, z) = y, f3(x, y, z) = z;

(5) following the same idea, coupled coincidence points and tripled coincidence
points could also be generalized and redefined:

f1(x, y) = g(x), f2(x, y) = g(y), in the case of coupled coincidence points

and

f1(x, y, z) = g(x), f2(x, y, z) = g(y), f3(x, y, z) = g(z),

in the case of tripled coincidence points;

(6) obtain results regarding the existence and uniqueness for coupled coincidence
point of mixed-g-monotone mappings and (ψ, φ)-weakly contractive mappings
in G-metric spaces, starting from the work of Chandok, Mustafa and Posto-
lache in [47] and Aydi, Postolache and Shatanawi in [15], by replacing the
relation of order with a reflexive relation;

(7) replacing assumptions (vii) from the hypothesis of Theorems 5.3.157, 5.3.159,
5.3.164, i.e. f and g commute, with a weaker condition;

(8) study coupled and tripled coincidence and fixed points in b-metric spaces en-
dowed with a reflexive relation, starting from the work of Miculescu and Mi-
hail in [92], Bota, Petruşel, Petruşel and Samet in [43], Mustafa, Roshan
and Parvaneh in [93], Petruşel, Petruşel, Samet and Yao in [107] and[105],
Sintunavarat, Plubtieng and Katchang in [136];

(9) study the existence and uniqueness of the solution of a Riccati equation.
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[98] V. I. Opŏicev, Dynamics of collective behaviour. II. Systems with limited inter-
element interaction, Avtomat. i Telemekh, 35 (1974), no. 6, 987–998.
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