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INTRODUCTION

1. Theoretical/conceptual framework: contractions, Picard operators and
almost contractions

In the beginning, we recall some basic concepts in fixed point theory.

Definition 0.1.1. [24] Let X be a nonempty set. The functional d : X ×X → R+

is said to be a metric on X if the following conditions hold:

(1) d(x, y) = 0 if x = y;
(2) d(x, y) = d(y, x),∀x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X.

The set X equipped with the metric d is called a metric space and is denoted by
(X, d).

Definition 0.1.2. [24] Let X be a nonempty set. The element x ∈ X is called a
fixed point of the mapping T : X → X if T (x) = x.

Denote by Fix(T ) the set of all fixed points of the mapping T . Use the notation
Tx instead of T (x).

The Banach’s Contraction Principle represents probably the most important tool
in nonlinear analysis. In the setting of what we call now a Banach space and later
extended to metric spaces by Cacciopolli [8], it was first established by Stefan Banach
(1922) [9]. In the following, we present the form of that theorem given by Berinde in
[19]:

Theorem 0.1.3. [19] Let (X, d) be a complete metric space and T : X → X be a
mapping satisfying

(0.1) d(Tx, Ty) ≤ a · d(x, y),∀x, y ∈ X,

where 0 ≤ a < 1 is constant. Then:

(i) T has a unique fixed point p in X;
(ii) The Picard iteration {xn}∞n=0 defined by

(0.2) xn+1 = Txn, n = 0, 1, 2, · · ·

converges to p, for any x0 ∈ X;
5



6 INTRODUCTION

(iii) The following a priori and a posteriori error estimates hold:

(0.3) d(xn, p) ≤
an

1− ad(x0, x1), n = 0, 1, 2, ...

(0.4) d(xn, p) ≤
a

1− ad(xn−1, xn), n = 1, 2, ...

(iv) The rate of convergence of Picard iteration is given by

(0.5) d(xn, p) ≤ a · d(xn−1, p), n = 1, 2, ...

Amapping satisfying (i) and (ii) is said to be a Picard operator, see [98], [101],[102].
A mapping satisfying (0.1) is usually called a strict contraction or an a-contraction.

Hence, in essence, Theorem 0.1.3 shows that any contraction is a Picard operator.
A mapping satisfying condition (0.1) is always continuous. This fact lead re-

searchers to look up for discontinuous classes of such kind of mappings for which
conclusions of Theorem 0.1.3 still hold.

In 1968, R. Kannan [39] found a positive answer to this problem by proving a fixed
point theorem for mappings that do not need to be continuous, by replacing condition
(0.1) by the following one: there exists 0 ≤ b < 1

2 such that

(0.6) d(Tx, Ty) ≤ b · [d(x, Tx) + d(y, Ty)],∀x, y ∈ X.

2. Almost contractions

Definition 0.2.4. [39] Let (X, d) be a complete metric space. A mapping T :
X → X satisfying condition: there exists 0 ≤ b < 1/2 such that condition (0.6) holds,
is called a Kannan mapping.

Definition 0.2.5. [40] Let (X, d) be a complete metric space. Any mapping T :
X → X satisfying the contractive condition: there exists 0 ≤ c <

1
2 such that

d(Tx, Ty) ≤ c · [d(x, Ty) + d(y, Tx)],∀x, y ∈ X,

is called Chatterjea contraction.

One of the most general contractive conditions related to Banach contractions has
been introduced by Ćirić:

Definition 0.2.6. [45] Let (X, d) be a complete metric space. The mapping
T : X → X satisfying the contractive condition: there exists 0 ≤ h < 1 such that

(0.7) d(Tx, Ty) ≤ h ·max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},∀x, y ∈ X

is called a quasi-contraction.
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Definition 0.2.7. [19] Let (X, d) be a metric space. A mapping T : X → X

is called weak (almost) contraction or (δ, L)-weak contraction if there exist a constant
δ ∈ (0, 1) and some L ≥ 0 such that

(0.8) d(Tx, Ty) ≤ δ · d(x, y) + L · d(y, Tx),∀x, y ∈ X.

Remark 0.2.8. In [19] the author used the terminology of "weak contraction", then
it was renamed as "almost contraction" beginning with [25]. In the present thesis we
shall use the term "almost contraction".
Note that any strict contraction, any Kannan mapping and any Chatterjea mapping
are almost contractions with a unique fixed point.

Other examples of almost contractions are given in [15], [16], [24] and [29]. There
are various other examples of contractive conditions which imply the almost contrac-
tiveness condition (0.8), see for example Taskovic [99] and Rus [100].

In the following, we present an existence result (Theorem 0.2.9), as well as an
existence and uniqueness result (Theorem 0.2.10) for almost contractions, as they were
established in [15], see also [24] and [29]. Their main merit is that they extend
Banach’s Contraction Principle [9], Kannan [39], Chatterjea [40], Zamfirescu’s fixed
point theorem [127] and many other related results and also provide a method for
approximating the fixed points.

Theorem 0.2.9. [19] Let (X, d) be a complete metric space and T : X → X be a
(δ, L)-almost contraction. Then

(1) Fix(T ) = {x ∈ X : Tx = x} 6= φ;
(2) For any x0 ∈ X, the Picard iteration {xn}∞n=0, given by xn+1 = Txn, converges

to some x∗ ∈ Fix(T );
(3) The following estimates

(0.9) d(xn, x∗) ≤
δn

1− δd(x0, x1), n = 0, 1, 2, ...

(0.10) d(xn, x∗) ≤
δ

1− δd(xn−1, xn), n = 1, 2, ...

hold, where δ is the constant appearing in (0.8).

Theorem 0.2.10. [19] Let (X, d) be a complete metric space and T : X → X be a
(δ, L)-almost contraction for which there exist δ ∈ (0, 1) and some L1 ≥ 0 such that

(0.11) d(Tx, Ty) ≤ δ · d(x, y) + L1 · d(x, Tx),∀x, y ∈ X.

Then

(1) T has a unique fixed point, i.e., Fix(T ) = {x∗};
(2) For any x0 ∈ X, the Picard iteration {xn}∞n=0 converges to x∗;
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(3) The a priori and a posteriori error estimates

d(xn, x∗) ≤
δn

1− δd(x0, x1), n = 0, 1, 2, ...

d(xn, x∗) ≤
δ

1− δd(xn−1, xn), n = 1, 2, ...

hold.
(4) The rate of convergence of the Picard iteration is given by

(0.12) d(xn, x∗) ≤ δ · d(xn−1, x
∗), n = 1, 2, ...

Remark 0.2.11. (1) A large number of examples of almost contractions were given
by Berinde in [19] and [24]. For example, it was proved that:
- any Zamfirescu mapping [127] is an almost contraction;
- any quasi-contraction (see (0.7)) with 0 < h <

1
2 is an almost contraction;

(2) The fixed point x∗ of an almost contraction attained by the Picard iteration {xn}∞n=0

in Theorem 0.2.9 depends on the initial guess x0.

Definition 0.2.12. [100], [102] A map ping T : X → X is called a weakly Picard
operator if the sequence {T nx0}∞n=0 converges for any initial value x0 ∈ X, and the
limit of the sequence {T nx0}∞n=0 is a fixed point of T .

Therefore, the class of almost contractions provides a large class of weakly Picard
operators. Condition (0.8) is related to another important concept in fixed point theory,
that is, the so called Banach orbital condition

d(Tx, T 2x) ≤ a · d(x, Tx), ∀x ∈ X, 0 ≤ a < 1,

studied by various authors in the context of fixed point theorems, see for example Hicks
and Rhoades [61], Ivanov [64], Rus [98] and Taskovic [99].

Example 0.2.13. [24] Let T : [0, 1] → [0, 1] be the identity mapping: Tx = x, for
all x ∈ [0, 1]. Then T is an almost contraction with θ ∈ (0, 1) arbitrary and L ≥ 1− θ
and Fix(T ) = [0, 1].

An almost contraction is in general not continuous but, as shown by the next
theorem, an almost contraction is continuous at any fixed point of it, see [25].

Theorem 0.2.14. [25] Let (X, d) be a complete metric space and T : X → X be
an almost contraction. Then T is continuous at p, for any p ∈ Fix(T ).

From the various generalizations and extensions of almost contractions we mention
the following one, due to Suzuki [113].
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Definition 0.2.15. [113] Let T be a mapping on a metric space (X, d). Then T is
called a generalized Berinde mapping if there exist a constant r ∈ [0, 1) and a function
b : X → [0,∞) such that

(0.13) d(Tx, Ty) ≤ r · d(x, y) + b(y) · d(y, Tx), ∀x, y ∈ X.

Definition 0.2.16. [45] Let (X, d) be a metric space. Any mapping T : X → X is
called a Ćirić-Reich-Rus contraction if it satisfies condition:

(0.14) d(Tx, Ty) ≤ α · d(x, y) + β · [d(x, Tx) + d(y, Ty)], ∀x, y ∈ X,

where α, β ∈ R+ and α + 2β < 1.

3. Considerations about local contractions

The concept of local contraction was introduced by Rincón-Zapatero and Rodrigues-
Palmero [94], in order to study discounted stochastic dynamic programming models
with unbounded returns in the setting of metric spaces of functions with a metric
constructed from a countable family of seminorms. Later on, the concept of local
contraction has been developed by Martins da Rocha and Filipe Vailakis in [76]. They
studied the existence and uniqueness of fixed points for local contractions in the setting
of a semimetric space.

Definition 0.3.17. [129], [130] Let X be a nonempty set. The functional
d : X ×X → R+ is said to be a semimetric on X if the following conditions hold:

(1) d(x, y) = 0 if x = y;
(2) d(x, y) = d(y, x),∀x, y ∈ X.

Note that the triangle inequality is not necessarily satisfied in this case.

Definition 0.3.18. [76] Let F be a set. Denote by J a family of indices (which
frequently can be considered as a subset of N) and let r : J → J. Let D = (dj)j∈J be
a family of semimetrics defined on F . Let τ be the weak topology on F defined by the
family D. If A is a nonempty subset of F , then for each h ∈ F , we denote

d
j
(h,A) ≡ inf{dj(h, g) : g ∈ A}, j ∈ J.

An operator T : A→ A is called a local contraction with respect to (D, r) if, for every
j ∈ J , there exists βj ∈ [0, 1) such that

dj(Tf, Tg) ≤ βjdr(j)(f, g),∀f, g ∈ A.

Following the contraction mapping principle, a lot of work was devoted to obtain-
ing fixed point theorems in uniform spaces, amongst which we mention the work of
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Gheorghiu [53], Gheorghiu and Rotaru [54]. In a recent paper, Vailakis and Martins-
da-Rocha [76] have established new results involving local contractions in topological
spaces whose topology is generated by a family of semidistances.

Instead of considering a self mapping T : A → A, Vailakis and Martins-da-Rocha
have considered non-self mappings T : A→ F , where A ⊂ F is a nonempty, τ -bounded,
sequentially τ -complete and T -invariant subset of F , and provided sufficient conditions
to ensure the existence of a fixed point of T in A, as well as the uniqueness of the fixed
point of T in A.

Definition 0.3.19. [76] The subset A is said to be τ -Hausdorff if for each pair
(f, g) ∈ A× A, f 6= g, there exists j ∈ J such that d

j
(f, g) > 0.

The subset A ⊂ F is called T -invariant if T (A) ⊂ A.

Definition 0.3.20. [76] Let F be a set and let J a family of indices. Let D =
(dj)j∈J be a family of semimetrics defined on F . Let τ be the weak topology on F

defined by the family D.
The sequence {xn}n∈N∗ is τ -convergent to x∗ if dj(xn, x∗)→ 0 as n→∞, ∀j ∈ J .
The sequence {xn}n∈N∗ is said to be dj-Cauchy if for each j ∈ J ,

dj(xn, xm)→ 0 as n,m→∞.
The sequence {xn}n∈N∗ is said to be τ -Cauchy if it is dj-Cauchy, for all j ∈ J .
The subset A of F is said to be sequentially τ -complete if every τ -Cauchy sequence

in F converges in F with respect to the τ -topology.
The subset A ⊂ F is said to be τ -bounded if diamj(A) ≡ sup{dj(x, y) : x, y ∈ A} is

finite for every j ∈ J .

Now we state the main result in [76].

Theorem 0.3.21. [76] Assume that the space F is τ -Hausdorff and let D = (dj)j∈J
be a family of semimetrics defined on F . Let τ be the weak topology on F defined by
the family D and J be a family of indices Consider a function r : J → J and let T :
A→ A be a local contraction with respect to (D, r), with the coefficient of contraction
βj ∈ [0, 1), j ∈ J. Denote rn(j) = r(rn−1(j)), for n ≥ 1 and r0 = IJ . Consider a
nonempty, τ -bounded, sequentially τ -complete, and T -invariant subset A ⊂ F .

E: (existence): If condition

(0.15) ∀j ∈ J, lim
n→∞

βjβr(j) · · · βrn(j)diamrn+1(j)(A) = 0

is satisfied, then the operator T admits a fixed point f ∗.
S: (existence and uniqueness)
Furthermore, if h ∈ F satisfies

(0.16) ∀j ∈ J, lim
n→∞

βjβr(j) · · · βrn(j)drn+1(j)(h,A) = 0

then the sequence {T nh}n∈N is τ -convergent to f ∗.
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The results obtained by Rincón-Zapatero and Rodrigues-Palmero [95] involving
local contractions were successfully applied to the study of various applications in
economics. Also, they considered metric spaces of functions with a metric constructed
from a countable family of seminorms. That family is chosen as the supremum of
continuous functions over the multitude of compact sets covering the set of consumption
streams. The fixed-point results obtained by Martins da Rocha and Filipe Vailakis in
[76] turned out to be also useful in solving recursive equations in economic dynamics.
These results made easier the study of existence and uniqueness of solutions to recursive
equations that arise in economic dynamics.

4. Motivation

The present thesis is intended to unify the two classes of contractive mappings that
were presented previously and are important in fixed point theory:

1) the class of almost contractions, very extensively studied, presented in § 2;
2) the class of local contractions, with applications in economics, presented in §3.
Next, we summarize some facts that are at the source of our research work, i.e., the

two types of contractions mentioned before.
The wide range of applications of Banach contraction mapping principle in nonlinear

analysis has challenged researchers to obtain its conclusions under weaker assumptions
than (0.1), which do not force the continuity of the operator T .

The first achievement in this respect has been stated by Kannan in 1968 [39], who
obtained a fixed point theorem for discontinuous mappings. Chatterjea [40], Bianchini
[41], Reich [42], Rus [97], Ćirić [43], Zamfirescu [127] and many other researchers
continued this direction of research, see Rhoades [92] for a classification and comparison
of various such contractive type mappings.

All the above quoted fixed point theorems ensure, based on specific assumptions,
the following two conclusions for the contractive mapping T : X → X

(1) Fix(T ) = x, i.e., T has a unique fixed point in X;
(2) if T n stands for the nth iterate of T , then limn→∞ T

nx0 = x, for any x0 ∈ X,
i.e., T is a Picard mapping.

More recently, Berinde [19] introduced a large class of contractive mappings, called
weak contractions [15] and later named almost contractions (in [25] and afterwards).

The class of almost contractions includes Banach contractions, Kannan contrac-
tions, Chatterjea contractions, Zamfirescu contractions, Reich-Rus contractions, Bian-
chini contractions and, partially, the so called quasi-contractions, due to Ćirić [44].
But, unlikely the above mentioned classes of contractions, which admit a unique fixed
point, an almost contraction may have two or more fixed points by simultaneously



12 INTRODUCTION

keeping almost all the other features of the Banach contraction mapping principle,
including rate of convergence, error estimates, stability and so on.

On the other hand, Rincón-Zapatero and Rodrigues-Palmero [94], established an-
other extension of the Banach contraction mapping principle, with various applications
in economics: recursive utility is used in many contexts to model economic agents’ pref-
erences where current utility is expressed as a function (the aggregator) of current con-
sumption and the utility of future consumption. Later on, Martins da Rocha and Filipe
Vailakis in [76] have developed the idea of Rincón-Zapatero and Rodrigues-Palmero in
[95].

The setting they are working is that of a set F endowed with a family D = (dj)j∈J
of semidistances defined on F . They consider the weak topology τ defined by the
family D.

Let A ⊂ F be a τ -bounded sequentially τ -complete and T -invariant subset of F .
T : A→ A is called a local contraction with respect to (D, r), where r : J → J , if there
exists βj ∈ [0, 1) such that

dj(Tf, Tg) ≤ βjdr(j)(f, g),∀f, g ∈ A.

The fixed point theorem of Martin da Rocha and Filipe Vailakis [76] essentially states
that, if F is τ -Hausdorff, and,

lim
n→∞

βjβr(j) · · · βrn+1(j)diamrn+1(j)(A) = 0,∀j ∈ J,

then T has a fixed point f ∗ in A. Moreover, if h ∈ F satisfies

∀j ∈ J, lim
n→∞

βjβr(j) · · · βrn+1(j)drn+1(j)(h,A) = 0,

then the sequence {T nh}n∈N is τ -convergent to f ∗.
The theoretical results in [76] were then applied to solve recursive equations in

economic dynamics with various applications in dynamic programming. Both classes
are extensions of the well known Banach contraction mapping principle, introduced by
Stefan Banach in 1922 in his famous dissertation [9]. They represent the foundation of
metrical fixed point theory, an extremely dynamic field of research starting with second
half of the 20th century, see the monograph [98], for a selected list of reference books.

The two essentially different approaches presented in A and B, both emerging from
Banach Contraction Mapping Principle, give rise to a very interesting and challenging
problem: is it possible to unify almost contractions and local contractions to form
a common class of contractive mappings that keep most of the features of the two
sources?

The present thesis aims to answer this problem in the affirmative. We present a
coherent theory of what we will call local almost contractions (often abbreviated as
ALC-s), for which we state and prove various fixed point theorems, give illustrative
examples, particular cases and indicate some relevant applications.
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We plan to cover most of the classes of mappings studied in fixed point theory:
single-valued self mappings, multivalued self- and non-self mappings, common fixed
points and coincidence points of local almost contractions.

5. Structure of the thesis, main results

The thesis is organized into four chapters: Introduction, four chapters, Conclusions
and a list of bibliographic references.

In Introduction we collect a non-exhaustive list of concepts, notions and basic
results from the fixed point theory in metric and pseudometric spaces, respectively.
The Introduction consists of six paragraphs, Theoretical/ conceptual framework, Al-
most contractions, Considerations about local contractions, Motivation, Structure of
the thesis, Acknowledgments.

The first chapter, Single valued self almost local contractions in uniform
spaces, consists of three paragraphs, Preliminaries on almost local contractions, Data
dependence of fixed points, New classes of almost local contractions. This chapter
contains the original contributions of the author, we present the concept of almost
local contraction in pseudometric spaces, we prove existence as well as existence and
uniqueness theorems for their fixed points. Further on, we present stability and data
dependence of the fixed points. We introduce several classes of almost local contrac-
tions, we discuss about their approximate fixed points, almost local contractions in
b-pseudometric spaces with a detailed study of their fixed points.

The personal contributions in the first chapter are:
Definitions 1.1.28, 1.1.31, 1.1.40, 1.2.44, 1.2.46, 1.3.54, 1.3.60, 1.3.70, 1.3.72, 1.3.75,
1.3.77, 1.3.79, 1.3.90, 1.3.101, 1.3.114, 1.3.135, 1.3.136, 1.3.138, 1.3.140, 1.3.142,
Theorems 1.1.33, 1.1.36, 1.1.38, 1.2.46, 1.2.48, 1.3.56, 1.3.65, 1.3.68, 1.3.69, 1.3.73,
1.3.74, 1.3.76, 1.3.78, 1.3.80, 1.3.95, 1.3.97, 1.3.99, 1.3.102, 1.3.122, 1.3.123, 1.3.125,
1.3.126, 1.3.128, 1.3.129, 1.3.130, 1.3.145, 1.3.146, 1.3.147, 1.3.148, 1.3.149, 1.3.150,
1.3.151, 1.3.152, 1.3.153, 1.3.162, 1.3.164, 1.3.165, 1.3.166, 1.3.167, 1.3.168, 1.3.169,
Corollaries 1.3.81, 1.3.82,
Lemmas 1.3.61, 1.3.63, 1.3.104, 1.3.115, 1.3.119, 1.3.121, 1.3.156, 1.3.158, 1.3.159,
1.3.161, 1.3.163,
Remarks 1.1.23, 1.1.32, 1.1.34, 1.1.37, 1.1.41, 1.1.42, 1.2.52, 1.3.55, 1.3.62, 1.3.64,
1.3.66, 1.3.86, 1.3.91, 1.3.93, 1.3.96, 1.3.100, 1.3.103, 1.3.108, 1.3.109, 1.3.111, 1.3.120,
1.3.124, 1.3.134, 1.3.137, 1.3.139, 1.3.141, 1.3.143, 1.3.157, 1.3.160,
Examples 1.1.24, 1.1.25, 1.1.35, 1.1.39, 1.2.49, 1.2.50, 1.2.51, 1.3.67, 1.3.71, 1.3.92,
1.3.94, 1.3.98, 1.3.127, 1.3.154.

In Chapter 2, Multivalued almost local contractions, we study multivalued
self almost local contractions in pseudometric spaces, providing fixed point theorems
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and approximate fixed points as well. Then, we investigate the non-self multivalued
almost local contractions in pseudometric spaces. We state and prove two fixed point
theorems related to the above-mentioned operators.
The personal contributions in Chapter 2 are:
Definitions 2.1.177, 2.1.181, 2.1.187, 2.2.193, 2.2.194,
Theorems 2.1.183, 2.1.184, 2.1.186, 2.1.189, 2.2.196, 2.2.199,
Lemmas 2.1.178, 2.1.182, 2.1.188,
Corollary 2.2.197,
Remarks 2.1.174, 2.2.195, 2.2.198.

In Chapter 3, Non-self single valued almost local contractions, we establish
new fixed point theorems, both existence and uniqueness theorems. This chapter also
contains the notion of α-graphic local contraction. Then we study various types of
non-self almost local contractions, in order to establish if they are α-graphic local
contractions.

The personal contributions in Chapter 3 are:
Definitions 3.1.204, 3.2.212, 3.2.216,
Theorems 3.2.208, 3.2.210, 3.2.213, 3.2.214, 3.2.217, 3.2.218, ,
Examples 3.1.205, 3.2.219,
Remarks 3.2.211, 3.2.215.

Chapter 4, Application of almost local contractions in dynamic program-
ming focuses on the applicability of almost local contractions in economy, by using
them in dynamic programming. First, we define the k-almost local contractions. Then,
basic facts about Bellman operator and Bellman equation are introduced, having strong
connections with the almost local contractions.
The personal contributions in the fourth chapter are:
Definition 4.2.229,
Propositions 4.2.230, 4.2.232,
Theorems 4.2.233, 4.2.243, 4.2.244, 4.2.245,
Remarks 4.1.223, 4.2.231, 4.2.234, 4.2.239, 4.2.246.

The thesis closes with a short part of Conclusions, where we resumed the orig-
inal results from this thesis, also enumerating some future research possibilities and
directions.
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CHAPTER 1

SINGLE VALUED SELF ALMOST LOCAL
CONTRACTIONS IN UNIFORM SPACES

1. Preliminaries on almost local contractions

The purpose of this chapter is to merge the concepts of almost contraction and local
contraction, and thus to build a fixed point theory for what we will call local almost
contractions.

Throughout this chapter, X is a Hausdorff topological space with its topology
generated by a family {dj}j∈J of pseudometrics on X.

Definition 1.1.22. [130] Let X be a nonempty set. A functional d : X×X → R+

is said to be a pseudometric on X if:

(1) d(x, x) = 0,∀x ∈ X;
(2) d(x, y) = d(y, x),∀x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y),∀x, y, z ∈ X.

Remark 1.1.23. Note that the axiom "x = y ⇔ d(x, y) = 0" from the case of
a metric is no more assumed, which means that the distance between two different
elements could be zero for a pseudometric, see Examples 1.1.24 and 1.1.25. Also,
observe the difference between a pseudometric and a semimetric (Definitions 0.3.17
and 1.1.22).

Example 1.1.24. [119] Let us condider X = [0, n]× [0, n] ⊂ R2, n ∈ N∗. Consider
the family of pseudometrics dj : X ×X → R+,

(1.17) dj
(
(x1, y1), (x2, y2)

)
= |y1 − y2| · e−j,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X,

where J is a subset of N (or R+). Then dj is a pseudometric but is not a metric, take
for example: dj((1, 4), (2, 4)) = |4− 4| · e−j = 0, however (1, 4) 6= (2, 4).

Example 1.1.25. [119] Let us consider X = [0, n]× [0, n] ⊂ R2, n ∈ N∗. Consider
the pseudometric:

(1.18) dj((x1, y1), (x2, y2)) = |x1 − x2| · e−j,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X,

where J is a subset of N. Similar to the previous example, dj is a pseudometric,
but is not a metric, take for example: dj((1, 3), (1, 5)) = |1− 1| · e−j = 0, however
(1, 3) 6= (1, 5).

16



1. PRELIMINARIES ON ALMOST LOCAL CONTRACTIONS 17

A family of pseudometrics introduces on the set X a topology τ , named uniform
space topology in some research papers (see [128]).

We recall some basic notions from the theory of uniform spaces, according to [128]:

Definition 1.1.26. [128] If X is a given set, then we call the subsets of X × X
relations. The inverse relation of the relation U is

U−1 = {(x, y) ∈ X ×X : (y, x) ∈ U}.

The composition of two relations U and V is defined by:

U ◦ V = {(x, z) ∈ X ×X : (x, y) ∈ U and (y, z) ∈ V, ∀y ∈ X}.

Denote by ∆(X) the set of all ordered pairs (x, x), x ∈ A.
Assign to every subset A ⊂ X the set

U [A] = {y : (x, y ∈ U) for some x ∈ A}.

Observe that U [x] = U [{x}].
An uniformity (or uniform structure) on the set X is called a nonempty family U

consisting of subsets X ×X satisfying the following conditions:
(1) every element U ∈ U contains ∆(X);
(2) if U ∈ U then U−1 ∈ U;
(3) if U ∈ U then V ◦ V ⊂ U for some V ∈ U;
(4) if U and V ∈ U then U ∩ V ∈ U;
(5) if U ∈ U and U ⊂ V ⊂ X ×X then V ∈ U.

The ordered pair (X,U) is called uniform space. All subsets T ⊂ X such that for every
x ∈ T there exists U ∈ U for which U [x] ⊂ T , form a topology on X, called uniform
topology.

The connection between the pseudometrics and the uniform spaces is given by the
next result:

Proposition 1.1.27. [71] Every uniformity of X is generated by the family of all
uniformly continuous pseudometrics on X ×X.

Alternatively to Definition 1.1.26 stated by Weil, uniform spaces can be defined
using systems of pseudometrics.

Bourbaki points out (see [37]) that any uniform structure U can be defined by a
family of pseudometrics (even uncountable).

Definition 0.3.20 can be extended to the case of uniform spaces, as follows:

Definition 1.1.28. Let X be a uniform space. Denote by J a family of indices and
let D = (dj)j∈J be a family of pseudometrics defined on X. Let τ be the weak topology
on X defined by the family D. A sequence {xn}n∈N∗ is said to be τ − Cauchy if it is
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dj-Cauchy, ∀j ∈ J .
The subset A of X is said to be sequentially τ -complete if every τ -Cauchy sequence in
A converges in A with respect to the τ -topology.
The subset A ⊂ X is said to be τ -bounded if diamj(A) ≡ sup{dj(x, y) : x, y ∈ A} is
finite for every j ∈ J .

A more general global fixed point result has been obtained more than forty years
before by Gheorghiu [53], see also Gheorghiu and Rotaru [54].

Theorem 1.1.29. [53] Let X be a uniform Hausdorff space, sequentially complete,
and let (di)i∈I be a family of semimetrics defined on X. Let f : X → X be a mapping
for which there exist ϕ : I → I, q : I → R+ such that

di(f(x), f(y)) ≤ q(i)dϕ(i)(x, y),∀x, y ∈ X, ∀i ∈ I

and the series
∞∑
n=1

q(i)q(ϕ(i)) · · · q(ϕn(i)) · dϕn(i)(x, y)

is convergent for all i ∈ I and for all x, y ∈ X.
Then f has a unique fixed point.

Remark 1.1.30. Note that if T satisfies condition (0.15), then the series in the
previous theorem is convergent. In [53], Gheorghiu use the term "semimetric" for what
we shall call "pseudometric" in the present thesis, according to the definition of Willard
in [130].

Definition 1.1.31. [118] Let X be a set and denote by J a family of indices.
Let D = (dj)j∈J be a family of pseudometrics defined on X and let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X. Let the operator T : A → X and assume that the subset A
is T -invariant. Let r be a function from J to J . T is called almost local contraction
with regard to (D,r) if there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

(1.19) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx), ∀x, y ∈ A, ∀j ∈ J.

Remark 1.1.32. 1) By taking a metric d : X ×X → R+ instead of the pseudomet-
rics dj and r the identity function (r(j) = j), we can easily conclude that the almost
contractions represent a particular case of almost local contractions.
2) As the pseudometric possesses the property of symmetry, the almost local contraction
condition (1.19) implies the following dual condition:

(1.20) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(x, Ty), ∀x, y ∈ A, ∀j ∈ J.

The next theorem states an existence result of the fixed points of almost local
contractions in uniform spaces, and it appeared in [118].
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Theorem 1.1.33. [118] Let X be a uniform Hausdorff space, D = (dj)j∈J be a
family of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J and let T : A → X be an almost local
contraction with respect to (D,r), with the constants θ ∈ (0, 1) and L ≥ 0. Assume the
subset A ⊂ X is T -invariant. If condition

(1.21) lim
n→∞

θn+1diamrn+1(j)(A) = 0, ∀j ∈ J

is satisfied, then T admits a fixed point x∗ in A.

Proof: Let x0 ∈ A be arbitrary and let {xn}∞n=0 be the Picard iteration defined by

xn+1 = Txn, n ∈ N.

Take x := xn−1, y := xn in (1.19) to obtain

dj(Txn−1, Txn) ≤ θ · dr(j)(xn−1, xn),

which means

(1.22) dj(xn, xn+1) ≤ θ · dr(j)(xn−1, xn),∀j ∈ J,∀n ≥ 1.

By using (1.22), we inductively obtain :

(1.23) dj(xn, xn+1) ≤ θn · drn(j)(x0, x1), n = 0, 1, 2, · · · ,

where r0(j) = j,∀j ∈ J. According to the triangle inequality, by (1.23) we get:

dj(xn, xn+p) ≤ θn(1 + θ + · · ·+ θp−1)drn(j)(x0, x1) =

= θn

1− θ (1− θp) · drn(j)(x0, x1) ≤

≤ 1
1− θθ

n · diamrn(j)(A), n, p ∈ N, p 6= 0.

These relations show us that the sequence {xn}n∈N is dj-Cauchy for each j ∈ J . As
the subset A is assumed to be sequentially τ -complete, there exists x∗ in A such that
{xn}n∈N is τ -convergent to x∗. Besides, the sequence {xn} converges with respect to
the topology τ to x∗, which implies

dj(Tx∗, x∗) = lim
n→∞

dj(Tx∗, T n+1x0), ∀j ∈ J.

The operator T is an almost local contraction with respect to (D,r), thus we have

dj(Tx∗, x∗) = lim
n→∞

dj(Tx∗, T n+1x0) ≤

≤ θ lim
n→∞

dr(j)(x∗, T nx0)︸ ︷︷ ︸
=0

+L lim
n→∞

dr(j)(x∗, T n+1x0)︸ ︷︷ ︸
=0

,∀j ∈ J.

As the convergence with respect to the τ -topology implies convergence for the pseudo-
metric dr(j), we obtain dj(Tx∗, x∗) = 0 for every j ∈ J . This proves that Tx∗ = x∗, as
the space is Hausdorff. �
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Remark 1.1.34. For T verifying (1.19) with L = 0, by taking θ = βj (from Defi-
nition 0.3.18), we can easily conclude that an almost local contraction is a particular
local contraction.
Further, in the case dj = d,∀j ∈ J , with d = metric on X, we obtain the well known
Banach contraction mapping principle, with a unique fixed point.

Example 1.1.35. Let A be the set of all nonnegative functions:

A = {f |f : [0,∞)→ [0,∞)}.

Let us consider dj(f, g) = |f(0) − g(0)| · e−j, ∀f, g ∈ A, r(j) = j + 4, ∀j ∈ J, where
J is a subset of N.
Observe that dj is a pseudometric, but it is not a metric, take for example dj(x, x2) = 0,
however x 6= x2.

Consider the mapping Tf = |f |, ∀f ∈ A, and apply condition (1.19) for ALC-s:

|f(0)− g(0)| · e−j ≤ θ · |f(0)− g(0)| · e−(j+4) + L · |g(0)− f(0)| · e−(j+4),∀f, g ∈ A,

which is equivalent to: e4 ≤ θ + L.
This inequality is true if j > 0, θ = 1

4 ∈ (0, 1), L = 80 > 0.
Hence, T is an ALC. However, T is not a contraction, because the contractive condition
(0.1) leads us to: 1 ≤ a, which is a contradiction.
The condition (1.21) for the existence of the fixed point is valid:

lim
n→∞

θn+1diamrn+1(j)(A) = lim
n→∞

(
1
4

)n+1

· sup
f,g∈A

{
|
(
f(0)− g(0)

)
e−j|

}
= 0, ∀j ∈ J.

The mapping T has an infinite set of fixed points, Fix(T ) = A, since

|f(x)| = f(x),∀f ∈ A, x ∈ [0,∞).

The next theorem presents an existence and uniqueness result for ALC-s.

Theorem 1.1.36. [119] Assume that X, J,D, r, τ and A are as in Theorem 1.1.33.
If, additionally:
(U) there exist two constants θ1 ∈ (0, 1) and L1 ≥ 0, θ1 + L1 < 1, such that

(1.24) dj(Tx, Ty) ≤ θ1 · dr(j)(x, y) + L1 · dr(j)(y, Tx), ∀x, y ∈ A,∀j ∈ J

and

(1.25) lim
n→∞

(θ1 + L1)ndrn(j)(z, A) = 0, ∀z ∈ A, ∀j ∈ J,

then the fixed point x∗ of T is unique.
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Proof: Suppose, by contradiction, that there are two different fixed points x∗ and
y∗ of T . Then we have:

0 < dj(x∗, y∗) = dj(Tx∗, T y∗) ≤ θ1dr(j)(x∗, y∗) + L1dr(j)(y∗, Tx∗) =

= (θ1 + L1) · dr(j)(x∗, y∗) ≤ · · · ≤ (θ1 + L1)n · drn(j)(x∗, y∗) ≤

≤ (θ1 + L1)n︸ ︷︷ ︸
↘0 as n→∞

·drn(j)(z, A), ∀z ∈ A, ∀j ∈ J.

Now, letting n→∞, we obtain a contradiction (0<0), hence the fixed point is unique.
�

Remark 1.1.37. The proof of Theorem 1.1.36 is quite similar to that of Vailakis
[76] from the local contractions. The uniqueness of the fixed point in the case of al-
most local contractions can also be proved without assuming the additional property (U)
above, based only on the monotonicity property of the pseudometric and the uniqueness
condition from the case of almost contractions, as shown in the next theorem.

Theorem 1.1.38. Assume that X, J,D, r, τ and A are as in Theorem 1.1.33. If we
add a monotonicity condition for the pseudometrics, namely:

(1.26) dr(j)(f, g) ≤ dj(f, g),∀f, g ∈ A, ∀j ∈ J,

and also the uniqueness condition (U’):

(1.27) dj(Tx, Ty) ≤ θu · dr(j)(x, y) + Lu · dr(j)(x, Tx),∀x, y ∈ A,∀j ∈ J,

with the constants θu ∈ (0, 1) and Lu ≥ 0, then the fixed point f ∗ of T is unique.

Proof: Suppose, by contradiction, there are two distinct fixed points f ∗ and g∗ of
T . Then, by using (1.26), and condition (1.27) with f := f ∗, g := g∗, we get:

dj(f ∗, g∗) ≤ θu · dr(j)(f ∗, g∗) + Ludr(j)(f ∗, T f ∗) = θu · dr(j)(f ∗, g∗) ≤ θu · dj(f ∗, g∗)

⇒ dj(f ∗, g∗) ≤ θu · dj(f ∗, g∗)⇒ (1− θu) · dj(f ∗, g∗) ≤ 0,∀j ∈ J.,

which is obviously a contradiction with dj(f ∗, g∗) > 0 and θu ∈ (0, 1). �

Example 1.1.39. Let us consider X = [0, n]× [0, n] ⊂ R2, n ∈ N∗, T : X → X,

T (x, y) =

 (x2 ,
y
2) if (x,y) 6= (1, 0)

(0, 0) if (x,y) = (1, 0)

Consider the pseudometric:

(1.28) dj
(
(x1, y1), (x2, y2)

)
= |x1 − x2| · ej,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X,

where the family of indices J is a subset of N. Then dj is a pseudometric, but is not a
metric, take for example: dj

(
(1, 4), (1, 6)

)
= |1− 1| · ej = 0, however (1, 4) 6= (1, 6).
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In this case, consider the function r(j) = j + 2. By applying the inequality (1.19) to
the mapping T , we get for all x = (x1, y1), y = (x2, y2) ∈ X

∣∣∣x1

2 −
x2

2
∣∣∣ · ej ≤ θ · |x1 − x2| · ej+2 + L ·

∣∣∣x2 −
x1

2
∣∣∣ · ej+2,

for all j ∈ J , which can be write as the equivalent form

|x1 − x2| · e−2 ≤ 2θ · |x1 − x2|+ L · |2x2 − x1|.

From that, we obtain

|x1 − x2| · (e−2 − 2θ) ≤ L · |2x2 − x1|,∀x1, x2 ∈ [0, n].

The last inequality is true if we take θ = 1
2 ∈ (0, 1), L = 10 ≥ 0, since the left-hand side

is negative and the right-hand side is positive. Hence T is an ALC, without having the
monotonicity property. The uniqueness condition (1.27) becomes:

∣∣∣x1

2 −
x2

2
∣∣∣ · ej ≤ θ · |x1 − x2| · ej+2 + L ·

∣∣∣x1 −
x1

2
∣∣∣ · ej+2,

for all j ∈ J. From that, we obtain

∣∣∣x1

2 −
x2

2
∣∣∣(e−2 − 2θ) ≤ L · x1

2 , ∀x1, x2 ∈ [0, n].

This inequality is valid for θ = 1
5 ∈ (0, 1) and L = 5 ≥ 0.

The operator T possesses the unique fixed point: Fix(T ) = {(0, 0)}, because

T (x, y) = (x, y)⇔
(x

2 ,
y

2
)

= (x, y)⇔ x = 0, y = 0.

Having in view the results in [83], we introduce, similarly to the case of strict almost
contractions, a new type of almost local contractions, namely the strict almost local
contractions.

Definition 1.1.40. Assume that X, J,D, r, τ and A are as in Theorem 1.1.38, with
the monotonicity property fulfilled for the pseudometrics. An operator T : A → A is
called strict almost local contraction if it satisfies both conditions (1.19) and (1.27),
with some real constants θ, θu ∈ (0, 1) and L,Lu ≥ 0, respectively.

Remark 1.1.41. The constants θ, θu ∈ (0, 1) and L,Lu ≥ 0 are independent, ac-
cording to Example 1.1.39.

Remark 1.1.42. The strict almost contractions have a remarkable importance: they
always have a unique fixed point, see [83].
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2. Data dependence of fixed points

2.1. Stability and data dependence of the fixed points for ALC-s

The aim of this section is to present some contributions to the study of stability
and data dependence of almost local contractions. The concept of stability of a fixed
point iterative procedure, was introduced by Harder and Hicks [59]. The key idea was
to approximate the sequence {xn}∞n=0 defined by a given iterative method with a more
practical sequence {yn}∞n=0, whose limit will properly approximate the fixed point of
the initial mapping.

Definition 1.2.43. [59] Let (X, d) be a metric space, T : X → X be a mapping,
x0 ∈ X and suppose that the sequence of successive approximations defined by

xn+1 = Txn, n ∈ N with x0 ∈ X,

converges to a fixed point p of T .
Let {yn}∞n=0 be an arbitrary sequence in X and denote:

(1.29) εn = d(yn+1, T yn), n = 0, 1, 2, ...

We say that the fixed point iteration procedure {xn}∞n=0 is T -stable or stable with regard
to T if

(1.30) lim
n→∞

εn = 0⇔ lim
n→∞

yn = p.

Definition 1.2.43 will be extended to the case of uniform space, where we deal with
pseudometrics, as follows:

Definition 1.2.44. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a mapping T : X → X, x0 ∈ X and suppose that the sequence
of successive approximations defined by

xn+1 = Txn, n ∈ N with x0 ∈ X,

converges to a fixed point p of T .
Let {yn}∞n=0 be an arbitrary sequence in X and denote:

(1.31) ε(j)
n = dj(yn+1, T yn), n = 0, 1, 2, ..., j ∈ J.

We say that the fixed point iteration procedure {xn}∞n=0 is T -stable or stable with regard
to T if

(1.32) lim
n→∞

ε(j)
n = 0⇔ lim

n→∞
yn = p, ∀j ∈ J.

The following lemma will be useful in proving the main results in this section.
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Lemma 1.2.45. [14] Consider {an}n≥0, {bn}n≥0 two sequences of positive real num-
bers and q ∈ (0, 1) such that:

(i) an+1 ≤ qan + bn, n ≥ 0;
(ii) bn → 0 as n→∞.

Then
lim
n→∞

an = 0.

Now, it is our aim to prove that the Picard iteration is T -stable with respect to
almost local contractions.

Theorem 1.2.46. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X.
Let r be a function from J to J and let T : A→ X be an almost local contraction with
respect to (D,r), with the constants θ ∈ (0, 1) and L ≥ 0. Assume the subset A ⊂ X is
T -invariant and the monotonicity property is assured for the family of pseudometrics,
namely:

(1.33) dr(j)(x, y) ≤ dj(x, y),∀x, y ∈ A,∀j ∈ J.

If, for some constants θu ∈ (0, 1) and Lu ≥ 0, the uniqueness condition:

(1.34) dj(Tx, Ty) ≤ θu · dr(j)(x, y) + Lu · dr(j)(x, Tx), ∀x, y ∈ A, ∀j ∈ J

holds, then the fixed point p of T is unique. Consider the Picard iteration

xn+1 = Txn, n ∈ N with x0 ∈ A.

Then {xn}∞n=0 converges strongly to p and is T -stable.

Proof: Let {yn}n≥0 be an arbitrary sequence in the subset A and denote

ε(j)
n = dj(yn+1, T yn), n = 0, 1, 2, ...,

for every j ∈ J. We apply the triangle inequality and (1.34), then, by using the mono-
tonicity of the pseudometrics, we obtain

dj(yn+1, p) ≤ dj(yn+1, T yn) + dj(Tyn, p) ≤

≤ ε(j)
n + θudr(j)(yn, p) + Lu · dr(j)(p, Tp)︸ ︷︷ ︸

=0

≤ θudj(yn, p) + ε(j)
n .

i) First, assume that lim
n→∞

ε(j)
n = 0, for every j ∈ J. Having in view that θu ∈ (0, 1), by

using Lemma 1.2.45, we can conclude that lim
n→∞

yn = p.

On the other hand, by using the uniqueness condition 1.34 and the monotonicity pro-
perty, we can write

dj(xn+1, p) = dj(Txn, Tp) ≤ θu dr(j)(xn, p)︸ ︷︷ ︸
≤dj(xn,p)

+Lu dr(j)(p, Tp)︸ ︷︷ ︸
=0

,∀j ∈ J.
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It results that
dj(xn+1, p) ≤ θu · dj(xn, p), ∀j ∈ J,

which means: lim
n→∞

xn = p.

ii) Conversely, assume that lim
n→∞

yn = p. Then

ε(j)
n = dj(yn+1, T yn) ≤

≤ dj(yn+1, p) + dj(Tp, Tyn) ≤

≤ dj(yn+1, p) + θudr(j)(p, yn) + Lu dr(j)(p, Tp)︸ ︷︷ ︸
=0

→ 0

as n→∞. �

Remark 1.2.47. In uniform spaces, Theorem 1.2.46 represent generalization of
results established in [83] regarding the data dependence of of the fixed points for almost
contractions in metric spaces.

2.2. Continuity of almost local contractions

In this section we present an extension to almost local contractions of the results
of Berinde and Păcurar [25] about the continuity of almost contractions at their fixed
points. The main result is presented in Theorem 1.2.48, which gives the answer about
the continuity of almost local contractions at their fixed points.

Theorem 1.2.48. [119] Let X be a uniform space, D = (dj)j∈J be a family of
pseudometrics on X, where J is a set of indices. Let τ be the weak topology on X

defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J and let T : A → A be an almost local
contraction with respect to (D,r), satisfying condition (1.21). Then T admits a fixed
point and moreover, T is continuous at f , for any f ∈ Fix(T ).

Proof: The mapping T is an almost local contraction, i.e., there exist the constants
θ ∈ (0, 1) and some L ≥ 0 such that

(1.35) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx),∀x, y ∈ A,∀j ∈ J.

For any sequence {yn}∞n=0 in A converging to f ∈ Fix(T ), we take y := yn, x := f in
(1.35), and we get

(1.36) dj(Tf, Tyn) ≤ θ · dr(j)(f, yn) + L · dr(j)(yn, T f), n = 0, 1, 2, ...

Using Tf = f , since f is a fixed point of T , we obtain:

(1.37) dj(Tyn, T f) ≤ θ · dr(j)(f, yn) + L · dr(j)(yn, f), n = 0, 1, 2, ...

Now, by letting n→∞ in (1.37), we get Tyn → Tf , which shows that T is continuous
at f .
The fixed point has been chosen arbitrarily, so the proof is complete. �
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Example 1.2.49. [119] Let us consider X = [0, n]× [0, n] ⊂ R2, n ∈ N∗. Consider
the pseudometric:

(1.38) dj((x1, y1), (x2, y2)) = |x1 − x2| · e−j,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X,

where J is a subset of N. Then dj is a pseudometric, but is not a metric, take for
example: dj((1, 4), (1, 3)) = |1− 1| · e−j = 0, however (1, 4) 6= (1, 3).
In this case, consider the function r(j) = j + 1, where j ∈ J and T : X → X,

T (x, y) =

 (x, y5) if (x,y) 6= (1, 1)
(0, 0) if (x,y) = (1, 1)

T is not a contraction because the contractive condition:

(1.39) dj(Tx, Ty) ≤ θ · dj(x, y),

is not valid ∀x, y ∈ X, and for any θ ∈ (0, 1). The inequality (1.39) is equivalent to:

| x1 − x2| · e−j ≤ θ · |x1 − x2| · e−j, ∀j ∈ J.

The last inequality leads us to 1 ≤ θ, which is obviously false, considering θ ∈ (0, 1).
However, T becomes an almost local contraction if:

|x1 − x2| · e−j ≤ θ · |x1 − x2| · e−(j+1) + L · |x2 − x1| · e−(j+1),

which is equivalent to : e ≤ θ + L.
For θ = 1

3 ∈ (0, 1), L = 3 ≥ 0 and j > 0, the last inequality becomes true, i.e., T is an
ALC with an infinite set of fixed points:

Fix(T ) = {(x, 0) : x ∈ [0, n]} ⊂ X.

Observe that the monotonicity of the pseudometrics is fulfilled, because

dr(j)(x1, x2) ≤ dj(x1, x2)⇔ |x1 − x2| · e−(j+1) ≤ |x1 − x2| · e−j,

for each j ∈ J and for all x, y ∈ X. In this case, we have:

lim
n→∞

θn+1diamrn+1(j)(X) = lim
n→∞

(n+ 1)
√

2 ·
(

1
3

)n+1

= 0, ∀j ∈ J.

The existence of the fixed point is assured, according to condition (1.21) from Theorem
1.1.33.
The operator T is continuous at (0, 0) ∈ Fix(T ) but we have a discontinuity at (1, 1),
which is not a fixed point of T . Therefore, Theorem 1.2.48 is valid.

Example 1.2.50. With the assumptions from Example 1.1.39 and the pseudometric
defined by

(1.40) dj((x1, y1), (x2, y2)) = |x1 − x2| · 2−j,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X,
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and r(j) = j + 3,∀j ∈ J ( J is a subset of N), we get another example of ALC-s.
Consider T : X → X,

T (x, y) =

 (x, y2) if (x,y) 6= (1, 1)
(0, 0) if (x,y) = (1, 1)

T is not a contraction because the contractive condition:

(1.41) dj(Tx, Ty) ≤ θ · dj(x, y)

is not valid ∀x, y ∈ X, and for any θ ∈ (0, 1). The inequality (1.41) is equivalent to

| x1 − x2| · 2−j ≤ θ · |x1 − x2| · 2−j, ∀j ∈ J,∀(x1, y1), (x2, y2) ∈ X.

The last inequality leads us to 1 ≤ θ, which is obviously false, considering θ ∈ (0, 1).
However, T becomes an almost local contraction if:

|x1 − x2| · 2−j ≤ θ · |x1 − x2| · 2−(j+3)︸ ︷︷ ︸
dr(j)(x,y)

+L ·|x2 − x1| · 2−(j+3)︸ ︷︷ ︸
dr(j)(y,Tx)

,

which is equivalent to : 8 ≤ θ + L.
For θ = 1

5 ∈ (0, 1), L = 9 ≥ 0 and j ∈ J , the last inequality becomes true, i.e., T is an
ALC with an infinite set of fixed points: Fix(T ) = {(x, 0) : x ∈ [0, n]}.
In this case, we have:

lim
n→∞

θn+1diamrn+1(j)(A) = lim
n→∞

(
1
5

)n+1

· n
√

2 = 0, ∀j ∈ J.

The existence of the fixed point is assured, according to condition (1.19) from Theorem
1.1.33.
Observe the continuity of T at (0, 0) ∈ Fix(T ), but discontinuity at (1, 1), which is not
a fixed point of T . Therefore, Theorem 1.2.48 is valid.

Example 1.2.51. Let us consider A = [0, n]× [0, n] ⊂ R2, n ∈ N∗, T : A→ A,

T (x, y) =

 (x2 ,
y
4) if (x,y) 6= (1, 0)

(0, 0) if (x,y) = (1, 0)

Consider the pseudometric:

(1.42) dj
(
(x1, y1), (x2, y2)

)
= |x1 − x2| · e2j,∀j ∈ J,∀(x1, y1), (x2, y2) ∈ A,

where J is a subset of Q. dj is a pseudometric, but is not a metric, take for example:
dj((1, 5), (1, 6)) = |1− 1| · e2j = 0, however (1, 5) 6= (1, 6).
In this case, consider the function r(j) = j + 1

2 . Observe that the pseudometric not
possess the monotonicity property. By applying the inequality (1.19) to the mapping T ,
we get for all x = (x1, y1), y = (x2, y2) ∈ A :∣∣∣x1

2 −
x2

2
∣∣∣ · e2j ≤ θ · |x1 − x2| · e2(j+ 1

2 ) + L ·
∣∣∣x2 −

x1

2
∣∣∣ · e2(j+ 1

2 ),
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for all j ∈ J , which can be put in the equivalent form

|x1 − x2| · e−1 ≤ 2θ · |x1 − x2|+ L · |2x2 − x1|.

From that, we obtain:

|x1 − x2| · (e−1 − 2θ) ≤ L · |2x2 − x1|.

The last inequality is true if we take θ = 1
2 ∈ (0, 1), L = 4 ≥ 0, thus we obtain(1

e
− 1

)
· |x1 − x2|︸ ︷︷ ︸
≤0

≤ 4 · |2x2 − x1|︸ ︷︷ ︸
≥0

.

Hence T is an ALC, with the unique fixed point (0, 0).
According to Theorem 1.2.48, T is continuous at the fixed point, at (0, 0) ∈ Fix(T ),
but is not continuous at (1, 0) /∈ Fix(T ).

Remark 1.2.52. According to Definition 1.1.31, the almost local contractions are
defined locally, on a subset A ⊂ X. In the case A = X, an almost local contraction
becomes an usual almost contraction.

3. New classes of almost local contractions

In this section we present some extensions of almost local contractions on pseudo-
metric spaces by following the corresponding results existing in literature for almost
contractions.
a) Generalized almost local contractions
The starting point is represented by the almost contractions (Definition 1.1.31) and
the generalized almost contractions introduced in [6].

Definition 1.3.53. [6] A self mapping T on a metric space (X, d) is said to satisfy
the condition (B) if there exist δ ≥ 0 and L ≥ 0 such that δ+L < 1 and for all x, y ∈ X
we have

d(Tx, Ty) ≤ δ · d(x, y) + L ·min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Now, it is natural to extend the above definition to the more general case of uniform
spaces and pseudometrics.

Definition 1.3.54. Let F be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on F , where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ F .
Let the function r : J → J. The mapping T : A → A is called generalized almost local
contraction if there exist a constant θ ∈ (0, 1) and some L ≥ 0 such that we have:

dj(Tx, Ty) ≤ θ · dr(j)(x, y) +

+L ·min{dr(j)(x, Tx), dr(j)(y, Ty), dr(j)(x, Ty), dr(j)(y, Tx)},(1.43)
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for every x, y ∈ A, and for all j ∈ J.

Remark 1.3.55. It is obvious that an almost contraction is a generalized almost
local contraction, by taking r(j) = j, for all j ∈ J .

Theorem 1.3.56. Assume that F, J,D, r, τ and A are as in Definition 1.3.54.
Let T : A → A be a generalized ALC, i.e., a mapping satisfying (1.43), and also
verifying the uniqueness condition (1.27) with the constants θu ∈ (0, 1) and Lu ≥ 0.
Let Fix(T ) = {f}. Then T is continuous at f .

Proof: Since T is a generalized ALC, there exist a constant θu ∈ (0, 1) and some
Lu ≥ 0 such that (1.27) is satisfied. We know by Theorem 1.1.38 that T has a unique
fixed point, say f .
Let {yn}∞n=0 be any sequence in A converging to f . Then by taking

y := yn, x := f

in the generalized almost local contraction condition (1.43), we get

(1.44) dj(Tf, Tyn) ≤ θ · dr(j)(f, yn), ∀j ∈ J, n = 0, 1, 2, · · ·

Since f is a fixed point for T , we have

min
x,y∈A
{dr(j)(x, Tx), dr(j)(y, Ty), dr(j)(x, Ty), dr(j)(y, Tx)} = dr(j)(f, Tf) = 0,

for every j ∈ J.
Now, by letting n→∞ in (1.44), we get Tyn → Tf which shows that T is continuous
at f . �

b) Ćirić type strong almost local contractions

Definition 1.3.57. [26], [27] Let (X, d) be a complete metric space.
The mapping T : X → X is called Ćirić almost contraction if there exist a constant
α ∈ (0, 1) and some L ≥ 0 such that

(1.45) d(Tx, Ty) ≤ α ·M1(x, y) + L · d(y, Tx), for all x,y ∈ X,

where
M1(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2
}
.

From the above definition the following question arises: is it possible to extend it
to the case of almost local contractions? First we need to remind two Lemmas of Ćirić
[45], which will be essential in proving our main results in this section.

Lemma 1.3.58. [45] Let (X, d) be a metric space. Let T be a quasi-contraction on
X with the coefficient 0 ≤ h < 1 and let n be any positive integer.
Then, for each x ∈ X, and all i, j ∈ {1, 2, · · · , n}, we get

d(T ix, T jx) ≤ h · δ[O(x, n)],
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where we denoted

δ(A) = sup{d(a, b) : a, b ∈ A} for a subset A ⊂ X

and
O(x, n) = {x, Tx, · · · , T nx}, n = 1, 2, · · ·

O(x,∞) = {x, Tx, · · · }

Lemma 1.3.59. [45] Let T be a quasi-contraction on X with the coefficient of con-
traction 0 ≤ h < 1. Then the inequality

δ[O(x, n)] ≤ 1
1− hd(x, T kx)

holds for all x ∈ X,n ∈ N, 1 ≤ k ≤ n.

Definition 1.3.60. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X.
Let the function r : J → J.

The mapping T : A→ A is called Ćirić type strong ALC with regard to (D, r) if there
exist the constants θ ∈ (0, 1) and L ≥ 0 such that

(1.46) dj(Tf, Tg) ≤ θ ·Mr(j)(f, g) + L · dr(j)(g, Tf), for all f,g ∈ A, ∀j ∈ J,

where

Mr(j)(f, g) = max
{
dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg) + dr(j)(g, Tf)

2
}
.

In the sequel, it is our aim to extend Lemmas 1.3.58 and 1.3.58 to the case of
uniform spaces instead of metric spaces.

Lemma 1.3.61. Assume that X, J,D, r, τ and A are as in Definition 1.3.60.
Let T : A → A be a Ćirić type strong ALC with regard to (D, r) with the coefficients
θ ∈ (0, 1) and L ≥ 0 and let n be any positive integer. Assume the monotonicity
property 1.26 fulfilled for the pseudometrics, for each j ∈ J. Then, for every x ∈ X,
and for all k, l ∈ {1, 2, · · · , n}, we get

dj(T kx, T lx) ≤ (θ + L) · δj[O(x, n)],

where we denoted

δj(A) = sup{dj(a, b) : a, b ∈ A} for a subset A ⊂ X, ∀j ∈ J

and
O(x, n) = {x, Tx, · · · , T nx}, n = 1, 2, · · ·

O(x,∞) = {x, Tx, T 2x, · · · }.
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Proof: Let x ∈ X an arbitrary element and consider k, l ∈ {1, 2, · · · , n}. Then it
is obvious that T k−1x, T kx, T l−1x, T lx ∈ O(x, n), where T 0x = x. The monotonicity of
the pseudometrics leads us to:

dr(j)(T kx, T lx) ≤ dj(T kx, T lx)⇒Mr(j)(T kx, T lx) ≤Mj(T kx, T lx),∀j ∈ J.

By using the definition of T , we can write for every j ∈ J :

dj(T kx, T lx) = dj(TT k−1x, TT l−1x) ≤

≤ θ ·Mr(j)︸ ︷︷ ︸
≤Mj

(T k−1x, T l−1x) + L · dr(j)︸ ︷︷ ︸
≤dj

(T l−1x, T kx) ≤

≤ (θ + L) · δj[O(x, n)],

where

Mr(j)(T i−1x, T j−1x) = max
{
dr(j)(T i−1x, T j−1x), dr(j)(T i−1x, T ix), dr(j)(T j−1x, T jx),

dr(j)(T i−1x, T jx) + dr(j)(T j−1x, T ix)
2

}
.

�

Remark 1.3.62. Note that, by using Lemma 1.3.61, for each n, there exists k ≤ n

such that
dj(x, T kx) = dj(T 0x, T kx) = δj[O(x, n)], ∀j ∈ J.

Lemma 1.3.63. Assume that X, J,D, r, τ and A are as in Definition 1.3.60.
Let T : A → A be a Ćirić type strong ALC with regard to (D, r) with the coefficients
θ ∈ (0, 1), L ≥ 0, θ + L < 1 and let n be any positive integer, 1 ≤ k ≤ n. Assume the
monotonity property 1.26 fulfilled for the pseudometric.
Then the inequality

δj[O(x, n)] ≤ 1
1− θ − Ldj(x, T

kx)

holds for all x ∈ X,n ∈ N, 1 ≤ k ≤ n.

Proof: Let x ∈ X arbitrary. From the Remark 1.3.62, there exists 1 ≤ k ≤ n

such that T kx ∈ O(x, n) and also dj(x, T kx) = δj[O(x, n)],∀j ∈ J. After applying the
triangle inequality and Lemma 1.3.61, we obtain:

dj(x, T kx) ≤ dj(x, Tx) + dj(Tx, T kx) ≤ dj(x, Tx) + (θ + L) · δj[O(x, n)] =

= dj(x, Tx) + (θ + L) · dj(x, T kx), ∀j ∈ J.

From that, we conclude:

δ[O(x, n)] = dj(x, T kx) ≤ 1
1− θ − L · dj(x, Tx), ∀j ∈ J.

�
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Remark 1.3.64. Although this class of Ćirić type strong almost local contractions
is wider than the one of almost local contractions, similar conclusions can be stated, as
it follows:

Theorem 1.3.65. [119] Let X be a uniform space, D = (dj)j∈J be a family of
pseudometrics on X, where J is a set of indices. Let τ be the weak topology on X

defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let the function r : J → J and let T : A → A be a Ćirić type strong
ALC with respect to (D,r) with the coefficients θ ∈ (0, 1), L ≥ 0, θ + L < 1. Assume
the monotonicity property (1.26) fulfilled.
Then

(1) T has a fixed point, i.e., Fix(T ) = {x ∈ A : Tx = x} 6= φ;
(2) For any x0 = x ∈ A, the Picard iteration {xn}∞n=0 converges to x∗ ∈ Fix(T );
(3) The following a priori estimate is available:

(1.47) dj(xn, x∗) ≤
θn

(1− θ)2 · dj(x, Tx), ∀n = 1, 2, ...,∀j ∈ J.

Proof: For the conclusion of the theorem, we have to prove that T has at least a
fixed point in the subset A ⊂ X. To this end, let x ∈ A be arbitrary, and let {xn}∞n=0

be the Picard iteration defined by xn+1 = Txn, n ∈ N with x0 = x.
Take f := xn−1, g := xn in (1.46) to obtain

dj(xn, xn+1) = dj(Txn−1, Txn) ≤ θ ·Mr(j)(xn−1, xn) + L · dr(j)(xn, Txn−1)︸ ︷︷ ︸
=0

,∀j ∈ J,

that is,

dj(xn, xn+1) ≤ θmax
{
dr(j)(xn−1, xn), dr(j)(xn, xn+1), dr(j)(xn−1, xn+1) + 0

2
}
,

taking into account that dr(j)(xn, Txn−1) = 0. After using the triangle inequality, we
obtain

dr(j)(xn−1, xn+1) ≤ dr(j)(xn−1, xn) + dr(j)(xn, xn+1), ∀j ∈ J.

At this point, we use the inequality x+y
2 ≤ max{x, y}, ∀x, y ∈ R, we distinguish two

cases:

(1.48) max
{
dr(j)(xn−1, xn), dr(j)(xn, xn+1), dr(j)(xn−1, xn+1)

2
}

= dr(j)(xn−1, xn)

or

(1.49) max
{
dr(j)(xn−1, xn), dr(j)(xn, xn+1), dr(j)(xn−1, xn+1)

2
}

= dr(j)(xn, xn+1).

The case (1.49) leads to the contradiction:

dj(xn, xn+1) ≤ θdr(j)(xn, xn+1) < dr(j)(xn, xn+1) ≤︸︷︷︸
(1.26)

dj(xn, xn+1),

therefore (1.48) is valid.
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Continuing in this way, for n ≥ 1, by Lemma 1.3.61, we have

dj(T nx, T n+1x) = dj(TT n−1x, T 2T n−1x) ≤ (θ + L) · δj[O(T n−1x, 2)].

By using Remark 1.3.62, we can easily conclude: there exists a positive integer
k1 ∈ {1, 2} such that

δj[O(T n−1x, 2)] = dj(T n−1x, T k1T n−1x),

and therefore

dj(xn, xn+1) ≤ (θ + L) · dj(T n−1x, T k1T n−1x), ∀j ∈ J.

By applying once again Lemma 1.3.61, we obtain, for n ≥ 2,

dj(T n−1x, T k1T n−1x) = dj(TT n−2x, T k1+1T n−2x) ≤

≤ (θ + L) · δj[O(T n−2x, k1 + 1)] ≤ (θ + L) · δj[O(T n−2x, 3)],∀j ∈ J.

Continuing in this way, we get

dj(T nx, T n+1x) ≤ (θ + L) · δj[O(T n−1x, 2)] ≤ (θ + L)2 · δj[O(T n−2x, 3)].

By applying repeatedly the last inequality, we get

(1.50) dj(T nx, T n+1x) ≤ (θ + L) · δj[O(T n−1x, 2)] ≤ · · · ≤ (θ + L)n · δj[O(x, n+ 1)].

At this point, by Lemma 1.3.63, we obtain

δj[O(x, n+ 1)] ≤ δj[O(x,∞)] ≤ 1
1− θ − L · dj(x, Tx),

which, by (1.50), yields

(1.51) dj(T nx, T n+1x) ≤ (θ + L)n
1− θ − Ldj(x, Tx).

The inequality (1.51) and the triangle inequality can be merged to obtain the following
estimate:

dj(T nx, T n+px) ≤ (θ + L)n
1− θ − L ·

1− (θ + L)p
1− θ − L · dj(x, Tx) <

<
1

(1− θ − L)2 · dj(x, Tx) · (θ + L)n,(1.52)

for every n, p ∈ N, ∀j ∈ J and every x ∈ A.
Let us remind the fact that 0 < θ + L < 1. Then, by using (1.52), we can conclude
that {xn}∞n=0 is a Cauchy sequence. As the subset A is assumed to be sequentially τ -
complete, there exists x∗ in A such that {xn} is τ -convergent to x∗. After computations
involving the triangular inequality and the Definition (1.3.60), we get

dj(x∗, Tx∗) ≤ dj(x∗, xn+1) + dj(xn+1, Tx
∗) = dj(T n+1x, x∗) + dj(T n+1x, Tx∗) ≤

≤ dj(T n+1x, x∗) + θmax
{
dr(j)(T nx, x∗), dr(j)(T nx, T n+1x), dr(j)(x∗, Tx∗),

,
dr(j)(T nx, Tx∗) + dr(j)(T n+1x, x∗)

2
}

+ L · dr(j)(x∗, Txn).
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By applying the monotonicity of the pseudometrics, we get:

dj(x∗, Tx∗) ≤ dj(T n+1x, x∗) + θ ·max
{
dj(T nx, x∗), dj(T nx, T n+1x), dj(x∗, Tx∗),

,
dj(T nx, Tx∗) + dj(T n+1x, x∗)

2
}

+ L · dj(x∗, Txn).

From that, we obtain the following inequality:

dj(x∗, Tx∗) ≤ dj(T n+1x, x∗) + θ · [dj(Txn, x∗) + dj(T nx, T n+1x) +

+ dj(x∗, Tx∗) + dj(T n+1x, x∗)] + L · dj(x∗, Txn).

It follows immediately:

dj(x∗, Tx∗) ≤
1

1− θ ·
[
(1 + θ)dj(T n+1x, x∗) +

+(θ + L)dj(x∗, Txn) + θdj(T nx, T n+1x)
]
.(1.53)

Letting n→∞ in (1.53), we obtain

dj(x∗, Tx∗) = 0,

which means that x∗ is a fixed point of T . The estimate (1.47) can be obtained from
(1.52) by letting n→∞. �

Remark 1.3.66. 1) Theorem 1.3.65 represents a very important extension of Ba-
nach’s fixed point theorem, Kannan’s fixed point theorem, Chatterjea’s fixed point theo-
rem, Zamfirescu’s fixed point theorem, as well as of many other related results obtained
on the base of similar contractive conditions. These fixed point theorems mentioned
before ensure the uniqueness of the fixed point, but the Ćirić type ALC need not have
a unique fixed point, according to Example 1.3.67.

2) The main merit of Theorem 1.3.65 is that it provides a very large class of weakly
Picard operators. Obviously, the fixed point x∗ attained by the Picard iteration depends
on the initial guess x0 ∈ X. However, the error estimate (1.47) obtained in Theorem
1.3.65 is weaker than the one in Banach’s contraction mapping principle.

Example 1.3.67. Let A be the set of positive functions
A = {f |f : [0,∞)→ [0,∞)}.
Consider the pseudometric dj(f, g) = |f(0)−g(0)|·j, ∀j ∈ J ; J ⊂ N, ∀f, g ∈ A. On
observe that dj is a pseudometric, but is not a metric, take for example dj(x3, x2) = 0,
but x3 6= x2.

Consider the mapping Tf = |f |, ∀f ∈ A, r(j) = j + 1. Note that the monotonicity
condition (1.26) also holds. By using condition (1.19) for ALC-s, we obtain:

|f(0)− g(0)| · j ≤ θ · |f(0)− g(0)| · (j + 1) + L · |g(0)− f(0)| · (j + 1),∀f, g ∈ A,
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which is equivalent to: j ≤ (θ + L)(j + 1),∀j ∈ J.
This inequality is true if θ = 1

3 ∈ (0, 1), L = 1 > 0.
Hence, T is an almost local contraction. However, T is not a contraction, because the
contractive condition (1.41) leads us to the contradiction: 1 ≤ θ.
The mapping T is Ćirić type ALC, because

Mr(j)(f, g) = |f(0)− g(0)| · (j + 1),∀f, g ∈ A,∀j ∈ J.

From (1.46) we have the equivalent form

|f(0)− g(0)| · j ≤ θ · |f(0)− g(0)| · (j + 1) + L · |f(0)− f(0)| · (j + 1).

Again, we obtain the inequality j ≤ (θ + L)(j + 1), valid for θ = 1
3 ∈ (0, 1), L = 1 ≥ 0.

The mapping T has an infinite set of fixed points: Fix(T ) = {f ∈ A} = A, because:

Tf = f ⇔ |f(x)| = f(x),∀f ∈ A, ∀x ∈ [0,∞),∀x ∈ [0,∞).

The uniqueness condition (1.27) is not valid, having in view the equivalent form:

|f(0)− g(0)| · j ≤ θ · |f(0)− g(0)| · (j + 1) + L1 · |f(0)− f(0)| · (j + 1),

which leads us to the contradiction j ≤ θ(j + 1), i.e., the mapping T does not satisfy
the uniqueness condition.

The uniqueness of the fixed point for a Ćirić type ALC can be assured by imposing
an additional contractive condition, according to the next theorem.

Theorem 1.3.68. Assume that X, J,D, r, τ and A are as in Theorem 1.3.65. Let
T : A → A be a Ćirić type strong almost local contraction, with the family of the
pseudometrics satisfying the monotonicity property 1.26. If the mapping T satisfies the
uniqueness condition from the almost local contractions: there exist the constants
θ1 ∈ (0, 1) and some L1 ≥ 0 such that

(1.54) dj(Tf, Tg) ≤ θ1 · dr(j)(f, g) + L1 · dr(j)(f, Tf), ∀j ∈ J, for all f,g ∈ A,

then

(1) T has a unique fixed point, i.e., Fix(T ) = {f ∗};
(2) The Picard iteration {xn}∞n=0 given by xn+1 = Txn, n ∈ N converges to f ∗,

for any x0 ∈ A;
(3) The a priori error estimate (1.47) holds;
(4) The rate of the convergence of the Picard iteration is given by

(1.55) dj(xn, f ∗) ≤ θ1 · dr(j)(xn−1, f
∗), n = 1, 2, ...,∀j ∈ J.
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Proof: 1) Suppose, by contradiction, there are two distinct fixed points f ∗ and
g∗ of T . Then, by using (1.54), and condition (1.26) for every fixed j ∈ J with
f := f ∗, g := g∗, we get:

dj(f ∗, g∗) ≤ θ1 · dr(j)(f ∗, g∗) ≤ θ1 · dj(f ∗, g∗).

The last inequality is equivalent with (1 − θ1) · dj(f ∗, g∗) ≤ 0, which is obviously a
contradiction with dj(f ∗, g∗) > 0.
So, we prove the uniqueness of the fixed point.
The proof for 2) and 3) is quite similar to the proof from the Theorem 1.3.65.
4) At this point, letting g := xn, f := f ∗ in (1.54), it results the rate of convergence
given by (1.55). �

The contractive conditions (1.46) and (1.54) can be merged in order to assure the
uniqueness of the fixed point, stated by the next theorem.

Theorem 1.3.69. Assume that X, J,D, r, τ and A are as in Definition 1.3.60. Let
T : A→ A be a mapping for which there exist the constants θ ∈ (0, 1) and some L ≥ 0
such that we have:

dj(Tf, Tg) ≤ θ ·Mr(j)(f, g) +

+ L ·min{dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)},(1.56)

for all f, g ∈ A and for every j ∈ J, where

Mr(j)(f, g) = max{dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)}.

Then

(1) T has a unique fixed point, i.e., Fix(T ) = {f ∗};
(2) The Picard iteration {xn}∞n=0 given by xn+1 = Txn, n ∈ N converges to f ∗,

for any x0 ∈ A;
(3) The a priori error estimate (1.47) holds.

Particular case 1.
The famous Ćirić’ s fixed point theorem for single valued mappings given in [45] can be
obtained from Theorems 1.3.65, 1.3.69, 1.3.68 by taking L = L1 = 0 and considering r
the identity mapping: r(j) = j. The Ćirić’ s contractive condition represents one of the
most general metrical condition that provide a unique fixed point by means of Picard
iteration. Despite this observation, the contractive condition given for Ćirić type ALC
(in (1.46)) admits a very high level of generalization. Note that the fixed point could be
approximated by means of Picard iteration, just like in the case of Ćirić’ s fixed point
theorem, although the uniqueness of the fixed point is not ensured by using (1.46).
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Particular case 2.
If the maximum from Theorem 1.3.69, for r(j) = j, becomes:

max
{
dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)

}
= dr(j)(f, g),∀j ∈ J,

for all f, g ∈ A, then Theorem 1.1.33 is obtained from Theorem 1.3.65.
After these existence and the uniqueness theorems of the fixed points for the Ćirić

type almost local contractions, it is natural to extend them to the case of Ćirić type
strict almost local contractions.

Definition 1.3.70. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J .
The operator T : A→ A is called Ćirić type strict ALC with respect to (D, r) if it sat-
isfy simultaneously conditions (1.19), (1.21), (Ci−ALC), (ALC −U), with some real
constants θ ∈ (0, 1), L ≥ 0, θC ∈ (0, 1), LC ≥ 0 and θu ∈ (0, 1), Lu ≥ 0, respectively,

(Ci− ALC) dj(Tf, Tg) ≤ θC ·Mr(j)(f, g) + LC · dr(j)(g, Tf), for all f,g ∈ A,

for every j ∈ J , where

Mr(j)(f, g) = max
{
dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)

}
.

(ALC − U) dj(Tf, Tg) ≤ θu · dr(j)(f, g) + Lu · dr(j)(f, Tf), for all f,g ∈ A, ∀j ∈ J.

We present an illustrative example ( 1.3.71) for our results: Ćirić’ type almost local
contractions, without having unique fixed point.

Example 1.3.71. By taking the mapping from Example 1.1.35, with a small
modification, that is: let X be the set of positive functions

X = {f |f : [0,∞)→ [0,∞)}.

Fix x0 ∈ [0,∞) and take the pseudometric dj(f, g) = |f(x0)− g(x0)| · e−j,
∀f, g ∈ X. Let us consider r(j) = j + 2, ∀j ∈ N.
We can conclude in the same manner that T is also a Ćirić type ALC, i.e., it satisfies
the contractive condition (1.46), since we have Mr(j)(f, g) = |f(x0) − g(x0)| · e−(j+2).
The inequality (1.46) is equivalent with

|f(x0)− g(x0)| · e−j ≤ θ|f(x0)− g(x0)| · e−(j+2) + L|f(x0)− g(x0)| · e−(j+2), ∀j ∈ J,

which is valid for θ = 1
4 ∈ (0, 1) and L = 10 ≥ 0.

The mapping T has an infinite set of fixed points: Fix(T ) = {f ∈ A} = A, by taking:

|f(x)| = f(x),∀f ∈ A, x ∈ [0,∞).
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By considering L = 0 in the definition 1.3.60 of Ćirić type ALC, we get a new type
of ALC, that is, the quasi-ALC.

c) Quasi-almost local contractions
Starting from the concept of quasi-contraction introduced by Ćirić (Definition 0.2.6),
we obtain a new type of contraction with the aim of studying the existence of the fixed
points.

Definition 1.3.72. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J .
The operator T : A → A is called quasi-almost local contraction with regard to (D, r)
if there exists the constant h ∈ (0, 1) such that

(1.57) dj(Tf, Tg) ≤ h ·Mr(j)(f, g), for all f,g ∈ A,∀j ∈ J,

where

Mr(j)(f, g) = max{dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)}.

Theorem 1.3.73. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . Let T : A→ A be a quasi-ALC with regard to (D,r).
Then

(1) T has a fixed point , i.e., Fix(T ) = {x ∈ X : Tx = x} 6= φ;
(2) For any x0 = x ∈ A, the Picard iteration {xn}∞n=0 converges to x∗ ∈ Fix(T );
(3) The following a priori estimate is available:

(1.58) dj(xn, x∗) ≤
hn

(1− h)2dj(x, Tx), n = 1, 2, ...

Proof: Obviously, we have to follow the steps from the proof of Theorem 1.3.65,
with the only difference that the constant L = 0, as in the case of quasi ALC-s. �

The uniqueness of the fixed point is also assured by imposing an additional condi-
tion, just like in the class of Ćirić type ALC, as it follows.

Theorem 1.3.74. Assume that X, J,D, r, τ and A are as in Definition 1.3.72. Let
T : A → A be a quasi-almost local contraction with the monotonicity property (1.26)
fulfilled for the family of pseudometrics. If T satisfies the supplementary condition:
there exist the constants
θ ∈ (0, 1) and L ≥ 0 such that

(1.59) dj(Tf, Tg) ≤ θ · dr(j)(f, g) + L · dr(j)(f, Tf), for all f,g ∈ A,∀j ∈ J,
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then

(1) T has a unique fixed point, i.e., Fix(T ) = {f ∗};
(2) The Picard iteration {xn}∞n=0 given by xn+1 = Txn, n ∈ N converges to f ∗,

for any x0 ∈ A;
(3) The a priori error estimate (1.47) holds;
(4) The rate of the convergence of the Picard iteration is given by

(1.60) dj(xn, f ∗) ≤ θ · dr(j)(xn−1, f
∗), ∀j ∈ J, n = 1, 2, ...

d) Ćirić-Reich-Rus type almost local contractions
The Ćirić-Reich-Rus type contractions (Definition 0.2.16) in metric spaces is the start-
ing point of the cotractions considered in this subsection.

Definition 1.3.75. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J .
The operator T : A → A is called Ćirić-Reich-Rus type almost local contraction

regarding to (D, r) if there exist the constants δ, L ∈ R+ with δ + 2L < 1 such that

(1.61) dj(Tf, Tg) ≤ δ · dr(j)(f, g) + L · [dr(j)(f, Tf) + dr(j)(g, Tg)],

for all f, g ∈ A and for each j ∈ J.

Theorem 1.3.76. Assume that X, J,D, r, τ and A are as in Definition 1.3.75. If
the pseudometrics dj fulfills the 1.26 monotonicity property for every j ∈ J, then any
Ćirić-Reich-Rus type almost local contraction, i.e., any mapping T : A→ A satisfying
condition (1.61) with 0 < L < 1, δ > 0 and δ+L

1−L ∈ (0, 1), is an almost local contraction.

Proof: Using condition (1.61) and the triangle inequality, we get

dj(Tf, Tg) ≤ δ · dr(j)(f, g) + L · [dr(j)(f, Tf) + dr(j)(g, Tg)] ≤

≤ δ · dr(j)(f, g) + L · [dr(j)(g, Tf) + dr(j)(Tf, Tg)︸ ︷︷ ︸
≤dj(Tf,Tg)

+dr(j)(f, g) + dr(j)(g, Tf)].

The monotonicity condition for the pseudometrics leads us to:

dr(j)(Tf, Tg) ≤ dj(Tf, Tg), ∀j ∈ J,∀f, g ∈ A.

We get after simple computations:

(1.62) (1− L) · dj(Tf, Tg) ≤ (δ + L) · dr(j)(f, g) + 2L · dr(j)(g, Tf).

From that, we obtain

(1.63) dj(Tf, Tg) ≤ δ + L

1− L · dr(j)(f, g) + 2L
1− L · dr(j)(g, Tf),∀f, g ∈ A,∀j ∈ J.
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Consider δ, L ∈ R+ and δ + 2L < 1, the inequality (1.19) holds, with
δ+L
1−L ∈ (0, 1) and 2L

1−L ≥ 0. Therefore, every Ćirić-Reich-Rus type almost local contrac-
tion with the monotonicity condition valid for the pseudometrics and the mentioned
conditions for the coefficients δ and L fulfilled, is an almost local contraction. �

e) Chatterjea type almost local contraction
The Chatterjea contraction (Definition 0.2.5) has raised the interest to extend it to a
more general case, in uniform spaces.

Definition 1.3.77. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . The operator T : A → A is called Chatterjea type
almost local contraction with regard to (D, r) if there exists a constant 0 ≤ c < 1

2 such
that

(1.64) dj(Tf, Tg) ≤ c · [dr(j)(f, Tg) + dr(j)(g, Tf)], ∀f, g ∈ A, ∀j ∈ J.

Theorem 1.3.78. Assume that X, J,D, r, τ and A are as in Definition 1.3.77. If
the pseudometrics dj satisfies the 1.26 monotonicity property for every j ∈ J, then
any Chatterjea type almost local contraction, i.e., any mapping T : A → A satisfying
condition (1.64) with 0 ≤ c < 1

2 , is an almost local contraction.

Proof: Using condition (1.64) and the triangle inequality, we get

dj(Tf, Tg) ≤ c · [dr(j)(f, Tg) + dr(j)(g, Tf)] ≤

≤ c · [dr(j)(f, g) + dr(j)(g, Tf) + dr(j)(Tf, Tg)] + c · dr(j)(g, Tf).

The monotonicity of the pseudometrics leads us to:

(1.65) dr(j)(g, Tf) ≤ dj(g, Tf), ∀j ∈ J,∀f, g ∈ A.

It follows immediately:

(1.66) dj(Tf, Tg) ≤ c[dr(j)(f, g) + dr(j)(g, Tf)] + c[dr(j)(g, Tf) + dj(Tf, Tg)]

(1− c)dj(Tf, Tg) ≤ c · dr(j)(f, g) + 2c · dr(j)(g, Tf),

and which implies

(1.67) dj(Tf, Tg) ≤ c

1− c · dj(f, g) + 2c
1− c · dj(g, Tf),∀f, g ∈ A.

Considering

(1.68) 0 ≤ c <
1
2 ,

the inequality (1.19) holds, with θ = c
1−c ∈ [0, 1) and L = 2c

1−c ≥ 0.
Therefore, any Chatterjea type almost local contraction is an almost local contraction if
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the monotonicity condition is valid for the pseudometrics and 1.68 condition is fulfilled
for the contractive coefficient c. �

f) Generalized Berinde type almost local contractions
The generalized Berinde mapping (Definition 0.2.15) motivated us to examine the
possibility to extend it in uniform spaces, thus obtaining the generalized Berinde type
almost local contractions, as follows:

Definition 1.3.79. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . The operator T : A→ A is called generalized Berinde
type almost local contraction regarding to (D, r) if there exist a constant θ ∈ (0, 1) and
a function b : A→ [0,∞) such that

(1.69) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + b(y) · dr(j)(y, Tx),∀x, y ∈ A, ∀j ∈ J.

Theorem 1.3.80. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . Let T : A → A be a mapping and consider a function
b : A→ [0,∞). Assume that there exists θ ∈ (0, 1) such that
(1.70)
(1 + θ)−1dj(x, Tx) ≤ dj(x, y) implies dj(Tx, Ty) ≤ θdr(j)(x, y) + b(y) · dr(j)(y, Tx),

for all x, y ∈ A. Then, for every x ∈ A, the sequence {T nx} converges to a fixed point
of T .

Proof: Since θ ∈ (0, 1), we have the inequality

(1.71) (1 + θ)−1dj(x, Tx) ≤ dj(x, Tx), ∀j ∈ J,

and we get

(1.72) dj(Tx, T 2x) ≤ θdr(j)(x, Tx) + b(Tx) · dr(j)(Tx, Tx) = θdr(j)(x, Tx), ∀x ∈ A.

Let u ∈ A. Then from (1.72) we have

dj(T nu, T n+1u) ≤ θndrn(j)(u, Tu), ∀j ∈ J,∀n ∈ N.

If the pseudometrics from the right-hand side are bounded, which means: there exists
a constant C such that drn(j)(u, Tu) < C, ∀j ∈ J , therefore:

∞∑
n=1

dj(T nu, T n+1u) <∞, for every j ∈ J.

Thus, the sequence {T nu} is dj-Cauchy for each j ∈ J . As the subset A is assumed to
be sequentially τ -complete, there exists z in A such that (T nx)n∈N is τ -convergent to
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z ∈ A, for every x ∈ A.
Apply (1.70), with x := T f(n)u, y := z. We can find a subsequence {f(n)} of the
sequence {n} such that

(1 + θ)−1dj(T f(n)u, T f(n)+1u) ≤ dj(T f(n)u, z)

implies

(1.73) dj(T f(n)+1u, Tz) ≤ θdr(j)(T f(n)u, z) + b(z) · dr(j)(z, T f(n)+1u).

By (1.73), we have

dj(z, Tz) = lim
n→∞

dj(T f(n)+1u, Tz) ≤

≤ lim
n→∞

(
θdr(j)(T f(n)u, z) + b(z) · dr(j)(T f(n)+1u, z)

)
=

= θdr(j)(z, z) + b(z) · dr(j)(z, z) = 0.

Therefore, z is a fixed point of T . �

Corollar 1.3.81. If T is a generalized ALC on the subset A ⊂ X, then for every
x ∈ A, the sequence {T nx} converges to a fixed point of T .

Corollar 1.3.82. Let T be a generalized ALC on A ⊂ X. Assume that there exist
θ ∈ (0, 1) and some B ∈ [0,∞) such that

(1 + θ)−1dj(x, Tx) ≤ dj(x, y) implies dj(Tx, Ty) ≤ θdr(j)(x, y) +B · dr(j)(Tx, y),

for all x, y ∈ A. Then for every x ∈ A, the sequence {T nx} converges to a fixed point
of T .

3.1. Almost local ϕ-contractions

We now extend the class of almost local contractions to the more general class of
almost local ϕ-contractions. The aim of this subsection is to study the existence of
fixed points for this new type of almost local contractions. First, let us recall some
results and notions introduced by Berinde in [29].

Definition 1.3.83. [101] A mapping ϕ : R+ → R+ is called comparison function
if it satisfies:

(iϕ) ϕ is monotone increasing, i.e., t1 < t2 ⇒ ϕ(t1) ≤ ϕ(t2);
(iiϕ) the sequence {ϕn(t)}∞n=0 converges to zero, for all t ∈ R+, where ϕn stands for

the nth iterate of ϕ.
If ϕ satisfies (iϕ) and

(iiiϕ) the series
∞∑
k=0

ϕk(t)

converges for all t ∈ R+, then ϕ is said to be a (c)-comparison function.
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The following lemma was proved in [14], it contains a few properties of (c)-comparison
functions.

Lemma 1.3.84. [14] If ϕ : R+ → R+ is a c-comparison function, then the following
conditions hold:

(i) ϕ is a comparison function;
(ii) ϕ(t) < t, for any t ∈ R+;

(iii) ϕ is continuous at zero;
(iv) the series

∞∑
k=0

ϕk(t) converges for any t ∈ R+.

According to Berinde’s work (see [14]), ϕ satisfies (iiiϕ) if there exist 0 < c < 1
and a convergent series of positive terms,

∞∑
n=0

un such that

ϕk+1(t) ≤ c · ϕk(t) + uk, for all t ∈ R+ and k ≥ k0 (fixed) .

Also, it was proved: if ϕ is a (c)- comparison function, then the sum of the comparison
series, that is,

(1.74) s(t) =
∞∑
k=0

ϕk(t), t ∈ R+

is monotone increasing and continuous at zero, hence

(1.75) ϕk(t)→ 0 as k →∞, ∀t ∈ R+,

and also: any (c)-comparison function is a comparison function.
The concept of (c)-comparison function was reformulated in [13] to that of b-

comparison function, as it follows:

Definition 1.3.85. [13] Let b ≥ 1 be a real number. A mapping ϕ : R+ → R+ is
called b-comparison function if it satisfies:

(iϕ) ϕ is increasing;
(iiϕ) there exist k0 ∈ N, a ∈ (0, 1) and a convergent series of non-negative terms

∞∑
n=0

vk such that

(1.76) bk+1ϕk+1(t) ≤ abkϕk(t) + vk,

for k ≥ k0 and any t ∈ R+.

Remark 1.3.86. Obviously, for b = 1, the concept of b-comparison function reduces
to that of (c)-comparison function.

Lemma 1.3.87. [12] If ϕ : R+ → R+ is a b-comparison function, then :

(i) the series
∞∑
k=0

bkϕk(t) converges for any t ∈ R+;
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(ii) The function sb : R+ → R+ defined by

(1.77) sb(t) =
∞∑
k=0

bkϕk(t), t ∈ R+

is increasing and continuous at zero.

Lemma 1.3.88. [84] Let ϕ : R+ → R+ be a b-comparison function, with constant
b ≥ 1 and an ∈ R+, n ∈ N such that an → 0 as n→∞.
Then

(1.78)
n∑
k=0

bn−kϕn−k(ak)→ 0 as n→∞.

Almost ϕ-contractions were first introduced by V. Berinde in [17]. It is our aim to
extend almost ϕ-contractions to the more general case of almost local ϕ-contractions.

Definition 1.3.89. [17] Let (X, d) be a metric space. A self operator T : X → X

is said to be an almost ϕ-contraction or (ϕ,L)-almost contraction, provided that there
exist a comparison function ϕ and some L ≥ 0, such that

(1.79) d(Tx, Ty) ≤ ϕ(d(x, y)) + L · d(y, Tx), for all x, y ∈ X.

At this point, we are able to extend the almost ϕ-contractions to the almost local
ϕ-contractions.

Definition 1.3.90. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . The mapping T : A → A is called almost local
ϕ-contraction if there exist a comparison function ϕ and some L ≥ 0 such that we
have:

(1.80) dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)) + L · dr(j)(y, Tx),∀x, y ∈ A,∀j ∈ J.

Remark 1.3.91. It is obvious that any almost local ϕ-contraction becomes an almost
local contraction if we take ϕ(t) = θt, t ∈ R+ and 0 < θ < 1.

Example 1.3.92. Let us consider ϕ(t) = t

t+ 1 , t ∈ R+, with r(j) = j and let T
an almost local ϕ-contraction, i.e., a mapping which satisfies (1.80).
Then ϕ is a nonlinear comparison function, but it does not verify the condition for the
(c)-comparison function. In this case, T is an almost local ϕ-contraction without being
an almost local contraction.

Remark 1.3.93. 1) Similar to the case of ALC-s, the fact that T satisfies (1.80),
for all x, y ∈ A, implies that the following dual inequality

(1.81) dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)) + L · dr(j)(x, Ty),∀x, y ∈ A, ∀j ∈ J
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obtained from (1.80) by replacing x with y and vice versa, is also valid.
2) The class of almost local ϕ-contractions includes a wide class of mappings, see
Example 1.3.94, which contains a mapping with not one fixed point, but an infinite set
of fixed points.

Example 1.3.94. Let us consider [0, 1] the unit interval with the Euclidean metric
and the operator T : [0, 1]→ [0, 1] the identity mapping, i.e., Tx = x, for all x ∈ [0, 1].
By taking ϕ(t) = a · t, t ∈ R, 0 < a < 1, θ = a, r(j) = j and L ≥ 1 − a,
condition (1.80) leads to

|x− y| ≤ a · |x− y|+ L · |y − x|,

which is valid for all x, y ∈ [0, 1]. Note that the mapping T has an infinite set of fixed
points:

Fix(T ) = {x ∈ [0, 1] : Tx = x} = [0, 1].

The next two theorems represent an existence theorem and, respectively, a unique-
ness theorem for the fixed points of almost local ϕ-contractions.

Theorem 1.3.95. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X

and let the function r : J → J . Let T : A → A be an almost local ϕ-contraction with
the (c)-comparison function ϕ. Assume that the 1.26 monotonicity property is fulfilled
for the pseudometrics dj, for every j ∈ J.
Then

(1) Fix(T ) = {x ∈ A : Tx = x} 6= φ;
(2) For any x0 ∈ A, the Picard iteration {xn}∞n=0 defined by x0 ∈ A and

(1.82) xn+1 = Txn, n = 0, 1, 2, ...;

converges to a fixed point x∗ ∈ Fix(T );
(3) The a posteriori estimate

(1.83) dj(xn, x∗) ≤ s(dj(xn, xn+1)), n = 0, 1, 2..., ∀x, y ∈ A, ∀j ∈ J

holds, where s(t) is given by (1.74).

Proof: We will prove that the set of fixed points of T is nonempty. Using the fact
that T is an almost local ϕ-contraction, there exist a (c)-comparison function ϕ and
some L ≥ 0, such that

(1.84) dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)) + L · dr(j)(y, Tx), ∀x, y ∈ A, ∀j ∈ J

holds. Let x0 ∈ A be arbitrary and {xn}∞n=0 be the Picard iteration defined by

xn+1 = Txn, n ∈ N.
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Take x := xn−1, y := xn in (1.84) to obtain

dj(Txn−1, Txn) ≤ ϕ(dr(j)(xn−1, xn)) + L · dr(j)(xn, Txn−1)︸ ︷︷ ︸
=0

,

which yields

(1.85) dj(xn, xn+1) ≤ ϕ(dr(j)(xn−1, xn)), ∀j ∈ J,∀n = 1, 2, ...

Since ϕ is increasing, the monotonicity of the pseudometrics leads to:

(1.86) dj(xn+1, xn+2) ≤ ϕ(dr(j)(xn, xn+1)) ≤ ϕ(dj(xn, xn+1)),∀x, y ∈ A,∀j ∈ J.

From that, we inductively obtain:

(1.87) dj(xn+k, xn+k+1) ≤ ϕk(dj(xn, xn+1)), ∀x, y ∈ A,∀j ∈ J.

According to the triangle inequality, we get:

dj(xn, xn+p) ≤ dj(xn, xn+1) + dj(xn+1, xn+2) + ...+ dj(xn+p−1, xn+p)

≤ r + ϕ(r) + ...+ ϕn+p−1(r),∀x, y ∈ A,∀j ∈ J,(1.88)

where we denoted r = dj(xn, xn+1). Again, by using (1.86), we conclude

(1.89) dj(xn, xn+1) ≤ ϕn(dj(x0, x1)), n = 0, 1, 2, ...

which, by property (iiϕ) from the definition 1.3.83 of a comparison function, implies

(1.90) lim
n→∞

dj(xn, xn+1) = 0.

Having in view that ϕ is positive, it is obvious that

(1.91) r + ϕ(r) + ...+ ϕn+p−1(r) < s(r),

where s(t) is the sum of the series

s(t) =
∞∑
k=0

ϕk(r), t ∈ R+.

Then, by (1.88) and (1.91), we get

(1.92) dj(xn, xn+p) ≤ s(dj(xn, xn+1)), n ∈ N, p ∈ N, ∀x, y ∈ A, ∀j ∈ J.

Since s is continuous at zero, (1.90) and (1.91) imply that the sequence {xn}n∈N is
dj-Cauchy for each j ∈ J . As the subset A is assumed to be sequentially τ -complete,
there exists x∗ in A such that the sequence {xn} is τ -convergent to x∗.
We prove that x∗ is a fixed point of T . From the triangle inequality, we have:

dj(x∗, Tx∗) ≤ dj(x∗, xn+1) + dj(xn+1, Tx
∗) =

= dj(xn+1, x
∗) + dj(Txn, Tx∗),∀x, y ∈ A, ∀j ∈ J,∀n ∈ N.
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By (1.80), after applying the monotonicity of the pseudometrics and the monotonicity
of the map ϕ, we obtain

dj(Txn, Tx∗) ≤ ϕ(dr(j)(xn, x∗)) + L · dr(j)(x∗, Txn) ≤

≤ ϕ(dj(xn, x∗)) + L · dj(x∗, Txn),

for all x, y ∈ A, for every j ∈ J , ∀n ∈ N. At this point, we merge the last two
inequalities in order to obtain:

(1.93) dj(x∗, Tx∗) ≤ (1 + L)dj(xn+1, x
∗) + ϕ(dj(xn, x∗)),

valid for all n = 0, 1, 2, ...
Now letting n→∞ in (1.93) and using the continuity of ϕ at zero, we conclude

dj(x∗, Tx∗) = 0,

which means that x∗ is a fixed point of T . It follows that the Picard iteration converges
to a fixed point x∗ ∈ Fix(T ).
The estimate (1.83) follows from (1.91) by taking p→∞. �

Remark 1.3.96. 1) The a posteriori error estimates (1.83) and (1.89) lead us to
the a priori estimate for the Picard iteration {xn}∞n=0.
2) An almost local ϕ-contraction may have more than one fixed point, as shown by
Example 1.3.94. In Theorem 1.3.95, the Picard iteration {xn}∞n=0 provides the fixed
point x∗, but it generally depends on the initial guess x0.

For the uniqueness of the fixed point of T we need an additional condition, as shown
in Theorem 1.3.97.

Theorem 1.3.97. Assume that X, J,D, r, τ and A are as in Theorem 1.3.95. As-
sume the monotonicity property 1.26 for the pseudometrics is fulfilled. Suppose T also
satisfies the following condition: there exist a comparison function Υ and some L1 > 0
such that

(1.94) dj(Tx, Ty) ≤ Υ(dr(j)(x, y)) + L1 · dr(j)(x, Tx)

is valid for all x, y ∈ A, ∀j ∈ J .
Then

(1) T has a unique fixed point, i.e., Fix(T ) = {x∗};
(2) The a posteriori error estimate

d(xn, x∗) ≤ s(d(xn, xn+1)), n = 0, 1, 2, ...

holds, where s(t) is given by (1.74);
(3) The rate of the convergence of the Picard iteration is given by

(1.95) dj(xn, x∗) ≤ Υ(dj(xn−1, x
∗)), n = 1, 2, ...
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Proof: Suppose, by contradiction, there are two different fixed points x∗ and y∗ of
T . Then from (1.94), by taking x := x∗ and y := y∗, we obtain

dj(x∗, y∗) ≤ Υ (dr(j)(x∗, y∗))︸ ︷︷ ︸
≤dj(x∗,y∗))

≤ Υ(dj(x∗, y∗)),∀x, y ∈ A, ∀j ∈ J,

which by induction with respect to n, yields

(1.96) dj(x∗, y∗) ≤ Υn(dj(x∗, y∗)), ∀j ∈ J,∀n = 1, 2, ...

Letting n→∞ in (1.96), we get

dj(x∗, y∗) = 0, ∀j ∈ J,

which means that x∗ = y∗, a contradiction.
In this way, we proved that the fixed point is unique.
For the proof of (1.95), all we have to do is to change x := x∗ and y := xn in the
inequality (1.94). �

Example 1.3.98. Let us consider X = [0, n] × [0, n] ⊂ R2, n ∈ N∗. Consider the
pseudometric:

(1.97) dj((x1, y1), (x2, y2)) = |x1 − x2| · e−j,∀j ∈ J,

where J is a subset of N. Consider r(j) = j + 1 and the mapping T : X → X,

T (x, y) =

 (x, y3) if (x,y) 6= (1, 1)
(0, 0) if (x,y) = (1, 1)

Let the (c)-comparison function: ϕ(t) = 1
4t, ϕ : R+ → R+, ∀t ∈ R+.

T is an almost local ϕ-contraction if:

|x1 − x2| · e−j ≤
1
4 · |x1 − x2| · e−(j+1) + L · |x2 − x1| · e−(j+1),

which is equivalent to : e ≤ 1
4 + L.

For L = 3 ≥ 0, the last inequality becomes true, i.e., T is an almost local ϕ-contraction
with an infinite set of fixed points: Fix(T ) = {(x, 0) : x ∈ [0, n]}.

Condition (1.94) could be reformulated by using another pseudometric, providing
a more general result.

Theorem 1.3.99. Let X be a uniform Hausdorff space, D = (dj)j∈J be a family
of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J. Consider dj, %j two pseudometrics on
A such that (X, dj) is τ -complete for every j ∈ J .
Let T : A→ A be a self operator satisfying
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(i) There exist a (c)-comparison function ϕ and L ≥ 0 such that

dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)) + L · dr(j)(y, Tx),∀x, y ∈ A, ∀j ∈ J ;

(ii) There exist a comparison function Υ and some L1 ≥ 0 such that

%j(Tx, Ty) ≤ Υ(%r(j)(x, y)) + L1 · ρr(j)(x, Tx),∀x, y ∈ A, ∀j ∈ J.

Assume that the subset A is T -invariant. Then

(1) T has a unique fixed point, i.e., Fix(T ) = {x∗};
(2) For any x0 ∈ A, the Picard iteration {xn}∞n=0 defined by x0 ∈ A and

xn+1 = Txn, n = 0, 1, 2, ...

converges to a fixed point x∗ ∈ Fix(T );
(3) The a posteriori error estimate

dr(j)(xn, x∗) ≤ s(dr(j)(xn, xn+1)), n = 0, 1, 2...,∀x, y ∈ A,∀j ∈ J

holds, where s(t) is given by (1.74);
(4) The rate of the convergence of the Picard iteration is given by

%j(xn, x∗) ≤ Υ(%j(xn−1, x
∗)), ∀x, y ∈ A, ∀j ∈ J,∀n = 1, 2...

Remark 1.3.100. We obtain Theorem 1.3.97 as a particular case of Theorem 1.3.99
if we set dj ≡ %j.

In order to extend the class of almost local ϕ-contractions, we begin with the quasi
ϕ-contractions, as shown below.

Definition 1.3.101. Let X be a uniform Hausdorff space, D = (dj)j∈J be a family
of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J. The mapping T : A → A is called
quasi ϕ-contraction if there exists a comparison function ϕ such that:

(1.98) dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)),∀x, y ∈ A, ∀j ∈ J.

Theorem 1.3.102. Assume that X, J,D, r, τ and A are as in Definition 1.3.101,
let T : A → A be a quasi ϕ-contraction: a mapping which satisfies (1.98) with the
comparison function ϕ.
If there exists x0 ∈ A such that the Picard iteration {xn}∞n=0 defined by

xn+1 = Txn, n ∈ N

is bounded, then T has a unique fixed point.
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Proof: If the sequence of the successive approximations {xn}∞n=0 is bounded, for a
certain x0 ∈ A, it means that there exist a constant k > 0 and an element u ∈ A such
that

(1.99) dj(xn, u) ≤ k, ∀n ∈ N;∀j ∈ J.

By choosing m,n ∈ N, we have from the triangle inequality:

dj(xn, xm) ≤ dj(xn, u) + dj(u, xm) ≤ 2k, ∀j ∈ J.

By replacing j := r(j), we obtain from that inequality:

dr(j)(xn, xm) ≤ 2k, ∀j ∈ J.

Note that the comparison function ϕ is monotone increasing, so we get

ϕ(dr(j)(xn, xm)) ≤ ϕ(2k),m, n ∈ N,∀j ∈ J.

By applying repeatedly the function ϕ, we inductively obtain:

ϕn−1(drn−1(j)(xn, xm)) ≤ ϕn−1(2k), m, n ∈ N,∀j ∈ J.

From that, we replace n := 1,m := p+ 1 to obtain

ϕn−1(drn−1(j)(x1, xp+1)) ≤ ϕn−1(2k), n, p ∈ N, j ∈ J.

After using (1.98) and the definition of the Picard iteration, we inductively obtain

dj(xn, xn+p) = dj(Txn−1, Txn+p−1) ≤ ϕ(dr(j)(xn−1, xn+p−1)) ≤

≤ · · · ≤ ϕn−1(drn−1(j)(x1, xp+1)) ≤ ϕn−1(2k), n, p ∈ N,

for every j ∈ J. Note that ϕ is a comparison function and according to (1.75), we
conclude that the sequence {xn}n∈N is dj-Cauchy for each j ∈ J .
As the subset A is assumed to be sequentially τ -complete, there exists x∗ in A such
that {xn}n∈N is τ -convergent to x∗. Then

lim
n→∞

dj(xn, x∗) = 0.

By using again the triangle inequality, we obtain

0 ≤ dj(Tx∗, x∗) ≤ dj(Tx∗, Txn) + dj(Txn, x∗) ≤

≤ ϕ
(
dr(j)(x∗, xn)

)
+ dj(xn+1, x

∗).

This means

dj(Tx∗, x∗) = 0,

because the comparison function ϕ is continuous at zero. It follows that x∗ is a fixed
point of T , hence x∗ ∈ Fix(T ). �
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3.2. (B)-almost local contractions

In this subsection, our goal is to eliminate the inconvenience of having non-symmetric
relations for the definition of almost local contractions, that is,

ALC1 dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx), ∀x, y ∈ A

and, respectively,

ALC2 dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(x, Ty),∀x, y ∈ A,

under the assumptions of Definition 1.1.31 given for almost local contractions, following
the idea of Păcurar M. [83].

Remark 1.3.103. If ALC1 holds for some θ ∈ (0, 1) and L ≥ 0 for any x, y ∈ A,
then its dual is valid for all x, y ∈ A as well, and vice versa. That means, (ALC1)
and (ALC2) are equivalent, since each inequality can be obtained from the other one by
replacing x := y or y := x.

This inconvenient non-symmetry between conditions (ALC1) and (ALC2) can be
eliminated by introducing the following results:

Lemma 1.3.104. Let X be a uniform Hausdorff space, D = (dj)j∈J be a family
of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J. The operator T : A → A fulfills
condition ALC1 with respect to (D, r) if it satisfies condition

(m− ALC) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·min{dr(j)(x, Ty), dr(j)(y, Tx)},

for all x, y ∈ A and for all j ∈ J .

Proof: Without loss of generality, we can assume that L > 0, as L = 0 would lead
to the trivial case of Banach contractions.
” ⇒ ”: In the beginning, suppose that T satisfies (ALC1). By using Remark 1.3.103,
it also satisfies (ALC2).
The inequality (ALC1) becomes:

(1.100) 1
L

[dj(Tx, Ty)− θ · dr(j)(x, y)] ≤ dr(j)(y, Tx),∀x, y ∈ A, ∀j ∈ J.

The other condition, ALC2 take the equivalent form:

(1.101) 1
L

[dj(Tx, Ty)− θ · dr(j)(x, y)] ≤ dr(j)(x, Ty),∀x, y ∈ A, ∀j ∈ J.

The inequalities (1.100) and (1.101) can be merged to obtain
1
L

[dj(Tx, Ty)− θ · dr(j)(x, y)] ≤ min{dr(j)(x, Ty), dr(j)(y, Tx)},∀x, y ∈ A,
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which is equivalent to (m− ALC):

dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·min{dr(j)(x, Ty), dr(j)(y, Tx)},

for any x, y ∈ A and ∀j ∈ J .
” ⇐ ” : Secondly, for the proof of the reciprocal assessment, suppose that T satisfies
(m− ALC). Then, obviously it also fulfills (ALC1).
Hence, conditions (ALC1) and (m− ALC) are equivalent. �

3.3. Approximate fixed points

The ε-fixed points of operators took a very constructive and practical approach
of fixed point problems, since, in real situations, sometimes it is enough to obtain an
approximation of the solution. So, the existence of fixed points is not strictly required,
but the proximity of fixed points is of interest to researchers. This approximation is
also used when the conditions imposed for the existence of the fixed points are too
strong.

It is a natural consequence to introduce the concepts of ε-fixed point (or approximate
fixed point), which, in fact, represents a proximity fixed point. After that, we introduce
the function with the approximate fixed point property in order to establish qualitative
and quantitative theorems for various types of ALC-s.

In this section, the starting point is represented by the article of Tijs, Torre and
Branzei (see [116]) and also the paper of M. Berinde (see [22]).
Note that we consider operators on pseudometric spaces, not on metric or complete
metric spaces, the usual framework for fixed point problems.
The following definition is very useful for the study of approximate fixed points. It was
published in [58], followed by the work of Granas, Dugundji [55]:

Definition 1.3.105. [55] Let (E, τ) be a topological space, α an open covering of
E and f : E → E an operator. Then x ∈ E is called α-fixed point of f if there exist
U ∈ α such that x and f(x) are in U .

The following definition was given by V.R. Klee [73] and it was mentioned also by
van der Walt [117]:

Definition 1.3.106. [117] Let (E, τ) be a topological space, (X, d) be a metric
space, f : E → X an operator, and ε > 0. Then f is called ε-continuous if each x ∈ E
has a neighborhood U such that

δ(f(U)) ≤ ε,

where δ(f(U)) represents the diameter of the set f(U).

Definition 1.3.107. [116] Let (X, d) be a metric space.
Let f : X → X, ε > 0, x0 ∈ X.
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Then x0 is an ε-fixed point (approximate fixed point) of f if

d(f(x0), x0) < ε.

Remark 1.3.108. The set of all ε-fixed points of f , for a given ε, will be denoted
by

Fixε(f) = {x ∈ X| x is an ε-fixed point of f}.

Remark 1.3.109. Any fixed point of f is also an ε-fixed point of f :

x ∈ Fix(f)⇒ x ∈ Fixε(f),

but the converse is not always true, as shown in Example 3.1.1 from [83].

Definition 1.3.110. [116] Let (X, d) be a metric space. Let f : X → X. Then f
has the approximate fixed point property if

∀ε > 0, F ixε(f) 6= ∅.

Remark 1.3.111. The concept of asymptotically regular operator was first intro-
duced in [36] in metric spaces, see also [72] and [101].

Definition 1.3.112. [36] Let (X, d) be a metric space.
The operator f : X → X is called asymptotic regular if

d(fn(x), fn+1(x))→ 0 as n→∞,∀x ∈ X.

Lemma 1.3.113. [22] Let (X, d) be a metric space, f : X → X is an asymptotic
regular operator. Then f has the approximate fixed point property.

In order to obtain our main results of this section, Definition 1.3.107 will be ex-
tended to the case of pseudometrics in uniform spaces, as follows:

Definition 1.3.114. Let X be a uniform space.
Let the operator f : X → X, ε > 0, x0 ∈ X and consider J a family of indices.
Then x0 is an ε-fixed point (approximate fixed point) of f if

dj(f(x0), x0) < ε, ∀j ∈ J.

Lemma 1.3.113 could be extended to a larger, more general space, such as the
pseudometric space, as in the following result:

Lemma 1.3.115. Let X be a uniform Hausdorff space, D = (dj)j∈J be a family
of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X. Let r be a function from J to J and let T : A → A be an asymptotic
regular mapping. Then T has the approximate fixed point property.
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Proof: Fix an element x0 ∈ A. Since T is asymptotic regular, and having in view
the fact that the convergence with respect to the τ - topology imply convergence for
the pseudometrics dj, we have

dj(T n(x0), T n+1(x0))→ 0 as n→∞,

which is equivalent with

∀ε > 0, ∃n0(ε) ∈ N∗ such that ∀n ≥ n0(ε), dj(T n(x0), T n+1(x0))︸ ︷︷ ︸
=T (Tn(x0))

< ε.

Denote:
y

(n)
0 = T n(x0).

It is easy to see that:

∀ε > 0,∃y(n)
0 ∈ A such that dj(y(n)

0 , T (y(n)
0 )) < ε, ∀j ∈ J.

Thus, we have: for each ε > 0, there exists an ε-fixed point of T in the subset A ⊂ X,
that is, y(n)

0 .
So, we prove that T has the approximate fixed point property. �

Definition 1.3.116. [86] Let the metric spaces X, Y and let f : X → Y be a map-
ping. Then f is called compact map at x ∈ X if, for some ε-open ball B(x, ε), (ε >
0), f(B(x, ε)) is totally bounded in Y. The map f is called compact in X if f is compact
at every point in X.

Remark 1.3.117. There is an equivalence between the existence of fixed points for
a given mapping and the approximate fixed points of it, stated by the following result:

Proposition 1.3.118. [55] Let A be a closed subset of a metric space (X, d) and
T : A → X be a compact map. Then T has a fixed point if and only if it has the
approximate fixed point property.

We will denote by δ(A) the diameter of the nonempty set A, namely:

δ(A) = sup{d(x, y)|x, y ∈ A}.

Lemma 1.3.119. Let X be a uniform space, J be a set of indices, let D = (dj)j∈J
be a family of pseudometrics on X, with the monotonicity property (1.26) fulfilled. Let
τ be the weak topology on X defined by the family D. Consider a subset A ⊂ X and let
r be a function from J to J. Let T : A→ A be an operator and ε > 0. Suppose that:
(i) Fixε(T ) 6= ∅;
(ii) ∀η > 0, ∃ϕ(η) > 0 such that

dr(j)(x, y)− dr(j)(T (x), T (y)) ≤ η ⇒ dj(x, y) ≤ ϕ(η),∀x, y ∈ Fixε(T ), ∀j ∈ J.

Then:
δ(Fixε(T )) ≤ ϕ(2ε).
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Proof: Fix ε > 0 and x, y ∈ Fixε(T ). By means of definition 1.3.114, we have:

dj(x, T (x)) < ε, dj(y, T (y)) < ε, ∀j ∈ J.

By using the triangle inequality, we obtain:

dr(j)(x, y) ≤ dr(j)(x, T (x))︸ ︷︷ ︸
≤dj(x,T (x))

+dr(j)(T (x), T (y)) + dr(j)(y, T (y))︸ ︷︷ ︸
≤dj(y,T (y))

≤ dr(j)(T (x), T (y)) + 2ε.

This implies:

dr(j)(x, y)− dr(j)(T (x), T (y)) ≤ 2ε.

At this point, it follows from (ii):

dj(x, y) ≤ ϕ(2ε),

which means that

δ(Fixε(T )) ≤ ϕ(2ε).

�

Remark 1.3.120. According to Lemma 1.3.115, condition (i) from Lemma 1.3.119
can be replaced by the asymptotic regularity condition.

Lemma 1.3.119 can be reformulated as follows:

Lemma 1.3.121. Let X be a uniform space, J be a set of indices, let D = (dj)j∈J
be a family of pseudometrics on X, with the monotonicity property (1.26) fulfilled. Let
τ be the weak topology on X defined by the family D. Consider a subset A ⊂ X and
let r be a function from J to J. Let T : A→ A be an operator such that for ε > 0 the
following conditions hold:

(i)

dj(T n(x), T n+1(x))→ 0 as n→∞,∀x ∈ A, ∀j ∈ J ;

(ii) ∀η > 0, ∃ϕ(η) > 0 such that for every j ∈ J we have:

dr(j)(x, y)− dr(j)(T (x), T (y)) ≤ η ⇒ dj(x, y) ≤ ϕ(η),∀x, y ∈ Fixε(T ).

Then:

δ(Fixε(T )) ≤ ϕ(2ε).

A. Qualitative results for mappings in pseudometric spaces
Our first goal is to state and prove, using Lemma 1.3.115, qualitative results for

a large class of operators defined on pseudometric spaces. Most importantly, we are
interested in establishing conditions under which the approximate fixed point property
is fulfilled for the mappings considered.
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Theorem 1.3.122. Let X be a uniform space, D = (dj)j∈J be a family of pseu-
dometrics on X, where J is a set of indices. Assume that the (1.26) monotonicity
property is fulfilled for the pseudometrics. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X.
Let r be a function from J to J and let T : A→ A be a quasi-almost local contraction
(see Definition 1.3.72).
Then:

∀ε > 0, F ixε(T ) 6= ∅.

Proof: Take ε > 0 and x ∈ A.

dj(T n(x), T n+1(x)) = dj(T (T n−1(x), T (T n(x))) ≤

≤ θ ·Mr(j)(T n−1(x), T n(x)) ≤ · · · ≤ θnMrn(j)(x, T (x)), ∀n ∈ N,

where

Mrn(j)(x, T (x)) =
{
drn(j)(x, T (x)), drn(j)(x, T (x)),

drn(j)(T (x), T 2(x)), drn(j)(x, T 2(x)), drn(j)(T (x), T (x))
}
.

Having in view the monotonicity of the pseudometrics, we can write:

dj(x, T (x)) ≥ dr(j)(x, T (x)) ≥ · · · ≥ drn(j)(x, T (x)), ∀j ∈ J,

which means that Mrn(j)(x, T (x)) is finite, therefore

lim
n→∞

θn ·Mrn(j)(x, T (x)) = 0, ∀j ∈ J.

Note that θ ∈ (0, 1), which implies θn → 0 as n→∞.
Hence, we have:

dj(T n(x), T n+1(x))→ 0, as n→∞, ∀x ∈ A, ∀j ∈ J.

According to Lemma 1.3.115, it follows that Fixε(T ) 6= ∅, ∀ε > 0. �

Theorem 1.3.123. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, with the monotonicity property fulfilled for the pseudometrics. Denote by
J a set of indices. Let τ be the weak topology on X defined by the family D. Consider
a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X. Let r be a function
from J to J . Let T : A→ A be a β-local contraction: a mapping for which there exists
β ∈ (0, 1) such that:

(1.102) dj(Tx, Ty) ≤ β · dr(j)(x, y), for all x,y ∈ A,∀j ∈ J.

Then:
∀ε > 0, F ixε(T ) 6= ∅.
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Proof: Let ε > 0 and x ∈ A. By using the definition of a local contraction, we
obtain

dj(T n(x), T n+1(x)) = dj(T (T n−1(x), T (T n(x))) ≤

≤ β · dr(j)(T n−1(x), T n(x)) ≤ · · · ≤ βn · drn(j)(x, T (x))︸ ︷︷ ︸
finite

.

We use the same method as used in Theorem 1.3.122 in order to show that drn(j)(x, T (x))
is finite. Note that β ∈ (0, 1), which implies that we have:

dj(T n(x), T n+1(x))→ 0, as n→∞, ∀x ∈ A, ∀j ∈ J.

According to Lemma 1.3.115, it follows that Fixε(T ) 6= ∅, ∀ε > 0. �

Remark 1.3.124. In fact, Theorem 1.3.123 is a corollary of Theorem 1.3.122, by
considering

dj(Tx, Ty) ≤ β · dr(j)(x, y) ≤ β ·Mr(j)(x, y), for all x,y ∈ A, ∀j ∈ J.

Therefore, Theorem 1.3.122 can be applyed to obtain the conclusion of Theorem 1.3.123.

Theorem 1.3.125. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, with the monotonicity property fulfilled for the pseudometrics. Denote by
J a set of indices. Let τ be the weak topology on X defined by the family D. Consider
a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X. Let r be a function
from J to J . Let T : A→ A be a Chatterjea type ALC (see Definition 1.3.77) with the
constant 0 ≤ c < 1

2 .
Then:

∀ε > 0, F ixε(T ) 6= ∅.

Proof: Let ε > 0 and x ∈ A.
By using the monotonicity (1.26) of the pseudometrics, we obtain:

dj(T n(x), T n+1(x)) = dj(T (T n−1(x), T (T n(x))) ≤

≤ c · [dr(j)(T n−1(x), T (T n(x))) + dr(j)(T n(x), T (T n−1(x)))] =

= c · [dr(j)(T n−1(x), T n+1(x)) + dr(j)(T n(x), T n(x))︸ ︷︷ ︸
=0

] =

= c · dr(j)(T n−1(x), T n+1(x)).

By using the triangle inequality and the monotonicity property, we get:

dr(j)(T n−1(x), T n+1(x)) ≤ dr(j)(T n−1(x), T n(x)) + dr(j)(T n(x), T n+1(x)) ≤

≤ dr(j)(T n−1(x), T n(x)) + dj(T n(x), T n+1(x))⇒

⇒ (1− c)dj(T n(x), T n+1(x)) ≤ c · dr(j)(T n−1(x), T n(x)),
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which is equivalent to:

dj(T n(x), T n+1(x)) ≤ c

1− cdr(j)(T
n−1(x), T n(x)) ≤ · · · ≤

≤
( c

1− c
)n
drn(j)(x, T (x))︸ ︷︷ ︸

finite

,

by using again the arguments from Theorem 1.3.122. Taking into account that
c ∈ [0, 1

2), we have c
1−c ∈ [0, 1), which means:

(
c

1−c

)n
→ 0 as n→∞.

Therefore,
lim
n→∞

( c

1− c
)n
· drn(j)(x, T (x)) = 0, ∀j ∈ J.

We obtain:
dj(T n(x), T n+1(x))→ 0, as n→∞, ∀x ∈ A, ∀j ∈ J.

According to Lemma 1.3.115, it follows that Fixε(T ) 6= ∅, ∀ε > 0. �

Theorem 1.3.126. Assume that X, J,D, r, τ and A are as in Theorem 1.3.125, let
T : A→ A be an almost local contraction (see Definition 1.1.31).
Then:

∀ε > 0, F ixε(T ) 6= ∅.

Proof: Let ε > 0 and x ∈ A.
By using the definition of the almost local contractions, we obtain:

dj(T n(x), T n+1(x)) = dj(T (T n−1(x), T (T n(x))) ≤

≤ θ · dr(j)(T n−1(x), T n(x)) + Ldr(j)(T n(x), T (T n−1(x))) =

= θ · dr(j)(T n−1(x), T n(x)) ≤ · · · ≤ θn · drn(j)(x, T (x))︸ ︷︷ ︸
finite

,∀j ∈ J.

Let us remind that θ ∈ (0, 1), which implies that θn → 0 as n→∞. At this point, we
conclude that we have:

dj(T n(x), T n+1(x))→ 0, as n→∞, ∀x ∈ A, ∀j ∈ J.

According to Lemma 1.3.115, it follows that Fixε(T ) 6= ∅, ∀ε > 0. �

Example 1.3.127. Let us consider X = [0, 1] with the pseudometrics:

dj(x, y) = |x− y| · e−j,∀j ∈ J,∀x, y ∈ X,

and let T : [0, 1]→ {0, 1} defined by

T (x) =

 0 if x ∈ [0, 1)
1 if x = 1.

Consider the function r(j) = j + 1, ∀j ∈ J , where J is a subset of N.
Then:

(1) Fix(T ) = {0, 1};
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(2) Fixε(T ) = [0, ε · ej], for any ε > 0 and some j ∈ J.

The mapping T is an ALC because:
- the ALC condition for every x, y ∈ [0, 1), x 6= y becomes:

|0− 0| · e−j ≤ (θ · |x− y|+ L · |y − 0|) · e−(j+1),

which is obviously true;
- the ALC condition becomes for every x ∈ [0, 1), y = 1 :

|1− 0| · e−j ≤ (θ · |x− 1|+ L · |1− 0|) · e−(j+1),

which leads us to the conclusion

e ≤ θ · |x− 1|+ L.

The last inequality holds for some θ ∈ (0, 1) and for some L ≥ 3.
Conclusion (001) is obvious, since:
- for x ∈ [0, 1), the fixed point condition T (x) = x leads us to x = 0;
- for x = 1, T (x) = x leads us to x = 1.
2) Let ε > 0, j ∈ J fixed and select x an ε-fixed point of T , which means

(1.103) |x− T (x)| · e−j ≤ ε.

According to the definition of T , we have two cases:
a) If x ∈ [0, 1), in this case we have T (x) = 0, which implies from (1.103) :

|x− 0| · e−j ≤ ε⇔ x ≤ ε · ej ⇔ x ∈ [0, ε · ej].

b) If x = 1, by using (1.103), we get

|1− 1| ≤ ε⇔ ε ≥ 0.

The conditions from Theorem 1.3.126 are fulfilled, therefore can be applied. Thus, we
have: Fixε(T ) = [0, ε · ej], for any ε > 0.

B. Quantitative results for mappings in pseudometric spaces
In the sequel, our main goal is to establish some quantitative results regarding the
studied operators, using Lemma 1.3.119.

Theorem 1.3.128. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X with the monotonicity property fulfilled for the pseudometrics, where J is
a set of indices. Let τ be the weak topology on X defined by the family D. Consider a
nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X. Let r be a function from
J to J and let T : A→ A be a β-local contraction (see (1.102)).

Then:
δ(Fixε(T )) ≤ 2ε

1− β , ∀ε > 0.
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Proof: Let ε > 0. Condition (i) from Lemma 1.3.119 was proved in Theorem
1.3.123.
It remain to show that (ii) holds for a-contractions.
Fix γ > 0 and x, y ∈ Fixε(T ). Assume that

dj(x, y)− dj(T (x), T (y)) ≤ γ.

In order to obtain the conclusion, we will prove that there exists an ϕ(γ) > 0 such that
dj(x, y) ≤ ϕ(γ). It results, after using the monotonicity property:

dj(x, y) ≤ dj(T (x), T (y)) + γ ≤ β · dr(j)(x, y) + γ ≤ β · dj(x, y) + γ.

Now, we can conclude that

(1− β)dj(x, y) ≤ γ,

which implies dj(x, y) ≤ γ
1−β .

Ergo, we have that: ∀γ > 0,∃ϕ(γ) = γ
1−β such that

dj(x, y)− dj(T (x), T (y)) ≤ γ ⇒ dj(x, y) ≤ ϕ(γ).

Now, by Lemma 1.3.119, we have:

δ(Fε(T )) ≤ ϕ(2ε),∀ε > 0.

The last inequality actually means that

δ(Fixε(T )) ≤ 2ε
1− aβ , ∀ε > 0.

�

Theorem 1.3.129. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X with the monotonicity property fulfilled for the pseudometrics, where J
is a set of indices. Let τ be the weak topology on X defined by the family D. Consider
a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X and let r be a function
from J to J . Let T : A→ A be a Chatterjea type ALC.

Then:

δ(Fixε(T )) ≤ 2ε(1 + c)
1− 2c , ∀ε > 0.

Proof: Let ε > 0. Again, condition (i) from Lemma 1.3.119 is satisfied, according
to the proof of Theorem 1.3.125.
It remain to show that (ii) holds for Chatterjea type ALC-s.
Let γ > 0 and x, y ∈ Fixε(T ). Assume that

dj(x, y)− dj(T (x), T (y)) ≤ γ.
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Then we have

dj(x, y) ≤ γ + dj(T (x), T (y)) ≤ γ + cdr(j)(x, T (y)) + cdr(j)(y, T (x)) ≤

≤ γ + cdj(x, T (y)) + cdj(y, T (x)) ≤ γ + c[dj(x, y) + dj(y, T (y))] +

+ c[dj(y, x) + dj(x, T (x))].

But since x, y are approximate fixed points of T , it results that

dj(x, y) ≤ 2c · dj(x, y) + 2ε · c+ γ, ∀j ∈ J.

After rearranging the terms, we get

(1− 2c)dj(x, y) ≤ 2ε · c+ γ,

and then we obtain

dj(x, y) ≤ γ + 2ε · c
1− 2c .

Hence for each γ > 0, there exists ϕ(γ) = γ+2ε·c
1−2c such that dj(x, y)−dj(T (x), T (y)) ≤ γ,

which implies dj(x, y) ≤ ϕ(γ),∀j ∈ J.
Again, by Lemma 1.3.119 it results that

δ(Fixε(T )) ≤ ϕ(2ε), ∀ε > 0.

The last inequality leads us to the conclusion:

δ(Fixε(T )) ≤ 2ε(1 + c)
1− 2c , ∀ε > 0.

�

Theorem 1.3.130. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X with the monotonicity property fulfilled for the pseudometrics, where J
is a set of indices. Let τ be the weak topology on X defined by the family D. Consider
a nonempty, τ -bounded, sequentially τ -complete subset A ⊂ X and let r be a function
from J to J . Let T : A→ A be an almost local contraction with θ + L < 1.

Then:

δ(Fixε(T )) ≤ 2 + L

1− θ − L · ε, ∀ε > 0.

Proof: Let ε > 0. Again, condition (i) from Lemma 1.3.119 holds.
It remain to show that (ii) holds for ALC-s.
Let γ > 0 and x, y ∈ Fixε(T ). Assume that

dj(x, y)− dj(T (x), T (y)) ≤ γ.
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By using the triangle inequality and the monotonicity property for the pseudometrics,
we get

dj(x, y) ≤ γ + dj(T (x), T (y)) ≤ γ + θ · dr(j)(x, y) + L · dr(j)(y, T (x)) ≤

≤ γ + θ · dr(j)(x, y) + L · dr(j)(x, y) + L · dr(j)(x, T (x)) ≤

≤ γ + θ · dj(x, y) + L · dj(x, y) + L · dj(x, T (x)) ≤

≤ (θ + L)dj(x, y) + Lε+ γ, ∀j ∈ J.

Thus, we have:

(1− θ − L)dj(x, y) ≤ Lε+ γ, which implies dj(x, y) ≤ Lε+ γ

1− θ − L, ∀j ∈ J.

Therefore, for all γ > 0, ∃ϕ(γ) = Lε+γ
1−θ−L such that

dj(x, y)− dj(T (x), T (y)) ≤ γ ⇒ dj(x, y) ≤ ϕ(γ), ∀j ∈ J.

Again, by Lemma 1.3.119 it follows that

δ(Fixε(T )) ≤ ϕ(2ε), ∀ε > 0.

The last inequality leads us to the conclusion:

δ(Fixε(T )) ≤ 2 + L

1− θ − L · ε, ∀ε > 0.

�

Remark 1.3.131. Theorems 1.3.128, 1.3.129, 1.3.130 represent generalizations in
uniform spaces of results established in [22] and [83] regarding the study of approximate
fixed points in metric spaces.

3.4. Almost local contractions in b-pseudometric spaces

In this subsection, the notion of almost local contraction in a b-pseudometric space
is considered. In this framework some new fixed point results are given. A large number
of generalizations for the concept of metric space were given by several authors, the
most important of them: [7], [37], [103] and recent works, amongst which we mention
[34], [35]. The concept of b-metric space was introduced by Czerwik in [46]. Since
then several publications were devoted to the study of single valued and multivalued
operators in b-metric spaces (see [12], [65], [87], [111]). The starting point of this
part was the book of M. Păcurar [83], who researched thoroughly the question of fixed
points in b-metric spaces, but only for the almost contractions.

Definition 1.3.132. [103] Let X be a nonempty set.
A mapping db : X ×X → R+ is called b-metric if the following conditions hold:

(1) db(x, y) = 0 if and only if x = y;
(2) db(x, y) = db(y, x),∀x, y ∈ X;



3. NEW CLASSES OF ALMOST LOCAL CONTRACTIONS 63

(3) db(x, z) ≤ b · [db(x, y) + db(y, z)],∀x, y, z ∈ X,
where b ≥ 1 is a given real number.

A nonempty set X endowed with a b-metric db : X ×X → R+ is called b-metric space.

Example 1.3.133. [7] Let p ∈ (0, 1) and let lp be the space of all real sequences
{xn}n≥0 ⊂ R such that

∞∑
n=1
|xn|p <∞.

Let d : lp × lp → R+ defined by

d(x, y) =
( ∞∑
n=1
|xn − yn|p

) 1
p ,

for any x = {xn}n≥0, y = {yn}n≥0. Then d is a b-metric on lp with constant b = 2
1
p > 1,

hence (lp, d) is a b-metric space.

Remark 1.3.134. In the sequel, our goal is to extend the b-metrics to the more
general case of b-pseudometrics, as follows:

Definition 1.3.135. Let X be a nonempty set and let b ≥ 1 a given real number.
A mapping db : X ×X → R+ is called b-pseudometric if the following conditions hold:

(1) db(x, x) = 0, ∀x ∈ X;
(2) db(x, y) = db(y, x),∀x, y ∈ X;
(3) db(x, z) ≤ b · [db(x, y) + db(y, z)],∀x, y, z ∈ X.

A nonempty set X endowed with a b-pseudometric db : X ×X → R+ is called
b-pseudometric space.

In the beginning of this subsection, we will present a set of concepts which help us
to establish a theory of some fixed point theorems, related to a various type of almost
local contractions in b-pseudometric spaces.
The following concepts are given in metric spaces, they appear originally in [104], but
we will present them in the framework of a b-pseudometric space.

Definition 1.3.136. Let (X, db) be a b-pseudometric space and f : X → X a
(weakly) Picard operator. Then f is said to be a good (weakly) Picard operator if

∑
n∈N

db
(
fn(x), fn+1(x)

)
<∞,

for any x ∈ X.

Remark 1.3.137. For the particular case b = 1, we get from Definition 1.3.136 the
well-known definition of good (weakly) Picard operator in a metric space.
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Definition 1.3.138. Let (X, db) be a b-pseudometric space and f : X → X a
(weakly) Picard operator. Then f is said to be a special (weakly) Picard operator if∑

n∈N
db
(
fn(x), f∞(x)

)
<∞,

for any x ∈ X, where

(1.104) f∞ : X → X, f∞(x) = lim
n→∞

fn(x), ∀x ∈ X.

Moreover, let (X, db,j) a b-pseudometric space with D = (db,j)j∈J a family of b-pseudometrics
defined on X, where J denote a family of indices. Then f : X → X is said to be a
special (weakly) Picard operator if∑

n∈N
db,j

(
fn(x), f∞(x)

)
<∞,

for any x ∈ X, ∀j ∈ J.

Remark 1.3.139. For the particular case b = 1, from Definition 1.3.138, we get
the well-known definition of a special (weakly) Picard operator in a metric space.

The property of well-posedness for a fixed point problem for an operator proposed
in [49] was studied also in [77], [87] and [105]. In a b-metric space was introduced in
[83] by M.Păcurar. We introduce it in a b-pseudometric space as follows:

Definition 1.3.140. Let (X, db) be a b-pseudometric space and let f : X → X a
Picard operator with Fix(f) = {x∗}. Suppose there exist zn ∈ X,n ∈ N such that

db(zn, f(zn))→ 0 as n→∞.

If this implies

zn → x∗ as n→∞,

then we say that the fixed point problem for the operator f is well posed.
Moreover, let (X, db,j) a b-pseudometric space with D = (db,j)j∈J a family of b-pseudometrics
defined on X, where J denote a family of indices. Let f : X → X be a Picard operator
with Fix(f) = {x∗}. Suppose there exist zn ∈ X,n ∈ N such that

db,j(zn, f(zn))→ 0 as n→∞.

If this implies

zn → x∗ as n→∞,

then we say that the fixed point problem for the operator f is well posed.

Remark 1.3.141. For the particular case b = 1, from Definition 1.3.140 we obtain
the well-known definition of a well posed fixed point problem in a metric space.
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Definition 1.3.142. Let (X, db) be a b-pseudometric space and f : X → X an
operator. Suppose there exist zn ∈ X,n ∈ N such that

db(zn+1, f(zn))→ 0 as n→∞.

If there exists x ∈ X such that

db(zn, fn(x))→ 0 as n→∞,

then we say that the operator f has the the limit shadowing property.
Moreover, let (X, db,j) a b-pseudometric space with D = (db,j)j∈J a family of b-pseudometrics
defined on X, where J denote a family of indices. Let f : X → X an operator. Suppose
there exist zn ∈ X,n ∈ N such that

db,j(zn+1, f(zn))→ 0 as n→∞.

If there exists x ∈ X such that

db,j(zn, fn(x))→ 0 as n→∞,

then we say that the operator f has the limit shadowing property.

Remark 1.3.143. For the particular case b = 1, from Definition 1.3.142 we obtain
the usual definition of limit shadowing property for an operator on a metric space.

Example 1.3.144. [104] Let (X, d) be a complete metric space and f : X → X a
Banach contraction with α ∈ [0, 1). Then f is a good Picard operator, the fixed point
problem for the operator f is well posed and f has the limit shadowing property.

3.5. ϕ-contractions in b-pseudometric spaces

The class of ϕ-contractions have been studied in uniform spaces, see section 3.1
in chapter 1. In the sequel, we intend to analyze them in the more general case of
b-pseudometric spaces, as it follows:

Theorem 1.3.145. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume the
monotonicity property fulfilled for the b-pseudometrics, namely:

(1.105) db,r(j)(x, y) ≤ db,j(x, y), ∀x, y ∈ X, ∀j ∈ J.

Let τ be the weak topology on X defined by the family D. Consider a nonempty, τ -
bounded, sequentially τ -complete subset A ⊂ X and let r be a function from J to J .
Let ϕ : R+ → R+ be a comparison function and let f : A→ A be a quasi ϕ-contraction,
as in (1.98).
Then f has a unique fixed point if and only if there exists x0 ∈ X such that the Picard
iteration {xn}n≥0 given by (0.2) is bounded.
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Proof: a) In order to simplify the proof, we denote the pseudometrics db,j with dj,
for every j ∈ J.
” =⇒ ” If f has a unique fixed point x∗, then by choosing x0 = x∗, the sequence of
successive approximations is bounded, being constant.
b)” ⇐= ” Assume {xn} is bounded for a certain x0 ∈ X. Consequently, there exist a
constant c > 0 and an element y ∈ X such that

dj(xn, y) ≤ c, ∀n ∈ N, ∀j ∈ J.

For m,n ∈ N, by using the definition of the b-pseudometric, we get

dj(xn, xm) ≤ b · [dj(xn, y) + dj(y, xm)] ≤ 2b · c, ∀j ∈ J.

Let us remind that ϕ is monotone increasing, then, by using the condition for the quasi
ϕ-contraction, we obtain

dj(xn, xn+p) = dj(f(xn−1), f(xn+p−1))
mon.
≤ ϕ(dr(j)(xn−1, xn+p−1)) ≤

≤ · · · ≤ ϕn−1(drn(j)(x1, xp+1)) ≤ ϕn−1(2b · c), n, p ∈ N,

for all j ∈ J .
These relations show us that the sequence {xn}n∈N is dj-Cauchy for each j ∈ J . As

the subset A is assumed to be sequentially τ -complete, there exists x∗ in A such that
{fn(x)}n∈N is τ -convergent to x∗. The sequence {fn(x)}n∈N converges to x∗, which
implies

x∗ = lim
n→∞

xn ⇒ lim
n→∞

dj(xn, x∗) = 0, ∀j ∈ J.

By using the definition of a quasi ϕ-contraction, we obtain:

0 ≤ dj(f(x∗), x∗)) ≤ b · [dj(f(x∗), f(xn)) + dj(f(xn), x∗)] ≤

≤ b · [ϕ(dr(j)(x∗, xn)) + dj(xn+1, x
∗)].

Having in view that ϕ is continuous at zero, we deduce: dj(f(x∗), x∗) = 0,∀j ∈ J .
This actually means that x∗ is a fixed point of the operator f . The uniqueness of the
fixed point is based on reductio ad absurdum method. �

In the sequel, let us consider the real number d ≥ 1 and let ϕ : R+ → R+ be a
comparison function for which there exists the real 0 ≤ α < 1 and a series of positive
terms

∞∑
n=0

vn, which is convergent (see [12]) such that we have

(1.106) bk+1ϕk+1(t) ≤ α · bk · ϕk(t) + vk,∀t ∈ R,

for each k ≥ N , with N fixed.
By using (1.106), the series

(1.107)
∞∑
k=0

bkϕk(t)
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converges for each t ∈ R+ and its sum, denoted by sb(t) is monotone increasing and
continuous at zero.

Theorem 1.3.146. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let the function r : J → J. Let ϕ : R+ → R+ be a
comparison function and let f : A→ A be a quasi ϕ-contraction with ϕ satisfying con-
dition (1.106). If x0 ∈ A is chosen such that the sequence of successive approximations
is bounded and Fix(f) = {x∗}, then we have

(1.108) dj(xn, x∗) ≤ b · sb(dr(j)(xn, xn+1)), n ≥ 0,∀j ∈ J,

where sb(t) is the sum of the series (1.107).

Proof: In order to simplify the proof, we denote the pseudometrics db,j with dj for
every j ∈ J . By means of contractive condition (1.98), we obtain for n ≥ 1,

dj(xn, xn+1) = dj(f(xn−1), f(xn)) ≤ ϕ(dr(j)(xn−1, xn)).

For n ≥ 2, we can write

(1.109) dj(xn−1, xn) ≤ ϕ(dr(j)(xn−2, xn−1)).

Having in view that the comparison function ϕ is monotone increasing, it results

dj(xn, xn+p) ≤ b · [dj(xn, xn+1) + dj(xn+1, xn+p)] ≤

≤ b · dj(xn, xn+1) + b2[dj(xn+1, xn+2) + dj(xn+2, xn+p)] ≤

≤ · · · ≤ b · dj(xn, xn+1) + b2dj(xn+1, xn+2) + · · ·+ bpdj(xn+p−1, xn+p),

which yields:

(1.110) dj(xn, xn+p)
(1.109)
≤ b

p−1∑
k=0

bkϕk(dr(j)(xn, xn+1)).

For k = 0, the right-hand side term becomes: b · dr(j)(xn, xn+1).
Then, by taking p→∞ in (1.110), we get

(1.111) dj(xn, x∗) ≤ b · sb(dr(j)(xn, xn+1)), n ≥ 0.

�

Theorem 1.3.147. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let ϕ : R+ → R+ be
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a b-comparison function. Let f : A → A be a quasi ϕ-contraction with ϕ satisfying
condition (1.106).
Then:

(1) f is a Picard operator;
(2) if {xn}n∈N denote the sequence of successive approximations, with

x∗ = lim
n→∞

xn,

the following a priori and a posteriori estimates are available:

(1.112) dj(xn, x∗) ≤ b · sb(ϕn(dr(j)(x0, x1))), n ≥ 0,

(1.113) dj(xn, x∗) ≤ b · sb(dj(xn, xn+1)), n ≥ 0,

where sb(t) is the sum of the series (1.107).
(3)

(1.114) dj(x, x∗) ≤ b · sb(dj(x, f(x))), ∀x ∈ A,∀j ∈ J.

Proof: In order to simplify the proof, we denote the pseudometrics dbj
with dj, for

every j ∈ J .
1) Fix x0 ∈ A and consider the sequence of successive approximations xn = f(xn−1).
We get:

dj(xn, xn+1) = dj(f(xn−1), f(xn)) ≤ ϕ(dr(j)(xn−1, xn)),∀n ≥ 1.

We inductively obtain the following inequality:

(1.115) dj(xn, xn+1) ≤ ϕn(drn(j)(x0, x1)).

Having in view that dj is a b-pseudometric, for n ≥ 0, p ≥ 1, we get:

(1.116) dj(xn, xn+p) ≤ bdj(xn, xn+1) + b2dj(xn+1, xn+2) + · · ·+ bpdj(xn+p−1, xn+p).

By applying (1.115), we obtain:
(1.117)
dj(xn, xn+p) ≤ bϕn(drn(j)(x0, x1))+b2ϕn+1(drn+1(j)(x0, x1)+· · ·+bpϕn+p−1(drn+p−1(j)(x0, x1)),

which yields

(1.118) dj(xn, xn+p) ≤
1

bn−1 [bnϕn(dr(j)(x0, x1)) + · · ·+ bn+p−1ϕn+p−1(dr(j)(x0, x1))].

Denote

(1.119) Sn =
n∑
k=0

bkϕk(drk(j)(x0, x1), n ≥ 1.

The inequality (1.118) becomes:

(1.120) dj(xn, xn+p) ≤
1

bn−1 [Sn+p−1 − Sn−1], n ≥ 1, p ≥ 1.
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But the series
∞∑
k=0

bkϕk(drk(j)(x0, x1))

is convergent, hence there is

(1.121) S = lim
n→∞

Sn ∈ R+.

Having in view that b ≥ 1, by (1.120) we conclude that the sequence {xn}n≥0 is
τ -Cauchy, which yields: there exists x∗ ∈ A such that

x∗ = lim
n→∞

xn.

Next, we have to prove that x∗ is a fixed point of f . After simple computations, we
get:

(1.122) dj(xn+1, f(x∗)) = dj(f(xn), f(x∗)) ≤ ϕ(dr(j)(xn, x∗)) ≤ ϕ(dj(xn, x∗)), n ≥ 0.

Remind that the comparison function ϕ is continuous at zero, and by taking n→∞,
we obtain:

dj(x∗, f(x∗)) = 0, ∀j ∈ J,

which actually means that x∗ is a fixed point for f .
Suppose, by contradiction, there exists another fixed point y∗ ∈ A, different from x∗.
By using the definition of a quasi ϕ-contraction, Lemma 1.3.84 and the monotonicity
(1.105) of the b-pseudometrics, we have:

dj(x∗, y∗) = dj(f(x∗), f(y∗)) ≤ ϕ(dr(j)(x∗, y∗)) < dr(j)(x∗, y∗)
mon.
≤ dj(x∗, y∗),

for all j ∈ J. The above inequality is obviously a contradiction. Ergo, the uniqueness
of the fixed point is proved, which means that f is a Picard operator.
2) By using (1.117), it results that

dj(xn, xn+p) ≤ b[ϕ0(ϕn(drn(j)(x0, x1))) + bϕ(ϕn(drn+1(j)(x0, x1))) + · · ·+

+ bp−1ϕp−1(ϕn(drn+p−1(j)(x0, x1)))],(1.123)

where n ≥ 0, p ≥ 1.
At this point, we let p→∞ in (1.123), and we get the first required estimate:

dj(xn, x∗) ≤ b · sb(ϕn(drn+k(j)(x0, x1))), n ≥ 0.

Secondly, for n ≥ 1, k ≥ 0, we obtain

dj(xn+k, xn+k+1) = dj(f(xn+k−1), f(xn+k)) ≤ ϕ(dr(j)(xn+k−1, xn+k)).

We obtain by induction the following inequality:

(1.124) dj(xn+k, xn+k+1) ≤ ϕk(dr(j)(xn, xn+1)), n ≥ 1, k ≥ 0.
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Now, by replacing (1.124) in (1.116), we get

dj(xn, xn+p) ≤ b[dj(xn, xn+1) + bϕ(dr(j)(xn, xn+1)) +

+ · · ·+ bp−1ϕp−1(dr(j)(xn, xn+1))],(1.125)

for n ≥ 0, p ≥ 1. After using the monotonicity property for the pseudometrics dj, we
get:

dj(xn, xn+p) ≤ b[dj(xn, xn+1) + bϕ(dj(xn, xn+1)) +

+ · · ·+ bp−1ϕp−1(dj(xn, xn+1))].(1.126)

Letting p→∞ in (1.126) we obtain the second required estimate:

dj(xn, x∗) ≤ b · sb(dj(xn, xn+1)), n ≥ 0.

3) Letting xn := x, the a posteriori estimate (1.113) becomes for an arbitrary x ∈ A :

dj(x, x∗) ≤ b · sb(dj(x, f(x))).

�

In the sequel, our main goal is to verify if a quasi ϕ-contraction fulfills the properties
mentioned in the beginning of this subsection.

Theorem 1.3.148. Assume that X, J,D, r, τ, ϕ and A are as in Theorem 1.3.147.
Let f : A→ A be a quasi ϕ-contraction with ϕ satisfying condition (1.106).
Then f is a good Picard operator.

Proof: For a simpler writing, denote the b-pseudometric db,j with dj, for every
j ∈ J. We may select x0 ∈ A. By using (1.115) from the proof of Theorem 1.3.147, we
get:

(1.127) dj(fn(x0), fn+1(x0)) = dj(xn, xn+1) ≤ ϕn(drn(j)(x0, x1)), n ≥ 0,

Next, we use the definition of a b-pseudometric and we obtain:
∞∑
n=0

dj(fn(x0), fn+1(x0)) ≤
∞∑
n=0

bnϕn(drn(j)(x0, x1)) = sb(drn(j)(x0, x1)).

Finally, according to Lemma 1.3.87 and the inequality ∑
n∈N

d(fn(x), fn+1(x)) < ∞, we
conclude that f is a good Picard operator. �

Theorem 1.3.149. Assume that X, J,D, r, τ, ϕ and A are as in Theorem 1.3.147.
Let f : A→ A be a quasi ϕ-contraction with ϕ satisfying condition (1.106).
Then the fixed point problem for f is well posed.

Proof: For simplicity, denote db,j with dj, for all j ∈ J. Let the sequence {zn}n∈N ⊂
A such that

(1.128) dj(zn, f(zn))→ 0 as n→∞, ∀j ∈ J.
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By (1.114), if we choose x = zn, n ∈ N, we get:

(1.129) dj(zn, x∗) ≤ b · sb(dj(zn, f(zn))), n ∈ N, ∀j ∈ J.

Let us remind that sb is continuous at zero, according to Lemma 1.3.87. Letting n→∞
in (1.129), and combining it with (1.128), we obtain:

dj(zn, x∗)→ 0 as n→∞, ∀j ∈ J.

which means that the fixed point problem for f is well posed. �

Theorem 1.3.150. Assume that X, J,D, r, τ, ϕ and A are as in Theorem 1.3.147.
Let f : A → A be a quasi ϕ-contraction with ϕ satisfying condition (1.106). The
monotonicity property is valid with respect to the b-pseudometrics. If the b-comparison
function ϕ satisfies:

(1.130) ϕ(a1t1 + a2t2) ≤ a1ϕ(t1) + a2ϕ(t2),

for any a1, a2, t1, t2 ∈ R+, then f has the limit shadowing property.

Proof: Let us denote dj instead of db,j, for every j ∈ J. Let us consider the sequence
{zn}n∈N ⊂ A such that

(1.131) dj(zn+1, f(zn))→ 0 as n→∞, ∀j ∈ J.

Let x∗ be the fixed point of f , thus f(x∗) = x∗. For n ≥ 0, we obtain:

(1.132) dj(zn+1, x
∗) ≤ b · dj(zn+1, f(zn)) + b · dj(f(zn), f(x∗)),

for every n ∈ N and for all j ∈ J. Having in view that f is a ϕ-contraction, we obtain:

(1.133) dj(zn+1, x
∗) ≤ b · dj(zn+1, f(zn)) + bϕ(dr(j)(zn, x∗)), n ∈ N,∀j ∈ J.

The monotonicity of the pseudometrics leads to:

(1.134) dj(zn+1, x
∗) ≤ b · dj(zn+1, f(zn)) + bϕ(dj(zn, x∗)), n ∈ N, ∀j ∈ J,

i.e., for n := n− 1 in (1.134), we obtain:

dj(zn, x∗) ≤ b · dj(zn, f(zn−1)) + bϕ(dj(zn−1, x
∗)), n ≥ 1,∀j ∈ J,

which replaced in (1.134), by using (1.130) yields

dj(zn+1, x
∗) ≤ b · dj(zn+1, f(zn)) + b2ϕ(dj(zn, f(zn−1))) + b2ϕ2(dj(zn−1, x

∗)), n ≥ 1.

At this point, we inductively obtain:

dj(zn+1, x
∗) ≤ b · dj(zn+1, f(zn)) + b2ϕ(dj(zn, f(zn−1))) +

+ · · ·+ bn+1ϕn(dj(z1, f(z0))) + bn+2ϕn+1(dj(z0, x
∗)),∀n ≥ 1,∀j ∈ J.
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Thus, we have:

dj(zn+1, x
∗) ≤ b

n∑
k=0

bkϕk(dj(zn−k+1, f(zn−k))) +

+ bn+2ϕn+1(dj(z0, x
∗)), ∀n ≥ 1, ∀j ∈ J.(1.135)

Apply Lemma 1.3.88 with the substitution: an = dj(zn+1, f(zn)). Consequently,

(1.136)
n∑
k=0

bkϕk(dj(zn−k+1, f(zn−k)))→ 0 as n→∞.

For the sake of clarity, we divide the proof, as follows:
Case I: If z0 = x∗, this means bnϕn(dj(z0, x

∗)) = 0→ 0 as n→∞.
Case II: If z0 6= x∗, we have that bnϕn(dj(z0, x

∗))→ 0 as n→∞, according to Lemma
1.3.87. At this point, we let n→∞ in (1.135) and it follows that

(1.137) dj(zn+1, x
∗)→ 0, n→∞.

By using Theorem 1.3.147, we conclude that for any x ∈ A the Picard iteration
{fn(x)}n≥0 converges to x∗. This means that the following inequalities holds:

(1.138) dj(zn+1, f
n(x)) ≤ dj(zn+1, x

∗) + dj(x∗, fn(x)), n ≥ 0

for every x ∈ A. Taking the limit n→∞ in (1.138), we have that

dj(zn+1, f
n(x))→ 0, as n→∞,

which actually means that f has the limit shadowing property. �

The next theorem states and proves the data dependence of the fixed point for
quasi ϕ-contractions on b-pseudometric spaces with ϕ a b-comparison function:

Theorem 1.3.151. Assume that X, J,D, r, τ, ϕ and A are as in Theorem 1.3.147.
Let f : A→ A be a quasi ϕ-contraction with ϕ satisfying condition (1.106). Let x∗ be
the fixed point of f and let g : A→ A be such that:

(1) g has at least one fixed point, denoted by y∗ ∈ Fix(g);
(2) there exists η > 0 such that

(1.139) dj(f(x), g(x)) ≤ η, for any x ∈ A,∀j ∈ J.

Then
dj(x∗, y∗) ≤ b · sb(η),

where sb was introduced in Lemma 1.3.87.

Proof: For simplicity, denote by dj the b-pseudometrics, instead of db,j, ∀j ∈ J.
From 1.114 in Theorem 1.3.147, by using the substitution x := y∗, we obtain:

dj(x∗, y∗) ≤ b · sb(dj(y∗, f(y∗))) = b · sb(dj(g(y∗), f(y∗))).
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Using again Lemma 1.3.87, it follows from that: sb is increasing, which by (1.139)
yields

dj(x∗, y∗) ≤ b · sb(η).

�

3.6. Fixed points of almost local contractions in b-pseudometric spaces

Theorem 1.3.152. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A → A be an
almost local contraction with some constants θ ∈ [0, 1

b
) and L ≥ 0.

Then:

(i) f is a weakly Picard operator;
(ii) If the b-pseudometrics are continuous ∀j ∈ J , then for any x ∈ A the following

error estimates hold:

dj(fn(x), f∞(x)) ≤ bθn

1− bθdj(x, f(x)), n ≥ 1,∀j ∈ J ;(1.140)

dj(fn(x), f∞(x)) ≤ bθ

1− bθdj(f
n−1(x), fn(x)), n ≥ 1,∀j ∈ J,(1.141)

where f∞(x) has been defined in (1.104).

Proof: In order to simplify the proof, denote dj instead of db,j, for every j ∈ J.
(i) In the beginning, we will prove that the operator f has at least one fixed point in
X, i.e., the set of fixed points is nonempty. To this end, we let x0 ∈ A and {xn}n≥0

be the Picard iteration which starts from x0. By using the definition of the Picard
iteration and also the definition of ALC-s, we get:

(1.142) dj(xn, xn+1) = dj(f(xn−1), f(xn)) ≤ θ · dr(j)(xn−1, xn) + Ldr(j)(xn, xn)︸ ︷︷ ︸
=0

,

for all n ∈ N. From that, by using the monotonicity of the b-pseudometrics, we get:
dj(xn, xn+1) ≤ θ · dj(xn−1, xn). We obtain by induction with respect to n:

(1.143) dj(xn, xn+1) ≤ θn · dj(x0, x1), n = 1, 2, · · ·

For n ≥ 0, p ≥ 1 we can write:

dj(xn, xn+p) ≤ b[dj(xn, xn+1) + dj(xn+1, xn+p)] =

= bdj(xn, xn+1) + bdj(xn+1, xn+p) ≤

≤ bdj(xn, xn+1) + b2[dj(xn+1, xn+2) + dj(xn+2, xn+p))] ≤ · · · ≤

≤ bdj(xn, xn+1) + b2dj(xn+1, xn+2) + · · ·+ bpdj(xn+p−1, xn+p).



74 1. SINGLE VALUED SELF ALMOST LOCAL CONTRACTIONS

By (1.143) it follows that:

dj(xn, xn+p) ≤ bθndr(j)(x0, x1) + b2θn+1dr(j)(x0, x1) + · · ·+ bpθn+p−1dr(j)(x0, x1) =

= bθndr(j)(x0, x1)[1 + bθ + (bθ)2 + · · ·+ (bθ)p−1] =

= b · 1− (bθ)p
1− bθ dr(j)(x0, x1) · θn,(1.144)

for n ≥ 0, p ≥ 1.
Remind that θ ∈ [0, 1

b
), with b ≥ 1, it is obvious that 0 ≤ bθ < 1, which yields from

(1.144) the conclusion that {xn}n≥0 is a dj−Cauchy sequence in the b-pseudometric
space. This means that it is convergent with its limit denoted by

(1.145) x∗ = lim
n→∞

xn.

Applying the definition of the b-pseudometric, we get:

dj(x∗, f(x∗)) ≤ b[dj(x∗, f(xn)) + dj(f(xn), f(x∗))].

After using the definition of an almost local contraction and the monotonicity property
(1.105), we obtain from the last inequality:

dj(x∗, f(x∗)) ≤ bdj(x∗, f(xn)) + bθdr(j)(xn, x∗) + bLdr(j)(x∗, f(xn)) ≤

≤ bdj(x∗, f(xn)) + bθdj(xn, x∗) + bLdj(x∗, f(xn)) =

= b(1 + L)dj(x∗, xn+1) + bθdj(xn, x∗), ∀j ∈ J,∀n ∈ N.

Having in view (1.145) and letting n→∞, it results that

dj(x∗, f(x∗)) = 0, ∀j ∈ J,

which means that x∗ is a fixed point of f . Hence f is a weakly Picard operator.
(ii) In the sequel, remind that the b-pseudometric is continuous and 0 ≤ bθ < 1. Letting
p → ∞ in (1.144), we get the a priori error estimate (1.140). By using the induction
in (1.142), we obtain:

(1.146) dj(xn+k, xn+k+1) ≤ θk+1 · drk+1(j)(xn−1, xn),

for any n, k ∈ N, n ≥ 1. The monotonicity of the b-pseudometrics leads to:

(1.147) drk(j)(x, y) ≤ dj(x, y),∀x, y ∈ A,∀j ∈ J,∀k ∈ N.

From that, we can write:

dj(xn, xn+p) ≤ bdj(xn, xn+1) + b2dj(xn+1, xn+2) + · · ·+ bpdj(xn+p−1, xn+p) ≤

≤ bθdj(xn−1, xn) + (bθ)2dj(xn−1, xn) + · · ·+ (bθ)pdj(xn−1, xn) =

= bθ · 1− (bθ)p
1− bθ · dj(xn−1, xn).(1.148)

By applying the continuity of the b-pseudometric and having in view the condition
0 ≤ bθ < 1, it results the a posteriori error estimate if we let p→∞ in (1.148). �
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In the sequel, our main goal is to extend the almost local contractions to the case
of strict almost contractions, as a result of which we get an existence and uniqueness
theorem:

Theorem 1.3.153. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A → A be a
strict almost local contraction with some constants θ ∈ [0, 1

b
) and L ≥ 0, and θu ∈ [0, 1

b
),

Lu ≥ 0, respectively. Assume a uniqueness condition for the mapping f (see [118]),
that is:

(1.149) db,j(Tx, Ty) ≤ θu · db,r(j)(x, y) + Lu · db,r(j)(x, T (x)),∀x, y ∈ A,∀j ∈ J.

Then:

(i) f is a Picard operator;
(ii) If the b-pseudometrics are continuous, then the following error estimates hold:

(1.150) db,j(xn, x∗) ≤
bθn

1− bθdb,j(x0, x1), n ≥ 1,∀j ∈ J ;

(1.151) db,j(xn, x∗) ≤
bθ

1− bθdb,j(xn−1, xn), n ≥ 1,∀j ∈ J ;

(iii) Assume the continuity of the b-pseudometric. The rate of convergence of the
Picard iteration is given by

(1.152) db,j(xn, x∗) ≤ θudb,j(xn−1, x
∗), n ≥ 1, ∀j ∈ J,

where Fix(f) = {x∗}.

Proof: In order to simplify the proof, denote dj instead of db,j, for every j ∈ J. (i)
The first part of the conclusion of the theorem, namely the existence of the fixed point
is assured by Theorem 1.3.152. In order to prove the uniqueness of the fixed point,
suppose that f has two different fixed points x∗, y∗ ∈ A. Then, using the monotonicity
condition (1.26) for the b-pseudometrics and the uniqueness condition (1.149), we can
write that:

dj(f(x∗), f(y∗)) ≤ θudr(j)(x∗, y∗) + Ludr(j)(x∗, f(x∗)) ≤

≤ θudj(x∗, y∗) + Ludj(x∗, f(x∗)),

which means that dj(x∗, y∗) ≤ θudj(x∗, y∗).
As 0 ≤ θu < 1, we get the obvious contradiction dj(x∗, y∗) < dj(x∗, y∗).
It results that Ff = {x∗}, hence f is a Picard operator.
(ii) The a priori and a posteriori estimates (1.150) and (1.151) follow by Theorem
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1.3.152.
(iii) From (1.149) we obtain:

dj(f(x∗), f(xn−1)) ≤ θudr(j)(x∗, xn−1) + Ludr(j)(x∗, f(x∗))

≤ θudj(x∗, xn−1) + Ludj(x∗, f(x∗)),

which means:
dj(xn, x∗) ≤ θudj(xn−1, x

∗), n ≥ 1.

�

We present an example of almost local contraction in b-pseudometric space with
three fixed points:

Example 1.3.154. Let us consider X = {−1, 0, 1} × {−1, 0, 1} ⊂ R2.
Consider the b-pseudometrics:
dj((x1, y1), (x2, y2)) = 0, if x1 = x2;
dj((x1, y1), (x2, y2)) = e−j, if |x1 − x2|=1;
dj((x1, y1), (x2, y2)) = b · e−j, if |x1 − x2| = 2,
where b ≥ 2 and J is a subset of Q.
dj is a pseudometric, but is not a metric, take for example:
dj((1,−1), (1, 0)) = 0, however (1,−1) 6= (1, 0).
In this case, consider the function r(j) = j + 1

3 , where j ∈ J .
Consider T : X → X,

T (x, y) =

 (x,−y) if (x,y) 6= (1, 1)
(0, 0) if (x,y) = (1, 1)

The mapping T is an almost local contraction because:
a) if |x1 − x2|=1 or |x1 − x2|=2, then (1.19) becomes: e−j ≤ θ · e−(j+ 1

3 ) + L · e−(j+ 1
3 ).

For θ = 1
4 , L = 2 ≥ 0 and j ∈ J , the last inequality is true.

b) If |x1 − x2|=0, then (1.19) becomes 0 ≤ 0.
Therefore, T is an almost local b-contraction with three fixed points:

Fix(T ) = {(−1, 0), (0, 0), (1, 0)}.

Next, we will make a comparison to other type of contractive conditions in
b -pseudometric spaces.

Remark 1.3.155. In the beginning of Chapter 1, the various type of almost local
contractions were introduced in a uniform space setting. But in sections 3.4-3.6 the
framework is that of b-pseudometric spaces, starting from the work [104]. Uniform
spaces and pseudometric spaces are intertwined, based on Proposition 1.1.27 and the
subsequent explanations.

The following two lemmas refers to the Ćirić-Reich-Rus almost local contractions.
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Lemma 1.3.156. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a family
of b-pseudometrics defined on X, where J denote a set of indices. Assume the mono-
tonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X and let r be a function from J to J . Let f : A→ A be a Ćirić-Reich-Rus
type almost local contraction, with constants α, β ∈ R+ such that α+ 2bβ < 1. Then f
is an almost local contraction with θ = α+bβ

1−bβ and L = 2bβ
1−bβ .

Proof: In order to simplify the writing, denote dj instead of db,j, for every j ∈ J.
Let f : A→ A be a Ćirić-Reich-Rus type almost local contraction, where A is a subset
of the b-pseudometric space X. Let α, β ∈ R+, α + 2bβ < 1, be such that

(1.153) dj(f(x), f(y)) ≤ αdr(j)(x, y) + β[dr(j)(x, f(x)) + dr(j)(y, f(y))],

for any x, y ∈ A, and for all j ∈ J.
At this point, after using the monotonicity property (1.105), we can write:

dj(f(x), f(y)) ≤ αdr(j)(x, y) + bβdr(j)(x, y) + bβdr(j)(y, f(x)) +

+bβdr(j)(y, f(x)) + bβdj(f(x), f(y)), ∀j ∈ J,

which implies

dj(f(x), f(y)) ≤ α + bβ

1− bβ dr(j)(x, y) + 2bβ
1− bβ dr(j)(y, f(x)),∀j ∈ J,

for every x, y ∈ A, i.e., f satisfies (1.19) with θ = α+bβ
1−bβ ∈ [0, 1) and L = 2bβ

1−bβ ≥ 0. �

Remark 1.3.157. For b = 1 in Lemma 1.3.156, the values from Theorem 1.3.76
are obtained.

Lemma 1.3.158. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a family
of b-pseudometrics defined on X, where J denote a set of indices. Assume the mono-
tonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X and let r be a function from J to J . Let f : A→ A be a Ćirić-Reich-Rus
type almost local contraction, with constants α, β ∈ R+ such that α + b(b+ 1)β < 1.
Then f is a strict almost local contraction with θ = α+bβ

1−bβ and L = 2bβ
1−bβ ≥ 0, and

respectively, θu = α+b2β
1−bβ and Lu = β(b2+1)

1−bβ .

Proof: For a simpler writing, denote dj instead of db,j, for every j ∈ J. As b ≥ 1,
assumption α+ b(b+ 1)β < 1 implies α+ 2bβ < 1, therefore the conclusions of Lemma
1.3.156 holds. Furthermore, according to (1.153), we obtain:

dj(f(x), f(y)) ≤ αdr(j)(x, y) + βdr(j)(x, f(x)) + βdr(j)(f(y), y)
mon.
≤

≤ αdr(j)(x, y) + βdr(j)(x, f(x)) + bβdj(f(y), f(x)) + b2βdr(j)(f(x), x) + b2βdr(j)(x, y),
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for every j ∈ J. Therefore

dj(f(x), f(y)) ≤ α + b2β

1− bβ dr(j)(x, y) + β(b2 + 1)
1− bβ dr(j)(x, f(x)),∀j ∈ J,

for every x, y ∈ A, i.e., f satisfies (1.149) with θu = α+b2β
1−bβ ∈ [0, 1) and Lu = β(b2+1)

1−bβ ,

which means that f is a strict almost local contraction. �

Lemma 1.3.159. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a family
of b-pseudometrics defined on X, where J denote a set of indices. Assume the mono-
tonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X and let r be a function from J to J . Let f : A→ A be a Chatterjea type
almost local contraction with constant c ∈ [0, 1

b(b+1)).
Then f is an almost local contraction with θ = cb2

1−cb and L = c(b2+1)
1−cb .

Proof: For a simpler writing, denote dj instead of db,j, for every j ∈ J. Let A a
subset of the b-pseudometric space X and let f : A → A a Chatterjea type almost
local contraction with c ∈ [0, 1

b(b+1)) such that

(1.154) dj(f(x), f(y)) ≤ c[dr(j)(x, f(y)) + dr(j)(y, f(x))], ∀x, y ∈ A, ∀j ∈ J.

From that, we can write:

dj(f(x), f(y)) ≤ cdj(f(y), x) + cdj(y, f(x))
mon.
≤

≤ cbdj(f(y), f(x)) + cbdr(j)(f(x), x) + cdr(j)(y, f(x)) ≤

≤ cbdj(f(x), f(y)) + cb2dr(j)(x, y) + cb2dr(j)(y, f(x)) + cdr(j)(y, f(x)),

for every j ∈ J. We obtain:

dj(f(x), f(y)) ≤ cb2

1− cbdr(j)(x, y) + c(b2 + 1)
1− cb dr(j)(y, f(x)),∀j ∈ J,

for any x, y ∈ A, that is, f satisfies (1.19) with θ = cb2

1−cb ∈ [0, 1) and
L = c(b2+1)

1−cb ≥ 0. �

Remark 1.3.160. For b = 1 in Lemma 1.3.159, we obtain the conclusion of Theo-
rem 1.3.78.

Lemma 1.3.161. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a family
of b-pseudometrics defined on X, where J denote a set of indices. Assume the mono-
tonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X and let r be a function from J to J . Let f : A→ A be a Chatterjea type
almost local contraction with constant c ∈ [0, 1

b(b+1)).
Then f is a strict almost local contraction with θ = cb2

1−cb and L = c(b2+1)
1−cb and, respec-

tively, θu = cb
1−cb and Lu = 2cb

1−cb .
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Proof: In order to simplify the writing, denote dj instead of db,j, for every j ∈ J.
The conclusions of Lemma 1.3.159 hold and from (1.154) we have that:

dj(f(x), f(y)) ≤ cbdr(j)(x, f(x)) + cbdr(j)(f(x), f(y)) + cbdr(j)(y, x) + cbdr(j)(x, f(x)),

for every j ∈ J. After applying the monotonicity property for the pseudometrics, we
get:

dj(f(x), f(y)) ≤ cbdr(j)(x, f(x)) + cbdj(f(x), f(y)) + cbdr(j)(y, x) + cbdr(j)(x, f(x)),

therefore

dj(f(x), f(y)) ≤ cb

1− cbdr(j)(x, y) + 2cb
1− cbdr(j)(x, f(x)),∀j ∈ J,

for any x, y ∈ A, that is, f satisfies (1.149) with θu = cb
1−cb and Lu = 2cb

1−cb ≥ 0.
Having in view that c ∈ [0, 1

b(b+1)) and b ≥ 1, hence, it results that c < 1
2b , which means

θu ∈ [0, 1). �

Theorem 1.3.162. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Let τ be
the weak topology on X defined by the family D. Consider a nonempty, τ -bounded,
sequentially τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A→
A be a local contraction with constant coefficient of contraction β ∈ [0, 1), satisfying

(1.155) dj(f(x), f(y)) ≤ βdr(j)(x, y), ∀x, y ∈ A, ∀j ∈ J.

Then f is an almost local contraction with constants θ = β and L = 0.

Proof: For a simpler writing, denote dj instead of db,j, for every j ∈ J. The con-
tractive condition 1.155 can be written in the equivalent form:

dj(f(x), f(y)) ≤ βdr(j)(x, y) + 0 · dr(j)(y, f(x)),∀x, y ∈ A, ∀j ∈ J,

which means that f is an almost local contraction satisfying (1.19) with the coefficients
θ = β ∈ [0, 1) and L = 0 ≥ 0. �

Our next goal is to study the case of quasi-almost local contractions.

Lemma 1.3.163. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a family
of b-pseudometrics defined on X, where J denote a set of indices. Assume the mono-
tonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset A ⊂ X and let r be a function from J to J . Let f : A→ A be a quasi-ALC with
constant h ∈ [0, 1

b(b+1)).
Then f is an ALC with constants θ = b2h

1−bh and L = b2h
1−bh .
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Proof: Let f : A→ A be a quasi-ALC with constant h ∈ [0, 1
b(b+1)) such that

(1.156)
dj(f(x), f(y)) ≤ hmax{dr(j)(x, y), dr(j)(x, f(x)), dr(j)(y, f(y)), dr(j)(x, f(y)), dr(j)(y, f(x))}.

for all x, y ∈ A and for every j ∈ J.
For the sake of clarity, we divide the proof into five steps:

I. Mr(j)(x, y) = dj(x, y). We can write

dj(f(x), f(y)) ≤ hdr(j)(x, y).

II. Mr(j)(x, y) = dj(x, f(x)). Then

dj(f(x), f(y)) ≤ hdr(j)(x, f(x)) ≤ hbdr(j)(x, y) + hbdr(j)(y, f(x)),

therefore (1.19) is satisfied with constants θ = hb ∈ [0, 1) and L = hb ≥ 0.
Then, for any x, y ∈ A we can write:

dj(f(x), f(y)) ≤ hdr(j)(x, f(x)) ≤ hbdr(j)(x, f(y)) + hbdr(j)(f(y), f(x)).

After applying the monotonicity property for the family of pseudometrics, we obtain:

dj(f(x), f(y)) ≤ hbdr(j)(x, f(y)) + hbdj(f(x), f(y)).

Thus, we have:

dj(f(x), f(y)) ≤ hb

1− hbdr(j)(x, f(y)),

which means that (1.20) is valid with constants θ = 0 and L = hb
1−hb .

From that, the almost local contraction condition (1.19) becomes:

dj(f(x), f(y)) ≤ 0︸︷︷︸
θ

·dr(j)(x, y) + hb

1− hb︸ ︷︷ ︸
L

dr(j)(x, f(y)),∀x, y ∈ A, ∀j ∈ J.

is verified with:
θ = max{hb, 0} = hb and L = max{hb, hb

1−hb} = hb
1−hb .

III. IfMr(j)(x, y) = dj(y, f(y)), in a similar manner to case II., it results that (1.19)
is fulfilled with θ = hb and L = hb

1−hb .

IV. If Mr(j)(x, y) = dj(x, f(y)), then we can write

dj(f(x), f(y)) ≤ hdr(j)(x, f(y)).

This means that condition (1.20) holds by using the notations: θ = 0 and L = h.

Applying the monotonicity of the b-pseudometrics, it results that

dj(f(x), f(y)) ≤ hdr(j)(x, f(y)) ≤

≤ bhdr(j)(f(y), f(x)) + b2hdr(j)(f(x), y) + b2hdr(j)(y, x)
mon.
≤

≤ bhdj(f(y), f(x)) + b2hdr(j)(f(x), y) + b2hdr(j)(y, x),
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for all j ∈ J, therefore

dj(f(x), f(y)) ≤ b2h

1− hbdr(j)(x, y) + b2h

1− hbdr(j)(y, f(x)).

From that, we may state that for the previously chosen x and y, the ALC (1.19)
condition holds with θ = max{ b2h

1−bh , 0} = b2h
1−bh ∈ [0, 1) and

L = max{h, b2h
1−bh} = b2h

1−bh .

V. Mr(j)(x, y) = dj(y, f(x)). This case is quite similar to case IV.
These five cases lead us to the conclusion that for any x, y ∈ A, the ALC condition
(1.19) is fulfilled with

θ = max
{
h, hb,

b2h

1− bh
}

= b2h

1− bh ∈ [0, 1)

and

L = max
{

0, bh

1− bh,
b2h

1− bh
}

= b2h

1− bh ≥ 0.

�

In the sequel, we shall return to the class of strict ALC-s in b-pseudometric spaces,
in order to study their stability.

Theorem 1.3.164. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A → A be a
strict almost local contraction with constants θ ∈ [0, 1

b
), L ≥ 0 and θu ∈ [0, 1

b
), Lu ≥ 0,

respectively.
Then f is a good Picard operator.

Proof: For a simpler writing, denote dj instead of db,j, for every j ∈ J.
Let x0 ∈ A and {xn}n≥0 be the Picard iteration which starts from x0. If we let
x = x0 ∈ A in the inequality (1.143), we obtain:

∑
n≥0

dj(fn(x), fn+1(x)) =
∑
n≥0

dj(xn, xn+1) = lim
n→∞

n∑
k=0

dj(xk, xk+1) ≤

≤ lim
n→∞

(1 + θ + · · ·+ θn)dj(x0, x1) = lim
n→∞

1− θn+1

1− θ dj(x0, x1).

From that, by using θ ∈ [0, 1) (since b ≥ 1), we obtain
∑
n≥0

dj(fn(x), fn+1(x)) ≤ 1
1− θdj(x0, x1).

Therefore, f is a good Picard operator, according to Definition 1.3.136. �
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Theorem 1.3.165. Assume that X, J,D, r, τ and A are as in Theorem 1.3.164. Let
f : A → A be a strict almost local contraction with constants θ ∈ [0, 1

b
) and L ≥ 0,

θu ∈ [0, 1
b
) and Lu ≥ 0.

Then f is a special Picard operator.

Proof: We showed in Theorem 1.3.153 the following error estimate:

dj(xn, x∗) ≤
bθn

1− bθdj(x0, x1), n ≥ 1,∀j ∈ J.

We let x = x0 ∈ A and we obtain∑
n≥0

dj(fn(x), x∗) = lim
n→∞

n∑
k=0

dj(xk, x∗) ≤

≤ lim
n→∞

n∑
k=0

bθk

1− bθdj(x0, x1) = bdj(x0, x1)
1− bθ lim

n→∞

n∑
k=0

θk,∀j ∈ J.

Consequently,∑
n≥0

dj(fn(x), x∗) = b

(1− bθ)(1− θ)dj(x0, x1) <∞, ∀j ∈ J,

which means that f is a special Picard operator, having in view Definition 1.3.138. �

Theorem 1.3.166. Assume that X, J,D, r, τ and A are as in Theorem 1.3.164. Let
f : A → A be a strict almost local contraction with constants θ ∈ [0, 1

b
) and L ≥ 0,

θu ∈ [0, 1
b
) and Lu ≥ 0.

Then the fixed point problem is well posed.

Proof: We may select yn ∈ A, n ∈ N such that

(1.157) dj(yn, f(yn))→ 0 as n→∞, ∀j ∈ J.

According to Theorem 1.3.153, the operator f admits a unique fixed point, denoted by
x∗ ∈ A.
Since f is an almost local contraction and having in view the definition of a b-pseudometric,
we obtain:

dj(yn, x∗) ≤ bdj(yn, f(yn)) + bdj(f(yn), x∗) =

= bdj(yn, f(yn)) + bdj(f(x∗), f(yn)) ≤

≤ bdj(yn, f(yn)) + bθudj(x∗, yn) + bLudj(x∗, f(x∗)),

for every j ∈ J. From that, we conclude:

dj(yn, x∗) ≤
b

1− bθu
dj(yn, f(yn)), n ≥ 0.

Applying (1.157), we have:
yn → x∗, as n→∞,

which means that the fixed point problem is well posed. �
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Theorem 1.3.167. Assume that X, J,D, r, τ and A are as in Theorem 1.3.164. Let
f : A → A be a strict almost local contraction with constants θ ∈ [0, 1

b
) and L ≥ 0,

θu ∈ [0, 1
b
) and Lu ≥ 0.

Then f has the limit shadowing property.

Proof: Select the point yn ∈ A, n ∈ N such that

(1.158) dj(yn+1, f(yn))→ 0 as n→∞

According to Theorem 1.3.153, the operator f has a unique fixed point, denoted by
x∗ ∈ A. This is actually the limit of the Picard iteration defined by

xn+1 = Txn, n ∈ N,

for any x0 ∈ A. By means of the b-pseudometric definition, we can write:

dj(yn, x∗) ≤ bdj(yn, f(yn−1)) + bdj(f(yn−1), x∗) =

= bdj(yn, f(yn−1)) + bdj(f(x∗), f(yn−1), ∀j ∈ J.

By using the uniqueness condition for almost local contractions, we obtain:

dj(yn, x∗) ≤ bdj(yn, f(yn−1)) + bθudr(j)(yn−1, x
∗) + bLudr(j)(x∗, f(x∗)),

for every j ∈ J. But x∗ is a fixed point of the operator f . Thus, we have:

dj(yn, x∗) ≤ bdj(yn, f(yn−1)) + bθudr(j)(yn−1, x
∗), ∀j ∈ J.

Take the following substitutions: an = dj(yn, x∗), q = bθu, bn = bdj(yn+1, f(yn)),∀j ∈ J.
Note that bθu ∈ [0, 1). We get from (1.158) and by using Lemma 1.2.45:

(1.159) dj(yn, x∗)→ 0, as n→∞, ∀j ∈ J.

Note that x∗ ∈ A is the limit of the Picard iteration:

(1.160) x∗ = lim
n→∞

fn(x0),

for any x0 ∈ A. We obtain that

dj(yn, fn(x0)) ≤ bdj(yn, x∗) + bdj(x∗, fn(x0)), ∀j ∈ J.

By using (1.159) and (1.160), the last inequality leads us to:

dj(yn, fn(x0))→ 0, as n→∞,∀j ∈ J,

which means, according to Definition 1.3.142, that f has the limit shadowing property.
�

In the sequel, we propose to study the data dependence of the fixed point for the
class of strict almost local contractions in b-pseudometric spaces.
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Theorem 1.3.168. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A → A be an
operator as appears in Theorem 1.3.153 and g : A→ A a mapping satisfying:

(i) g has at least one fixed point, denoted by x∗g ∈ Fix(g);
(ii) there exists η > 0 such that

(1.161) dj(f(x), g(x)) ≤ η, ∀x ∈ A, ∀j ∈ J,

Then
dj(x∗f , x∗g) ≤

bη

1− bθu
, ∀j ∈ J,

where x∗f is the unique fixed point of the operator f .

Proof: Theorem 1.3.153 assures a unique fixed point for the operator f . Using the
b-pseudometric property, we get:

dj(x∗f , x∗g) = dj(f(x∗f ), g(x∗g)) ≤ bdj(f(x∗f ), f(x∗g)) + bdj(f(x∗g), g(x∗g)),∀j ∈ J.

By using the uniqueness condition for almost local contractions, the (1.161) inequality,
and the monotonicity property (1.26), it results that

dj(x∗f , x∗g) ≤ bθudr(j)(x∗f , x∗g) + bLudr(j)(x∗f , f(x∗f )) + bη ≤

≤ bθudj(x∗f , x∗g) + bLudj(x∗f , f(x∗f )) + bη, ∀j ∈ J.

It follows that:
dj(x∗f , x∗g) ≤

bη

1− bθu
, ∀j ∈ J.

�

Theorem 1.3.169. Let (X, db,j) be a b-pseudometric space with D = (db,j)j∈J a
family of b-pseudometrics defined on X, where J denote a set of indices. Assume
the monotonicity property (1.105) fulfilled for the b-pseudometrics. Let τ be the weak
topology on X defined by the family D. Consider a nonempty, τ -bounded, sequentially
τ -complete subset A ⊂ X and let r be a function from J to J . Let f : A → A

an operator as appears in Theorem 1.3.153 and the mappings fn : A → A, n ∈ N
satisfying:

(i) the operators fn, n ∈ N are strict almost contractions with constants a ∈ [0, 1
b
),

K ≥ 0 and au ∈ [0, 1
b
), Ku ≥ 0, respectively;

(ii) the sequence of functions {fn} converges uniformly to f as n → ∞, that is, for
every ε > 0, there exists a natural number N such that for all n ≥ N and x ∈ A

dj(fn(x), f(x)) < ε, ∀j ∈ J.
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In other words, fn → f uniformly if and only if limn→∞ dj(fn, f) = 0.
Then x∗n → x∗ as n→∞, where Fix(fn) = {x∗n}, n ∈ N and Fix(f) = {x∗}.

Proof: Applying the definition of the b-pseudometric and the monotonicity prop-
erty for the b-pseudometrics, we can write for any n ∈ N :

dj(x∗n, x∗) = dj(fn(x∗n), f(x∗)) ≤ bdj(fn(x∗n), fn(x∗)) + bdj(fn(x∗), f(x∗)) ≤

≤ bθudr(j)(x∗n, x∗) + bLudr(j)(x∗n, fn(x∗n)) + bdj(fn(x∗), f(x∗)) ≤

≤ bθudj(x∗n, x∗) + bLudj(x∗n, fn(x∗n)) + bdj(fn(x∗), f(x∗)) =

= bθudj(x∗n, x∗) + bdj(fn(x∗), f(x∗)), ∀j ∈ J.

From that, we deduce:

dj(x∗n, x∗) ≤
b

1− bθu
dj(fn(x∗), f(x∗)), ∀j ∈ J.

By using condition ii), letting n→∞, it results that:

dj(x∗n, x∗)→ 0, as n→∞.

�

Remark 1.3.170. The theorems contained in this subsection, enunciated in b-
pseudometric spaces, represent generalizations of results established in [83] regarding
the fixed points in b-metric spaces.



CHAPTER 2

MULTIVALUED ALMOST LOCAL
CONTRACTIONS

1. Multivalued self almost local contractions

The notion of multivalued contraction was first introduced by Nadler in [80].
Let (X, d) be a complete metric space. Denote:

(1) C(X) the family of all nonempty closed subsets of X;
(2) CB(X) the family of all nonempty closed and bounded subsets of X;
(3) P(X) the family of all nonempty subsets of X;
(4) K(X) the collection of all nonempty compact subsets of X.

For A,B ∈ CB(X) and x ∈ X, we consider the following functionals:
D(x,A) = inf{d(x, a) : a ∈ A}, the distance between x and A,
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, the distance between A and B,
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}, the diameter of A and B,
H(A,B) = max {sup{D(a,B) : a ∈ A}, sup{D(b, A) : b ∈ B}}, the Pompeiu-Hausdorff
metric on CB(X) induced by d. In fact, Hausdorff distance is the greatest of all the
distances measured from a point in one set to some point in the other set We know
that CB(X) is a metric space with the Pompeiu-Hausdorff distance function H. It is
also known, that if (X, d) is a complete metric space, then (CB(X),H) is a complete
metric space, too. (Rus [101])
Let P(X) be the family of all nonempty subsets of X and let T : X → P(X) be a
multivalued mapping.

Definition 2.1.171. [80] Let f : X → X be a single-valued mapping and
T : X → CB(X) be a multivalued mapping .

(i) A point x ∈ X is a fixed point of f (resp. T ) if x = fx (resp. x ∈ Tx).
The set of all fixed point of f (resp. T ) is denoted by Fix(f), (resp. Fix(T )).

(ii) A point x ∈ X is a coincidence point of f and T if fx ∈ Tx.
The set of all coincidence points of f and T will be denoted by C(f, T ).

(iii) A point x ∈ X is a common fixed point of f and T if x = fx ∈ Tx.
The set of all common fixed points of f and T is denoted by F (f, T ).

The following lemma can be found in Rus [101]. It is useful for the next theorem.

86
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Lemma 2.1.172. [80] Let (X, d) be a metric space, let A,B ⊂ X and q > 1.
Then, for every a ∈ A, there exists b ∈ B such that

(2.162) d(a, b) ≤ qH(A,B).

Definition 2.1.173. [23] Let (X, d) be a metric space and T : X → P(X) be a
multivalued operator. T is said to be a multivalued almost contraction or a multivalued
(θ, L)-almost contraction if there exist two constants θ ∈ (0, 1), L ≥ 0 such that

(2.163) H(Tx, Ty) ≤ θ · d(x, y) + L ·D(y, Tx), ∀x, y ∈ X.

Remark 2.1.174. Because of the symmetry of the distance d and H, the almost
contraction condition (2.163) includes the following dual one:

(2.164) H(Tx, Ty) ≤ θ · d(x, y) + L ·D(x, Ty), ∀x, y ∈ X.

The following concept was published by Rus [106], respectively Rus et al. [107].

Definition 2.1.175. [106] Let (X, d) be a metric space and T : X → P(X) be
a multivalued operator. T is said to be a multivalued weakly Picard (breafly MWP)
operator if for every x ∈ X and for each y ∈ T (x), there exists a sequence {xn}∞n=0

such that

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ T (xn), for every n = 0, 1, 2, · · · ;
(iii) the sequence {xn}∞n=0 is convergent to a fixed point of T .

If the sequence {xn}∞n=0 satisfy conditions (i) and (ii), then it is called a sequence of
successive approximations of T with the starting point (x, y) or a Picard iteration of T
or a (Picard) orbit of T at the initial point x0.

Theorem 2.1.176. [23] Let (X, d) be a metric space and T : X → P(X) be a
(θ, L)- contraction. Then
(1) Fix(T ) 6= φ,
(2) for any x0 ∈ X, there exists the orbit {xn}∞n=0 of T at the point x0 that converges
to a fixed point u of T , for which the following estimates hold:

(2.165) d(xn, u) ≤ hn

1− hd(x0, x1), n = 0, 1, 2, ...

(2.166) d(xn, u) ≤ h

1− hd(xn−1, xn), n = 1, 2, ...

for a certain constant h < 1.

It is our aim to extend the almost local contractions to the multivalued case. We
need to introduce new concepts and notions in uniform spaces, as follows:
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Definition 2.1.177. Let X be a uniform space, D = (dj)j∈J be a family of pseu-
dometrics on X, where J is a set of indices. Let τ be the weak topology on X defined
by the family D. For A,B ∈ K, x ∈ X denote
Dj(A,B) = inf{dj(a, b) : a ∈ A, b ∈ B, j ∈ J}
δj(A,B) = sup{dj(a, b) : a ∈ A, b ∈ B, j ∈ J};
Dj(x,A) = inf{dj(x, a) : a ∈ A, j ∈ J};
Hj(A,B) = max {sup{Dj(a,B) : a ∈ A}, sup{Dj(b, A) : b ∈ B}},
the Pompeiu-Hausdorff metric on CB(X) induced by dj, ∀j ∈ J.

Lemma 2.1.178. Assume that X, J,D, τ are as in Definition 2.1.177.
If Dj(x,A) = 0, then x ∈ A.

Proof: If inf{dj(x, a) : a ∈ A} = 0, then for every n ∈ N there exists an ∈ A such
that dj(x, an) < 1

n
. This means that the sequence {an} converges to x. The subset A

is assumed to be compact, which means it is closed. It follows that x ∈ A. �

Definition 2.1.179. [25] Let (X, d) be a metric space. A multivalued mapping
T : X → C(X) is said to be continuous at the point p if

lim
n→∞

d(xn, p) = 0 implies lim
n→∞

H(Txn, Tp) = 0.

Observe that in the work of Rhoades (see [93]) instead of H, the author used the
functional D.

Approximate fixed points of multivalued contractions

Definition 2.1.180. [10] A multivalued mapping T : X → P(X) is said to have
the approximate fixed point property provided

(2.167) inf
x∈X

d(x, Tx) = 0,

or, equivalently, for any ε > 0, there exists z ∈ X such that

(2.168) d(z, Tz) ≤ ε,

or, equivalently, for any ε > 0, there exists xε ∈ X such that

(2.169) T (xε) ∩Bε(xε) 6= φ,

where Br(x) denotes a closed ball of radius r centered at x.

Main results
The purpose of the present section is to present the author’s main contributions to
the case of multivalued almost local contractions in uniform spaces, starting from the
multivalued almost contractions. To this end, we will improve a lot the corresponding
results in literature [6], [42], [47], [52], [68], [69], [74], [79] and many others.
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Definition 2.1.181. Let X be a uniform Hausdorff space, D = (dj)j∈J be a family
of pseudometrics on X, where J is a set of indices. Let τ be the weak topology on
X defined by the family D. Consider a nonempty, τ -bounded, sequentially τ -complete
subset S ⊂ X. Let r be a function from J to J. An operator T : S → P(S) is called
a multivalued almost local contraction or multivalued (θ, L)-almost local contraction
related to (D, r) if there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

(2.170) Hj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ S,∀j ∈ J.

The following lemma is useful for the proof of future theorems.

Lemma 2.1.182. Let X be a uniform space, D = (dj)j∈J be a family of pseudomet-
rics on X, where J is a set of indices. Let τ be the weak topology on X defined by the
family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X.
Let A,B ⊂ S and q > 1.
Then, for every j ∈ J and a ∈ A, there exists b ∈ B such that

(2.171) dj(a, b) ≤ qHj(A,B).

Proof: We distinguish two cases:
Case I. If Hj(A,B) = 0, then for every a ∈ A, we have:

Hj(A,B)︸ ︷︷ ︸
=0

≥ Dj(a,B), which implies Dj(a,B) = 0.

From that, we conclude: there exists b ∈ B such that dj(a, b) = 0.
The conclusion (2.171) is valid, since we obtain the obvious inequality 0 ≤ 0.

Case II. If Hj(A,B) > 0, then let us denote

(2.172) ε
not.= (q − 1)︸ ︷︷ ︸

>0

Hj(A,B) > 0.

Using the definition of Hj(A,B) and Dj(a,B), we conclude that for any ε > 0 there
exists b ∈ B such that

(2.173) dj(a, b) ≤ qDj(a,B) + ε ≤ Hj(A,B) + ε.

The last two inequalities imply the conclusion of the lemma. �

Theorem 2.1.183. Let X be a uniform space, D = (dj)j∈J be a family of pseu-
dometrics on X, where J is a set of indices. Assume that the monotonicity property
(1.26) for the pseudometrics is fulfilled. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X.
Let r be a function from J to J. Let T : S → CB(S) be a multivalued ALC.
Then we have:

(1) Fix(T ) 6= φ;
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(2) for any x0 ∈ S, there exists an orbit {xn}∞n=0 of T at the point x0 that converges
to a fixed point u of T , for which the following estimates hold:

(2.174) dj(xn, u) ≤ hn

1− hdj(x0, x1), n = 0, 1, 2, ...

(2.175) dj(xn, u) ≤ h

1− hdj(xn−1, xn), n = 1, 2, ...

for a certain constant h < 1 and for all j ∈ J.

Proof: We consider q > 1, let x0 ∈ X and x1 ∈ Tx0. We distinguish two cases:
Case I. If Hj(Tx0, Tx1) = 0, that means:

(2.176) Dj(x1, Tx1) ≤ Hj(Tx0, Tx1)︸ ︷︷ ︸
=0

,

and that is possible only if Dj(x1, Tx1) = 0. From here, we deduce x1 ∈ Tx1, which
leads us to the conclusion Fix(T ) 6= φ.

Case II. Let Hj(Tx0, Tx1) 6= 0. According to Lemma 2.1.182, there exists x2 ∈ Tx1

such that

(2.177) dj(x1, x2) ≤ qHj(Tx0, Tx1).

By (2.170), we have

dj(x1, x2) ≤ qHj(Tx0, Tx1) ≤

≤ q[θ · dr(j)(x0, x1) + L ·Dr(j)(x1, Tx0)︸ ︷︷ ︸
=0

] = qθ · dr(j)(x0, x1),∀j ∈ J,

since x1 ∈ Tx0.
We take q > 1 such that

h
not.= qθ < 1,

and we obtain dj(x1, x2) < h · dr(j)(x0, x1). By applying the monotonicity of the
pseudometrics, we get: dj(x1, x2) ≤ h · dj(x0, x1), ∀j ∈ J.
If Hj(Tx1, Tx2) = 0 then Dj(x2, Tx2) = 0, that means x2 ∈ Tx2, by using Lemma
2.1.178. Let Hj(Tx1, Tx2) 6= 0. By using repeatedly Lemma 2.1.182, there exists
x3 ∈ Tx2 such that

(2.178) dj(x2, x3) ≤ h · dj(x1, x2), ∀j ∈ J.

We obtain an orbit {xn}∞n=0 of T at the point x0 satisfying

(2.179) dj(xn, xn+1) ≤ h · dj(xn−1, xn),∀j ∈ J, n = 1, 2, ...

By (2.179), we inductively obtain

(2.180) dj(xn, xn+1) ≤ hndj(x0, x1), ∀j ∈ J,
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and, respectively,

(2.181) dj(xn+k, xn+k+1) ≤ hk+1dj(xn−1, xn), k ∈ N,∀j ∈ J.

Using the inequality (2.180), we obtain

(2.182) dj(xn, xn+p) ≤
hn(1− hp)

1− h dj(x0, x1), n, p ∈ N,∀j ∈ J.

Recall 0 < h < 1, condition (2.182) show us that the sequence {xn}n∈N is dj-Cauchy
for each j, which shows that {xn}∞n=0 is a Cauchy sequence. That means {xn}∞n=0 is
convergent with the limit u:

(2.183) u = lim
n→∞

xn.

By applying the definition of Dj, we get:

Dj(u, Tu) ≤ dj(u, v) ≤ dj(u, xn+1) + dj(xn+1, v)︸ ︷︷ ︸
≤Hj(Txn,Tu)

, ∀v ∈ Tu,∀j ∈ J.

The definition of Hj leads to:

Dj(u, Tu) ≤ dj(u, xn+1) +Hj(Txn, Tu),

which, by (2.170) yields

(2.184) Dj(u, Tu) ≤ dj(u, xn+1) + θdr(j)(xn, u) + L ·Dr(j)(u, Txn)︸ ︷︷ ︸
≤dr(j)(u,xn+1)

,∀j ∈ J.

Letting n → ∞ and using the fact that xn+1 ∈ Txn, we obtain Dr(j)(u, Txn) → 0, as
n→∞. By using inequality (2.184), we get:

Dj(u, Tu) = 0, ∀j ∈ J.

Since Tu is closed, this means u ∈ Tu.
We let p→∞ in (2.182) to obtain (2.174). Using the inequality (2.181), we get

(2.185) dj(xn, xn+p) ≤
h(1− hp)

1− h dj(xn−1, xn), p ∈ N, n ≥ 1,∀j ∈ J,

and letting p→∞ in (2.185), we obtain (2.175). �

The next theorem shows that any multivalued almost local contraction is continuous
at the fixed point.

Theorem 2.1.184. Assume that X, J,D, r, τ and S are as in Theorem 2.1.183 and
let T : S → P(S) be a multivalued almost local contraction.
Then T is continuous at p, for any p ∈ Fix(T ).
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Proof: Let {yn}∞n=0 be any sequence in the subset S converging to the fixed point
p. Then by taking y := yn and x := p in the multivalued almost local contraction
condition (2.170), we get

(2.186) Hj(Tp, Tyn) ≤ θ · dr(j)(p, yn) + L ·Dr(j)(yn, Tp), n = 0, 1, 2, ...,∀j ∈ J.

Using the definition of Dj(yn, Tp), we know that:

Dj(yn, Tp) = inf{dj(yn, a) : a ∈ Tp} ≤ Hj(Tp, Tyn).

Take for example a = p ∈ Tp. Now, we have the following inequality:

Dr(j)(yn, Tp) ≤ dr(j)(yn, p), ∀j ∈ J.

The last two inequalities together imply:

Dj(Tyn, Tp) ≤ Hj(Tp, Tyn) ≤

≤ (θ + L) · dr(j)(yn, p), n = 0, 1, 2, ...,∀j ∈ J.(2.187)

Now, by letting n→∞ in (2.187), we get Tyn → Tp as n→∞.
Thus, T is continuous at p. �

Remark 2.1.185. Theorems 2.1.183 and 2.1.184 provide generalizations in uniform
spaces of the results contained in [23] and [25], respectively.

Theorem 2.1.186. Assume that X, J,D, r, τ and S are as in Definition 2.1.181
and let T : S → CB(S) be a generalized multivalued almost local contraction, that is, a
mapping for which there exist θ ∈ (0, 1) and some L ≥ 0 such that
(2.188)
Hj(Tx, Ty) ≤ θdr(j)(x, y)+Lmin{Dr(j)(x, Tx), Dr(j)(y, Ty), Dr(j)(x, Ty), Dr(j)(y, Tx)}, ,

for all j ∈ J and for every x, y ∈ S.
Then Fix(T ) 6= φ and for any p ∈ Fix(T ), T is continuous at p.

Proof: The proof for the existence of the fixed point is very similar to the proof of
Theorem 2.1.183, with minor differences, but it will be presented below:
We consider q > 1, let x0 ∈ X and x1 ∈ Tx0. If Hj(Tx0, Tx1) = 0, that means from
the definition of Dj and Hj:

(2.189) 0 = Hj(Tx0, Tx1) ≥ Dj(x1, Tx1),

and that is possible only if Dj(x1, Tx1) = 0. Thus, we obtain x1 ∈ Tx1, which leads us
to the conclusion Fix(T ) 6= φ.
Let Hj(Tx0, Tx1) 6= 0. According to Lemma 2.1.182, there exists x2 ∈ Tx1 such that

(2.190) dj(x1, x2) ≤ qHj(Tx0, Tx1).
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By (2.188) we have

dj(x1, x2) ≤ q[θ · dr(j)(x0, x1) + L ·Dr(j)(x1, Tx0)] = qθ · dr(j)(x0, x1),

since we have:

min{Dr(j)(x0, Tx0), Dr(j)(x1, Tx1), Dr(j)(x0, Tx1), Dr(j)(x1, Tx0)} = Dr(j)(x1, Tx0) = 0.

By applying the monotonicity of the pseudometrics, we get: dj(x1, x2) ≤ qθ ·dj(x0, x1).
We take q > 1 such that

h
not.= qθ < 1,

and we obtain dj(x1, x2) ≤ h · dj(x0, x1).
If Hj(Tx1, Tx2) = 0, then Dj(x2, Tx2) = 0 (as in the inequality (2.189)). Thus,
x2 ∈ Tx2, by using Lemma 2.1.178.
Let Hj(Tx1, Tx2) 6= 0. Again, by using Lemma 2.1.182, there exists x3 ∈ Tx2 such
that

(2.191) dj(x2, x3) ≤ h · dj(x1, x2),∀j ∈ J.

We obtain an orbit {xn}∞n=0 of T at the point x0 satisfying

(2.192) dj(xn, xn+1) ≤ h · dj(xn−1, xn),∀j ∈ J, n = 1, 2, ...

By (2.192), we inductively obtain

(2.193) dj(xn, xn+1) ≤ hndj(x0, x1),∀j ∈ J,

and, respectively,

(2.194) dj(xn+k, xn+k+1) ≤ hk+1dj(xn−1, xn), k ∈ N, ∀j ∈ J.

Using the inequality (2.193), we obtain

(2.195) dj(xn, xn+p) ≤
hn(1− hp)

1− h dj(x0, x1), n, p ∈ N,∀j ∈ J.

Recalling 0 < h < 1, condition (2.195) shows us that the sequence {xn}n∈N is dj-Cauchy
for each j, which means that {xn}∞n=0 is a Cauchy sequence. Therefore, {xn}∞n=0 is
convergent with the limit u:

(2.196) u = lim
n→∞

xn.

We get for all j ∈ J and for v ∈ Tu :

Dj(u, Tu) ≤ dj(u, v) ≤ dj(u, xn+1) + dj(xn+1, v),∀j ∈ J.

At this point, apply the Definition of the funtional Hj and we obtain:

Dj(u, Tu) ≤ dj(u, xn+1) +Hj(Txn, Tu),∀j ∈ J,
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which, by (2.188), yields

Dj(u, Tu) ≤ dj(u, xn+1) + θdr(j)(xn, u) +

+L ·min{Dr(j)(xn, Txn), Dr(j)(u, Tu), Dr(j)(xn, Tu), Dr(j)(u, Txn)}.︸ ︷︷ ︸
≤Dr(j)(u,Txn)

From that, we deduce:

(2.197) Dj(u, Tu) ≤ dj(u, xn+1) + θdr(j)(xn, u) + L ·Dr(j)(u, Txn),∀j ∈ J.

Letting n → ∞ and using the fact that xn+1 ∈ Txn, we obtain Dr(j)(u, Txn) → 0, as
n→∞. We get

Dr(j)(u, Tu) = 0, ∀j ∈ J.

Since Tu is closed, this implies u ∈ Tu.
Let {yn}∞n=0 be any sequence in the subset S converging to p ∈ Fix(T ). Applying
condition (2.188), by taking y := yn and x := p, we obtain:

Dj(Tp, Tyn) ≤ Hj(Tp, Tyn) ≤ θdr(j)(p, yn), ∀j ∈ J, n = 0, 1, 2, · · · ,

since:

min{Dr(j)(p, Tp), Dr(j)(yn, T yn), Dr(j)(p, Tyn), Dr(j)(yn, Tp)} = Dr(j)(p, Tp) = 0.

We obtain from the last inequality :

(2.198) Dj(Tyn, Tp) ≤ θdr(j)(yn, p), ∀j ∈ J, n = 0, 1, 2, · · ·

If we let n → ∞ in (2.198), we obtain Tyn → Tp, which means that T is continuous
at p. �

In the sequel, we extend the generalized multivalued almost contractions (see [23])
to the more general case of generalized multivalued almost local contractions.

Definition 2.1.187. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X.
Let r be a function from J to J. An operator T : S → P(S) is called a generalized
multivalued (α,L) almost local contraction with respect to (D, r) if, for every j ∈ J ,
there exists a function α : [0,∞) → [0, 1) satisfying lim supr→t+ α(r) < 1 for every
t ∈ [0,∞) such that

Hj(Tx, Ty) ≤ α(dr(j)(x, y)) · dr(j)(x, y) + L ·min
{
Dr(j)(x, Tx),

Dr(j)(y, Ty), Dr(j)(x, Ty), Dr(j)(y, Tx)
}
,∀x, y ∈ S,∀j ∈ J.(2.199)
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Lemma 2.1.188. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined
by the family D. Assume the pseudometrics satisfies the (1.26) monotonicity property.
Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X. Let r be a
function from J to J. Consider the mapping T : S → C(S). Then, for every x ∈ S

with Dj(x, Tx) > 0 and any b ∈ (0, 1), there exists y ∈ Tx, y 6= x, such that

bdr(j)(x, y) ≤ Dj(x, Tx), ∀j ∈ J.

Proof: Having in view that Tx is nonempty and closed, the inequality
Dj(x, Tx) > 0 implies that there exists y ∈ Tx, y 6= x. From the definition of Dj(x, Tx)
we know that, for every ε > 0, there exists y ∈ Tx such that

dr(j)(x, y) ≤ Dj(x, Tx) + ε, ∀j ∈ J.

At this point, by considering ε =
(

1
b
− 1

)
Dj(x, Tx) > 0, we obtain the conclusion of

this lemma. �

Theorem 2.1.189. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X.
Let r be a function from J to J. Consider the operator T : S → C(S) and assume that
the following conditions are fulfilled:

(i) the mapping f : S → R+ f(x) = Dr(j)(x, Tx), x ∈ S is lower semi-continuous;
(ii) there exist L ≥ 0, b ∈ (0, 1) and ϕ : (0,∞)→ [0, b) such that for all t ∈ (0,∞),

(2.200) lim sup
r→t+

ϕ(r) < b,

and for all x ∈ S,∃y ∈ Ixb such that

Dj(y, Ty) ≤ ϕ(dr(j)(x, y)) · dr(j)(x, y) + L ·min{Dr(j)(x, Tx),

Dr(j)(y, Ty), Dr(j)(x, Ty), Dr(j)(y, Tx)},∀j ∈ J,(2.201)

where we denote Ixb = {y ∈ Tx : bdr(j)(x, y) ≤ Dj(x, Tx)}, for all j ∈ J.
Then T has a fixed point.

Proof: If there exists x ∈ S such that Dr(j)(x, Tx) = 0, for every j ∈ J, this means
that x ∈ Tx. Therefore x is a fixed point of T .
Having in view that the range of T is closed, for each b ∈ (0, 1) and any x ∈ X,
satisfying Dr(j)(x, Tx) > 0, ∀j ∈ J . It results by Lemma 2.1.188 that there exists
y ∈ Tx such that y ∈ Ixb , i.e.,

(2.202) bdr(j)(x, y) ≤ Dj(x, Tx), ∀j ∈ J.

Further, suppose that we have y ∈ Ixb , y 6= x, otherwise y = x ∈ Tx is actually a fixed
point of T , which would complete the proof.
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Take x1 ∈ S arbitrary but fixed with Dr(j)(x1, Tx1) > 0, for every j ∈ J. Combining
(2.202) and condition (ii), there exists x2 ∈ Tx1, x2 6= x1, satisfying:

(2.203) bdr(j)(x1, x2) ≤ Dj(x1, Tx1), ∀j ∈ J.

The last inequality can be written, using (2.201) in the equivalent form:

(2.204) Dj(x2, Tx2) ≤ ϕ
(
dr(j)(x1, x2)

)
· dr(j)(x1, x2), where ϕ(dr(j)(x1, x2)) < b,

because Dr(j)(x2, Tx1) = 0.
At this point, (2.203) and (2.204) can be merged as:

Dj(x1, Tx1)−Dj(x2, Tx2) ≥ bdr(j)(x1, x2)− ϕ(dr(j)(x1, x2)) · dr(j)(x1, x2) =

= [b− ϕ(dr(j)(x1, x2))] · dr(j)(x1, x2) > 0,

for every j ∈ J. For the obtained x2, by continuing the construction of the sequence
{xn}, we claim there exists x3 ∈ Tx2, x3 6= x2, satisfying

(2.205) bdr(j)(x2, x3) ≤ Dj(x2, Tx2), ∀j ∈ J,

such that

(2.206) Dj(x3, Tx3) ≤ ϕ
(
dr(j)(x2, x3)

)
· dr(j)(x2, x3), where ϕ(dr(j)(x2, x3)

)
< b.

Again, by (2.205) and (2.206), we get

Dj(x2, Tx2)−Dj(x3, Tx3) ≥ bdr(j)(x2, x3)− ϕ(dr(j)(x2, x3)) · dr(j)(x2, x3) =

= [b− ϕ(dr(j)(x2, x3))] · dr(j)(x2, x3) > 0,∀j ∈ J.

Thus, we obtain

dr(j)(x2, x3) ≤ 1
b
Dj(x2, Tx2) ≤ 1

b
ϕ(dr(j)(x1, x2)) · dr(j)(x1, x2) < dr(j)(x1, x2),

for every j ∈ J. By induction with respect to n > 1, we conclude there exist xn+1 ∈
Txn, xn 6= xn+1, such that

(2.207) bdr(j)(xn, xn+1) ≤ Dj(xn, Txn), ∀j ∈ J,

and, similar to (2.206), satisfying
(2.208)
Dj(xn+1, Txn+1) ≤ ϕ

(
dr(j)(xn, xn+1)

)
· dr(j)(xn, xn+1), where ϕ(dr(j)(xn, xn+1)

)
< b.

By using (2.207) and (2.208), we have

Dj(xn, Txn)−Dj(xn+1, Txn+1) ≥ bdr(j)(xn, xn+1)−

−ϕ(dr(j)(xn, xn+1)) · dr(j)(xn, xn+1) =

= [b− ϕ(dr(j)(xn, xn+1))] · dr(j)(xn, xn+1) > 0,∀j ∈ J,(2.209)

and also, we get:

(2.210) dr(j)(xn, xn+1) < dr(j)(xn, xn−1).
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It is obvious that {Dj(xn, Txn)}n∈N and {dr(j)(xn, xn+1)}n∈N are both decreasing
sequences of positive numbers, which means they are convergent.
By applying (2.200), it results that there exists s ∈ [0, b) such that

(2.211) lim sup
n→∞

ϕ(dr(j)(xn, xn+1)) = s, ∀j ∈ J.

From that, we deduce that there exists n0 ∈ N such that for each b0 ∈ (q, b),

(2.212) ϕ(dr(j)(xn, xn+1)) < b0, ∀n > n0.

Denote a = b− b0, we get from (2.209) the following inequality:

(2.213) Dj(xn, Txn)−Dj(xn+1, Txn+1) ≥ a · dr(j)(xn, xn+1), ∀n > n0.

At this point, we use (2.207), (2.208), (2.212) and we obtain for all n > n0 :

Dj(xn+1, Txn+1) ≤ ϕ(dr(j)(xn, xn+1)) ≤ ϕ(dr(j)(xn, xn+1))
b

·Dr(j)(xn, Txn) ≤

≤ . . . ≤
ϕ(dr(j)(xn, xn+1)) · . . . · ϕ(dr(j)(x1, x2))

bn
·Dr(j)(x1, Tx1) =

= ϕ(dr(j)(xn, xn+1)) · . . . · ϕ(dr(j)(xn0+1, xn0+2))
bn−n0

·

·
ϕ(dr(j)(xn0 , xn0+1)) · . . . · ϕ(dr(j)(x1, x2))

bn0
·Dr(j)(x1, Tx1) <

<

(
b0

b

)n−n0

·
ϕ(dr(j)(xn0 , xn0+1)) · . . . · ϕ(dr(j)(x1, x2))

bn0
·Dr(j)(x1, Tx1),

for every j ∈ J. Note that b0 < b, therefore we have:

lim
n→∞

(
b0

b

)n−n0

= 0,

thus, it follows from the previous inequalities:

lim
n→∞

Dj(xn, Txn) = 0, ∀j ∈ J.

We claim that {xn} is a Cauchy sequence. In order to show that, apply the triangle
inequality and (2.213), for n, p ∈ N, n, p > n0 and we get:

dr(j)(xn, xn+p) ≤
n+p−1∑
j=n

dr(j)(xj, xj+1) ≤ 1
a

n+p−1∑
j=n

[Dr(j)(xj, Txj)−Dr(j)(xj+1, Txj+1)] =

= 1
a

(
Dr(j)(xn, Txn)−Dr(j)(xn+p, Txn+p)

)
,(2.214)

where we denote a = b− b0. Having in view that the sequence of positive real numbers
{Dj(xn, Txn)}n∈N is convergent, it is also a Cauchy sequence, which means that the
sequence {xn}n∈N is dj-Cauchy for each j ∈ J .
As the subset S ⊂ X is assumed to be sequentially τ -complete, there exists x∗ in S
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such that {T nx}n∈N is τ -convergent to x∗. Besides, the sequence {T nx}n∈N converges
with respect to the topology τ to x∗, which implies

0 ≤ Dj(x∗, Tx∗) ≤ lim inf
n→∞

Dj(xn, Txn) = lim
n→∞

Dj(xn, Txn) = 0, ∀j ∈ J.

Using the fact that Tx∗ is closed, we obtain x∗ ∈ Tx∗, i.e., x∗ is a fixed point of T . �

2. Non-self multivalued almost local contractions

In [23], M. Berinde and V. Berinde introduce the non-self multivalued almost con-
tractions in the case of a metric space.

Definition 2.2.190. [23] The notations are the same as in the case of self multi-
valued almost local contractions. Let (X, d) be a metric space and K a nonempty subset
of X.
A mapping T : K → CB(X) is called a multivalued non-self almost contraction if there
exist two constants δ ∈ (0, 1) and L ≥ 0 such that

(2.215) H(Tx, Ty) ≤ δ · d(x, y) + L ·D(y, Tx), ∀x, y ∈ K.

Proposition 2.2.191. [4] Let K be a nonempty closed subset of a convex metric
space X. If x ∈ K and y /∈ K, then there exists a point z ∈ ∂K (the boundary of K)
such that

(2.216) d(x, y) = d(x, z) + d(z, y).

Lemma 2.2.192. [4] Let (X, d) be a metric space and A,B ∈ CB(X). If x ∈ A,
then for each positive number α, there exists y ∈ B, such that

(2.217) d(x, y) ≤ H(A,B) + α.

Fundamental results
We extend Definition 2.2.190 of a non-self multivalued almost contraction to the case
of non-self multivalued almost local contractions in uniform spaces, in order to study
the existence of their fixed points. The main result of this section is represented by
two fixed point theorems for multivalued non-self almost local contractions.

Definition 2.2.193. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset S ⊂ X.
Let r be a function from J to J. Let K a nonempty closed subset of X.
An operator T : K → CB(X) is called a non-self multivalued almost local contraction
with respect to (D, r) if there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

(2.218) Hj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J.
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Definition 2.2.194. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by the
family D. X is called uniform space with the property of convexity if for any two distinct
points x, y ∈ X, there exists z ∈ X such that dj(x, z) + dj(z, y) = dj(x, y), ∀j ∈ J.

Remark 2.2.195. If K is a closed subset of the uniform space X with the property
of convexity, then for every x ∈ K, y /∈ K, there exists a point z ∈ ∂K such that

dj(x, z) + dj(z, y) = dj(x, y), ∀j ∈ J.

Theorem 2.2.196. Let X be a uniform space with the property of convexity, let
D = (dj)j∈J be a family of pseudometrics on X, where J is a set of indices. Let τ
be the weak topology on X defined by the family D. Consider a nonempty, τ -bounded,
sequentially τ -complete subset S ⊂ X. Let r : J → J be a function and let K a
nonempty closed subset of X.
Suppose that T : K → CB(X) is a multivalued almost local contraction, that is,

(2.219) Hj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J,

with θ ∈ (0, 1) and L ≥ 0 such that θ(1 + L) < 1.
Assume the monotonicity property is valid for the pseudometrics:

(2.220) dr(j)(x, y) ≤ dj(x, y), ∀j ∈ J,∀x, y ∈ K,

and also assume that

(2.221) Dr(j)(y, Tx) ≤ Dj(y, Tx) for each j ∈ J,∀x, y ∈ K.

If T satisfies Rothe’s type condition, that is,

(2.222) x ∈ ∂K =⇒ Tx ⊂ K,

then T has a fixed point in K.

Proof: Consider two sequences {xn} and {yn} by constructing them as it follows:
Let x0 ∈ K and y1 ∈ Tx0. If y1 ∈ K, let x1 = y1. If y1 /∈ K, then, according to Remark
2.2.195, there exists x1 ∈ ∂K such that

(2.223) dj(x0, x1) + dj(x1, y1) = dj(x0, y1).

We have x1 ∈ K and using Lemma 2.2.192 with α = θ, we choose y2 ∈ Tx1 such that

(2.224) dj(y1, y2) ≤ Hj(Tx0, Tx1) + θ.

Again, if y2 ∈ K, take x2 = y2. If y2 /∈ K, then there exists x2 ∈ ∂K such that

(2.225) dj(x1, x2) + dj(x2, y2) = dj(x1, y2).
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Therefore, x2 ∈ K, and by Lemma 2.2.192 and α = θ2, we may select y3 ∈ Tx2 such
that

(2.226) dj(y2, y3) ≤ Hj(Tx1, Tx2) + θ2.

Continuing in this way, we construct two sequences {xn} and {yn} such that the fol-
lowing conditions are fulfilled:

(i) yn+1 ∈ Txn,
(ii) dj(yn, yn+1) ≤ Hj(Txn−1, Txn) + θn,
(iii) yn ∈ K ⇒ yn = xn,

(iv) yn 6= xn when yn /∈ K, and then xn ∈ ∂K satisfying the condition

(2.227) dj(xn−1, xn) + dj(xn, yn) = dj(xn−1, yn),

for each n ≥ 1.
Our next goal is to prove that {xn} is a Cauchy sequence. For the simplicity, denote:

P = {xi ∈ {xn} : xi = yi} ,

Q = {xi ∈ {xn} : xi 6= yi}.

It is obvious that if xn ∈ Q, then both xn−1 and xn+1 belong to the set P . We
distinguish three possibilities as it follows:

Case 1. If xn, xn+1 ∈ P , having in view the definition of the set P , we have yn = xn

and yn+1 = xn+1. We obtain

dj(xn, xn+1) = dj(yn, yn+1) ≤ Hj(Txn−1, Txn) + θn ≤

≤ θ · dr(j)(xn−1, xn) + L ·Dr(j)(xn, Txn−1)︸ ︷︷ ︸
=0

+θn ≤

≤ θ · dj(xn−1, xn) + θn,

because yn ∈ Txn−1.

Case 2. If xn ∈ P and xn+1 ∈ Q.
In this case we have yn = xn but yn+1 6= xn+1. We conclude from here:

dj(xn, xn+1) ≤ dj(xn, xn+1) + dj(xn+1, yn+1) = dj(xn, yn+1) = dj(yn, yn+1) ≤

≤ Hj(Txn−1, Txn) + θn ≤

≤ θ · dr(j)(xn−1, xn) + L ·Dr(j)(xn, Txn−1) + θn ≤

≤ θ · dj(xn−1, xn) + θn, ∀j ∈ J.
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Case 3. If xn ∈ Q, xn+1 ∈ P , then yn 6= xn, yn+1 = xn+1, yn−1 = xn−1 and
yn ∈ Txn−1. After simple computations, we get

dj(xn, xn+1) = dj(xn, yn+1) ≤ dj(xn, yn) + dj(yn, yn+1) ≤

≤ dj(xn, yn) +Hj(Txn−1, Txn) + θn ≤

≤ dj(xn, yn) + θ · dr(j)(xn−1, xn) + L ·Dr(j)(xn, Txn−1) + θn,∀j ∈ J.

Since θ < 1, we have

dj(xn, xn+1) ≤ dj(xn, yn) + dj(xn−1, xn) + L ·Dr(j)(xn, Txn−1) + θn =

= dj(xn−1, yn) + L ·Dr(j)(xn, Txn−1) + θn ≤

≤ dj(xn−1, yn) + L ·Dj(xn, Txn−1) + θn ≤

≤ dj(xn−1, yn) + L · dj(xn, yn) + θn =

= dj(xn−1, yn) + L · dj(xn−1, yn)− L · dj(xn−1, xn) + θn ≤

≤ (1 + L)dj(yn−1, yn) + θn ≤

≤ (1 + L)Hj(Txn−2, Txn−1) + (1 + L)θn−1 + θn ≤

≤ (1 + L)θ · dr(j)(xn−2, xn−1) + (1 + L)LDr(j)(xn−1, Txn−2) +

+ (1 + L)θn−1 + θn ≤

≤ (1 + L)θ · dj(xn−2, xn−1) + (1 + L)θn−1 + θn, ∀j ∈ J.

Having in view the condition h = θ(1 + L) < 1, we obtain

(2.228) dj(xn, xn+1) < h · dj(xn−2, xn−1) + h · θn−2 + θn, ∀j ∈ J.

By combining all three cases, we get

(2.229) dj(xn, xn+1) ≤ αdj(xn−1, xn) + αn, ∀j ∈ J,

or the other possibility:

(2.230) dj(xn, xn+1) ≤ αdj(xn−2, xn−1) + αn−1 + αn, ∀j ∈ J,

where

(2.231) α = max{θ, h} = h.

We inductively obtain:

(2.232) dj(xn, xn+1) ≤ h
n−1

2 · ω + h
n
2 , ∀j ∈ J, n ∈ N,

where

(2.233) ω = max{dj(x0, x1), dj(x1, x2)}.
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By taking n > m, we have

dj(xn, xm) ≤ dj(xn, xn−1) + dj(xn−1, xn−2) + · · ·+ dj(xm−1, xm) ≤

≤ (h
n−1

2 + h
n−2

2 + . . . h
m−1

2 )ω +

+αn
2 · n+ α

n−1
2 · (n− 1) + · · ·+ α

m
2 ·m.

These relations show us that the sequence {xn}n∈N is dj-Cauchy for each j ∈ J .
As the subset K is assumed to be sequentially τ -complete, there exists z in K such
that

(2.234) z = lim
n→∞

xn.

From the construction of the sequence {xn}n∈N, we conclude: there is a subsequence
{xp} such that

(2.235) yp = xp ∈ Txp−1.

In what follows, we propose to prove that z ∈ Tz. In fact, by (i), xp ∈ Txp−1. Since
xp → z as p→∞, we have

(2.236) Dj(z, Txp−1)→ 0, as q →∞.

It is easy to see that

Dj(z, Tz) ≤ dj(z, xp) + dj(xp, T z) ≤ dj(z, xp) +Hj(Txp−1, T z) ≤

≤ dj(z, xp) + θ · dr(j)(xp−1, z) + L ·Dr(j)(z, Txp−1)
mon.
≤

≤ dj(z, xp) + θ · dj(xp−1, z) + L ·Dj(z, Txp−1), ∀j ∈ J.

Now, if we let q →∞, implies that Dj(z, Tz) = 0. Thus, we get z ∈ Tz. �

Note that, by Theorem 2.2.196 we obtain a fixed point theorem for multivalued
non-self almost contractions stated in [1] as a particular case by letting r(j) = j,
θ = δ, dj = d, j ∈ J .

Corollar 2.2.197. Assume that X, J,D, r, τ and K are as in Definition 2.2.193
and suppose that T : K → CB(X) is a multivalued contraction, that is,

(2.237) Hj(Tx, Ty) ≤ θ · dr(j)(x, y), ∀x, y ∈ K,

with θ ∈ (0, 1). Further, we assume that the monotonicity property (2.221) is valid.
If T satisfies Rothe’s type condition, that is, x ∈ ∂K =⇒ Tx ⊂ K, then T has a fixed
point in K, which means: there exists z ∈ K such that z ∈ Tz.

Remark 2.2.198. Corollary 2.2.197 represents a particular case of Theorem 2.2.196
by taking L = 0, therefore we skip over the proof.
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Theorem 2.2.199. Let X be a uniform space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset K ⊂ X.
Let r be a function from J to J. Assume the monotonicity property (2.220) satisfied.
The operator T : K → CB(X) satisfies the following contractive condition: for every
x, y ∈ K,

Hj(Tx, Ty) ≤ α · dr(j)(x, y) + β ·max{Dr(j)(x, Tx), Dr(j)(y, Ty)}+

+ γ[Dr(j)(x, Ty) +Dr(j)(y, Tx)], ∀j ∈ J,(2.238)

with α, β, γ ≥ 0 such that p =
(

1+α+γ
1−β−γ

) (
α+β+γ

1−γ

)
< 1.

If T satisfies Rothe’s boundary condition, that is, x ∈ ∂K =⇒ Tx ⊂ K, then T has a
fixed point in K.

Proof: As in the proof of Theorem 2.2.196, consider two sequences {xn} and {yn}
by constructing them step by step as it follows:
Let x0 ∈ K and y1 ∈ Tx0. If y1 ∈ K, let x1 = y1. If y1 /∈ K, then there exists x1 ∈ ∂K
such that

(2.239) dj(x0, x1) + dj(x1, y1) = dj(x0, y1), ∀j ∈ J.

Take y2 ∈ Tx1 and, according to Lemma 2.2.192, we have:

(2.240) dj(x1, y2) ≤ Hj(Tx0, Tx1) + (1− β − γ)ε, ∀j ∈ J,

where ε = p. Again, if y2 ∈ K, let x2 = y2. If y2 /∈ K, then there exists x2 ∈ ∂K such
that

(2.241) dj(x1, x2) + dj(x2, y2) = dj(x1, y2), ∀j ∈ J.

Continuing in this way, we introduce two sequences {xn} and {yn} such that

(i) yn+1 ∈ Txn,
(ii) dj(yn, yn+1) ≤ Hj(Txn−1, Txn) + (1− β − γ)εn,
(iii) xn+1 = yn+1 if yn+1 ∈ K,
(iv) if yn+1 /∈ K, then xn+1 will satisfy condition

(2.242) dj(xn, xn+1) + dj(xn+1, yn+1) = dj(xn, yn+1), ∀j ∈ J.

Our next goal is to prove that {xn} is a Cauchy sequence. Denote:

P = {xi ∈ {xn} : xi = yi} ,

Q = {xi ∈ {xn} : xi 6= yi}.
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We distinguish three cases as it follows:
Case 1. If xn, xn+1 ∈ P , having in view (2.238), we get:

dj(xn, xn+1) ≤ Hj(Txn−1, Txn) + (1− β − γ)εn ≤

≤ α · dr(j)(xn−1, xn) + β ·max{Dr(j)(xn−1, Txn−1), Dr(j)(xn, Txn)}+

+ γ[Dr(j)(xn−1, Txn) +Dr(j)(xn, Txn−1)] + (1− β − γ)εn ≤

≤ α · dr(j)(xn−1, xn) + β ·max
{
dr(j)(xn−1, xn), dr(j)(xn, xn+1)

}
+

+ γdr(j)(xn−1, xn+1) + (1− β − γ)εn ≤

≤ max
{(α + β + γ)dr(j)(xn−1, xn) + (1− β − γ)εn

1− γ ,

,
(α + γ)dr(j)(xn−1, xn) + (1− β − γ)εn

1− β − γ
}
≤

≤ max
{

(α + β + γ)
1− γ ,

α + γ

1− β − γ

}
dr(j)(xn−1, xn) + εn =

= k · dr(j)(xn−1, xn) + εn, ∀j ∈ J.

where we denote k := (α+β+γ)
1−γ .

Case 2. If xn ∈ P , xn+1 ∈ Q, from (2.238), we have:

dj(xn, xn+1) ≤ dj(xn, xn+1) + dj(xn+1, xn+1) = dj(xn, xn+1) + dj(xn+1, yn+1) =

= dj(xn, yn+1) = dj(yn, yn+1) ≤

≤ Hj(Txn−1, Txn) + (1− β − γ)εn ≤

≤ α · dr(j)(xn−1, xn) + β ·max{Dr(j)(xn−1, Txn−1), Dr(j)(xn, Txn)}+

+ γ[Dr(j)(xn−1, Txn) +Dr(j)(xn, Txn−1)] + (1− β − γ)εn ≤

≤ α · dr(j)(xn−1, xn) + β ·max{dr(j)(xn−1, xn), dr(j)(xn, yn+1)}+

+ γdr(j)(xn−1, yn+1) + (1− β − γ)εn, ∀j ∈ J.

We observe that: if in the term of the coefficient β, the maximum is dr(j)(xn−1, xn),
and if the monotonicity condition holds, then we can write:

dj(xn, yn+1) ≤ (α + β + γ)dj(xn−1, xn) + (1− β − γ)εn
1− γ , ∀j ∈ J.

On the other hand, if in the term of the coefficient β, the maximum is dr(j)(xn, yn+1),
and if the monotonicity condition holds, then we get:

dj(xn, yn+1) ≤ (α + γ)dj(xn−1, xn) + (1− β − γ)εn
1− β − γ , ∀j ∈ J.

After analyzing these two cases, we conclude:

(2.243) dj(xn, xn+1) ≤ k · dr(j)(xn−1, xn) + εn, ∀j ∈ J.
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Case 3. If xn ∈ Q, xn+1 ∈ P , then yn 6= xn, yn+1 = xn+1, yn−1 = xn−1 and yn ∈ Txn−1.

After using (2.238), by applying case 2, we get:

dj(xn, xn+1) = dj(xn, yn+1) ≤ dj(xn, yn) + dj(yn, xn+1︸ ︷︷ ︸
=yn+1

) ≤

≤ dj(xn, yn) +Hj(Txn−1, Txn) + (1− β − γ)εn ≤

≤ dj(xn−1, yn) + α · dj(xn−1, xn) + β ·max{Dr(j)(xn−1, Txn−1), Dr(j)(xn, Txn)}+

+ γ[Dr(j)(xn−1, Txn) +Dr(j)(xn, Txn−1)] + (1− β − γ)εn ≤

≤ dj(xn−1, yn) + α · dj(xn−1, xn) + β ·max{dr(j)(xn−1, yn), dr(j)(xn, xn+1)}+

+ γ[dr(j)(xn−1, xn+1) + dr(j)(xn, yn)] + (1− β − γ)εn, ∀j ∈ J.

According to the triangle inequality, and the definition of sets P,Q, we can write:

dj(xn−1, xn+1) + dj(xn, yn) ≤ dj(xn−1, xn) + dj(xn, xn+1) + dj(xn, yn) =

= dj(xn−1, yn) + dj(xn, xn+1), ∀j ∈ J.

Therefore

dj(xn, xn+1) ≤ max
{(1 + α + β + γ)dr(j)(xn−1, yn) + (1− β − γ)εn

1− γ ,

(1 + α + γ)dr(j)(xn−1, yn) + (1− β − γ)εn
1− β − γ

}
≤

≤ max
{

(1 + α + β + γ)
1− γ ,

(1 + α + γ)
1− β − γ

}
dr(j)(xn−1, yn) + εn ≤

≤ 1 + α + γ

1− β − γ · dr(j)(xn−1, yn) + εn ≤

≤ p · dj(xn−2, xn−1) + (1 + α + γ)εn−1

1− β − γ + εn, ∀j ∈ J.

After that step, it results by induction with respect to n, that:

dj(x2n, x2n+1) ≤ pn
(
ω + 3n

1− β − γ

)
, ∀j ∈ J,

and also results the following inequality:

dj(x2n+1, x2n+2) ≤ p
2n+1

2

(
ω + 3n+ 1

1− β − γ

)
, ∀j ∈ J,

where we denoted
ω = max{dj(x0, x1), dj(x1, x2)}.

The last two inequalities let us to conclude that for any m > n,

dj(xm, xn) ≤
m−1∑
i=n

dj(xi, xi+1) ≤ ω
m−1∑
i=n

p
i
2 + 1

1− β − γ

m−1∑
i=n

p
i
2 (3i+ 1),∀j ∈ J,

which means that {xn}n∈N is dj-Cauchy for each j ∈ J .
As the subset K is assumed to be sequentially τ -complete, {xn}n∈N is convergent with
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the limit z. We can always choose a subsequence {xnk
}n∈N such that xnk

= ynk
.

From that, it follows:

Dj(xnk
, T z) ≤ Hj(Txnk−1, T z) ≤

≤ αdr(j)(xnk−1, z) + βmax{Dr(j)(xnk−1, Txnk−1), Dr(j)(z, Tz)}+

+ γ[Dr(j)(xnk−1, T z) +Dr(j)(z, Txnk−1)] ≤

≤ αdr(j)(xnk−1, z) + βmax{dr(j)(xnk−1, xnk
), Dr(j)(z, Tz)}+

+ γ[Dr(j)(xnk−1, T z) + dr(j)(z, xnk
)], ∀j ∈ J.

Now, if we let k →∞, we obtain Dj(z, Tz) ≤ (β + γ)Dj(z, Tz), i.e., z ∈ Tz.
Thus, T has the fixed point z. �

Remark 2.2.200. By Corollary 2.2.197, in the particular case r(j) = j, dj = d,∀j ∈
J , where d is a regular metric on the complete convex metric space X, we obtain a fixed
point theorem for multivalued non-self contractions stated by Assad and Kirk in [4]. By
working in uniform spaces, the results of this section extend some theorems from [4],
[23], [47], [69], [93] and [107].



CHAPTER 3

NON-SELF SINGLE VALUED ALMOST LOCAL
CONTRACTIONS

1. Preliminaries

In this chapter, the notion of non-self single valued almost local contractions in real
vector spaces is considered. In this framework some new fixed point results are given.
Let X be a real vector space and denote by J a family of indices. Let r be a function
from J to J . Let D = (dj)j∈J be a family of pseudometrics defined on X. Let τ be
the weak topology on X defined by the family D. Consider a nonempty, closed subset
K ⊂ X. Let T : K → X a non-self single valued almost local contraction, that is a
mapping satisfying (1.19).
If x ∈ K is verifying Tx /∈ K, then we can always choose an y ∈ ∂K such that
y = (1− λ)x+ λ · Tx, for some 0 < λ < 1, which actually means that

(3.244) dj(x, Tx) = dj(x, y) + dj(y, Tx), y ∈ ∂K.

Denote by Y the set of points y satisfying condition (3.244). It is possible that the set
Y to contain more than one element.

Remark 3.1.201. In fact, the existence of y ∈ ∂K is guaranteed by the extension
of Proposition 2.2.191 to the case of pseudometrics dj,∀j ∈ J instead of the metrics d,
namely:

Proposition 3.1.202. Let X be a real vector space, D = (dj)j∈J be a family of
pseudometrics on X, where J is a set of indices. Let τ be the weak topology on X

defined by the family D. Consider a nonempty, closed subset K ⊂ X. If x ∈ K and
y /∈ K, then there exists a point z ∈ ∂K such that

(3.245) dj(x, y) = dj(x, z) + dj(z, y), ∀j ∈ J.

In order to establish new fixed point results, we will use the following concept from
[28]:

Definition 3.1.203. [28] Let X be a Banach space and let K a nonempty closed
subset of X, T : K → X a non-self mapping. Let x ∈ K with Tx /∈ K and let y ∈ ∂K
be the corresponding elements given by (3.244). If, for any such elements x, we have

(3.246) d(y, Ty) ≤ d(x, Tx),
107
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for at least one of the corresponding y ∈ Y , then we say that T has property (M).

In the sequel, we leave the usual metric space in favor of a pseudometric space,
adding the new definition of property (M).

Definition 3.1.204. Let X be a real vector space, D = (dj)j∈J be a family of
pseudometrics on X, where J is a set of indices. Let τ be the weak topology on X defined
by the family D. Consider a nonempty, closed subset K ⊂ X and let T : K → X be a
non-self mapping. For every j ∈ J, let xj ∈ K with Txj /∈ K and let yj ∈ ∂K be the
corresponding elements given by

(3.247) dj(x, Tx) = dj(x, y) + dj(y, Tx), yj ∈ ∂K,∀j ∈ J.

If, for the aforementioned elements xj, we have

(3.248) dj(y, Ty) ≤ dj(x, Tx),

for at least one of the corresponding yj ∈ Y , then we say that T has property (M).

Example 3.1.205. Consider X = [1, 2] ∪ {4} with the usual norm, let
K = {1, 2, 4} ⊂ X and take the non-self mapping T : K → X, defined by

T (x) =

 0 if x ∈ {1, 2}
1
3 if x = 4

The only value x ∈ K with Tx /∈ K is represented by x = 4 and its corresponding set
is Y = {2}, having in view that (3.244) need to be fulfilled. We have:

d(y, Ty) = d(2, 0) = |2− 0| = 2,

d(x, Tx) = d
(

4, 1
3

)
=
∣∣∣∣4− 1

3

∣∣∣∣ = 11
3 .

Obviously, (3.246) holds, therefore T has property (M).

Very recently, Rus, I.A. and Şerban, M.A published their work (see [108]), regarding
the non-self operators.

Definition 3.1.206. [108] Let (X, d) be a metric space, Y ∈ C(X) and
f : Y → X be a continuous non-self operator. The maximal displacement functional
corresponding to f represents the functional Ef : P(Y )→ R+ ∪ {+∞} defined by

(3.249) Ef (A) := sup{d(x, f(x))| x ∈ A},

where P(X) and C(X) was defined at the beginning of chapter 2.
Then

(i) A,B ∈ P (Y ), A ⊂ B implies Ef (A) ≤ Ef (B),
(ii) Ef (A) = Ef

(
A
)
, for all A ∈ P (Y ).
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Definition 3.1.207. [108] Let (X, d) be a metric space, Y ∈ C(X).
An operator f : Y → X is called α-graphic contraction if there exists 0 ≤ α < 1 such
that x ∈ Y, f(x) ∈ Y imply

(3.250) d(f 2(x), f(x)) ≤ α · d(x, f(x)).

2. Main results

The next theorem states and proves the existence of a fixed point for non-self single
valued ALC in uniform spaces.

Theorem 3.2.208. Let X be a real vector space, D = (dj)j∈J be a family of pseudo-
metrics on X, where J is a set of indices. Let τ be the weak topology on X defined by
the family D and let r be a function from J to J. Consider a nonempty, closed subset
K ⊂ X. Let T : K → X a non-self single valued almost local contraction, that is, a
mapping for which there exist the constants θ ∈ (0, 1) and L ≥ 0 such that

(3.251) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J.

Assume that
lim
n→∞

θn+1diamrn+1(j)(K) = 0, ∀j ∈ J

and also assume that the monotonicity property (1.26) for the pseudometrics is valid.
If T has property (M) and fulfills Rothe’s boundary condition, then T has a fixed point
in K.

Proof: If T (K) ⊂ K, then T is, in fact, a self mapping on the closed set K and
the conclusion follows by Theorem 1.1.33 for X = K. It is natural to consider the case
T (K) 6⊂ K. Let x0 ∈ ∂K. Using (2.222), we know that Tx0 ∈ K. Define a sequence
{xn}n∈N in the following way:
Let x1 = Tx0. If Tx1 ∈ K, set x2 = Tx1. If Tx1 6∈ K, we may select an element
x2 ∈ ∂K, such that

x2 = (1− λ)x1 + λTx1, for some 0 < λ < 1.

The terms of the sequence {xn} defined this way are satisfying one of the following
properties:
(i) xn = Txn−1, if Txn−1 ∈ K,
(ii) xn = (1− λ)xn−1 + λTxn−1 ∈ ∂K, (0 < λ < 1), if Txn−1 6∈ K.

By introducing the following notations, we will simplify our proof:

P = {xk ∈ {xn} : xk = Txk−1},

Q = {xk ∈ {xn} : xk 6= Txk−1}.

It is obvious that {xn} ⊂ K and also, if xk ∈ Q, then both xk−1 and xk+1 belong to the
set P . Moreover, according to (2.222), we cannot have two consecutive terms of {xn}
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in the set Q (but it is possible to have two consecutive terms of {xn} in the set P ).
The strategy is to prove that {xn} is a τ -Cauchy sequence.
To this end, we must discuss three different cases:
Case I. xn, xn+1 ∈ P ,
Case II. xn ∈ P , xn+1 ∈ Q,
Case III. xn ∈ Q, xn+1 ∈ P .

Case I. xn, xn+1 ∈ P . Having in view the definition of the set P , we have xn = Txn−1

and xn+1 = Txn. By (3.251) we get

dj(xn+1, xn) = dj(Txn, Txn−1) = dj(Txn−1, Txn) ≤ θ·dr(j)(xn, xn−1)+L·dr(j)(xn, Txn−1)︸ ︷︷ ︸
=0

,

for all j ∈ J. Therefore

(3.252) dj(xn+1, xn) ≤ θ · dr(j)(xn, xn−1), ∀j ∈ J.

Case II. xn ∈ P , xn+1 ∈ Q.
In this case we have xn = Txn−1 but xn+1 6= Txn. By applying Proposition 3.1.202 for
x := xn ∈ K, Txn /∈ K, we can choose y := xn+1 ∈ ∂K such that

dj(xn, xn+1) + dj(xn+1, Txn) = dj(xn, Txn), ∀j ∈ J.

That means

dj(xn, xn+1) ≤ dj(xn, Txn) = dj(Txn−1, Txn), ∀j ∈ J,

and by using (3.251), we get

dj(xn, xn+1) ≤ dj(Txn−1, Txn) ≤ θ·dr(j)(xn, xn−1)+L·dr(j)(xn, Txn−1)︸ ︷︷ ︸
=0

= θ·dr(j)(xn, xn−1),

which yields again inequality (3.252).
Case III. xn ∈ Q, xn+1 ∈ P .

In this case, we have xn+1 = Txn and xn−1 ∈ P . The mapping T has property (M),
this means:

(3.253) dj(xn, xn+1) = dj(xn, Txn) ≤ dj(xn−1, Txn−1), ∀j ∈ J.

Taking into account that xn−1 ∈ P , we have xn−1 = Txn−2 and by (3.251) we get

dj(Txn−2, Txn−1) ≤ θ · dr(j)(xn−2, xn−1) + L · dr(j)(xn−1, Txn−2) = θ · dr(j)(xn−2, xn−1),

for every j ∈ J. From that, by combining the last inequality with (3.253), we obtain

(3.254) dj(xn, xn+1) ≤ θ · dr(j)(xn−2, xn−1).

At this point, after analyzing all three cases, and using (3.252), (3.254), and the mono-
tonicity property for the pseudometrics, it follows that the sequence {xn} verifies the
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inequality:

dj(xn, xn+1) ≤ θ ·max{dr(j)(xn−2, xn−1), dr(j)(xn−1, xn)} ≤

≤ θ ·max{dj(xn−2, xn−1), dj(xn−1, xn)},(3.255)

for all n ≥ 2, for each j ∈ J. Now, by induction with respect to n ≥ 2 we obtain from
(3.255):

dj(xn, xn+1) ≤ θ[n/2] ·max{dj(x0, x1), dj(x1, x2)}, ∀j ∈ J,

where [n/2] denotes the greatest integer not exceeding n/2.
Moreover, for m > n > N ,

dj(xn, xm) ≤
∞∑
i=N

dj(xi, xi−1) ≤ 2 · θ
[N/2]

1− θ ·max{dj(x0, x1), dj(x1, x2)},∀j ∈ J.

The last inequality means that {xn} is Cauchy sequence with respect to the topology
τ. Note that {xn} ⊂ K and K is closed, thus {xn} converges to some point in K.
Denote

(3.256) x∗ = lim
n→∞

xn,

and let {xnk
} ⊂ P , be an infinite subsequence of {xn} denoted for simplicity also by

{xn}. It is clear that such a subsequence always exists.
Using the triangle inequality and the definition of P , we get:

dj(x∗, Tx∗) ≤ dj(x∗, xn+1) + dj(xn+1, Tx
∗) = dj(xn+1, x

∗) + dj(Txn, Tx∗),

for all j ∈ J. Using (3.251), we obtain

dj(Txn, Tx∗) ≤ θ · dr(j)(xn, x∗) + L · dr(j)(x∗, Txn),∀j ∈ J,

and hence
(3.257)
dj(x∗, Tx∗) ≤ dj(x∗, Txn)+dj(Txn, Tx∗) ≤ dj(xn+1, x

∗)+θ·dr(j)(xn, x∗)+L·dr(j)(x∗, Txn),

for all n ≥ 0 and for every j ∈ J. Letting n→∞ in (3.257), we get the final conclusion
for our proof, i.e.,

dj(x∗, Tx∗) = 0, ∀j ∈ J,

which shows that x∗ is a fixed point of T . �

Remark 3.2.209. Theorem 3.2.208 is a generalisation of result established in [28]
in the particular case of a Banach space X, obtained for a non-self almost contraction.

The following theorem assures the uniqueness of the fixed point for a non-self almost
local contraction.
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Theorem 3.2.210. Let X be a real vector space, D = (dj)j∈J be a family of pseu-
dometrics on X, where J is a set of indices. Let τ be the weak topology on X defined
by the family D. Let r be a function from J to J. Consider a nonempty, closed subset
K ⊂ X and let T : K → X be a non-self mapping. Let T : K → X be a non-self al-
most local contraction with constants θ1 ∈ (0, 1) and L1 ≥ 0. Assume that an additional
condition holds:

(3.258) (U) lim
n→∞

(θ1 + L1)ndiamrn(j)(z,K) = 0,∀z ∈ K, ∀j ∈ J.

If T has property (M) and satisfies Rothe’s boundary condition, then T has a unique
fixed point in K.

Remark 3.2.211. The proof is quite similar to the case of single valued self almost
local contractions (see Theorem 1.1.36), therefore we skip over the proof. In fact,
Theorem 3.2.210 is a generalisation of the uniqueness theorem [28] for non-self almost
contractions in Banach spaces.

Starting from the work of Rus-Şerban [108], involving the α-graphic contractions,
our main aim is to extend that notion to the more general case of non-self single valued
almost local contractions in the framework of a real vector space.

Definition 3.2.212. Let X be a real vector space, D = (dj)j∈J be a family of
pseudometrics on X, where J is a set of indices. Let τ be the weak topology on X

defined by the family D and let r be a function from J to J. Consider a nonempty,
closed subset K ⊂ X. An operator T : K → X is called α-graphic local contraction if
there exists 0 ≤ α < 1 such that x ∈ K, f(x) ∈ K imply

(3.259) dj(T 2x, Tx) ≤ αdr(j)(x, Tx), ∀j ∈ J.

In the sequel, we study several types of non-self almost local contractions, in order
to establish if they are α-graphic local contractions.

Theorem 3.2.213. Assume that X, J,D, r, τ and K are as in Definition 3.2.212 and
assume the monotonicity property (1.26) is valid for the pseudometrics. Let T : K → X

be a non-self Ćirić-Reich-Rus operator, that is, a mapping for which there exist the
constants δ, L ∈ R+ with δ + 2L < 1 such that

(3.260) dj(Tx, Ty) ≤ δ · dr(j)(x, y) + L · [dr(j)(x, Tx) + dr(j)(y, Ty)],∀j ∈ J,

for all x, y ∈ K. Then T is a non-self α-graphic local contraction with α = δ+L
1−L .

Proof: Let x ∈ K such that Tx ∈ K. The subset K is nonempty and closed,
therefore such an x ∈ K always exists. If we replace y := Tx in the last inequality,
after applying the monotonicity property (1.26) for the pseudometrics, we can write:

dj(Tx, T 2x) ≤ δ · dr(j)(x, Tx) + L · [dr(j)(x, Tx) + dr(j)(Tx, T 2x)] ≤

≤ δ · dr(j)(x, Tx) + L · [dr(j)(x, Tx) + dj(Tx, T 2x)],
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which implies:
dj(Tx, T 2x) ≤ δ + L

1− L · dr(j)(x, Tx), ∀j ∈ J.

�

Theorem 3.2.214. Assume that X, J,D, r, τ and K are as in Definition 3.2.212 and
assume the monotonicity property (1.26) is valid for the pseudometrics. Let T : K → X

be a non-self almost local contraction, that is, a mapping for which there exist the
constants θ ∈ (0, 1) and L ≥ 0 such that

dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J.

Then T is a non-self α-graphic local contraction with α = θ.

Proof: Let x ∈ K such that Tx ∈ K. We use the definition of an almost local
contraction, that is,

dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J,

with θ ∈ (0, 1) and L ≥ 0. Again, we apply the same substitution, y := Tx and we
obtain:

dj(Tx, T 2x) ≤ θ · dr(j)(x, Tx) + L · dr(j)(Tx, Tx),∀x, y ∈ K, ∀j ∈ J.

From that, we conclude:

dj(Tx, T 2x) ≤ θ · dr(j)(x, Tx), ∀x, y ∈ K, ∀j ∈ J,

which shows that T is a non-self α-graphic local contraction with α = θ. �

Remark 3.2.215. A non-self generalized almost local contraction is also a non-self
α-graphic local contraction with constant α = θ. In the definition of a generalized ALC,
that is, a mapping satisfying

dj(Tx, Ty) ≤ θ · dr(j)(x, y) +

+L ·min{dr(j)(x, Tx), dr(j)(y, Ty), dr(j)(x, Ty), dr(j)(y, Tx)},

for all x, y ∈ K and for every j ∈ J, if we repeat the substitution y := Tx, we obtain
exactly the same inequality as in the case of non-self almost local contraction:

dj(Tx, T 2x) ≤ θ · dr(j)(x, Tx), ∀x, y ∈ K, ∀j ∈ J.

Thus, T is a non-self α-graphic local contraction with constant α = θ.

Definition 3.2.216. Assume that X, J,D, r, τ and K are as in Definition 3.2.212,
the operator T : K → X is called non-self generalized Berinde type almost local contrac-
tion with respect (D, r) if there exist a constant θ ∈ (0, 1) and a function b : K → [0,∞)
such that

(3.261) dj(Tx, Ty) ≤ θ · dr(j)(x, y) + b(y) · dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J.
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Theorem 3.2.217. A non-self generalized Berinde type almost local contraction is
a non-self α-graphic local contraction with constant α = θ.

Proof: Let x ∈ K such that Tx ∈ K. After applying in (3.261) the substitution
y := Tx, we get:

dj(Tx, T 2x) ≤ θ · dr(j)(x, Tx) + b(y) · dr(j)(Tx, Tx),∀x, y ∈ K, ∀j ∈ J.

From that, we can write:

dj(Tx, T 2x) ≤ θ · dr(j)(x, Tx),∀x, y ∈ K, ∀j ∈ J,

which shows that T is a non-self α-graphic local contraction with α = θ. �

Theorem 3.2.218. Assume that X, J,D, r, τ and K are as in Definition 3.2.212 and
assume the monotonicity property (1.26) is valid for the pseudometrics. Let T : K → X

be a non-self Chatterjea type almost local contraction, that is, a mapping T : K → X

for which there exists a constant 0 ≤ c < 1
2 such that

(3.262) dj(Tx, Ty) ≤ c · [dr(j)(x, Ty) + dr(j)(y, Tx)],∀x, y ∈ K, ∀j ∈ J.

Then T is a non-self α-graphic local contraction with α = c
1−c .

Proof: Let x ∈ K such that Tx ∈ K. We use (3.262), and after applying the
substitution y := Tx, by using the triangle inequality, and the monotonicity property,
we get:

dj(Tx, T 2x) ≤ c · [dr(j)(x, T 2x) + dr(j)(Tx, Tx)] ≤

≤ c · [dr(j)(x, Tx) + dr(j)(Tx, T 2x)]
mon.
≤

≤ c · [dr(j)(x, Tx) + dj(Tx, T 2x)], ∀j ∈ J.

From that, we conclude:

dj(Tx, T 2x) ≤ c

1− cdr(j)(x, Tx), ∀j ∈ J,

which means that T is a non-self α-graphic local contraction with α = c
1−c . �

Example 3.2.219. Let X be the set of reals with the usual metric, K = [0, 1] and
let T : K → X be defined by Tx = − 1

10 , if x = 9
10 , and Tx = x

x+1 , if x 6=
9
10 . We choose

the identity function r(j) = j.
T verifies condition (3.246), because T has property (M), T is discontinuous at 9

10 ,
the unique fixed point of T is 0, and T is continuous at 0. T has property (M). If
x = 9

10 ∈ K, Tx = − 1
10 6∈ K, then using the condition (3.246) we have

∣∣∣ y
y+1

∣∣∣ ≤ 1.
This is valid for both y ∈ {0, 1}, so y ∈ ∂K. However, T is not satisfying the ALC
condition.Taking for example x 6= 9

10 and y = x
x+1 in (1.19) to get, for any x > 0,

dj(Tx, Ty) = dj
( x

x+ 1
)

=
∣∣∣ x2

(x+ 1)(2x+ 1)
∣∣∣; dj(x, y) =

∣∣∣ x2

(x+ 1)
∣∣∣; dj(y, Tx) = 0.
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By replacing these distances in (1.19), we get the equivalent form: 1
2x+1 ≤ θ < 1, x > 0.

If we take now x→ 0 in the last double inequality, we obtain a contradiction:

1 ≤ θ < 1.

Remark 3.2.220. Theorems 3.2.213, 3.2.214, 3.2.217, 3.2.218 represent general-
izations of results established in [108] regarding the α-graphic contractions in metric
spaces.



CHAPTER 4

APPLICATION OF ALMOST LOCAL
CONTRACTIONS IN DYNAMIC

PROGRAMMING

1. Preliminaries

Dynamic programming represents the foundation stone in economic analysis.
Economic problems that require a succession of decisions are determined by the fact
that a decision that is adopted in a certain period has both an immediate and a long-
term economic effect, influencing the other stages. The optimization of sequential
processes is obtained by the methods of a relatively recently established mathematical
theory which is called dynamic programming. One of the pioneers of this theory is
Richard Bellman, and his fundamental work is Dynamic Programming published in
1957 [11]. Dynamic programming has a wide field of application in operational research
(production organization, equipment renewal, inventory management), as well as in
other fields (reverse connection processes, cosmic navigation, etc.).

A certain sequence of decisions is a policy and the one we are interested in is the
optimal policy, for example the one that leads to a minimum total cost of the process.

We distinguish two main types of sequential processes:

a) deterministic dynamic programming, when at each stage the process is completely
controlled by the decision we take;

b) stochastic dynamic programming (or Markov decision processes), when the evolution
of the process takes place under the double influence of decisions and chance.

Optimal policy is that sequence of decisions that optimizes the process as a whole,
being a deterministic process. In the case of a stochastic process, the notion of optimal
strategy is used appropriately. Dynamic processes can be continuous or discrete. An
example of a discrete process is the following: an enterprise must draw up its annual
supply plan for a particular material; 12 periods (months) are considered and for
each period the quantity to be supplied is established, so that for the whole year a
minimum total cost results. Discrete dynamic processes can have a limited horizon (in
the example above 12 periods) or unlimited.

The purpose of this chapter is to study dynamic programming (shortly DP) prob-
lems setting as reduced form models. Starting from the work of Martin-da-Rocha and
Vailakis (2010) (see [76]), Rincón-Zapatero, Rodriguez-Palmero (2003) (see [94]) and

116
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also Matkowski-Nowak (see [78]) it is our aim to extend their results and to obtain
new ones. We intend to illustrate the use of local almost contractions in order to solve
the Bellman equation in both the deterministic and stochastic case.

Throughout the first part of this chapter we recall some important concepts and
results from Matkowski-Nowak [78] and Rincón-Zapatero [94], as follows:

X will denote a topological space such that

(4.263) X =
∞⋃
j=1

Kj,

with {Kj} an increasing sequence (in the sense of inclusion) of compact subsets of
X. Denote by C(X) the set of all real-valued, continuous functions over X. In the
sequel, 0 denotes the function ϕ such that ϕ(x) = 0 for all x ∈ X. We will introduce a
countable family of pseudometrics, as follows:

(4.264) dj(f, g) := max
x∈Kj

|f(x)− g(x)|, j ∈ N,∀f, g ∈ C(X).

Definition 4.1.221. [94] The set A ⊆ C(X) is said to be bounded if there exist a
sequence {mj},mj <∞, such that dj(φ,0) ≤ mj, for all φ ∈ A and all j ∈ N.

Note that: if the set A contains an unbounded function φ, then the sequence {mj}
also need to be unbounded.

• We introduce a seminorm on F (X), as follows from the work of Matkowski
[78]. Let F (X) be a vector space of functions ϕ : X → R.
The aforementioned seminorm on F (X) is defined by

||ϕ||j := sup
x∈Kj

|ϕ(x)|, ϕ ∈ F (X).

We assume that the set of all operators ϕ ∈ F (X) endowed with the seminorm
‖ · ‖j is a Banach space.
• If c > 1 and m = {mj} is an increasing unbounded sequence of positive real
numbers, denote by Fm(X) the set of all operators ϕ ∈ F (X) such that

(4.265)
∞∑
j=1

‖ϕ‖j
mjcj

<∞.

Observe that Fm(X) is a vector space.
• The operator ‖ · ‖ : Fm(X)→ R defined by

(4.266) ‖ϕ‖ :=
∞∑
j=1

‖ϕ‖j
mjcj

is a complete norm on Fm(X), which means that (Fm(X), ‖ · ‖) is a Banach
space.
• Denote by

(4.267) Fmb(X) := {ϕ ∈ F (X) : ‖ϕ‖j ≤ mj, for all j ∈ N},
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which is a closed subset of Fm(X).

Definition 4.1.222. [78] Take k ∈ {0, 1}. An operator T : Fm(X) → F (X) is
called k-local contraction relative to the subset A ⊆ Fm(X), if there exists a coefficient
β ∈ [0, 1) such that

‖Tϕ− Tψ‖j ≤ β‖ϕ− ψ‖j+k ∀ϕ, ψ ∈ A, j ∈ N.

Remark 4.1.223. It is obvious that a 0-local contraction is also a 1-local contrac-
tion.

2. Main results

a) Deterministic dynamic programming

First, we present some concepts and notations.

Definition 4.2.224. [94] The dynamic optimization problem consists in solving
the following maximization problem:

v∗(x0) = max
{xj+1}∞j=0

∞∑
j=0

βjU(xj, xj+1)

xj+1 ∈ Γ(xj) (j = 0, 1, 2, ...)(4.268)

x0 ∈ X fixed,

where:
- X is a subset of Rl,
- Γ : X → P(X) is the technological correspondence giving the set of admissible actions
from any x ∈ X, where P(X) denote the set of all nonempty subsets of X,
- U : Graph(Γ)→ R represents the return function, where
Graph(Γ) = {(x, y) ∈ X ×X : y ∈ Γ(x)}.
- β ∈ (0, 1) is the discounting factor,
- v∗ : X → R v∗ is the value function which describes the best possible value of the
objective, as a function of the state x
- v∗(x0) is the optimal value as a function of the initial condition x0.

At this point, consider the space Z = X ×X × · · · = XN (the set of all sequences
with terms from X). Then we define the operator Π : X → Z by

Π(x0) =
{
x̃ = (xj) = (x0, x1, · · · ) ∈ Z | xj+1 ∈ Γ(xj), j = 0, 1, · · ·

}
, x0 ∈ X.

For every x̃ ∈ Π(x0), let

S(x̃) =
∞∑
j=0

βjU(xj, xj+1)

be the total discounted returns. The following assumptions are frequently used in
dynamic programming:
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(DP1) Γ is nonempty, continuous and compact valued.
(DP2) U : Graph(Γ)→ R is continuous.

Next, we state the maximum theorem of Berge, which will be used in future demon-
strations or argumentations:

Theorem 4.2.225. [32] Let Θ and X be two metric spaces, Γ : Θ⇒ X a compact-
valued correspondence, and f : X ×Θ→ R a continuous function. Define

f ∗(θ) = max
x∈Γ(θ)

f(x, θ)

and

Γ∗(θ) = arg max
x∈Γ(θ)

f(x, θ),

where we denote

arg max
x∈Γ(θ)

f(x, θ) = {x|x ∈ Γ(θ) for all b ∈ Γ(θ) : f(x, b) ≤ f(x, θ)}.

If Γ is continuous at θ ∈ Θ, then f ∗ : Θ → R is continuous at θ and Γ∗ : Θ ⇒ X is
compact-valued and upper hemicontinuous at θ.

Definition 4.2.226. [94] Let V be the set of functions from X to [−∞,∞). The
Bellman operator B on V is defined by

(4.269) Bf(x) = max
y∈Γ(x)

(
U(x, y) + βf(y)

)
, x ∈ X, f ∈ V.

Remark 4.2.227. The hypotheses (DP1) and (DP2) enable us to apply Berge’s
Theorem of the maximum, therefore the Bellman operator is well defined on the space
of continuous functions on X.

The Bellman equation, according to Rincón-Zapatero [94], is:

(4.270) Bf = f.

A solution of the Bellman equation and the value function v∗ are closely connected.
Stokey, Lucas and Prescott [112] have proved that:

• A fixed point of the Bellman operator is the value function of the maximization
problem (4.268) and conversely:
• the value function is a solution for the Bellman equation, in case of an upper
semicontinuous and finite value function.

The Bellman operator possesses various properties, according to [67], [94], [112], such
as:

(1) B is monotone increasing;
(2) for every α > 0 we have B(f + α) = Bf + αβ;
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(3) If the foolowing conditions hold:
a) the technological correspondence Γ is monotone increasing, that is,
x1 < x2 implies Γ(x1) ⊆ Γ(x2),
b) for y ∈ X fixed, U is strictly monotone increasing, that is,
x1 < x2 implies U(x1, y) < U(x2, y),
then Bf is also strictly monotone increasing: Bf(x1) < Bf(x2) if x1 < x2.

In the sequel, we consider the metric dR, the usual metric on the real axis. By using
this metric, we obtain a family of semidistances (seminorms) {dj} on C(X), defined as

(4.271) dj(f, g) = max
x∈Kj

|f(x)− g(x)| = ‖f − g‖Kj
(dj(f,0) = ‖f‖Kj

)

Consider the metric d:
d(f, g) =

∞∑
j=1

2−j
‖f − g‖Kj

1 + ‖f − g‖Kj

.

The following theorem was proved by Rincón-Zapatero and Rodriguez-Palmero in [94]:

Theorem 4.2.228. [94] Let B be a Bellman operator satisfying (DP1) and (DP2)
so that there exists a countable increasing sequence {Kj} of nonempty and compact
subsets of X with X = ⋃

jKj satisfying Γ(Kj) ⊆ Kj for all j ∈ N.
Then the following conditions hold:

(a) The Bellman equation has a unique solution f̂ on C(X). Furthermore, f̂ satisfies

‖f̂‖Kj
≤
‖Ψ‖Kj

1− β , Ψ ∈ C(X), j ∈ N.

(b) The value function v∗ is continuous and coincides with the fixed point f̂ .
(c) For any f ∈ C(X), Bnf → v∗ as n→∞.

Next, we extend the concept of k-local contractions to the more general case of
k-almost local contractions (breafly k-ALC). To this end, we apply the basic idea of
Matkowski-Nowak (see [78]).

Definition 4.2.229. Let X be a nonempty set. Denote by {Kj} a strictly increasing
sequence (in the sense of inclusion) of subsets of X and assume that

X =
∞⋃
j=1

Kj.

If c > 1 and m = {mj} is an increasing unbounded sequence of positive real numbers,
denote by Fm(X) the set of all operators ϕ ∈ F (X) such that

(4.272)
∞∑
j=1

‖ϕ‖j
mjcj

<∞

The operator ‖ · ‖ : Fm(X)→ R defined by

(4.273) ‖ϕ‖ :=
∞∑
j=1

‖ϕ‖j
mjcj
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is a complete norm on Fm(X), which means that (Fm(X), ‖ · ‖) is a Banach space.
Denote by

(4.274) Fmb(X) := {ϕ ∈ F (X) : ‖ϕ‖j ≤ mj, for all j ∈ N},

which is a closed subset of Fm(X). Let A ⊆ Fm(X). The operator T : Fm(X)→ F (X)
is called k-almost local contraction, with k ∈ {0, 1}, relative to the subset A if there
exist the constants β ∈ [0, 1) and L ≥ 0 such that

(4.275) ‖Tϕ− Tψ‖j ≤ β‖ϕ− ψ‖j+k + L‖ψ − Tϕ‖j+k ∀, ϕ, ψ ∈ A, j ∈ N.

In the following, our main goal is to find the conditions of existence for the fixed
points on Fm(X) (defined in (4.265)) for a 0 − ALC, although the operator T need
not be a contraction on the metric generated by the family of seminorms. Proposition
4.2.230 below proves that a 0 − ALC is an almost contraction relative to a subset of
Fm(X).

Proposition 4.2.230. Assume all conditions from Definition 4.2.229 hold.
a) Let T : Fm(X) → F (X) be a 0 − ALC relative to A = Fm(X) with the constants
β, L ∈ [0, 1). Then for each ϕ, ψ ∈ A we have:

(4.276) ‖Tϕ− Tψ‖ ≤ β‖ϕ− ψ‖+ L‖ψ − Tϕ‖, ∀, ϕ, ψ ∈ A.

If T0 ∈ Fm(X), then T maps Fm(X) into itself. Furthermore, T has a fixed point
ϕ∗ ∈ Fm(X).
If, in addition to the hypothesis, we suppose that

(4.277) ‖Tϕ− Tψ‖j ≤ β‖ϕ− ψ‖j + L‖ϕ− Tϕ‖j ∀, ϕ, ψ ∈ A, j ∈ N,

then the fixed point is unique.
b) If we add the conditions

‖T0‖j ≤ (1− β − L) ·mj, ∀j ∈ N

β + L < 1,(4.278)

then T maps Fmb(X) into itself, i.e., T : Fmb(X)→ Fmb(X).

Proof: a) Let ϕ, ψ ∈ A. Apply (4.266) and (4.276), and we obtain:

‖Tϕ− Tψ‖ =
∞∑
j=1

‖Tϕ− Tψ‖j
mjcj

≤
∞∑
j=1

β‖ϕ− ψ‖j + L‖ψ − Tϕ‖j
mjcj

=

=
∞∑
j=1

β‖ϕ− ψ‖j
mjcj

+
∞∑
j=1

L‖ψ − Tϕ‖j
mjcj

=

= β‖ϕ− ψ‖+ L‖ψ − Tϕ‖, ϕ, ψ ∈ A.
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Observe that, for all ϕ ∈ Fm(X), we can write:

‖Tϕ‖ = ‖Tϕ− T0 + T0‖ ≤ ‖Tϕ− T0‖+ ‖T0‖ ≤

≤ β‖ϕ− 0‖+ L‖0− Tϕ‖+ ‖T0‖ =

= β‖ϕ‖+ L‖Tϕ‖+ ‖T0‖.

After rearranging the terms, we obtain:

(1− L)‖Tϕ‖ ≤ β‖ϕ‖+ ‖T0‖.

From that, by dividing with 1− L > 0, we get

‖Tϕ‖ ≤ β

1− L
∥∥∥ϕ∥∥∥+ 1

1− L
∥∥∥T0

∥∥∥, ϕ ∈ A.

Having in view that ϕ ∈ Fm(X) and also T0 ∈ Fm(X), it results that T maps Fm(X)
into itself, because the seminorm is finite in Fm(X), which yields:

‖Tϕ‖ <∞.

Observe that, according to (4.276), the operator T is an almost contraction. The
existence of a fixed point is guaranteed by the existence of the fixed points for almost
contractions. Thus, T admits a fixed point ϕ∗ ∈ Fm(X).
Moreover, since (4.277) is valid, it follows:

‖Tϕ− Tψ‖ =
∞∑
j=1

‖Tϕ− Tψ‖j
mjcj

≤
∞∑
j=1

β‖ϕ− ψ‖j + L‖ϕ− Tϕ‖j
mjcj

=

=
∞∑
j=1

β‖ϕ− ψ‖j
mjcj

+
∞∑
j=1

L‖ϕ− Tϕ‖j
mjcj

=

= β‖ϕ− ψ‖+ L‖ϕ− Tϕ‖, ϕ, ψ ∈ A.

In fact, we found the uniqueness condition (0.11) for the fixed point of an almost
contraction. Therefore, the fixed point is unique.

b) For the desired conclusion, suppose that for every j ∈ N and every ϕ ∈ Fmb(X),
conditions (4.278) are fulfilled. Then

‖Tϕ‖j ≤ ‖Tϕ− T0‖j + ‖T0‖j ≤ β‖ϕ− 0‖j + L‖0− Tϕ‖j + ‖T0‖j =

= β ‖ϕ‖j︸ ︷︷ ︸
≤mj

+L‖Tϕ‖j + ‖T0‖j, ϕ ∈ A.

Once again, after rearranging the terms in a proper order, we can write:

(1− L) · ‖Tϕ‖j ≤ β ·mj + (1− β − L) ·mj.

It is easy to see:
(1− L) · ‖Tϕ‖j ≤ (1− L) ·mj, ϕ, ψ ∈ A.

Note that as L ∈ [0, 1), we have from the last inequality:

‖Tϕ‖j ≤ mj,
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which means that T : Fmb(X)→ Fmb(X). �

Remark 4.2.231. Condition β + L < 1 is compulsory in the hypothesis of Propo-
sition 4.2.230, otherwise ‖T0‖j︸ ︷︷ ︸

≥0

≤ (1− β − L)︸ ︷︷ ︸
<0

mj would lead to a contradiction.

Proposition 4.2.232. Assume all conditions from Definition 4.2.229 are valid. Let
T : Fm(X)→ F (X) be a 1− ALC relative to A = Fm(X). Denote

(4.279) ζ := βc · sup
{mj+1

mj

, j ∈ N
}
, ξ := Lc · sup

{mj+1

mj

, j ∈ N
}

and suppose that there exists c > 1 such that ζ < 1. Then T : A → A is an almost
contraction, having the contraction coefficients 0 < ζ < 1, 0 < ξ < 1 and with the fixed
point ϕ∗ ∈ A. If, in addition to the hypothesis, we suppose that

(4.280) ‖Tϕ− Tψ‖j ≤ β‖ϕ− ψ‖j+1 + L‖ϕ− Tϕ‖j+1 ∀, ϕ, ψ ∈ A, j ∈ N,

then the fixed point is unique.

Proof: Select ϕ, ψ ∈ A. Then we have:

‖Tϕ− Tψ‖ =
∞∑
j=1

c−j
‖Tϕ− Tψ‖j

mj

(4.275)︷︸︸︷
≤

∞∑
j=1

βc−j
‖ϕ− ψ‖j+1

mj

+
∞∑
j=1

Lc−j
‖ψ − Tϕ‖j+1

mj

=

=
∞∑
j=1

(
βc
mj+1

mj

)
c−j−1‖ϕ− ψ‖j+1

mj+1
+
∞∑
j=1

(
Lc
mj+1

mj

)
c−j−1‖ψ − Tϕ‖j+1

mj+1
≤

≤ ζ
∞∑
j=1

‖ϕ− ψ‖j+1

mj+1cj+1 + ξ
∞∑
j=1

‖ψ − Tϕ‖j+1

mj+1cj+1 = ζ‖ϕ− ψ‖+ ξ‖ψ − Tϕ‖,

for every ϕ, ψ ∈ A. Hence, T is an almost contraction with the fixed point ϕ∗ ∈ A.
The uniqueness condition (4.280) lead us to the uniqueness condition of an almost
contraction. The proof is very similar to that used in Proposition 4.2.230:

‖Tϕ− Tψ‖ =
∞∑
j=1

c−j
‖Tϕ− Tψ‖j

mj

(4.275)︷︸︸︷
≤

∞∑
j=1

βc−j
‖ϕ− ψ‖j+1

mj

+
∞∑
j=1

Lc−j
‖ϕ− Tϕ‖j+1

mj

=

=
∞∑
j=1

(
βc
mj+1

mj

)
c−j−1‖ϕ− ψ‖j+1

mj+1
+
∞∑
j=1

(
Lc
mj+1

mj

)
c−j−1‖ϕ− Tϕ‖j+1

mj+1
≤

≤ ζ
∞∑
j=1

‖ϕ− ψ‖j+1

mj+1cj+1 + ξ
∞∑
j=1

‖ϕ− Tϕ‖j+1

mj+1cj+1 = ζ‖ϕ− ψ‖+ ξ‖ϕ− Tϕ‖,

for every ϕ, ψ ∈ A.
This way, the uniqueness of the fixed point for an 1-almost local contraction is proved.

�

Starting from Theorem 4.2.228, we present some other properties of the Bellman
operator which are very important.
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Theorem 4.2.233. Let B be the Bellman operator satisfying (DP1) and (DP2) such
that there exists a countable increasing sequence {Kj} of nonempty , compact subsets
of X with (4.263) fulfilled and Γ(Kj) ⊆ Kj for each j ∈ N.
Then

(a) ‖Bf − f‖Kj
≤ ‖f − Bg‖Kj

+ β · ‖f − g‖Kj
, for all f, g ∈ C(X);

(b) ‖Bf − g‖Kj
≤ ‖Bg − g‖Kj

+ β · ‖f − g‖Kj
, for all f, g ∈ C(X);

(c) ‖Bf − f‖Kj
≤ ‖Bg − g‖Kj

+ (β + 1) · ‖f − g‖Kj
, for all f, g ∈ C(X).

Proof: (a) Use the well known inequality x− y ≤ |x− y|,∀x, y ∈ R. If we replace
the real numbers f(x) and f(y) instead of x, y, we obtain: f(x) ≤ f(y) + |f(x)−f(y)|,
for every x, y ∈ X, ∀f, g ∈ C(X). By using the definition of the Bellman operator, we
get:

Bf(x) = max
y∈Γ(x)

(
U(x, y) + βf(y)

)
≤

≤ max
y∈Γ(x)

(
U(x, y) + βg(y) + β max

y∈Γ(Kj)
|f(y)− g(y)|

)
=

= max
y∈Γ(x)

Bg(x) + β max
y∈Γ(Kj)

|f(y)− g(y)|,∀x ∈ X, f, g ∈ C(X).

We obtain

(4.281) Bf(x) ≤ Bg(x) + β max
y∈Γ(Kj)

|f(y)− g(y)|,∀x ∈ X, f, g ∈ C(X).

Changing the roles of f and g and having in view that Γ(Kj) ⊆ Kj, we deduce

(4.282) ‖Bf − Bg‖Kj
≤ β max

y∈Γ(Kj)
|f(y)− g(y)| ≤ β‖f − g‖Kj

, ∀x ∈ X, f, g ∈ C(X).

The last inequality means that the Bellman operator is a 0-local contraction.
Consequently, by (4.281), we obtain:

(4.283) Bf − f ≤ Bg − f + β max
y∈Γ(Kj)

|f(y)− g(y)|, ∀x ∈ X, f, g ∈ C(X).

Hence, we can write: ‖Bf − f‖Kj
≤ ‖f − Bg‖Kj

+ β · ‖f − g‖Kj
, for all f, g ∈ C(X).

(b) The conclusion is immediate from (4.281), since we have:

Bf − g ≤ Bg − g + β max
y∈Γ(Kj)

|f(y)− g(y)|,∀x ∈ X, f, g ∈ C(X),

which implies in a similar way as in the beginning of the proof:

‖Bf − g‖Kj
≤ ‖Bg − g‖Kj

+ β · ‖f − g‖Kj
,

for all f, g ∈ C(X).
(c) The inequality (4.281) implies that:

(4.284) Bf(x) ≤ Bg(x) + β‖f − g‖Kj
,∀x ∈ X, f, g ∈ C(X).

The last inequality implies:

Bf(x) ≤ Bg(x) + f(x)− f(x) + g(x)− g(x) + β‖f − g‖Kj
.
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We obtain:

Bf − f ≤ Bg − g + β‖f − g‖+ ‖f − g‖.

Therefore, we have ‖Bf − f‖ ≤ ‖Bg − g‖+ (β + 1)‖f − g‖, for all f, g ∈ C(X). �

Remark 4.2.234. • By introducing a new operator Λ := B − I (I being the
identity mapping), we can reformulate (c) from Theorem 4.2.233 as follows:

(4.285) ‖Λf‖ ≤ ‖Λg‖+ (β + 1)‖f − g‖,∀f, g ∈ C(X).

• Theorem 4.2.233 brings some improvements to the study of the Bellman op-
erator in the deterministic case, by providing new properties of that operator.
These results will open a window to study them in the context of dynamic
programming.
• In order to illustrate the strong connection between the almost local contrac-
tions studied in Chapter 1 and the k-almost local contractions from Chapter
4, note that Examples 1.2.49, 1.3.98, 1.3.67 and 1.3.127 provide early exam-
ples of 1-almost local contractions, since they all have in common the function
r : J → J , r(j) = j+ 1,∀j ∈ J. Also, observe that a 0-almost local contraction
is, in fact, an almost contraction with many examples in the literature.

b) Stochastic dynamic programming

The theory of dynamic programming with uncountable state space begins with the
essential work of Blackwell (see [33]). His results were extended in a large number of
directions, with important applications in economy, operations and engineering. In fact,
the theory of stochastic optimal growth lies in the framework of dynamic programming.
In the beginning of this subsection, we present some preliminary concepts from [78].

Definition 4.2.235. [78] Let us consider (X,Σ) a measurable space and Y a sep-
arable metric space equipped with the Borel σ-algebra. Let S be the family of nonempty
subsets of Y . The mapping B : X → S is said to be (weakly) measurable if

B−1(D) := {x ∈ X : B(x) ∩D 6= Φ} ∈ Σ,

for every open set D ⊂ Y.

In the sequel, let X be a metric space and let B a set-valued mapping defined
on X. Then B is called continuous if B−1(D) is closed for every closed set D ⊂ Y

and open for every open set D ⊂ Y. Obviously, a continuous set-valued mapping B is
measurable if Σ is the Borel σ-algebra on X. Note that every measurable mapping B
with nonempty compact values B(x) for all x ∈ X admits a measurable selector, see
[75].
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Let B : X → S be a measurable compact set-valued mapping, where S represents the
family of nonempty subsets of Y . Denote

(4.286) C := {(x, a) : x ∈ X, a ∈ B(x)}.

According to Himmelberg’s work [62], C is a measurable subset of X × Y equipped
with the product σ-algebra.

Proposition 4.2.236. [78] Let us consider the set defined in (4.286). Let h : C →
R be a measurable function such that the correspondence a→ h(x, a) is continuous on
B(x), for every x ∈ X. Then

h∗(x) := max
a∈B(x)

h(x, a)

is measurable and, also, we can find a measurable operator g∗ : X → Y such that

g∗(x) ∈ arg max
a∈B(x)

h(x, a),

for all x ∈ X, where we denote

arg max
a∈B(x)

h(x, a) = {x|x ∈ B(x) for all b ∈ B(x) : h(x, b) ≤ h(x, a)}.

Following [78], the discrete-time Markov decision process includes the following
objects: X, Y, u, q, β, {A(x)}x∈X such that:

M1: X represents the state space endowed with a σ-algebra Σ.
M2: Y is called the space of actions of the decision maker, which is actually a separable

metric space. For every x ∈ X, the compact subset A(x) ⊂ Y indicates the set of
all actions available in state x ∈ X. The set C is defined according to (4.286).

M3: u : C → R represents the (product) measurable instantaneous return function.
M4: q indicates a transition probability from C to X, termed the law of motion among

states.
M5: The coefficient β ∈ (0, 1) represents the discount factor.

The sequence π = {πt} is a policy, where πt is a measurable mapping which realize
a connection between an action at ∈ A(st) and any admissible history of the process st.
The set of all policies will be denoted by Π. Our work is focused on non-randomized
policies, because they are adequate to study the discounted models. We define the
expected discounted return over an infinite future as:

(4.287) J(x,Π) := Eπ
x

( ∞∑
t=1

βt−1u(xt, at)
)
,

for each initial state x1 = x and any policy π ∈ Π. In that equality, Eπ
x indicates

the expectation operator regarding to the unique conditional probability measure P π
x

defined by π and the transition probability q stated by the Ionescu Tulcea Theorem
(see [63]). In the sequel, we assume that the expected returns (4.287) are well-defined.
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In the following, we add some regularity assumptions regarding the return and
transition probability functions:
(R1): Let X be a metric space and Kj a strictly increasing family of compact sets such

that

(4.288) X =
∞⋃
j=1

Int(Kj).

Denote by Cc(X) the space of all continuous functions on X with compact sup-
port. Assume that:
a) the set-valued mapping x→ A(x) is continuous,
b) the return function u is continuous,
c) Denote by q(dy|x, a) represents the law of motion among states from C to X.
The correlation

(x, a)→
∫
X
v(y)q(dy|x, a)

is also continuous on the set C, for every v ∈ Cc(X). The domain of this function
is C, defined in (4.286), the codomain is R.
If X is not necessarily a topological space, we use another regularity condition:

(R2): For every x ∈ X and every measurable set D ⊂ X, the functions a → u(x, a)
and a → q(D|x, a) are continuous on A(x). The domain of both functions is
A(x) and the codomain is R.

Remark 4.2.237. Having in view the (R2) regularity assumption, we can deduce
that q is continuous on C if the space of probability measures on the space X (which is
assumed to be σ-compact) is equipped with the vague topology

The vague topology can be defined by duality with continuous functions having com-
pact support CC(X) (see [51]).

Definition 4.2.238. [66] Let X be a locally compact Hausdorff space. Assume that
X is second countable, which means there is a countable base. Then X is a Polish space
(there exists a complete separable metrization). Let X be a Borel field of X, generated
by the (set of open subsets of the) topology of X. Let B be ring of all relatively compact
elements of X, the ring of bounded Borel sets. Let M be the collection of all Borel
measures on X. Let FC be the space of real-valued functions of compact support on X.
A sequence of elements µn ∈M converges to µ ∈M if for all f ∈ FC ,∫

X
f(x)µn(dx) =

∫
X
f(x)µ(dx).

The topology obtained on M is called the vague topology.

If the (R1) or (R2) regularity conditions are fulfilled, we define

(4.289) uj(x) := max
a∈A(x)

|u(x, a)|, x ∈ Kj, rj := sup
x∈Kj

uj(x).
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Consider the sequences {mj} and {Kj} mentioned before. Suppose that (4.263) is
valid. In order to obtain our main results, we need some new assumptions, as follows:
(P1): We have the identity:

(4.290) q(Kj|x, a) = 1 for each j ∈ N, x ∈ Kj, a ∈ A(x),

(P2): Suppose that there exists c > 1 such that

(4.291) ζ := βc · sup
j∈N

mj+1

mj

< 1.

In the sequel, we make two notations:
1) If X is a metric space, the sets Kj are compact and (4.288) holds, then let us
denote by Cm(X) (and Cmb(X)) the set Fm(X) (and Fmb(X), respectively);
2) If (X,Σ) is a measurable space, {Kj} an increasing sequence of measurable
sets with condition (4.263) fulfilled. In this case, Fm(X) turns into Mm(X),
which represents the set of all measurable functions on X, bounded on every set
Kj and Fmb(X) will be denoted by Mmb(X), respectively.
Furthermore, there exists a function g ∈Mm(X) such that

(4.292) |uj(x)| ≤ g(x), ∀j ∈ N, x ∈ Kj.

If X is a metric space, then g ∈ Cm(X). Moreover, if x ∈ Kj, a ∈ A(x), j ∈ N,
one obtain q(Kj+1|x, a) = 1.

Remark 4.2.239. In fact, (4.291) leads to the conclusion:
∞∑
j=1

(βc)jmj <∞

The basis for the theory of discounted Markov decision processes is represented by
the Bellman functional equation. Its form appears in various papers. The Bellman
functional equation stated by Matkowski and Nowak [78], is:

(4.293) Lv(x, a) := u(x, a) + β
∫
X
v(y)q(dy|x, a), (x, a) ∈ C.

for the integrable function v : X → R.
According to [78], the Bellman equation can be put in the form:

(4.294) v∗(x) = max
a∈A(x)

Lv∗(x, a), x ∈ X,

while the Bellman equation, introduced by Rincón-Zapatero [94], is

(4.295) Bf = f.

Example 4.2.240. [30] (Discounted DP Problems)
Let X the set of "states" and U be the set of "controls". For every x ∈ X, let U(x) ⊂ U

be a nonempty subset of controls that are feasible at state x. We refer to a function
µ : X → U with µ(x) ∈ U(x), for every x ∈ X, as a "policy". Let us denote byM the
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set of all policies. Let R(X) the set of functions J : X → R. Let H : X×U×R(X)→ R
be a given mapping. Consistent with the DP context, we consider the mapping T defined
by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀x ∈ X.

Suppose that (TJ)(x) > −∞ for every x ∈ X, which means that T maps R(X) into
R(X). For every policy µ ∈M, consider the mapping Tµ : R(X)→ R(X) defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀x ∈ X.

The purpose is to find a function J∗ ∈ R(X) such that

J∗(x) = inf
u∈U(x)

H(x, u, J∗), ∀x ∈ X,

which means that we want to find a fixed point of T. Also, we intend to find a policy
µ∗ such that Tµ∗J∗ = TJ∗. Note that the mapping T can be defined by

(TJ)(x) = inf
µ∈M

(TµJ)(x), ∀x ∈ X, J ∈ R(X).

Consider an α-discounted total cost DP problem. We have

H(x, u, J) = E{g(x, u, w) + αJ(f(x, u, w))},

where α ∈ (0, 1), the function g is uniformly bounded and represents cost per stage, w
is random with distribution, depending on (x, u).
The equation J = TJ , i.e.,

J(x) = inf
u∈U(x)

H(x, u, J) = inf
u∈U(x)

E{g(x, u, w) + αJ(f(x, u, w))}

is actually Bellman’s equation with the unique solution J∗. The mapping H could be
used in different forms, such as:

H(x, u, J) = min
[
V (x), E{g(x, u, w) + αJ(f(x, u, w))}

]
,

or

H(x, u, J) = E
{
g(x, u, w) + αmin[V (f(x, u, w)), J(f(x, u, w))]

}
,

where V is a known function with the property V (x) ≥ J∗(x) for all x ∈ X. If the
solution J∗ is not affected by using different variants V for the mapping H, we will
apply policy iteration algorithms for a more favorably computation of the value x.

Example 4.2.241. [30] (Discounted Semi-Markov Problems)
With x, y, u as in the previous example, take the mapping

H(x, u, J) = G(x, u) +
n∑
y=1

mxy(u)J(y),
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where the function G represents cost per stage, U represents the set of controls and
mxy(u) are non-negative numbers with

n∑
y=1

mxy < 1, ∀x ∈ X, u ∈ U(x).

The equation J = TJ is Bellman’s equation for a continuous-time semi-Markov deci-
sion problem.

Example 4.2.242. [30] (Minimax Problems)
Consider a minimax version of Example 4.2.240, where an antagonistic player chooses
v from a set V (x, u). Consider the mapping

H(x, u, J) = sup
v∈V (x,u)

[
g(x, u, v) + αJ(f(x, u, v))

]
.

Again, the equation J = TJ is Bellman’s equation for an infinite horizon minimax DP
problem. A generalization is represented by the mapping

H(x, u, J) = sup
v∈V (x,u)

E
{
g(x, u, v, w) + αJ(f(x, u, v, w))

}
,

where w is random with given distribution, and the expected value is with respect to
that distribution. This form could be found in zero-sum sequential games.

Our main goal is to state and prove an existence theorem of a solution to the
Bellman equation in the space Cm(X), when X is a metric space, or in Mm(X) for a
more general case.

Theorem 4.2.243. Suppose condition (P1) holds.
a) If condition (R1) is valid, then there exist an increasing unbounded sequence m =
{mj} and a unique mapping v∗ ∈ Cm(X), which satisfies the Bellman equation (4.294).
b) If condition (R2) holds and rj < ∞, for every j ∈ N is valid, then there exist an
increasing unbounded sequence m = {mj} and a unique mapping v∗ ∈ Mm(X), which
satisfies the Bellman equation (4.294).

Proof: a) If we make assumption (R1), then Berge’s theorem 4.2.225 assures the
continuity of every function ui on the compact set Kj. Thus, rj < ∞,∀j ∈ N. That
means that we can select an increasing unbounded sequence m = {mj} such that
mj ≥ rj. Let Cmb(X) be the closed subset of the Banach space Cm(X). We introduce
the operator T on Cmb(X), as follows:

Tv(x) := max
a∈A(x)

(
(1− β)u(x, a) + β

∫
X
v(y) · q(dy|x, a) +(4.296)

+ L
∫
X

(v − Tv)(y) · q(dy|x, a)
)
,

for v ∈ Cmb(X), x ∈ X and some β, L ∈ (0, 1) such that β+L
1−L ∈ (0, 1). Again, by the

Berge’s maximum theorem, Tv is continuous on each set Kj. According to (4.288), the
mapping Tv is continuous on the set X. It follows that the mapping T : Cmb(X)→ X
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is a non-self mapping. In the light of these considerations, we can easily conclude that
T is a Ćirić-Reich-Rus type almost contraction. By using our assumption on q (the
identity (4.290) from condition (P1)), we get:

‖Tv − Tw‖j ≤ β · ‖v − w‖j + L ·
(
‖v − Tv‖j − ‖w − Tw‖j

)
≤

≤ β · ‖v − w‖j + L ·
(
‖v − Tv‖j + ‖w − Tw‖j

)
,

for each j ∈ N and ∀v, w ∈ Cmb(X). Remind that a Ćirić-Reich-Rus type contraction
is an almost contraction in certain conditions (Lemma 1.3.2. from [83]). By applying
Proposition 4.2.230, the mapping T have a unique fixed point w∗ ∈ Cmb(X) such that
Tw∗ = w∗. Take v∗ = w∗

1−β ∈ Cm(X), which is a solution for the Bellman equation
(4.294).
b) In this case, the proof is very similar to that of case (a), if we use Proposition14.09.6
and Proposition 4.2.230. Obviously, in that case the solution of the Bellman equation
is v∗ ∈Mm(X). �

Theorem 4.2.244. Under the conditions of Theorem 4.2.243, but in the space
Mm(X), there exists an increasing unbounded sequence m = {mj} and a unique map-
ping v∗ ∈Mm(X), which satisfies the Bellman equation (4.294).

Proof: If we make assumption (R2) and rj <∞ for every j ∈ N, the proof is very
similar to that of Theorem 4.2.243, by applying Theorem 4.2.230. Obviously, the fixed
point is v∗ ∈Mm(X). �

Theorem 4.2.245. Suppose condition (P2) is satisfied. If condition (R1) is valid,
then the Bellman equation (4.295) has the unique solution v∗ ∈ Cm(X).

Proof: If we make assumptions (P2) and (R1), then the operator T from (4.296) is
well-defined, with some β, L ∈ (0, 1) such that β+L

1−L ∈ (0, 1), for any v ∈ Cm(X), hence
‖v‖ <∞. Denote

ρ := ‖g‖, u∗(x) := max
a∈A(x)

|u(x, a)|,

where g is given by (4.292).
The operator T is defined on the closed ball Bρ := {v ∈ Cm(X) : ‖v‖ ≤ ρ} ⊂ Cm(X).
That means: u∗ ∈ Bρ. By applying the Berge’s maximum theorem, the operator Tv is
continuous, for every v ∈ Bρ. For finalizing the proof, we need another notation:

(4.297) µ(x) := max
a∈A(x)

∣∣∣ ∫
X
v(y) · q(dy|x, a)

∣∣∣, x ∈ X.

Obviously, the mapping µ is continuous. By condition (P2), we conclude that
‖µ‖j ≤ ‖v‖j+1, for each j ∈ N and for x ∈ Kj. By using that ζ < 1 and ‖v‖ ≤ ρ, we
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obtain:

‖µ‖ =
∞∑
j=1

‖µ‖j
mjcj

≤
∞∑
j=1

‖v‖j+1

mjcj
=
∞∑
j=1

‖v‖j+1

mj+1cj+1 ·
mj+1c

j+1

mjcj
≤

≤ ‖v‖ · 1
β
· βc ·mj+1

mj

= ‖v‖ζ
β
≤ ρ

β
.

Again, the operator T is a non-self mapping, similar to that in Theorem 4.2.244. In
the light of the last inequalities regarding µ, we obtain that T is a Ciric-Reich-Rus
type 1-ALC.

‖Tv − Tw‖j ≤ β · ‖v − w‖j+1 + L ·
(
‖v − Tv‖j+1 + ‖w − Tw‖j+1

)
.

By applying Proposition 4.2.232, remind that a Ćirić-Reich-Rus type contraction is an
almost contraction. These considerations lead to the conclusion that the mapping T is
a 1-almost local contraction with unique fixed point w∗ ∈ Cm(X) such that Tw∗ = w∗.

Take v∗ = w∗

1−β ∈ Cm(X), which is a solution for the Bellman equation (4.294). �

Remark 4.2.246. The main results obtained in the deterministic case are signif-
icantly more general that the results presented in the studies of Rincón-Zapatero [94]
and Matkowski and Novak [78], because we are working with k-almost local contrac-
tions instead of k-local contractions. So, in the light of the examples of almost local
contractions by means of which we have illustrated our theoretical results in Chapter
1, we extend effectively the results from [78] and [94] to the more general case of k-
almost local contractions, thus providing new existence theorems for Bellman equation
and some new properties of the Bellman operator.

On the other hand, the main results obtained in our thesis for the stochastic case
provide another kind of novelty in dynamic programming by connecting the classical
results with some of the classes of almost local contractions studied in the first chapter
of the thesis.
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In this part, we summarise the main results of the thesis. Then, we give a list
of some possible further directions of research, in order to develop the new concepts,
methods and results presented in the present thesis.

As mentioned in the beginning of this thesis, the theory of fixed points and Banach’s
contraction principle represent the foundation stone of nonlinear analysis with a huge
development in the last years. The theory of Picard operators has various applications
in nonlinear analysis. Most of the results contained in the present thesis were presented
at the 17th Symposium of Symbolic and Numeric Algorithms for Scientific Computing
SYNASC Timişoara, Romania (2015), at the 18th Symposium of Symbolic and Numeric
Algorithms for Scientific Computing SYNASC Timişoara, Romania (2016), at the 19th

Symposium of Symbolic and Numeric Algorithms for Scientific Computing SYNASC
Timişoara, Romania, (2017), and also at the Conference of Mathematics and Informat-
ics with applications, organized by Babeş-Bolyai University, Cluj Napoca, Romania,
(2016).

We started this thesis with a detailed review of the most important results involving
contractions, fixed points and the two types of contractions: almost contractions and
local contractions. The first chapter reiterated elementary results on both contractions,
that represent the starting point in the subsequent chapters.

In Chapter 2 we introduce a new type of mappings with the use of the afore-
mentioned two type of contractions, namely: the almost local contractions. We have
obtained new existence and uniqueness theorems for this new mappings, then we ex-
tend the obtained results in order to obtain new classes of almost local contractions,
such as:

• generalized almost local contractions,
• Ćirić type strong almost local contractions,
• quasi almost local contractions,
• Ćirić-Reich-Rus type almost local contractions,
• Chatterjea type almost local contractions,
• generalized Berinde type almost local contractions,
• almost local ϕ-contractions,
• B-almost local contractions, etc.
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We have included a large collection of examples for several types of ALC-s for the
purpose of a better understanding and in order to underline the applicability of certain
theorems, lemmas. This chapter also contains a detailed survey about approximate
fixed points with quantitative and qualitative results for mappings in pseudometric
spaces. These results are contained in [118], [119], [120].

In Chapter 3 we continue our work with the study of the multivalued almost local
contractions, both self and non-self types.The chapter is mainly containing the results
from 19th Symposium of Symbolic and Numeric Algorithms for Scientific Computing
SYNASC Timişoara, where I presented my research results "Multivalued Self Almost
Local Contractions".

In Chapter 4 we use the same ideas to study the non-self single valued almost
local contractions, providing illustrative examples, as well. According to Chapters 2-4,
we provided existence and uniqueness theorems for different type of mappings, using
various types of contractions, as listed below:

dj(Tx, Ty) ≤ θ · dr(j)(x, y) + L · dr(j)(y, Tx),∀x, y ∈ A.

dj(Tx, Ty) ≤ θu · dr(j)(x, y) + Lu · dr(j)(x, Tx),∀x, y ∈ A,

dj(Tx, Ty) ≤ θ · dr(j)(x, y) +

+L ·min{dr(j)(x, Tx), dr(j)(y, Ty), dr(j)(x, Ty), dr(j)(y, Tx)}.

d(Tx, Ty) ≤ α ·M1(x, y) + L · d(y, Tx), for all x,y ∈ X,

where
M1(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

2
}
.

dj(Tf, Tg) ≤ θ ·Mr(j)(f, g), for all f,g ∈ A,

where

Mr(j)(f, g) = max{dr(j)(f, g), dr(j)(f, Tf), dr(j)(g, Tg), dr(j)(f, Tg), dr(j)(g, Tf)}.

dj(Tf, Tg) ≤ δ · dr(j)(f, g) + L · [dr(j)(f, Tf) + dr(j)(g, Tg)],

dj(Tf, Tg) ≤ c · [dr(j)(f, Tg) + dr(j)(g, Tf)],∀f, g ∈ A, ∀j ∈ J.

dj(Tx, Ty) ≤ θ · dr(j)(x, y) + b(y) · dr(j)(y, Tx),∀x, y ∈ A, ∀j ∈ J.

dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)) + L · dr(j)(y, Tx),∀x, y ∈ A,∀j ∈ J.

dj(Tx, Ty) ≤ Υ(dr(j)(x, y)) + L1 · dr(j)(x, Tx)

dj(Tx, Ty) ≤ ϕ(dr(j)(x, y)), ∀x, y ∈ A, ∀j ∈ J.

Hj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ S,∀j ∈ J.

Hj(Tx, Ty) ≤ α(dr(j)(x, y))dr(j)(x, y) + L ·min
{
dr(j)(x, Tx),

dr(j)(y, Ty), dr(j)(x, Ty), dr(j)(y, Tx)
}
,∀x, y ∈ S,∀j ∈ J.
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Hj(Tx, Ty) ≤ θ · dr(j)(x, y) + L ·Dr(j)(y, Tx),∀x, y ∈ K, ∀j ∈ J.

Hj(Tx, Ty) ≤ α · dr(j)(x, y) + β ·max{Dr(j)(x, Tx), Dr(j)(y, Ty)}+

+ γ[Dr(j)(x, Ty) +Dr(j)(y, Tx)], ∀j ∈ J,

with α, β, γ ≥ 0 such that p =
(

1+α+γ
1−β−γ

) (
α+β+γ

1−γ

)
< 1.

d(f 2(x), f(x)) ≤ αd(x, f(x)).

dj(T 2x, Tx) ≤ αdr(j)(x, Tx),∀j ∈ J.

‖Tϕ− Tψ‖j ≤ β‖ϕ− ψ‖j+k ∀, ϕ, ψ ∈ A, j ∈ N.

‖Tϕ− Tψ‖j ≤ θj‖ϕ− ψ‖j+k + Lj‖ψ − Tϕ‖j+k ∀, ϕ, ψ ∈ A, j ∈ N.

In Chapter 4 we extend the results obtained in the previous chapters in order to
apply the almost local contractions in dynamic programming. The goal of this chapter
is to solve the Bellman equation, and also to study the existence and uniqueness of a
fixed point for the Bellman operator in deterministic dynamic programming. Building
on the research paper by the pair of authors: Martins-da-Rocha and Vailakis (2010)
and respectively, Rincón-Zapatero, Rodriguez-Palmero (2003), we attempt to improve
their models with unbounded returns. Applications of recursive methods appear in
every area of economics: public finance, growth theory etc. We intend to present these
methods and applications in a systematic way.

Finally, in the part with the conclusions, we offer an outlook on possible directions
for future research. There are some possible extensions to the almost local contractions.
We think that our results have applicability in solving dynamic programming problems.
The obtained results naturally generate new questions, open problems, which could be
studied, eventually, with the same methods or new techniques.
The present thesis can be extended in the following directions:

(1) extending the almost local contractions with constant coefficient of contrac-
tions to that of variable coefficients of contraction, as follows:

Definition 4.2.247. Let X be a uniform space and denote by J a family
of indices. Let r be a function from J to J . Let D = (dj)j∈J be a family of
pseudometrics defined on X. Let τ be the weak topology on X defined by the
family D. Consider a nonempty, τ -bounded, sequentially τ -complete subset
A ⊂ X. Let the operator T : A → A and assume that the subset A is T -
invariant.
The operator T : A→ A is called almost local contraction with regard to (D,r)
if, for every j ∈ J , there exist the constants θj ∈ (0, 1) and Lj ≥ 0 such that

dj(Tx, Ty) ≤ θj · dr(j)(x, y) + Lj · dr(j)(y, Tx), ∀x, y ∈ A.
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It would be interesting to examine the conditions for existence and unique-
ness of the fixed points for that new type of contraction.

(2) analyzing the fixed points of almost local contractions using other types of
contractions, such as:
• Bianchini, in [48]: there exist 0 ≤ h < 1 such that

d(Tx, Ty) ≤ h ·max{d(x, Tx), d(y, Ty)},∀x, y ∈ X, ;

• Reich in [91]: There exist nonnegative numbers a, b, c satisfying
a+ b+ c < 1 such that, for each x, y ∈ X,

d(f(x), f(y)) < ad(x, f(x)) + bd(y, f(y)) + cd(x, y).

• Reich in [88]: There exist monotonically decreasing functions
a, b, c : (0,∞)→ [0, 1] satisfying a(t) + b(t) + c(t) < 1 such that, for each
x, y ∈ X, x 6= y,

d(f(x), f(y)) < a(d(x, y))d(x, f(x)) + b(d(x, y))d(y, f(y)) + c(d(x, y))d(x, y).

• Hardy and Rogers in [60]: There exist nonnegative constants a, b, c, d, e,
satisfying a+ b+ c+ d+ e < 1 such that, for each x, y ∈ X,

d(f(x), f(y)) < a · d(x, y) + b · d(x, f(x)) + c · d(y, f(y)) + +d · d(x, f(y)) + e · d(y, f(x)).

• Guseman in [57]: There exists a number a, 0 < a < 1, such that for each
x ∈ X there exists an integer p(x) and we have

d(fp(x)(x), fp(x)(y)) ≤ a · d(x, y),∀y ∈ X.

• Generalized Z-contraction in [2]: Let (X, d) be a complete metric space,
let T : X → X be a mapping and let η : [0,∞) × [0,∞) → R be a
simulation function, that is, a function satisfying the following conditions:
(a) η(t, s) < s− t, for all s, t > 0
(b) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn > 0 implies lim sup
n→∞

η(tn, sn) < 0.

Then T is called a generalized Z-contraction with respect to η if the fol-
lowing condition is satisfied:

η(d(Tx, Ty), rT (x, y)) ≥ 0, ∀x, y ∈ X,

where

rT (x, y) = max
{
d(x, y), d(x, Tx)d(y, Ty)

d(x, y)

}
, if x 6= y and rT (x, y) = 0 if x = y

and Z denote the set of all simulation functions.
(3) estimating fixed points of almost local contractions using another iteration

methods, such as: Krasnoselskij, Mann, Ishikawa iterations etc.



CONCLUSIONS 137

(4) Study the existence and uniqueness for the solution of the Bellman equation
in the case of k-local contractions.

(5) Extend the k-almost local contractions in order to study new classes of k-
almost local contractions, analysing the existence and uniqueness of the fixed
points and providing error estimates.
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