Citations in Web of Science (ISI) publications (2006-2020)
= independent citations =
- Total citations collected: >2419 citations (for 101 cited papers), last updated 1 March 2020
- Five most cited papers: paper 1 (428 citations); 3 (152 citations); 2 (142 citations); 4 (121 citations); 5 (117 citations).
[1] V. Berinde, Iterative approximation of fixed points, Lecture Notes in Mathematics, Springer, 2007
1.1. M. Abbas, S. H. Khan, B.E. Rhoades, Simpler is also better in approximating fixed points, Appl. Math. Comput. 205 (2008) 428–431
1.2. Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory 9 (2008), No. 2, 541-559
1.3. Chidume, C.E., Geometric Properties of Banach Spaces and Nonlinear Iterations, Lectures Notes in Mathematics, Springer, 2009
1.4. Naseer Shahzad, Habtu Zegeye, On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces, Nonlinear Anal. TMA, 71 (2009), 838-844
1.5. C.E. Chidume, N. Djitté, Approximation of solutions of Hammerstein equations with bounded strongly accretive nonlinear operators, Nonlinear Anal. TMA, 70 (2009) 4071-4078
1.6. C.E. Chidume, N. Djitté, Iterative approximation of solutions of nonlinear equations of Hammerstein type, Nonlinear Anal. TMA, 70 (2009) 4086-4092
1.7. N. Hussain, Y.J. Cho, Weak contractions, common fixed points and invariant approxima-tions, J. Ineq. Appl. Vol. 2009 (2009), Article ID 390634, 10 pages doi:10.1155/2009/390634
1.8. Madalina Pacurar, Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17 (2009), No. 1, 153–168
1.9. A. El-Sayed Ahmed, A. Kamal, Construction of Fixed Points by Some Iterative Schemes, Fixed Point Theory Appl. Vol. 2009, Article ID 612491, 17 pages doi:10.1155/2009/612491
1.10. M.O. Olatinwo, Some results on the continuous dependence of the fixed points in normed linear space, Fixed Point Theory, 10 (2009), No. 1, 151-157
1.11. I. Akkerman et al., A variational Germano approach for stabilized finite element methods, Comput. Methods Appl. Mech. Engrg. (2009), doi:10.1016/j.cma.2009.10.001
1.12. I. Păvaloiu, A unified treatment of the modified Newton and chord methods, Carpathian J. Math., 25 (2009) 192-196
1.13. C.E. Chidume, C.O. Chidume, Iterative methods for common fixed points for a countable family of nonexpansive mappings in uniformly convex spaces, Nonlinear Anal. TMA, 71 (2009), 4346-4356
1.14. C.E. Chidume, Naseer Shahzad, Weak convergence theorems for a finite family of strict pseudocontractions, Nonlinear Anal. 72 (2010) 1257-1265
1.15. Charles E. Chidume, Stefan Maruster, Iterative methods for the computation of fixed points of demicontractive mappings, J. Comput. Appl. Math. 234 (2010) 861-882
1.16. Q. Liu, Z. Liu, N. Huang, Approximating the common fixed points of two sequences of uniformly quasi-Lipschitzian mappings in convex metric spaces, Appl. Math. Comput. 216 (2010) 883-889
1.17. Kreinovich V, Nguyen HT, Sriboonchitta S, Symmetries: A General Approach to Integrated Uncertainty Management, International Symposium on Integrated Uncertainty Management and Applications, APR 09-11, 2010 Japan Adv Inst Sci & Technol, Ishikawa, Japan; Integrated uncertainty management and applications Book Series: Advances in Intelligent and Soft Computing Volume: 68 Pages: 141-152 Published: 2010
1.18. Ioan A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math.26 (2010), No. 2, 230–258
1.19. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
1.20. Y. Shehu and J. N. Ezeora, Path Convergence and Approximation of Common Zeroes of a Finite Family of m-Accretive Mappings in Banach Spaces, Abstr. Appl. Anal. Volume 2010, Article ID 285376, 14 pages doi:10.1155/2010/285376
1.21. Ceng, L.C., Teboulle, M., Yao, J.C., Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems Optim. Theory Appl. 146 (2010), No. 1, 19-31
1.22. Rus IA, Some Applications of Weakly Picard Operators, Ninth international symposium on symbolic and numeric algorithms for scientific computing, Proceedings Pages: 7-10 Published: 2007 2010
1.23. Maruster, S, Strong convergence of the projection method in convex feasibility problem, Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, proceedings Pages: 376-380 Published: 2007 2010
1.24. Jin Wang, Armando Barreto, Naphtali Rishe, Jean Andrian and Malek Adjouadi, A fast incremental multilinear principal component analysis algorithm, Intern. J. Innovative Comput., Inform. Control 7 (2011), No. 10, 6019–6040
1.25. Lauran M, Existence results for some differential equations with deviating argument, Filomat 25 (2011) No. 2 21-31
1.26. I. Mojsej, Alena Tartalova, Sufficient conditions for the existence of some nonoscillatory solutions of third-order nonlinear differential equations, Carpathian J. Math.27 (2011), No. 1, 105–113
1.27. Rezapour S, Haghi RH, Rhoades BE, Some results about T-stability and almost T-stability, Fixed Point Theory 12 (2011) No. 1 179-186
1.28. Manevitch LI, Kovaleva AS, Manevitch EL, et al., Limiting phase trajectories and nonstationary resonance oscillations of the Duffing oscillator. Part 2. A dissipative oscillator, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) No. 2 1098-1105 2010
1.29. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
1.30. Paul-Emile Maingé, Ştefan Măruşter, Convergence in norm of modified Krasnoselski–Mann iterations for fixed points of demicontractive mappings, Appl. Math. Comput., 217 (2011), No. 24, 9864-9874
1.31. Yu-Chao Tang, Ji-Gen Peng, Liang-Gen Hu, Li-Wei Liu, A necessary and sufficient condition for the strong convergence of Lipschitzian pseudocontractive mapping in Banach spaces, Appl. Math. Lett., 24 (2011), No. 11, pp. 1823-1826
1.32. Petric, M., Best proximity point theorems for weak cyclic Kannan contractions, Filomat 25 (2011), No. 1, 145-154
1.33. C. E. Chidume, E. U. Ofoedu, Solution of nonlinear integral equations of Hammerstein type. Nonlinear Anal. 74 (2011), No. 13, 4293-4299, doi:10.1016/j.na.2011.02.017
1.34. Prasad B, Katiyar K, Fractals via Ishikawa Iteration, 1st International Conference on Logic, Information, Control and Computation, FEB 25-27, 2011 Gandhigram, INDIA; Source: CONTROL, COMPUTATION AND INFORMATION SYSTEMS Book Series: Communications in Computer and Information Science Volume: 140 Pages: 197-203 Published: 2011 31
1.35. Pacurar, Madalina, Fixed points of almost Presic operators by a k-step iterative method, AN. STIINT. UNIV. AL. I. CUZA IASI. MAT. (N.S.), Tomul LVII, 2011, Supliment DOI: 10.2478/v10157-011-0014-3
1.36. Teodorescu, D., Fixed points for perturbed contractions, Fixed Point Theory 12 (2011), No. 2, 485-488
1.37. A. Steinboeck, D. Wild, T. Kiefer, A. Kugi, A fast simulation method for 1D heat conduction, Math. Comput. Simulation 82 (2011) 392-403
1.38. P. Chaoha, P. Chanthorn, Fixed point sets through iteration schemes, J. Math. Anal. Appl. 386 (2012) 273-277
1.39. Dejan Ilić, V. Pavlović , V. Rakočević, Extensions of the Zamfirescu theorem to partial metric spaces, Math. Comput. Model. 55 (2012) 801–809
1.40. Olatinwo, M.O., Postolache, M., Stability results for Jungck-type iterative processes in convex metric spaces, Appl. Math. Comput. 218 (2012), No. 12, 6727-6732
1.41. Cadariu, L., Radu, V., A general fixed point method for the stability of the monomial functional equation, Carpathian J. Math., 28 (2012), No. 1, 25-36
1.42. Ronto, A., Ronto, M., Existence results for three-point boundary value problems for systems of linear functional differential equations, Carpathian J. Math., 28 (2012), No. 1, 163-182
1.43. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
1.44. M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Math. Comput. 218 (2012) No. 14, 7339–7346
1.45. Shehu, Y.,Ezeora, J.N., Convergence theorems for approximation of fixed points of nonexpansive mappings in Banach spaces, Fixed Point Theory 13 (2012), No. 1, 237-246
1.46. Rus, I.A., An abstract point of view on iterative approximation of fixed points: Impact on the theory of fixed point equations, Fixed Point Theory 13 (2012), No. 1, 179-192
1.47. M. S. Khan; M. Berzig; B. Samet, Some convergence results for iterative sequences of Presic type and applications, Adv. Difference Equ. 2012, 2012:38 doi:10.1186/1687-1847-2012-38
1.48. C.E. Chidume, Y. Shehu, Approximation of solutions of generalized equations of Hammerstein type, Comput. Math. Appl. 63 (2012) 966–974
1.49. C. E. Chidume and N. Djitte, Strong Convergence Theorems for Zeros of Bounded Maximal Monotone Nonlinear Operators, Abstr. Appl. Anal. Volume 2012, Article ID 681348, 19 pages doi:10.1155/2012/681348
1.50. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
1.51. Oana Bumbariu, A new Aitken type method for accelerating iterative sequences, Appl. Math. Comput. 219 (2012) 78–82
1.52. Chidume, C.E., Shehu, Y., Strong convergence theorem for approximation of solutions of equations of Hammerstein type, Nonlinear Anal. 75 (2012), No. 14, 5664-5671
1.53. Bojor, F., Fixed points of Kannan mappings in metric spaces endowed with a graph, An. Stiint. Univ. “Ovidius” Constanta Ser. Mat. 20 (2012), No. 1, 31-40
1.54. Meng, Q., Khoo, H.L., A computational model for the probit-based dynamic stochastic user optimal traffic assignment problem, J. Adv. Transportation, 46 (2012), No. 1, 80-94
1.55. Hussain, N., Chugh, R., Kumar, V., Rafiq, A., On the rate of convergence of Kirk-type iterative schemes, J. Appl. Math., Volume 2012, 2012, Article number526503
1.56. S. Andras, Iterates of the multidimensional Cesaro operator, Carpathian J. Math.28 (2012), No. 2, 191-198
1.57. F. Bojor, Fixed points of Bianchini mappings in metric spaces endowed with a graph, Carpathian J. Math.28 (2012), No. 2, 207-214
1.58. M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math.28 (2012), No. 2, 215-222
1.59. I. A. Rus, Properties of the solutions of those equations for which the Krasnoselskii iteration converges, Carpathian J. Math.28 (2012), No. 2, 329-336
1.60. Shatanawi, W., Postolache, M., Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012, art. no. 815870
1.61. Kohl, M., Ivlev, A.V., Brandt, P., Morfill, G.E., Löwen, H., Microscopic theory for anisotropic pair correlations in driven binary mixtures, J. Physics-Condensed Matter 24 (46) , 2012, art. no. 464115
1.62. Chidume, C. E.; Shehu, Y., Approximation of solutions of generalized equations of Hammerstein type, Nonlinear Anal. 75 (2012), No. 15, 5894-5904 DOI: 10.1016/j.na.2012.06.003
1.63. Lauran, M., Existence results for some nonlinear integral equations, Miskolc Math. Notes 13 (2012), No. 1, 67-74
1.64. Gu, F., Strong convergence of parallel iterative algorithm with mean errors for two finite families of Ćirić quasi-contractive operators, Abstr. Appl. Anal. 2012, art. no. 626547
1.65. Karapinar, E., Samet, B., Generalized $\alpha-\varphi$ Contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal. 2012, art. no. 793486
1.66. Haghi, R. H.; Postolache, M.; Rezapour, Sh, On T-Stability of the Picard Iteration for Generalized phi-Contraction Mappings, Abstr. Appl. Anal. 2012, Article Number: 658971 DOI: 10.1155/2012/658971
1.67. Akbar, F.; Khan, A. R.; Sultana, N., Common fixed point and approximation results for generalized (f, g)-weak contractions, Fixed Point Theory Appl. 2012, Article Number: 75 DOI: 10.1186/1687-1812-2012-75
1.68. Guruacharya, S.; Niyato, D.; Hossain, E.; et al., Hierarchical Competition in Femtocell-Based Cellular Networks, 2010 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE GLOBECOM 2010 Book Series: IEEE Global Telecommunications Conference (Globecom)
1.69. Cegielski, A., Censor, Y., Opial-Type Theorems and the Common Fixed Point Problem, in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer Optimization and Its Applications 2011, pp 155-183
1.70. Chidume, C.E., Djitte, N., An iterative method for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput., 219 (2013), 10, 5613-5621
1.71. Chidume, C.E., Shehu, Y., Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces, Appl. Math. Comput., 219 (2013), No. 10, 5657-5667
1.72. Timis, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations, Miskolc Math. Notes, 13 (2012), No. 2, 555–567
1.73. H. Iiduka, Fixed Point Optimization Algorithms for Distributed Optimization in Networked Systems, SIAM J. Optim., 23 (2013), No. 1, 1–26
1.74. W. Shatanawi and M. Postolache, Some Fixed-Point Results for a Weak Contraction in Metric Spaces, Abstr. Appl. Anal. 2012, Article ID 815870, 19 pages doi:10.1155/2012/815870
1.75. M. Jleli, V. Čojbašić Rajić, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. August 2012
1.76. O. Bumbariu, An acceleration technique for slowly convergent fixed point iterative methods, Miskolc Math. Notes 13 (2012), No. 2, 271–281
1.77. Martin-Marquez, V., Reich, S., Sabach, S., Iterative methods for approximating fixed points of bregman nonexpansive operators, Discrete Contin. Dyn. Syst. Continuous Dynamical Systems – Series S 6 (2013), No. 4, 1043-1063
1.78. Petko D Proinov, A unified theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl. 2013, 2013:103 doi:10.1186/1687-1812-2013-103
1.79. N. Bildik, Y. Bakır, A. Mutlu, The new modified Ishikawa iteration method for the approximate solution of different types of differential equations, Fixed Point Theory Appl. March, 2013:52
1.80. A. Alotaibi, V. Kumar and N. Hussain, Convergence Comparison and Stability of Jungck-Kirk Type Algorithms for Common Fixed Point Problems, Fixed Point Theory Appl. 2013, 2013:173 doi:10.1186/1687-1812-2013-173
1.81. Maryam A Alghamdi, E. Karapinar, G-β-ψ-contractive type mappings in G-metric spaces, Fixed Point Theory Appl. May 2013, 2013:123
1.82. S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. March 2013, 2013:69
1.83. N. Djitte, M. Sene, An Iterative Algorithm for Approximating Solutions of Hammerstein Integral Equations, Numer. Funct. Anal. Opt., DOI: 10.1080/01630563.2013.812111
1.84. Gürsoy, Fakik, Vatan Karakaya, and B. E. Rhoades, Some convergence and stability results for the Kirk multistep and Kirk-sp fixed point iterative algorithms, Abstr. Appl. Anal. 2013.
1.85. C. E Chidume, N. Djitté and J. N Ezeora, Convergence theorems for fixed points of uniformly continuous \Phi-pseudo-contractive-type operator, Fixed Point Theory Appl. 2013, 2013:321 doi:10.1186/1687-1812-2013-321
1.86. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271 doi:10.1186/1687-1812-2013-271
1.87. A. Cegielski, Iterative Methods for Fixed Point Problems in Hilbert Spaces, Lecture Notes in Mathematics, Volume 2057, Springer 2013
1.88. Y. H. Yao, M. Postolache, and Y.-C. Liou, Coupling Ishikawa algorithms with hybrid techniques for pseudocontractive mappings, Fixed Point Theory Appl. 2013, 2013:211
1.89. G. Mınak, Ö. Acar and I. Altun, Multivalued Pseudo-Picard Operators and Fixed Point Results, J. Funct. Spaces Appl. Volume 2013 (2013), Article ID 827458, 7 pages
1.90. Tang, Y. and Liu, L., Iterative algorithms for finding minimum-norm fixed point of nonexpansive mappings and applications. Math. Meth. Appl. Sci. (2013) doi: 10.1002/mma.2874
1.91. Vatan Karakaya, Faik Gürsoy, Kadri Doğan, and Müzeyyen Ertürk, Data Dependence Results for Multistep and CR Iterative Schemes in the Class of Contractive-Like Operators, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 381980, 7 pages
1.92. Yekini Shehu, A convergence analysis result for constrained convex minimization problem, Optimization: A Journal of Mathematical Programming and Operations Research, DOI: 10.1080/02331934.2013.840620
1.93. F. Gursoy, V. Karakaya, B. E. Rhoades, Data dependence results of a new multi-step and s-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013, 2013:76 doi:10.1186/1687-1812-2013-76
1.94. Nicolae-Adrian Secelean, Iterated function systems consisting of F-contractions, Fixed Point Theory Appl. 2013, 2013:277 doi:10.1186/1687-1812-2013-277
1.95. Rontó, A., Rontó, M., On constructive investigation of a class of non-linear boundary value problems for functional differential equations. Carpathian J. Math.29 (2013), no. 1, 91–108.
1.96. Hafiz Fukhar-ud-din, Strong convergence of an Ishikawa-type algorithm in CAT(0) spaces, Fixed Point Theory Appl. 2013, 2013:207 doi:10.1186/1687-1812-2013-207
1.97. Petruşel, A., Rus, I.A., Şerban, M.-A., The role of equivalent metrics in fixed point theory, Topol. Methods Nonlinear Anal. 41 (2013), No. 1, 85-112
1.98. E. Karapinar and R. P Agarwal, A note on ‘Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:216
1.99. V. Karakaya, K. Doğan, F. Gürsoy, and M. Ertürk, Fixed Point of a New Three-Step Iteration Algorithm under Contractive-Like Operators over Normed Spaces, Abstr. Appl. Anal., Vol. 2013 (2013), Article ID 560258, 9 pages
1.100. Yekini Shehu, Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces, Appl. Math. Comput., 231 (2014), 140-147
1.101. Secelean, N.-A., Generalized iterated function systems on the space l^\infty(X), J Math Anal Appl 410 (2014), No. 2, pp. 847-858
1.102. N. Hussain, A. Latif, P. Salimi, Best proximity point results for modified Suzuki α-ψ-proximal contractions, Fixed Point Theory Appl. 2014, 2014:10
1.103. N. A. Gibson, B. Forget, On the stability of the Discrete Generalized Multigroup method, Annals of Nuclear Energy, 65 (2014), 421–432
1.104. N. Hussain, M. A. Kutbi, and P. Salimi, Fixed Point Theory in $\alpha$-Complete Metric Spaces with Applications, Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages
1.105. S. Iemoto, K. Hishinuma and H. Iiduka, Approximate solutions to variational inequality over the fixed point set of a strongly nonexpansive mapping, Fixed Point Theory Appl. 2014, 2014:51 doi:10.1186/1687-1812-2014-51
1.106. S.A. Khuri, A. Sayfy, Variational iteration method: Green’s functions and fixed point iterations perspective, Appl. Math. Lett., Available online 20 February 2014
1.107. H. Akewe, G. Amechi Okeke and A. F Olayi, Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators, Fixed Point Theory Appl. 2014, 2014:45 doi:10.1186/1687-1812-2014-45
1.108. Singh, N., Jain, R., Coupled fixed point results for weakly related mappings in partially ordered metric spaces, Bull. Iranian Math. Soc., 40 (2014), no. 1, 29-40
1.109. Petruşel, A., Rus, I.A., Serban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal. 15 (2014), no. 3, 493-513
1.110. A. R. Khan, V. Kumar, N. Hussain, Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput. 231 (2014) 521–535
1.111. F. Facchinei, J.-S. Pang, G. Scutari, Non-cooperative games with minmax objectives, Computational Optimization and Applications March 2014
1.112. Y. Shehu, Convergence theorems for maximal monotone operators and fixed point problems in Banach spaces, Appl. Math. Computat. 239 (2014) 285–298
1.113. Ram, Jokhan, Equilibrium theory of molecular fluids: Structure and freezing transitions, PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS 538 (2014), No. 4, 121-185
1.114. Blaszczyk, A., Flueckiger, R., Mueller, T. et al., Convergence behaviour of coupled pressure and thermal networks, COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING 33 (2014), No. 4 Special Issue: SI 1233-1250
1.115. Faik Gürsoy, Vatan Karakaya, and B. E. Rhoades, Some Convergence and Stability Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms, Abstr Appl Anal Volume 2014 (2014), Article ID 806537, 12 pages
1.116. Petko D Proinov, Ivanka A Nikolova, Iterative approximation of fixed points of quasi-contraction mappings in cone metric spaces, J Inequal Appl, 2014:226
1.117. Yair Censor, Andrzej Cegielski, Projection methods: an annotated bibliography of books and reviews, Optimization: A Journal of Mathematical Programming and Operations Research, DOI:10.1080/02331934.2014.957701 Published online: 15 Oct 2014
1.118. Rose, L., Belmega, E. V., Saad, W. et al., Pricing in Heterogeneous Wireless Networks: Hierarchical Games and Dynamics, IEEE TRANS. ON WIRELESS COMMUN. 13 (2014), No. 9, 4985-5001
1.119. J. Harjani, J. Rocha, and K. Sadarangani, α-Coupled Fixed Points and Their Application in Dynamic Programming, Abstr Appl Anal Volume 2014 (2014), Article ID 593645, 4 pages
1.120. Sakurai, Kaito; Iiduka, Hideaki, Acceleration of the Halpern algorithm to search for a fixed point of a nonexpansive mapping, Fixed Point Theory Appl 2014: 202
1.121. Iiduka, Hideaki; Hishinuma, Kazuhiro, Acceleration method combining broadcast and incremental distributed optimization algorithms, SIAM J OPTIM 24 (2014), No. 4, 1840-1863
1.122. Erduran, Ali; Kadelburg, Z.; Nashine, H. K.; et al., A fixed point theorem for (phi, L)-weak contraction mappings on a partial metric space, J Nonlinear Sci Appl 7 (2014), No. 3, 196-204
1.123. F. Gürsoy and V. Karakaya, Some Convergence and Stability Results for Two New Kirk Type Hybrid Fixed Point Iterative Algorithms, J. Function Spaces, Vol. 2014 (2014), Article ID 684191, 8 pages
1.124. Samet, B., Fixed points for alpha-psi contractive mappings with an application to quadratic integral equations, ELECTRONIC J DIFF EQ Published: JUN 30 2014
1.125. Brzdek, J.; Cadariu, L.; Cieplinski, K., Fixed Point Theory and the Ulam Stability, J FUNCTION SPACES Article Number: 829419 Published: 2014
1.126. Chidume, C. E.; Shehu, Y., Iterative approximation of solutions of generalized equations of hammerstein type, FIXED POINT THEORY 15 (2014), No. 2, 427-440
1.127. Supak Phiangsungnoen, Wutiphol Sintunavarat and Poom Kumam, Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces, Fixed Point Theory Appl 2014, 2014:188 doi:10.1186/1687-1812-2014-188
1.128. Erdal Karapınar, Priya Shahi and Kenan Tas, Generalized α-ψ-contractive type mappings of integral type and related fixed point theorems, J Inequal Appl 2014, 2014:160 doi:10.1186/1029-242X-2014-160
1.129. Mınak, G., Helvacı, A., Altun, I., Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results. Filomat 28 (2014), no. 6, 1143–1151.
1.130. Hussain, N.; Karapınar, E.; Sedghi, S.; Shobkolaei, N.; Firouzian, S. Cyclic $(\phi)$-contractions in uniform spaces and related fixed point results. Abstr. Appl. Anal. 2014, Art. ID 976859, 7 pp.
1.131. Izhar Uddin, Sumitra Dalal and Mohammad Imdad, Approximating fixed points for generalized nonexpansive mapping in CAT(0) spaces, J Inequal Appl 2014, 2014:155 doi:10.1186/1029-242X-2014-155
1.132. Rus, Ioan A. The generalized retraction methods in fixed point theory for nonself operators. Fixed Point Theory 15 (2014), no. 2, 559–578.
1.133. Berzig, M., Chandok, S., Khan, M. S., Generalized Krasnoselskii fixed point theorem involving auxiliary functions in bimetric spaces and application to two-point boundary value problem. Appl. Math. Comput. 248 (2014), 323–327.
1.134. Uddin, I., Abdou, A. A. N.; Imdad, M., A new iteration scheme for a hybrid pair of generalized nonexpansive mappings. Fixed Point Theory Appl. 2014, 2014:205, 13 pp.
1.135. Gonca Durmaz, Gülhan Mınak, and Ishak Altun, Fixed Point Results for α-ψ-Contractive Mappings Including Almost Contractions and Applications, Abstr Appl Anal Volume 2014 (2014), Article ID 869123, 10 pages
1.136. Kantrowitz, R., Neumann, M. M., A fixed point approach to the steady state for stochastic matrices. Rocky Mountain J. Math. 44 (2014), no. 4, 1243–1250.
1.137. Qingqing Cheng, Yongfu Su and Jingling Zhang, Convergence theorems for modified generalized f-projections and generalized non expansive mappings, J Inequal Appl 2014, 2014:305 doi:10.1186/1029-242X-2014-305
1.138. Manuel De la Sen and Asier Ibeas, Properties of convergence of a class of iterative processes generated by sequences of self-mappings with applications to switched dynamic systems, J Inequal Appl 2014, 2014:498 doi:10.1186/1029-242X-2014-498
1.139. Fukhar-Ud-Din, Hafiz, Existence and approximation of fixed points in convex metric spaces, Carpathian J Math 30 (2014), No. 2, 175-185
1.140. Mujahid Abbas, Farshid Khojasteh, Common f-endpoint for hybrid generalized multi-valued contraction mappings, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas September 2014, Volume 108, Issue 2, pp 369-375
1.141. Ahmed El-Sayed Ahmed, Sayed Attia Ahmed, Fixed points by certain iterative schemes with applications, Fixed Point Theory Appl May 2014, 2014:121
1.142. Acar, Ö., G. Durmaz, and G. Minak, Generalized multivalued f-contractions on complete metric spaces, Bull. Iranian Math. Soc. 40 (2014), No. 6, 1469-1478
1.143. Kutbi, M. A., Karapınar, E., Ahmad, J., Azam, A., Some fixed point results for multi-valued mappings in $b$-metric spaces. J. Inequal. Appl. 2014, 2014:126, 11 pp.
1.144. Dutta, H., Some iterated convergence and fixed point theorems in real linear n-normed spaces, Miskolc Math Notes 15 (2014), No. 2, 423-437
1.145. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
1.146. Ibrahim, R.W., Darus, M., Infective disease processes based on fractional differential equation, AIP Conference Proceedings Volume 1602, 2014, Pages 696-703
1.147. Öztürk Çeliker, F., Convergence analysis for a modified sp iterative method, Sci. World J. Volume 2014, 2014, Article number 840504
1.148. Dogan, Kadri; Karakaya, Vatan, On the Convergence and Stability Results for a New General Iterative Process, Sci. World J. Article Number: 852475 Published: 2014
1.149. Gürsoy, F., Applications of normal s-iterative method to a nonlinear integral equation, Sci. World J. Volume 2014, 2014, Article number 943127
1.150. Liang, L., Feng, G., Jia, Y., Game-theoretic hierarchical resource allocation for heterogeneous relay networks, IEEE Transactions on Vehicular Technology 64 (2015), no. 4, Article number 6832655, 1480-1492
1.152. Mujahid Abbas, Monther Rashed Alfuraidan, Abdul Rahim Khan, Talat Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl, 2015:14
1.153. L. Maruster, St. Maruster, T-stability of the Mann iteration, J Comput Appl Math Volume 276, 1 March 2015, Pages 110–116
1.154. D. Wardowski and N. Van Dung, A note on fixed point theorems in metric spaces, Carpathian J. Math.31 (2015), No. 1, 127-134
1.155. Abbas, M., Jong Kyu Kim, and Talat Nazir, Common Fixed Point of Mappings Satisfying Almost Generalized Contractive Condition in Partially Ordered G-Metric Spaces, J. Comput. Anal. Appl. 19 (2015), No. 1
1.156. Petrusel, A., Rus, I. A., An abstract point of view on iterative approximation schemes of fixed points for multivalued operators, J Nonlinear Sci Appl 6 (2013), No. 2 Special Issue: SI, 97-107
1.157. Ariza-Ruiz, David, Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings, J Nonlinear Sci Appl 5 (2012), No. 2 Special Issue: SI, 93-103
1.158. Wang, Zi-Ming; Su, Yongfu; Kang, Jinlong, Hybrid algorithm for an alpha-nonexpansive mapping in a Banach space, J Nonlinear Sci Appl 5 (2012), No. 1 Special Issue: SI, 56-63
1.159. Jain, Shoha; Jain, Shashir; Jain, Lal Bahadur, On Banach contraction principle in a cone metric space, J Nonlinear Sci Appl 5 (2012), No. 4 Special Issue: SI, 252-258
1.160. Prasad, Bhagwati; Sahni, Ritu, Stability of a General Iterative Algorithm, Selected topics in applied computer science Book Series: International Conference on Applied Computer Science Pages: 216-221 Published: 2010
1.161. Misra, Sanjog, Markov chain Monte Carlo for incomplete information discrete games, QME-quantitative marketing and economics 11 (2013), No. 1 Special Issue: SI, 117-153
1.162. Yolacan, Esra; Kiziltunc, Hukmi, On convergence theorems for total asymptotically nonexpansive nonself-mappings in Banach spaces, J Nonlinear Sci Appl 5 (2012), No. 5, Special Issue: SI, 389-402
1.163. Wang, Jin; Barreto, Armando; Rishe, Naphtali; et al., A fast incremental multilinear principal component analysis algorithm, INT J INNOVATIVE COMPUTING INFORMATION AND CONTROL 7 (2011), No. 10, 6019-6040
1.164. Manevitch, LI; Gendelman, OV, Discrete Finite Systems, TRACTABLE MODELS OF SOLID MECHANICS: FORMULATION, ANALYSIS AND INTERPRETATION Book Series: Foundations of Engineering Mechanics Pages: 13-165 Published: 2011
1.165. Bildik, N.; Bakir, Y.; Mutlu, A., Comparison and successive iteration of approximate solution of ordinary differential equations with initial conditions by the new modified Krasnoselskii iteration method, SCIENTIA IRANICA 20 (2013), No. 6, 1792-1804
1.166. Barbato, Antimo; Chen, Lin; Martignon, Fabio; et al., A Multi-Armed Bandit Formulation for Distributed Appliances Scheduling in Smart Grids, 2014 IEEE ONLINE CONFERENCE ON GREEN COMMUNICATIONS (ONLINEGREENCOMM) Published: 2014
1.167. Kotarski, W.; Gdawiec, K.; Lisowska, A., Polynomiography via Ishikawa and Mann Iterations, ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I Book Series: Lecture Notes in Computer Science Volume: 7431 Pages: 305-313 Published: 2012
1.168. Al-Thagafi, M. A.; Shahzad, Naseer. Krasnosel’skii-type fixed-point results. J. Nonlinear Convex Anal. 14 (2013), no. 3, 483–491.
1.169. Parise, F.; Colombino, M.; Grammatico, S.; et al., Mean Field Constrained Charging Policy for Large Populations of Plug-in Electric Vehicles, 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) Pages: 5101-5106 Published: 2014
1.170. Rus, Ioan A., Results and Problems in Ulam Stability of Operatorial Equations and Inclusions, in HANDBOOK OF FUNCTIONAL EQUATIONS: STABILITY THEORY (Rassias T., ed.) Book Series: Springer Optimization and Its Applications Volume: 96 Pages: 323-352 Published: 2014
1.171. Byrne, CL, Iterative Optimization in Inverse Problems, in Iterative Optimization in Inverse Problems Book Series: Monographs and Research Notes in Mathematics Pages: 1-275 Published: 2014; CRC PRESS-TAYLOR & FRANCIS GROUP.
1.172. Tran Van An; Nguyen Van Dung; Vo Thi Le Hang. General fixed point theorems on metric spaces and 2-metric spaces. Filomat 28 (2014), no. 10, 2037–2045.
1.173. Zou, Lei; Liu, Bin; Chen, Chang; et al., Bayesian Game Based Power Control Scheme for Inter-WBAN Interference Mitigation, 2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014) Book Series: IEEE Global Telecommunications Conference (Globecom) Pages: 240-245 Published: 2014
1.174. Mihály Bessenyei, Nonlinear quasicontractions in complete metric spaces, Expositiones Mathematicae, 33 (2015), no. 4, 517–525
1.175. Almeida, Á. Roldán-López-de-Hierro, A.-F. Sadarangani, K., On a fixed point theorem and its application in dynamic programming. Appl. Anal. Discrete Math. 9 (2015), no. 2, 221–244.
1.176. Muhammad Usman Ali, Tayyab Kamran and Liaqat Ali Khan, A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph, J. Inequal. Appl. (2015) 2015:205
1.177. Chao Wang, A note on the error estimation of the Mann iteration, J. Comput. Appl. Math. 285 (2015), 226–229
1.178. Poom Kumama, Nguyen Van Dungb, Kanokwan Sitthithakerngkiet, A Generalization of Ciric Fixed Point Theorems, Filomat 29 (2015), no. 7, 1549–1556
1.179. Minak, Gülhan; Altun, Ishak; Romaguera, Salvador. Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
1.180. I. Altun, H. A. Hancer, and G. Minak, On a general class of weakly picard operators, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 25–32
1.181. A. R. Khan, N. Hussain, N. Yasmin and N. Shafqat, Random coincidence point results for weakly increasing functions in partially ordered metric spaces, Bull. Iranian Math. Soc. Vol. 41 (2015), No. 2, pp. 407–422
1.182. Xavier A Udo-utun, Zakawat U Siddiqui and Mohammed Y Balla, An extension of the contraction mapping principle to Lipschitzian mappings, Fixed Point Theory Appl. (2015) 2015:162
1.183. N. Redje, A. Dehici, Some results in fixed point theory and application to the convergence of some iterative processes, Fixed Point Theory Appl. 2015, 2015:173
1.184. Nicolae-Adrian Secelean, Generalized F-iterated function systems on product of metric spaces, J. Fixed Point Theory Appl. First online: 20 May 2015 pp 1-21
1.185. Liang, Liang; Feng, Gang; Wang, Wen; et al., A Hierarchical Resource Allocation Game for Heterogeneous Networks with Relays, 2015 IEEE 7th international symposium on cyberspace safety and security, and 2015 ieee 12th international conference on embedded software and systems (ICEES) Pages: 727-733 Published: 2015
1.186. Khuri, S. A.; Sayfy, A. A novel fixed point scheme: proper setting of variational iteration method for BVPs. Appl. Math. Lett. 48 (2015), 75–84.
1.187. I. Uddin, M. Imdad, On certain convergence of S-iteration scheme in CAT(0) spaces, Kuwait J. Sci. 42 (2015), No. 2, 93-106
1.188. Altun, Ishak; Minak, Gülhan; Daǧ, Hacer. Multivalued $F$-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 4, 659–666.
1.189. Micula, S., An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput. Volume 270, 1 November 2015, Pages 935-942
1.190. H. Akewe and G. A. Okeke, Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators, Fixed Point Theory Appl. (2015) 2015:66
1.191. Parunyou Chanthorn, Phichet Chaoha, Fixed point sets of set-valued mappings, Fixed Point Theory Appl. December 2015, 2015:56
1.192. S. Khoury, Mariam Abushammala and A. Sayfy, Third-order BVPs: Fixed-point iteration scheme, AIP Conf. Proc. 1648, 050003 (2015); http://dx.doi.org/10.1063/1.4912363
1.193. Ivanov, M.; Zlatanov, B.; Zlateva, N., A variational principle and best proximity points. Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 8, 1315–1326.
1.194. M. Abushammala1, and H. Kafri, Numerical solutions of a class of second order boundary value problems with Robin conditions, AIP Conf. Proc. 1648, 050007 (2015);
1.195. M. R. Alfuraidan, Fixed points of monotone nonexpansive mappings with a graph, Fixed Point Theory Appl. (2015) 2015:49
1.196. F. Bojor and M. Tilca, Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph, Carpathian J. Math., 31 (2015), No. 3, 297-305
1.197. J. Harjani, J. Rocha and K. Sadarangani, On a generalized coupled fixed point theorem in C[0, 1] and its application to a class of coupled systems of functional-integral equations, Carpathian J. Math.31 (2015), No. 3, 333-337
1.198. Shin Min Kang, Hamed H. Alsulami, Arif Rafiq, Abdul Aziz Shahid, S-iteration scheme and polynomiography, J. Nonlinear Sci. Appl. 8 (2015), 617–627
1.199. Chang, Zheng; Zhu, Kun; Zhou, Zhenyu; et al., Service Provisioning with Multiple Service Providers in 5G Ultra-dense Small Cell Networks, 2015 IEEE 26TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC) Book Series: IEEE International Symposium on Personal Indoor and Mobile Radio Communications Workshops-PIMRC Pages: 1895-1900 Published: 2015
1.200. Kendre, S. D.; Kharat, V. V.; Narute, Ramdas, On existence of solution for mixed iterative integrodifferential equations, Advances in Differential Equations and Control Processes 15 (2015), No. 1, 53-66
1.201. Khan, A. R.; Yasmin, N.; Fukhar-ud-din, H.; Shukri, S. A., Viscosity approximation method for generalized asymptotically quasi-nonexpansive mappings in a convex metric space. Fixed Point Theory Appl. 2015, 2015:196, 13 pp.
1.202. Chidume, C. É.; Shehu, Y. Approximation of solutions of equations of Hammerstein type in Hilbert spaces. Fixed Point Theory 16 (2015), no. 1, 91–101.
1.203. Zhao, Xiaosong; Liu, Bin; Chen, Chang; et al., Qos-Driven Power Control for Inter-WBAN Interference Mitigation, 2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015
1.204. Gunawan, H.; Neswan, O.; Sukaesih, E., Fixed point theorems on bounded sets in an n-normed space, Journal of Mathematical Analysis 6 (2015), no. 3, 51-58
1.205. Colombino, Marcello; Summers, Tyler H.; Smith, Roy S., Quadratic Two-Team Games, IEEE 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) Pages: 4557-4562 Published: 2015
1.206. Micula, Sanda. An iterative numerical method for Fredholm-Volterra integral equations of the second kind. Appl. Math. Comput. 270 (2015), 935–942.
1.207. C. E. Chidume and Y. Shehu, Iterative approximation of solutions of generalized equations of Hammerstein type, Fixed Point Theory 16 (2015), no. 1, 91-102
1.208. Mohamed Jleli, Hemant Kumar Nashine, Bessem Samet and Calogero Vetro, On multivalued weakly Picard operators in partial Hausdorff metric spaces, Fixed Point Theory Appl. (2015) 2015:52
1.209. Chidume, C. E.; Bello, A. U.; Usman, B., Krasnoselskii-type algorithm for zeros of strongly monotone Lipschitz maps in classical banach spaces, SpringerPlus, vol. 4 (2015) Art. Number: 297
1.210. Diop, C.; Sow, T. M. M.; Djitte, N.; et al., Constructive techniques for zeros of monotone mappings in certain Banach spaces, SpringerPlus, Vol. 4 (2015), Article Number: 383
1.211. Abushammala, Mariam; Khuri, S. A.; Sayfy, A. A novel fixed point iteration method for the solution of third order boundary value problems. Appl. Math. Comput. 271 (2015), 131–141.
1.212. Iiduka, H. Distributed convex optimization algorithms and their application to distributed control in peer-to-peer data storage system. J. Nonlinear Convex Anal. 16 (2015), no. 11, 2159–2179.
1.213. Fukhar-ud-din, H., Convergence of Ishikawa type iteration process for three quasi-nonexpansive mappings in a convex metric space. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 23 (2015), no. 2, 83–92.
1.214. Grammatico, S.; Parise, F.; Lygeros, J., Constrained linear quadratic deterministic mean field control: Decentralized convergence to Nash equilibria in large populations of heterogeneous agents, 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), pp. 4412-4417 Published: 2015
1.215. Parise, F.; Gentile, B.; Grammatico, S.; et al., Network aggregative games: Distributed convergence to Nash equilibria, 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) Pages: 2295-2300 Published: 2015
1.216. Micula, S., A fast converging iterative method for Volterra integral equations of the second kind with delayed arguments. Fixed Point Theory 16 (2015), no. 2, 371–380.
1.217. Najeh Redjel, Abdelkader Dehici and Inci M Erhan, A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression, Fixed Point Theory Appl. (2015) 2015:115
1.218. Cavalli, F.; Naimzada, A., A tâtonnement process with fading memory, stabilization and optimal speed of convergence. Chaos Solitons Fractals 79 (2015), 116–129.
1.219. Khuri, S.; Sayfy, A., A Class of Boundary Value Problems Arising in Mathematical Physics: A Green’s Function Fixed-point Iteration Method, Zeitschrift fur Naturforschung Section A-A Journal of Physical Sciences 70 (2015), no. 5, 343-350
1.220. Fathollahi, S.; Ghiura, A.; Postolache, M.; Rezapour, S., A comparative study on the convergence rate of some iteration methods involving contractive mappings. Fixed Point Theory Appl. 2015, 2015:234, 24 pp.
1.221. Uddin, I., Imdad, M., Some convergence theorems for a hybrid pair of generalized nonexpansive mappings in CAT(0) spaces, J. Nonlinear Convex Anal. 16 (2015), No. 3, 447-457
1.222. Herraiz, J. L.; Sitek, A., Sensitivity estimation in time-of-flight list-mode positron emission tomography, Medical Physics 42 (2015), no. 11, 6690-6702
1.223. Mohamed Amine Khamsi and Abdul Rahim Khan, On monotone nonexpansive mappings in L_1([0, 1]), Fixed Point Theory Appl. (2015) 2015:94
1.224. Bessem Samet, The class of (α,ψ)-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:92
1.225. Ardelean, G.; Cosma, O.; Balog, L., A comparison of some fixed point iteration procedures by using the basins of attraction, Carpathian J. Math.32 (2016), no. 3, 277-284.
1.226. Şahin, A.; Başarır, M., Convergence and data dependence results of an iteration process in a hyperbolic space. Filomat 30 (2016), no. 3, 569–582.
1.227. Ahmed, S. A.; El-Sayed Ahmed, A.; Bukhari, Abdulfattah K. A.; Rajić, Vesna Ćojbašić, Fixed points by some iterative algorithms in Banach and Hilbert spaces with some applications, Journal of Computational Analysis & Applications. Jan 2016, Vol. 20 Issue 1, p707-717. 11p.
1.228. Shin Min Kang; Ali, Faisal; Rafiq, Arif; Young Chel Kwun; Shaista Jabeen, On the Convergence of Mann and Ishikawa Type Iterations in the Class of Quasi Contractive Operators, Journal of Computational Analysis & Applications, Jul 2016, Vol. 21 Issue 1, 451-459.
1.229. Gdawiec, K.; Kotarski, W.; Lisowska, A., Biomorphs via modified iterations. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2305–2315.
1.230. Yildirim, I.; Abbas, M.; Karaca, N., On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3773–3786.
1.231. Khan, A. R.; Gürsoy, F.; Kumar, V., Stability and data dependence results for the Jungck-Khan iterative scheme. Turkish J. Math. 40 (2016), no. 3, 631–640.
1.232. Olatinwo, M. O., The continuous dependence of the fixed points for nonexpansive and quasi-nonexpansive mappings in uniformly convex Banach space. Fixed Point Theory 17 (2016), no. 2, 427-434.
1.233. Benterki, A., A local fixed point theorem for set-valued mappings on partial metric spaces. Appl. Gen. Topol. 17 (2016), no. 1, 37–49.
1.234. Rus, Ioan A., Remarks on a LaSalle conjecture on global asymptotic stability. Fixed Point Theory 17 (2016), no. 1, 159–172.
1.235. Iiduka, H., Optimization for Inconsistent Split Feasibility Problems, Numer. Funct. Anal. Optim. 37 (2016), No. 2, 186-205
1.236. Karakaya, V.; Gürsoy, F.; Ertürk, M., Some convergence and data dependence results for various fixed point iterative methods. Kuwait J. Sci. 43 (2016), no. 1, 112–128.
1.237. M. Abbas, M. R. Alfuraidan and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math.32 (2016), No. 1, 1-12
1.238. Luo, C., Yao, Y., Yao, Z., Liou, Y.-C., Hybrid algorithms for a family of pseudocontractive mappings, J. Nonlinear Sci. Appl., 9 (2016), No. 1, 254-261
1.239. Altun, I., Minak, G., An extension of Assad-Kirk’s fixed point theorem for multivalued nonself mappings, Carpathian J. Math 32 (2016), No. 2, 147–155
1.240. Souayah, Nizar; Mlaiki, Nabil, A fixed point theorem in S-b-metric spaces, JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS 16 (2016), no. 2, 131-139
1.241. Olgun, M.; Biçer, Ö.; Alyildiz, T., A new aspect to Picard operators with simulation functions. Turkish J. Math. 40 (2016), no. 4, 832–837.
1.242. Ilchev, A.; Zlatanov, B. Error estimates for approximation of coupled best proximity points for cyclic contractive maps. Appl. Math. Comput. 290 (2016), 412–425.
1.243. Hideaki Iiduka, Proximal point algorithms for nonsmooth convex optimization with fixed point constraints, Eur. J. Operational Res. Available online 8 March 2016 In Press, Corrected Proof
1.244. De la Sen, M.; Ibeas, A.; Herrera, J., On fixed points and convergence results of sequences generated by uniformly convergent and point-wisely convergent sequences of operators in Menger probabilistic metric spaces, SPRINGERPLUS 5 (2016), Art. Number: 557
1.245. Poojary, S.; Sharma, V., Analysis of multiple flows using different high speed TCP protocols on a general network, Performance Evaluation, 104 (2016), 42-62.
1.246. Samet, B., On the approximation of fixed points for a new class of generalized Berinde mappings, Carpathian Journal of Mathematics 32 (2016), no. 3, 363-374.
1.247. Zhongjing Maa, Suli Zoua, Long Rana, Xingyu Shia, Ian A. Hiskensb, Efficient decentralized coordination of large-scale plug-in electric vehicle charging, Automatica 69 (2016), 35–47
1.248. Garcia, G., Coupled fixed points and alpha-dense curves, Carpathian J. Math. 32 (2016), no. 3, 323-330
1.249. Kafri, H. Q.; Khuri, S. A.; Sayfy, A. A new approach based on embedding Green’s functions into fixed-point iterations for highly accurate solution to Troesch’s problem. Int. J. Comput. Methods Eng. Sci. Mech. 17 (2016), no. 2, 93–105.
1.250. Chidume, C. E.; Chidume, C. O.; Bello, A. U. An algorithm for computing zeros of generalized phi-strongly monotone and bounded maps in classical Banach spaces. Optimization 65 (2016), no. 4, 827–839.
1.251. Sow, T. M. M.; Djitte, N.; Chidume, C. E., A path convergence theorem and construction of fixed points for nonexpansive mappings in certain Banach spaces, Carpathian J. Math. 32 (2016), no. 2, 241-250
1.252. Zlatanov, B., Error estimates for approximating best proximity points for cyclic contractive maps, Carpathian J. Math. 32 (2016), no. 2, 265-270
1.253. Secelean, N. A. Weak $F$-contractions and some fixed point results. Bull. Iranian Math. Soc. 42 (2016), no. 3, 779–798.
1.254. A. R. Khan, F. Gürsoy, V. Karakaya, Jungck-Khan iterative scheme and higher convergence rate, Int. J. Comput. Math. Volume 93, 2016, Issue 12 DOI:10.1080/00207160.2015.1085030
1.255. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441–448.
1.256. Mogbademu, Adesanmi Alao. New iteration process for a general class of contractive mappings. Acta Comment. Univ. Tartu. Math. 20 (2016), no. 2, 117–122.
1.257. Grammatico, S.; Parise, F.; Colombino, M.; Lygeros, J. Decentralized convergence to Nash equilibria in constrained deterministic mean field control. IEEE Trans. Automat. Control 61 (2016), no. 11, 3315–3329.
1.258. Ullah, K.; Arshad, M. On different results for new three step iteration process in Banach spaces. Springerplus 5 (2016) Article Number: UNSP 1616.
1.259. Chuadchawna, P.; Kaewcharoen, A. Fixed point theorems for modified $(\alpha\text{-}\psi\text{-}\varphi\text{-}\theta)$-rational contractive mappings in $\alpha$-complete $b$-metric spaces. Thai J. Math. 14 (2016), no. 1, 215–235.
1.260. Uddin, Izhar; Imdad, Mohammad. A new iteration scheme for a hybrid pair of nonexpansive mappings. Honam Math. J. 38 (2016), no. 1, 127–139.
1.261. Khammahawong, K.; Ngiamsunthorn, P. Sa; Kumam, P. On best proximity points for multivalued cyclic F-contraction mappings. International Journal Of Nonlinear Analysis And Applications 7 (2016) Issue: 2 Pages: 363-374.
1.262. Nazir, T.; Silvestrov, S. Common Fixed Points of Weakly Commuting Multivalued Mappings on a Domain of Sets Endowed with Directed Graph. Engineering Mathematics Ii: Algebraic, Stochastic And Analysis Structures For Networks, Data Classification And Optimization Book Series: Springer Proceedings in Mathematics & Statistics Volume: 179 Pages: 397-417 Published: 2016
1.263. Khan, Abdul Rahim; Fukhar-ud-din, Hafiz. Iterative methods for nonexpansive type mappings. Fixed point theory and graph theory, 231–285, Elsevier/Academic Press, Amsterdam, 2016.
1.264. Grammatico, S. Aggregative control of competitive agents with coupled quadratic costs and shared constraints. IEEE 55TH Conference On Decision And Control (CDC) Book Series: IEEE Conference on Decision and Control Pages: 3597-3602 Published: 2016
1.265. Grammatico, S. Aggregative control of large populations of noncooperative agents. IEEE 55TH Conference On Decision And Control (CDC) Book Series: IEEE Conference on Decision and Control Pages: 4445-4450 Published: 2016
1.266. Grammatico, S. Exponentially convergent decentralized charging control for large populations of plug-in electric vehicles. IEEE 55TH Conference On Decision And Control (CDC) Book Series: IEEE Conference on Decision and Control Pages: 5775-5780 Published: 2016
1.267. Deori, L.; Margellos, K.; Prandini, M. On decentralized convex optimization in a multi-agent setting with separable constraints and its application to optimal charging of electric vehicles. IEEE 55TH Conference On Decision And Control (CDC) Book Series: IEEE Conference on Decision and Control Pages: 6044-6049 Published: 2016
1.268. Rus, Ioan A.; Şerban, Marcel-Adrian. Some fixed point theorems for nonself generalized contraction. Miskolc Math. Notes 17 (2016), no. 2, 1021–1031.
1.269. Moller, Lukas; Gentile, Basilio; Parise, Francesca; et al. Constrained Deterministic Leader-Follower Mean Field Control. American Control Conference (ACC) Book Series: Proceedings of the American Control Conference Pages: 4687-4692 Published: 2016
1.270. Gürsoy, Faik. A Picard-S iterative method for approximating fixed point of weak-contraction mappings. Filomat 30 (2016), no. 10, 2829–2845.
1.271. Micula, Sanda. On some numerical iterative methods for Fredholm integral equations with deviating arguments. Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 3, 331–341.
1.272. Rus, Ioan A. Some variants of contraction principle, generalizations and applications. Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 3, 343–358.
1.273. Bessenyei, Mihály. The contraction principle in extended context. Publ. Math. Debrecen 89 (2016), no. 3, 287–295.
1.274. Sumalai, P.; Kumam, P.; Panthong, C. Some coincidence points theorems for multi-valued $F$-weak contractions on complete metric space endowed with a graph. [Paging previously given as 51–66]. Thai J. Math. 14 (2016), Special issue, 61–76.
1.275. Tajeddini, Mohammad Amin; Kebriaei, Hamed; Glielmo, Luigi, Robust decentralised mean field control in leader following multi-agent systems, IET CONTROL THEORY AND APPLICATIONS Volume: 11 Issue: 16 Pages: 2707-2715 Published: NOV 3 2017
1.276. Popescu, Ovidiu; Stan, Gabriel. A generalization of Nadler’s fixed point theorem. Results Math. 72 (2017), no. 3, 1525–1534.
1.277. Acar, Özlem. A fixed point theorem for multivalued almost $F_\delta$-contraction. Results Math. 72 (2017), no. 3, 1545–1553.
1.278. Pons, Arion; Gutschmidt, Stefanie, Multiparameter Solution Methods for Semistructured Aeroelastic Flutter Problems, AIAA JOURNAL Volume: 55 Issue: 10 Pages: 3530-3538 Published: OCT 2017
1.279. Sawangsup, Kanokwan; Sintunavarat, Wutiphol; Roldán López de Hierro, Antonio Francisco. Fixed point theorems for $F_{\germ R}$-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1711–1725.
1.280. Olatinwo, Memudu Olaposi. Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions. Georgian Math. J. 24 (2017), no. 3, 455–461.
1.281. Shehu, Yekini; Iyiola, Olaniyi S. Strong convergence result for monotone variational inequalities. Numer. Algorithms 76 (2017), no. 1, 259–282.
1.282. Elias, Jocelyne; Martignon, Fabio; Chen, Lin; et al., Distributed Spectrum Management in TV White Space Networks, IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY Volume: 66 Issue: 5 Pages: 4161-4172 Published: MAY 2017
1.283. Wadai, M.; Kılıçman, A. On the two-point boundary value problems using variational-fixed point iterative scheme. Malays. J. Math. Sci. 11 (2017), Special Issue: The 2nd International Conference and Workshop on Mathematical Analysis (ICWOMA 2016), 137–160.
1.284. Chauhan, Surjeet Singh; Utreja, Kiran; Imdad, Mohammad; Ahmadullah, Md. Strong convergence theorems for a quasi contractive type mapping employing a new iterative scheme with an application. Honam Math. J. 39 (2017), no. 1, 1–25.
1.285. Brun, Todd A.; Wilde, Mark M., Simulations of Closed Timelike Curves, FOUNDATIONS OF PHYSICS Volume: 47 Issue: 3 Pages: 375-391 Published: MAR 2017
1.286. Moon, Jun; Basar, Tamer, Linear Quadratic Risk-Sensitive and Robust Mean Field Games, IEEE TRANSACTIONS ON AUTOMATIC CONTROL Volume: 62 Issue: 3 Pages: 1062-1077 Published: MAR 2017
1.287. Ullah, Kifayat; Arshad, Muhammad. New iteration process and numerical reckoning fixed points in Banach spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 4, 113–122.
1.288. Khan, Abdul Rahim; Kumar, Vivek; Narwal, Satish; Chugh, Renu. Random iterative algorithms and almost sure stability in Banach spaces. Filomat 31 (2017), no. 12, 3611—3626
1.289. Joshi, Vishal; Singh, Deepak; Petruşel, Adrian. Existence results for integral equations and boundary value problems via fixed point theorems for generalized $F$-contractions in $b$-metric-like spaces. J. Funct. Spaces 2017, Art. ID 1649864, 14 pp.
1.290. Ding, Ke; Kim, Jong Kyu; Lu, Qiang; Du, Bin. An iteration scheme for contraction mappings with an application to synchronization of discrete logistic maps. Discrete Dyn. Nat. Soc. 2017, Art. ID 5156314, 7 pp.
1.291. Başarir, Metin; Şahin, Aynur. Some results of the new iterative scheme in hyperbolic space. Commun. Korean Math. Soc. 32 (2017), no. 4, 1009–1024.
1.292. Abbas, Mujahid; Nazir, Talat; Aleksić Lampert, Tatjana; Radenović, Stojan. Common fixed points of set-valued $F$-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 36 (2017), no. 4, 1607–1622.
1.293. De la Sen, M. On some relations between accretive, positive, and pseudocontractive operators and passivity results in Hilbert spaces and nonlinear dynamic systems. Discrete Dyn. Nat. Soc. 2017, Art. ID 1497867, 17 pp.
1.294. Karakaya, Vatan; Atalan, Yunus; Dogan, Kadri; El Houda Bouzara, Nour. Some fixed point results for a new three steps iteration process in Banach spaces. Fixed Point Theory 18 (2017), no. 2, 625–640.
1.295. Hussain, Nawab; Kumar, Vivek; Malik, Preety; Chugh, Renu. Jungck-type implicit iterative algorithms with numerical examples. Filomat 31 (2017), no. 8, 2303–2320.
1.296. Tsegaye Leyew, Bahru; Abbas, Mujahid. Fixed point results of generalized Suzuki-Geraghty contractions on $f$-orbitally complete b-metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 2, 113–124.
1.297. Ertürk, Müzeyyen; Khan, Abdul Rahim; Karakaya, Vatan; Gürsoy, Faik. Convergence and data dependence results for hemicontractive operators. J. Nonlinear Convex Anal. 18 (2017), no. 4, 697–708.
1.298. Angelov, Vasil; Kiskinov, Hristo; Zahariev, Andrey; Georgiev, Ljubomir. On a fixed point theorem in uniform spaces and its application to nonlinear Volterra type operators. Fixed Point Theory 18 (2017), no. 1, 47–56.
1.299. Hançer, Hatice Aslan; Minak, Gülhan; Altun, Ishak. On a broad category of multivalued weakly Picard operators. Fixed Point Theory 18 (2017), no. 1, 229–236.
1.300. Kafri, H. Q.; Khuri, S. A.; Sayfy, A., A Fixed-Point Iteration Approach for Solving a BVP Arising in Chemical Reactor Theory, CHEMICAL ENGINEERING COMMUNICATIONS Volume: 204 Issue: 2 Pages: 198-204 Published: 2017
1.301. Mbabazi, Deanroy; Migliaccio, Kati W.; Crane, Jonathan H.; et al., An irrigation schedule testing model for optimization of the Smart irrigation avocado app, AGRICULTURAL WATER MANAGEMENT Volume: 179 Special Issue: SI Pages: 390-400 Published: JAN 2017
1.302. Rahmani, M.; Koutsopoulos, H. N.; Jenelius, Erik, Travel time estimation from sparse floating car data with consistent path inference: A fixed point approach, TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES Vol: 85, 628-643 Published: DEC 2017
1.303. Dong, Qiaoli; Jiang, Dan; Cholamjiak, Prasit; Shehu, Yekini. A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 19 (2017), no. 4, 3097–3118.
1.304. Micula, Sanda. On some iterative numerical methods for a Volterra functional integral equation of the second kind. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1815–1824.
1.305. Fard, Omid S.; Bidgoli, T. A. Existence and uniqueness of solutions to the second order fuzzy dynamic equations on time scales. Adv. Difference Equ. 2017, Paper No. 231, 17 pp.
1.306. Kanzow, Christian; Shehu, Yekini. Generalized Krasnoselskii–Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput. Optim. Appl. 67 (2017), no. 3, 595–620.
1.307. Flotterod, Gunnar, A search acceleration method for optimization problems with transport simulation constraints, TRANSPORTATION RESEARCH PART B-METHODOLOGICAL Volume: 98 Pages: 239-260 Published: APR 2017
1.308. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$-pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
1.309. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
1.310. Zou, Suli; Hiskens, Ian; Ma, Zhongjing; et al., Consensus-Based Coordination of Electric Vehicle Charging, IEEE CAA Journal Automatica Sinica; Moveo IFAC PAPERSONLINE Volume: 50 Issue: 1 Pages: 8881-8887 Published: 2017
1.311. Brestovanská, Eva; Jaroš, František; Medveď, Milan. Existence results for systems of iterative differential equations. Miskolc Math. Notes 18 (2017), no. 2, 655–664.
1.312. Deori, Luca; Margellos, Kostas; Prandini, Maria, On the connection between Nash equilibria and social optima in electric vehicle charging control games, Conference: 20th World Congress of the International-Federation-of-Automatic-Control (IFAC) Location: Toulouse, FRANCE Date: JUL 09-14, 2017 IFAC PAPERSONLINE Volume: 50 Issue: 1 Pages: 14320-14325 Published: 2017
1.313. Olgun, Murat; Alyıldız, Tuğçe; Biçer, Özge; Altun, Ishak. Fixed point results for $F$-contractions on space with two metrics. Filomat 31 (2017), no. 17, 5421–5426.
1.314. Vetro, Francesca; Vetro, Calogero. On an idea of Bakhtin and Czerwik for solving a first-order periodic problem. J. Nonlinear Convex Anal. 18 (2017), no. 12, 2123–2134.
1.315. Ameer, E.; Arshad, M., Two New Generalizations for F-Contraction on Closed Ball and Fixed Point Theorems with Application, JOURNAL OF MATHEMATICAL EXTENSION 11 (2017), NO. 3, 43-67.
1.316. Garcia-Falset, Jesus; Marino, Giuseppe; Zaccone, Roberta. An explicit midpoint algorithm in Banach spaces. J. Nonlinear Convex Anal. 18 (2017), no. 11, 1933–1952.
1.317. Kafri, H. Q.; Khuri, S. A.; Sayfy, A., Bratu-like equation arising in electrospinning process: a Green’s function fixed-point iteration approach, INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS Volume: 8 Issue: 4 Pages: 364-373 Published: 2017
1.318. Kocev, Darko; Rakočević, Vladimir. On a theorem of Brian Fisher in the framework of w-distance. Carpathian J. Math. 33 (2017), no. 2, 199–205.
1.319. Mendy, J. T.; Sene, Moustapha; Djitte, Ngalla. Explicit algorithm for Hammerstein equations with bounded, hemi-continuous and monotone mappings. Minimax Theory Appl. 2 (2017), no. 2, 319–343.
1.320. Zhou, Mi; Liu, Xiao-Lan; Radenovic, Stojan, S-gamma-phi-phi-contractive type mappings in S-metric spaces, JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS 10 (2017), NO. 4, 1613-1639.
1.321. De la Sen, Manuel. About fixed points in $\rm CAT(0)$ spaces under a combined structure of two self-mappings. J. Math. 2017, Art. ID 1470582, 13 pp.
1.322. Bessenyei, Mihály; Páles, Zsolt. A contraction principle in semimetric spaces. J. Nonlinear Convex Anal. 18 (2017), no. 3, 515–524.
1.323. Damag, Faten H. M.; Kılıçman, Adem. Sufficient conditions on existence of solution for nonlinear fractional iterative integral equation. J. Nonlinear Sci. Appl. 10 (2017), no. 2, 368–376.
1.324. Okeke, Godwin Amechi; Abbas, Mujahid. A solution of delay differential equations via Picard-Krasnoselskii hybrid iterative process. Arab. J. Math. (Springer) 6 (2017), no. 1, 21–29.
1.325. Abbas, Mujahid; Nazir, Talat; Aleksić Lampert, Tatjana; Radenović, Stojan. Common fixed points of set-valued $F$-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 36 (2017), no. 4, 1607–1622.
1.326. Popescu, Ovidiu; Stan, Gabriel. A generalization of Nadler’s fixed point theorem. Results Math. 72 (2017), no. 3, 1525–1534.
1.327. Acar, Özlem. A fixed point theorem for multivalued almost $F_\delta$-contraction. Results Math. 72 (2017), no. 3, 1545–1553.
1.328. Pons, Arion; Gutschmidt, Stefanie, Multiparameter Solution Methods for Semistructured Aeroelastic Flutter Problems. AIAA JOURNAL Volume: 55 Issue: 10 Pages: 3530-3538 Published: OCT 2017
1.329. Sawangsup, K.; Sintunavarat, W.; Roldán López de Hierro, A. F. Fixed point theorems for $F_{\germ R}$-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1711–1725.
1.330. Olatinwo, Memudu Olaposi. Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions. Georgian Math. J. 24 (2017), no. 3, 455–461.
1.331. Shehu, Yekini; Iyiola, Olaniyi S. Strong convergence result for monotone variational inequalities. Numer. Algorithms 76 (2017), no. 1, 259–282.
1.332. Elias, J.; Martignon, F.; Chen, L.; et al. Distributed Spectrum Management in TV White Space Networks. IEEE Transactions On Vehicular Technology 66 (2017) no. 5 4161-4172
1.333. Wadai, M.; Kılıçman, A. On the two-point boundary value problems using variational-fixed point iterative scheme. Malays. J. Math. Sci. 11 (2017), 137–160.
1.334. Fard, Omid Solaymani; Bidgoli, Tayebeh Aliabdoli; Rivaz, Azim. On existence and uniqueness of solutions to the fuzzy dynamic equations on time scales. Math. Comput. Appl. 22 (2017), no. 1, Paper No. 16, 16 pp.
1.335. Gursoy, F.; Khan, A. R.; Fukhar-ud-din, H. Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces. Hacet. J. Math. Stat. 46 (2017), no. 3, 373–388.
1.336. Panyanak, Bancha. Approximating endpoints of multi-valued nonexpansive mappings in Banach spaces. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 77, 8 pp.
1.337. Yildirimoglu, Mehmet; Kahraman, Osman, Searching for empirical evidence on traffic equilibrium, PLOS ONE Volume: 13 Issue: 5 Article Number: e0196997 Published: MAY 7 2018
1.338. Shehu, Yekini; Iyiola, Olaniyi. S. Convergence of hybrid viscosity and steepest-descent methods for pseudocontractive mappings and nonlinear Hammerstein equations. Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 2, 610–626.
1.339. Georgescu, Flavian; Miculescu, Radu; Mihail, Alexandru. A study of the attractor of a $\varphi$-$\max$-IFS via a relatively new method. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 24, 13 pp.
1.340. Ramesh Kumar, D.; Pitchaimani, M. Approximation and stability of common fixed points of Prešić type mappings in ultrametric spaces. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 4, 21 pp.
1.341. Proinov, Petko D. Unified convergence analysis for Picard iteration in $n$-dimensional vector spaces. Calcolo 55 (2018), no. 1, Art. 6, 21 pp.
1.342. Kaźmierczak, Anna; Sokolowski, Jan; Zochowski, Antoni. Drag minimization for the obstacle in compressible flow using shape derivatives and finite volumes. Math. Control Relat. Fields 8 (2018), no. 1, 89–115.
1.343. De la Sen, M. On Some Convergence Properties of the Modified Ishikawa Scheme for Asymptotic Demicontractive Self-Mappings with Matricial Parameterizing Sequences. J. Math. 2018, Art. ID 3840784, 13 pp.
1.344. Karakaya, Vatan; Doğan, Kadri; Atalan, Yunus; Bouzara, Nour El Houda. The local and semilocal convergence analysis of new Newton-like iteration methods. Turkish J. Math. 42 (2018), no. 3, 735–751.
1.345. Ullah, Asmat; Khan, Israr Ali; Mehmood, Nayyar, Fixed Point and Common Fixed Point Results of D-F-Contractions via Measure of Non-compactness with Applications, COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS Volume: 9 Issue: 1 Special Issue: SI Pages: 53-62
1.346. Toscano, Elena; Vetro, Calogero. Fixed point iterative schemes for variational inequality problems. J. Convex Anal. 25 (2018), no. 2, 701–715.
1.347. Ahmad, Jamshaid; Al-Mazrooei, Abdullah Eqal. Common fixed point theorems for multivalued mappings on metric spaces with a directed graph. Bull. Math. Anal. Appl. 10 (2018), no. 1, 26—37
1.348. Gürsoy, Faik; Khan, Abdul Rahim; Ertürk, Müzeyyen; Karakaya, Vatan. Convergence and data dependency of normal-$S$ iterative method for discontinuous operators on Banach space. Numer. Funct. Anal. Optim. 39 (2018), no. 3, 322–345.
1.349. Ullah, Kifayat; Arshad, Muhammad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, FILOMAT Volume: 32 Issue: 1 Pages: 187-196 Published: 2018
1.350. Barache, Bahia; Arab, Idir; Dahmani, Abdelnasser, Exponential inequalities for Mann’s iterative scheme with functional random errors, SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS Volume: 37 Issue: 1 Pages: 18-30 Published: 2018
1.351. Fathollahi, Shahin; Rezapour, Shahram. Efficacy of Coefficients on Rate of Convergence of Some Iteration Methods for Quasi-Contractions. Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 3, 1517–1523.
1.352. Khuri, S. A.; Louhichi, I. A novel Ishikawa-Green’s fixed point scheme for the solution of BVPs. Appl. Math. Lett. 82 (2018), 50–57.
1.353. Miculescu, Radu; Mihail, Alexandru. A generalization for a finite family of functions of the converse of Browder’s fixed point theorem. Bull. Braz. Math. Soc. (N.S.) 49 (2018), no. 4, 673–698.
1.354. Altun, Ishak; Samet, Bessem. Pseudo Picard operators on generalized metric spaces. Appl. Anal. Discrete Math. 12 (2018), no. 2, 389–400.
1.355. Tang, Yan. Viscosity iterative algorithm for the zero point of monotone mappings in Banach spaces. J. Inequal. Appl. 2018, Paper No. 254, 23 pp.
1.356. Bréhard, Florent; Brisebarre, Nicolas; Joldeş, Mioara. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations. ACM Trans. Math. Software 44 (2018), no. 4, Art. 44, 42 pp.
1.357. Moudafi, A. A reflected inertial Krasnoselskii-type algorithm for Lipschitz pseudo-contractive mappings. Bull. Iranian Math. Soc. 44 (2018), no. 4, 1109–1115.
1.358. Abbas, Mujahid; Nazir, Talat; Rakočević, Vladimir. Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 331–354.
1.359. Abbas, Mujahid; Nazir, Talat; Rakočević, Vladimir. Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 331–354.
1.360. Amer, M.; Busson, A.; Lassous, I. G. Association Optimization in Wi-Fi Networks based on the Channel Busy Time Estimation. IFIP NETWORKING CONFERENCE (IFIP NETWORKING) AND WORKSHOPS Pages: 298-306 Published: 2018
1.361. Hussain, Nawab; Ullah, Kifayat; Arshad, Muhammad. Fixed point approximation of Suzuki generalized nonexpansive mappings via new faster iteration process. J. Nonlinear Convex Anal. 19 (2018), no. 8, 1383–1393.
1.362. Ilchev, A. On an Application of Coupled Best Proximity Points Theorems for Solving Systems of Linear Equations. Book Series: AIP Conference Proceedings Volume: 2048 Article Number: UNSP 050003 Published: 2018
1.363. Ilchev, A. Error Estimates for Approximating Best Proximity Points for Kannan Cyclic Contractive Maps. Book Series: AIP Conference Proceedings Volume: 2048 Article Number: UNSP 050002 Published: 2018
1.364. Damag, Faten H.; Kilicman, A. Biological Experiments Based on Fractional Integral Equations. Book Series: Journal of Physics Conference Series Volume: 1132 Article Number: UNSP 012023 Published: 2018
1.365. Uddin, Izhar; Imdad, Mohammad. Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard spaces. Hacet. J. Math. Stat. 47 (2018), no. 6, 1595–1604.
1.366. Chidume, C. E.; Adamu, A.; Okereke, Lois C. A Krasnoselskii-type algorithm for approximating solutions of variational inequality problems and convex feasibility problems. J. Nonlinear And Variational Anal. vol: 2 Issue: 2 Pages: 203-218 Published: 2018
1.367. Carli, R.; Dotoli, M. Distributed Control for Waterfilling of Networked Control Systems with Coupling Constraints. IEEE Conference On Decision And Control (CDC) Book Series: IEEE Conference on Decision and Control Pages: 3710-3715 Published: 2018
1.368. Kılıçman, Adem; Damag, F. H. M. Some solution of the fractional iterative integro-differential equations. Malays. J. Math. Sci. 12 (2018), no. 1, 121–141.
1.369. Karami, A.; Shakeri, R.; Sedghi, S.; Altun, I. Coupled fixed point results on metric spaces defined by binary operations. Carpathian Math. Publ. 10 (2018), no. 2, 313–323.
1.370. Shehu, Yekini. Convergence rate analysis of inertial Krasnoselskii-Mann type iteration with applications. Numer. Funct. Anal. Optim. 39 (2018), no. 10, 1077–1091.
1.371. Anthony Eldred, A.; Julia Mary, P. Strong convergence of modified Ishikawa iterates for asymptotically nonexpansive maps with new control conditions. Commun. Korean Math. Soc. 33 (2018), no. 4, 1271–1284.
1.372. Khuri, S. A.; Sayfy, A. Numerical solution of functional differential equations: a Green’s function-based iterative approach. Int. J. Comput. Math. 95 (2018), no. 10, 1937–1949.
1.373. Ungureanu, V. Stackelberg Equilibrium Sets in Polymatrix Mixed-Strategy Generalized Stackelberg Games. Pareto-Nash-Stackelberg Game And Control Theory: Intelligent Paradigms And Applications Book Series: Smart Innovation Systems and Technologies Volume: 89 Pages: 129-165 Published: 2018
1.374. Zhang, Bing; Zhang, Yu, An Individual Differentiated Coexisting Mechanism for Multiple Wireless Body Area Networks Based on Game Theory. IEEE ACCESS Volume: 6 Published: 2018
1.375. Usurelu, G. I.; Postolache, M. Convergence Analysis for a Three-Step Thakur Iteration for Suzuki-Type Nonexpansive Mappings with Visualization. SYMMETRY-BASEL Volume: 11 Issue: 12 Article Number: 1441 Published: DEC 2019
1.376. Bouza-Herrera, Carlos N.; Allende-Alonso, Sira M.; Vishwakarma, Gajendra K.; Singh, Neha. Estimation of optimum sample size allocation: an illustration with body mass index for evaluating the effect of a dietetic supplement. Int. J. Biomath. 12 (2019), no. 8, 1950086, 12 pp.
1.377. Micula, Sanda, On Some Iterative Numerical Methods for Mixed Volterra-Fredholm Integral Equations. SYMMETRY-BASEL Volume: 11 Issue: 10 Article Number: 1200 Published: OCT 2019
1.378. Li, Xiaoli; Rui, Hongxing; Chen, Shuangshuang. A fully conservative block-centered finite difference method for simulating Darcy-Forchheimer compressible wormhole propagation. Numer. Algorithms 82 (2019), no. 2, 451–478.
1.379. Okeke, Godwin Amechi. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 30 (2019), no. 5-6, 817–835.
1.380. Sherson, T.; Heusdens, R.; Kleijn, W. B, On the Distributed Method of Multipliers for Separable Convex Optimization Problems. IEEE Transactions On Signal And Information Processing Over Networks Volume: 5 Issue: 3 Pages: 495-510 Published: SEP 2019
1.381. Hishinuma, K.; Iiduka, H. Incremental and Parallel Machine Learning Algorithms With Automated Learning Rate Adjustments. FRONTIERS IN ROBOTICS AND AI Volume: 6 Article Number: 77 Published: AUG 27 2019
1.382. Kumam, Wiyada; Khammahawong, Konrawut; Kumam, Poom. Error estimate of data dependence for discontinuous operators by new iteration process with convergence analysis. Numer. Funct. Anal. Optim. 40 (2019), no. 14, 1644–1677.
1.383. Wang, Chao. Approximating fixed points of nonlinear mappings in convex metric space. Thai J. Math. 17 (2019), no. 2, 379–387.
1.384. Gursoy, Faik; Eksteen, Johannes Jacobus Arnoldi; Khan, Abdul Rahim; et al. An iterative method and its application to stable inversion. Soft Computing 23 (2019), no. 16, 7393-7406.
1.385. Deori, Luca; Margellos, Kostas; Prandini, Maria. Regularized Jacobi Iteration for Decentralized Convex Quadratic Optimization With Separable Constraints. IEEE Transactions On Control Systems Technology Volume: 27 Issue: 4 Pages: 1636-1644 Published: JUL 2019
1.386. Tang, Yan; Bao, Zhiqing. New semi-implicit midpoint rule for zero of monotone mappings in Banach spaces. Numer. Algorithms 81 (2019), no. 3, 853–878.
1.387. Chauhan, Surjeet Singh; Imdad, Mohammad; Kaur, Gurjeet; et al. Some fixed point theorems for S-F-contraction in complete fuzzy metric spaces. Afrika Matematika Volume: 30 Issue: 3-4 Pages: 651-662 Published: JUN 2019
1.388. Khuri, S. A.; Sayfy, A. A fixed point iteration method using Green’s functions for the solution of nonlinear boundary value problems over semi-Infinite intervals. International Journal Of Computer Mathematics https://doi.org/10.1080/00207160.2019.1615618
1.389. Paccagnan, Dario; Gentile, Basilio; Parise, Francesca; et al. Nash and Wardrop Equilibria in Aggregative Games With Coupling Constraints. IEEE Transactions On Automatic Control Volume: 64 Issue: 4 Pages: 1373-1388 Published: APR 2019
1.390. Wang, Chao; Li, Xueli; Huang, Pengkun. On the error estimation and T-stability of the Ishikawa iteration for strongly demicontractive mappings. J. Inequal. Appl. 2019, Paper No. 75, 12 pp.
1.391. Pitea, Ariana, Best Proximity Results on Dualistic Partial Metric Spaces. SYMMETRY-BASEL Volume: 11 Issue: 3 Article Number: 306 Published: MAR 1 2019
1.392. Tajeddini, M. A.; Kebriaei, H. A Mean-Field Game Method for Decentralized Charging Coordination of a Large Population of Plug-in Electric Vehicles. IEEE Systems Journal Volume: 13 Issue: 1 Pages: 854-863 Published: MAR 2019
1.393. Górnicki, Jarosław. Remarks on asymptotic regularity and fixed points. J. Fixed Point Theory Appl. 21 (2019), no. 1, Art. 29, 20 pp.
1.394. Chidume, C. E.; Uba, M. O.; Uzochukwu, M. I.; Otubo, E. E.; Idu, K. O. A strong convergence theorem for an iterative method for finding zeros of maximal monotone maps with applications to convex minimization and variational inequality problems. Proc. Edinb. Math. Soc. (2) 62 (2019), no. 1, 241–257.
1.395. Gibali, Aviv; Shehu, Yekini. An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces. Optimization 68 (2019), no. 1, 13–32.
1.396. Hammad, H. A.; Cholamjiak, W.; Yambangwai, D.; et al. A modified shrinking projection methods for numerical reckoning fixed points of g-nonexpansive mappings in hilbert spaces with graphs. Miskolc Math. Notes Volume: 20 Issue: 2 Pages: 941-956 Published: 2019
1.397. Uddin, Izhar; Ali, Javid; Rakocevic, V. Some convergence theorems for new iteration scheme in CAT(0) spaces. Miskolc Math. Notes 20 (2019) Issue: 2 Pages: 1285-1297
1.398. Nguyen Cong Luong; Wang, Ping; Niyato, Dusit; et al. Applications of Economic and Pricing Models for Resource Management in 5G Wireless Networks: A Survey. IEEE Communications Surveys And Tutorials v. 21 Issue: 4 Pages: 3298-3339 Published: 2019
1.399. Dogan, K. A comparative study on some recent iterative schemes. Journal Of Nonlinear And Convex Analysis Volume: 20 Issue: 11 Special Issue: SI Pages: 2411-2423 Published: 2019
1.400. Hishinuma, Kazuhiro; Iiduka, H. Convergence analysis of incremental and parallel line search subgradient methods in Hilbert space. Journal Of Nonlinear And Convex Analysis Volume: 20 Issue: 9 Special Issue: SI Pages: 1937-1947 Published: 2019
1.401. Shukla, D. P.; Tiwari, V. Fixed point algorithms using iteration technique. Journal Of Interdisciplinary Mathematics Volume: 22 Issue: 4 Pages: 581-592 Published: 2019
1.402. Atiponrat, Watchareepan; Dangskul, Supreedee; Khemphet, Anchalee. Coincidence point theorems for KC-contraction mappings in $JS$-metric spaces endowed with a directed graph. Carpathian J. Math. 35 (2019), no. 3, 263–272.
1.403. Chidume, C. E.; Adamu, A.; Okereke, L. C. Approximation of solutions of Hammerstein equations with monotone mappings in real Banach spaces. Carpathian J. Math. 35 (2019), no. 3, 305–316.
1.404. Zou, Suli; Warrington, Joseph; Lygeros, John, Game-theoretic robust energy coordination for a neighbourhood of smart homes. 18TH European Control Conference (ECC) Pages: 3402-3407 Published: 2019
1.405. Tajeddini, M. A.; Kebriaei, H.; Glielmo, L. Decentralized Charging Coordination of Plug-in Electric Vehicles Based on Reverse Stackelberg Game, 18TH European Control Conference (ECC) Pages: 3414-3419 Published: 2019
1.406. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.
1.407. Şahin, Aynur. Some new results of M-iteration process in hyperbolic spaces. Carpathian J. Math. 35 (2019), no. 2, 221–232.
1.408. Frick, Damian; Georghiou, Angelos; Jerez, Juan L.; Domahidi, Alexander; Morari, Manfred. Low-complexity method for hybrid MPC with local guarantees. SIAM J. Control Optim. 57 (2019), no. 4, 2328–2361.
1.409. Inchan, I.; Deepan, U. Some Fixed Point of Hardy-Rogers Contraction in Generalized Complex Valued Metric Spaces. Communications In Mathematics And Applications Volume: 10 Issue: 2 Special Issue: SI Pages: 257-265 Published: 2019
1.410. Sakurai, Kaito; Jimba, Takayuki; Iiduka, H. Iterative methods for parallel convex optimization with fixed point constraints. Journal Of Nonlinear And Variational Analysis Volume: 3 Issue: 2 Special Issue: SI Pages: 115-126 Published: 2019
1.411. Gürsoy, Faik; Ertürk, Müzeyyen; Khan, Abdul Rahim; Karakaya, Vatan. Analytical and numerical aspect of coincidence point problem of quasi-contractive operators. Publ. Inst. Math. (Beograd) (N.S.) 105(119) (2019), 101–121.
1.412. Iqbal, Iram; Hussain, Nawab. Ekeland-type variational principle with applications to nonconvex minimization and equilibrium problems. Nonlinear Anal. Model. Control 24 (2019), no. 3, 407–432.
1.413. Ertürk, Müzeyyen; Gürsoy, Faik. Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators. Math. Bohem. 144 (2019), no. 1, 69–83.
1.414. García, G. Approximating coincidence points by $\alpha$-dense curves. Fixed Point Theory 20 (2019), no. 1, 185–193.
1.415. De la Sen, M.; Abbas, Mujahid. On best proximity results for a generalized modified Ishikawa’s iterative scheme driven by perturbed 2-cyclic like-contractive self-maps in uniformly convex Banach spaces. J. Math. 2019, Art. ID 1356918, 15 pp.
1.416. Gürsoy, Faik; Khan, Abdul Rahim; Ertürk, Müzeyyen; Karakaya, Vatan. Weak $w^2$-stability and data dependence of Mann iteration method in Hilbert spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 11–20.
1.417. Thangthong, Chaiporn; Charoensawan, Phakdi. Common fixed point theorems for some admissible contraction mapping in JS-metric spaces. Thai J. Math. 17 (2019), Special issue, 257–271.
1.418. Sawangsup, Kanokwan; Sintunavarat, Wutiphol; Cho, Yeol Je. Fixed point theorems for orthogonal $F$-contraction mappings on $O$-complete metric spaces. J. Fixed Point Theory Appl. 22 (2020), no. 1, Art. 10, 14 pp.
1.419. Maniu, G. On a Three-Step Iteration Process for Suzuki Mappings with Qualitative Study. Numerical Functional Analysis And Optimization Early Access: JAN 2020
1.420. Carpio, R.; Guo, M. On Equilibrium Existence in a Finite-Agent, Multi-Asset Noisy Rational Expectations Economy. B E Journal Of Theoretical Economics Volume: 20 Issue: 1 Article Number: 20180144 Published: JAN 2020
1.421.* Kir, M.; Dutta, H.; Acikgoz, M.; Araci, S. Identities on some special polynomials derived from the concepts of $n$-normed structures, accretive operators and contraction mappings. Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 2, 787–792.
1.422.* Secelean, Nicolae-Adrian; Wardowski, Dariusz. $\psi F$-contractions: not necessarily nonexpansive Picard operators. Results Math. 70 (2016), no. 3-4, 415–431.
1.423.* Wardowski, Dariusz; Dung, Nguyen Van. A note on fixed point theorems in metric spaces. Carpathian J. Math. 31 (2015), no. 1, 127–134.
1.424.* Kumam, Poom; Nguyen Van Dung; Sitthithakerngkiet, Kanokwan. A generalization of Ćirić fixed point theorems. Filomat 29 (2015), no. 7, 1549–1556.
1.425.* Tran Van An; Nguyen Van Dung; Vo Thi Le Hang. General fixed point theorems on metric spaces and 2-metric spaces. Filomat 28 (2014), no. 10, 2037–2045.
1.426.* Ezquerro, J. A.; Hernández-Verón, M. A. Domains of global convergence for a type of nonlinear Fredholm-Nemytskii integral equations. Appl. Numer. Math. 146 (2019), 452–468.
1.427.* Antonio Ezquerro, J.; Angel Hernandez-Veron, M. How to Obtain Global Convergence Domains via Newton’s Method for Nonlinear Integral Equations. Mathematics 7 (2019), no. 6 Article Number: 553.
1.428. Hussain, Nawab; Kutbi, Marwan Amine; Berinde, Vasile. Dotson’s convexity, Banach operator pair and best simultaneous approximations. Math. Commun. 15 (2010), no. 2, 377–386.
„*” Citations with wrong publishing year (2005 instead of 2007)
[2] V. Berinde and M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, vol. 74, no. 15, pp. 4889-4897, 2011
2.1. M. Abbas, H. Aydi and E. Karapinar, Tripled Fixed Points of Multivalued Nonlinear Contraction Mappings in Partially Ordered Metric Spaces, Abstr. Appl. Anal., Vol. 2011, Article ID 812690, 12 pages, doi:10.1155/2011/812690
2.2. M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Math. Comput. 218 (2012) No. 14, 7339–7346
2.3. M. Berzig, B. Samet, An extension of coupled fixed point’s concept in higher dimension and applications, Comput. Math. Appl. 63 (2012) 1319–1334
2.4. Karapinar E., Nguyen Van Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Appl. (2012) doi:10.1016/j.camwa.2012.02.061
2.5. Amini-Harandi, A., Coupled and tripled fixed point theory in partially ordered metric spaces with application to initial value problem, MATHEMATICAL AND COMPUTER MODELLING Volume: 57 Issue: 9-10 Pages: 2343-2348 Published: MAY 2013
2.6. V. Ghorbanian, Sh. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl. 63 (2012) 1361–1368
2.7. Hussain, N; Latif, A; Shah, MH, Coupled and tripled coincidence point results without compatibility, Fixed Point Theory Appl., 10.1186/1687-1812-2012-77 2012
2.8. Ciric L.; Damjanovic B.; Jleli Mohamed; et al., Coupled fixed point theorems for generalized Mizoguchi-Takahashi contractions with applications, Fixed Point Theory Appl. 2012, Pages: 1-13 Article Number: 51 DOI: 10.1186/1687-1812-2012-51
2.9. Mustafa Z.; Aydi H.; Karapinar E., Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl. 2012 Pages: 1-19 Article Number: 71 DOI: 10.1186/1687-1812-2012-71
2.10. Aydi H.; Karapinar E.; Shatanawi W., Tripled Fixed Point Results in Generalized Metric Spaces, J. APPL. MATH. 2012 Article Number: 314279 DOI: 10.1155/2012/314279
2.11. Aydi H.; Karapinar E., New Meir-Keeler Type Tripled Fixed-Point Theorems on Ordered Partial Metric Spaces, Math. Probl. Eng. 2012 Article Number: 409872 DOI: 10.1155/2012/409872
2.12. Abdeljawad, T., Aydi, H., Karapinar, E., Coupled fixed points for Meir-Keeler contractions in ordered partial metric spaces, Math. Probl. Eng., Volume 2012, 2012, Article number 327273
2.13. H. Aydi, M. Abbas, W. Sintunavarat, P. Kumam, Tripled fixed point of $W$-compatible mappings in abstract metric spaces, Fixed Point Theory Appl. 2012, 2012:134 doi:10.1186/1687-1812-2012-134
2.14. Aydi, H., Karapinar, E., Erhan, I.M., Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions, Abstr. Appl. Anal., Volume 2012, 2012, Article number781563
2.15. Karapinar, E., Shatanawi, W., Mustafa, Z., Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces, J. Appl. Math. Volume 2012, 2012, Article number 951912
2.16. H. Aydi, E. Karapinar and W. Shatanawi, Tripled coincidence point results for generalized contractions in ordered generalized metric spaces, Fixed Point Theory Appl., 2012: 101
2.17. A. Roldan, J. Martinez-Moreno, C. Roldan, Multidimensional fixed point theorems in partially ordered complete metric spaces, J. Math. Anal. Appl. 396 (2012) 536–545
2.18. M. Borcut, Tripled fixed point theorems for monotone mappings in partially ordered metric spaces, Carpathian J. Math.28 (2012), No. 2, 215-222
2.19. Aydi, H., Karapinar, E., Vetro, C., Meir-Keeler Type Contractions for Tripled Fixed Points, Acta Math. Sci. 32 (2012), No. 6, 2119-2130
2.20. Aydi, H.; Karapinar, E.; Postolache, M., Tripled coincidence point theorems for weak phi-contractions in partially ordered metric spaces, Fixed Point Theory Appl., Article Number: 44 DOI: 10.1186/1687-1812-2012-44
2.21. Rao, K. P. R.; Kishore, G. N. V.; Tas, Kenan, A Unique Common Triple Fixed Point Theorem for Hybrid Pair of Maps, Abstr. Appl. Anal., Article Number: 750403 DOI: 10.1155/2012/750403
2.22. Aghajani, A., Abbas, M., Kallehbasti, E.P., Coupled fixed point theorems in partially ordered metric spaces and application, Math. Comm., 17 (2012), No. 2, 497-509
2.23. Asl, J. Hasanzade; Rezapour, S.; Shahzad, N., On fixed points of alpha-psi-contractive multifunctions, Fixed Point Theory Appl. 2012, 2012:212, 6 pp.
2.24. Abbas, M; Ali, B; Sintunavarat, W; Kumam, P, Tripled fixed point and tripled coincidence point theorems in intuitionistic fuzzy normed spaces, Fixed Point Theory Appl. 2012, 10.1186/1687-1812-2012-187
2.25. S. Mohiuddine, A. Alotaibi, Some results on a tripled fixed point for nonlinear contractions in partially ordered G-metric spaces, Fixed Point Theory Appl. 2012, 2012:179
2.26. E. Karapinar, P. Kumam, I. M Erhan, Coupled fixed point theorems on partially ordered G-metric spaces, Fixed Point Theory Appl. 2012, 2012:174
2.27. H. Aydi, E. Karapinar, Stojan Radenović, Tripled coincidence fixed point results for Boyd–Wong and Matkowski type contractions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM July 2012
2.28. A. Razani, H. Hosseinzadeh, Triple fixed point theorems on FLM algebras, Fixed Point Theory Appl. 2013, 2013:16
2.29. A. Roldan, J. Martinez-Moreno, C. Roldan, Tripled fixed point theorem in fuzzy metric spaces and applications, Fixed Point Theory Appl. 2013, 2013:29 doi:10.1186/1687-1812-2013-29
2.30. Karapinar, E., Sadarangani, K., Triple fixed point theorems for weak (psi-phi)-contractions, J. Comput. Anal. Appl. 15 (2013), No. 5, 844-851
2.31. Karapinar, E., Roldan, A., Martinez-Moreno, J., Roldan, C., Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, art. no. 406026
2.32. Karapinar, E; Roldan, A; Roldan, C; Martinez-Moreno, J, A note on ‘N-fixed point theorems for nonlinear contractions in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:310, 10.1186/1687-1812-2013-310
2.33. P. Charoensawan, Tripled coincidence point theorems for a φ-contractive mapping in a complete metric space without the mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:252 doi:10.1186/1687-1812-2013-252
2.34. A. Roldán, J. Martínez-Moreno, C. Roldán, and E. Karapinar, Multidimensional Fixed-Point Theorems in Partially Ordered Complete Partial Metric Spaces under (\Psi, \Phi)-Contractivity Conditions, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 634371, 12 pages
2.35. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Cho, Y. J. Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets and Systems 251 (2014), 71–82.
2.36. Z. Mustafa, J. R. Roshan and V. Parvaneh, Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations, J. Ineq. Appl. 2013, 2013:453 doi:10.1186/1029-242X-2013-453
2.37. S. Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:96
2.38. Yeol Je Cho, Animesh Gupta, Erdal Karapinar, Poom Kumam and Wutiphol Sintunavarat, Tripled best proximity point theorem in metric spaces, Mathematical Inequalities & Applications 16 (2013), No. 4, 1197–1216 doi:10.7153/mia-16-93
2.39. Jleli, Mohamed; Samet, Bessem, Fixed point results on ordered metric spaces and existence of solutions to a system of nonlinear integral equations, J Nonlinear Convex Anal 14 (2013), No. 4, 841-851
2.40. X.-L. Liu, Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:147 doi:10.1186/1687-1812-2013-147
2.41. M. Paknazar, M. E. Gordji, M. De La Sen and S. M. Vaezpour, N-fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:111 doi:10.1186/1687-1812-2013-111
2.42. V. Parvaneh, J. R. Roshan, S. Radenović, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl. 2013, 2013:130
2.43. N. Hussain, P. Salimi and S. Al-Mezel, Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations, Fixed Point Theory Appl. 2013, 2013:261 doi:10.1186/1687-1812-2013-261
2.44. E. Karapinar and A. Roldán, A note on ‘n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces’, J. Ineq. Appl. 2013, 2013:567 doi:10.1186/1029-242X-2013-567
2.45. Jun Wu and Yicheng Liu, Fixed point theorems for monotone operators and applications to nonlinear elliptic problems, Fixed Point Theory Appl. 2013, 2013:134 doi:10.1186/1687-1812-2013-134
2.46. Jun Wu and Yicheng Liu, Note for the tripled and quadruple fixed points of the mixed monotone mappings, Bull. Korean Math. Soc. 50 (2013), No. 3, pp. 993–1005
2.47. M. Ertürk and V. Karakaya, n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Ineq. Appl. 2013, 2013:196 doi:10.1186/1029-242X-2013-196
2.48. Rus, Mircea-Dan., The Fixed Point Problem for Systems of Coordinate-Wise Uniformly Monotone Operators and Applications. Mediterr. J. Math. 11 (2014), No. 1, 1-14.
2.49. Berzig, M., E. Karapinar and A. Roldán, Discussion on generalized-(αψ, βϕ)-contractive mappings via generalized altering distance function and related fixed point theorems. Abstr. Appl. Anal., Article Number: 259768 Published: 2014
2.50. Liu, Jian Hui; Zhu, Chuan Xi; Wu, Zhao Qi, Tripled coincidence point theorems under contractive conditions in partially ordered probabilistic metric spaces. Acta Math. Sinica (Chin. Ser.) 57 (2014), no. 3, 517–526.
2.51. X.-L. Liu, Common fixed points of ordered g-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:28
2.52. M. A. Kutbi, J. Ahmad, M. Abbas and M. Arshad, Tripled Coincidence and Common Fixed Point Results for Two Pairs of Hybrid Mappings, Abstr. Appl. Anal. Volume 2014 (2014), Article ID 803729, 11 pages
2.53. Li Zhu, C.-X. Zhu, C.-F. Chen and Ž. Stojanović, Multidimensional fixed points for generalized ψ-quasi-contractions in quasi-metric-like spaces, J. Ineq. Appl. 2014, 2014:27 doi:10.1186/1029-242X-2014-27
2.54. H. Olaoluwa and J. Olaleru, Multipled fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2014, 2014:43 doi:10.1186/1687-1812-2014-43
2.55. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
2.56. Feng Gu, Some common tripled fixed point results in two quasi-partial metric spaces, Fixed Point Theory Appl. 2014, 2014:71 doi:10.1186/1687-1812-2014-71
2.57. N. Wairojjana1, W. Sintunavarat and P. Kumam, Common tripled fixed point theorems for W-compatible mappings along with the CLRg property in abstract metric spaces, J. Ineq. Appl. 2014, 2014:133 doi:10.1186/1029-242X-2014-133
2.58. P. Kumam and A. F. Roldán López de Hierro, On Existence and Uniqueness of -Best Proximity Points under (phi,theta,alpha,g)-Contractivity Conditions and Consequences, Abstr. Appl. Anal. Volume 2014 (2014), Article ID 234027, 14 pages
2.59. E. Karapınar, A. Roldán, N. Shahzad, W. Sintunavarat, Discussion of coupled and tripled coincidence point theorems for φ-contractive mappings without the mixed g-monotone property, Fixed Point Theory Appl. 2014, 2014:92
2.60. Kumam, Poom, et al., Berinde-Borcut tripled fixed point theorem in partially ordered (intuitionistic) fuzzy normed spaces. J. Ineq. Appl. 2014.1 (2014): 47.
2.61. S. Radenović, A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., 236 (2014), 367-372
2.62. Erturk, M., Karakaya, V., n-Tuplet Coincidence Point Theorems in Intuitionistic Fuzzy Normed Spaces, J. Function Spaces, 10.1155/2014/821342 2014
2.63. S. A. Al-Mezel, H. H. Alsulami, E. Karapinar, and Antonio-Francisco Roldán López-de-Hierro, Discussion on „Multidimensional Coincidence Points” via Recent Publications, Abstr. Appl. Anal., Volume 2014, Article ID 287492, 13 pages
2.64. Marwan Amin Kutbi, Nawab Hussain, Jamal Rezaei Roshan, and Vahid Parvaneh, Coupled and Tripled Coincidence Point Results with Application to Fredholm Integral Equations, Abstr. Appl. Anal., Volume 2014, Article ID 568718, 18 pages
2.65. S. Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:137
2.66. Reza Saadati, Poom Kumam, Sun Jang, On the tripled fixed point and tripled coincidence point theorems in fuzzy normed spaces, Fixed Point Theory Appl. 2014, 2014:136
2.67. Wasfi Shatanawi, Ariana Pitea, Rade Lazović, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl. 2014, 2014:135
2.68. Shatanawi, W., Postolache, M., Mustafa, Z., Tripled and coincidence fixed point theorems for contractive mappings satisfying $\Phi$-maps in partially ordered metric spaces. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 22 (2014), no. 3, 179–203.
2.69. Karakaya, Vatan; Bouzara, Nour El Houda; Dogan, Kadri; et al., Existence of Tripled Fixed Points for a Class of Condensing Operators in Banach Spaces, Sci. World J. Article Number: 541862 Published: 2014
2.70. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Cho, Y. J. Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets and Systems 251 (2014), 71–82.
2.71. Erdal Karapınar, Priya Shahi and Kenan Tas, Generalized α-ψ-contractive type mappings of integral type and related fixed point theorems, J Inequal Appl 2014, 2014:160 doi:10.1186/1029-242X-2014-160
2.72. Alsulami, H. H., Roldán-López-de-Hierro, A.-F., Karapınar, E., Radenović, S., Some inevitable remarks on „Tripled fixed point theorems for mixed monotone Kannan type contractive mappings”. J. Appl. Math. 2014, Art. ID 392301, 7 pp.
2.73. Bu, C., Feng, Y., Li, H., Existence and uniqueness of fixed point for mixed monotone ternary operators with application. Fixed Point Theory Appl. 2014, 2014:223, 13 pp.
2.74. Karapınar, E., Roldán-López-de-Hierro, A.-F., A note on `$(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces’. J. Inequal. Appl. 2014, 2014:522, 12 pp.
2.75. Vats, R. K., Tas, K., Sihag, V., Kumar, A., Triple fixed point theorems via $\alpha$-series in partially ordered metric spaces. J. Inequal. Appl. 2014, 2014:176, 12 pp.
2.76. Lee, H., Kim, S., Multivariate coupled fixed point theorems on ordered partial metric spaces. J. Korean Math. Soc. 51 (2014), no. 6, 1189–1207.
2.77. Thangthong, C., Charoensawan, P., Coupled coincidence point theorems for a $\straightphi$-contractive mapping in partially ordered $G$-metric spaces without mixed $g$-monotone property. Fixed Point Theory Appl. 2014, 2014:128, 18 pp.
2.78. Ghasem Soleimani Rad, Satish Shukla, Hamidreza Rahimi, Some relations between n-tuple fixed point and fixed point results, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas October 2014
2.79. Charoensawan, P., Thangthong, C., $(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces. J. Inequal. Appl. 2014, 2014:245, 24 pp.
2.80. Murthy, P. P.; Kenvat, R., $n$-tupled fixed points theorem in fuzzy metric spaces with application. Adv. Fuzzy Syst. 2015, Art. ID 285149, 12 pp.
2.81. Hussain, N., Parvaneh, V.; Golkarmanesh, F., Coupled and tripled coincidence point results under $(F, g)$-invariant sets in $G\sb b$-metric spaces and $G$-$\alpha$-admissible mappings. Math. Sci. (Springer) 9 (2015), no. 1, 11–26.
2.82. Deshpande, B.; Handa, A., Quadruple fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction. Matematiche (Catania) 70 (2015), no. 1, 157–177.
2.83. A. Roldán, J. Martínez-Moreno C. Roldán, Y.J. Cho, Multidimensional fixed point theorems under (ψ,φ)-contractive conditions in partially ordered complete metric spaces, J Comput Appl Math Volume 273, 1 January 2015, Pages 76–87
2.84. J Martínez-Moreno, A Roldán, C Roldán, Yeol Je Cho, Multi-dimensional coincidence point theorems for weakly compatible mappings with the CLRg-property in (fuzzy) metric spaces, Fixed Point Theory Appl. 2015, 2015:53
2.85. Sahar Mohammad Abusalim, Mohd Salmi Md Noorani, Tripled fixed point theorems in cone metric spaces under F-invariant set and c-distance, J. Nonlinear Sci. Appl. 8 (2015), 750–762
2.86. Almeida, A., de Hierro, A.F.R.L., Sadarangani, K., Weak P-property on product spaces and related multidimensional best proximity point theorems, J. Nonlinear Convex Anal. 16 (2015), no. 8, 1593-1606
2.87. Shahi, P., Kaur, J., Bhatia, S.S., Fixed point theorems for α-ψ-contractive type mappings of integral type with applications, J. Nonlinear Convex Anal. 16 (2015), no. 4, 745-760
2.88. Jamnian Nantadilok, Tripled fixed point theorems for generalized contractive mappings in partially ordered G-metric spaces, J Nonlinear Convex Anal Volume 16 (2015), No. 1, 151-166
2.89. Wang, S.; Ansari, A. H.; Chandok, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. Fixed Point Theory Appl. 2015, 2015:209, 16 pp.
2.90. Kadelburg, Z.; Radenovic, S., Remarks on some recent M. Borcut’s results in partially ordered metric spaces, International Journal of Nonlinear Analysis and Applications 6 (2015), 96-104
2.91. Mutlu, A.; Gürdal, U., An infinite dimensional fixed point theorem on function spaces of ordered metric spaces. Kuwait J. Sci. 42 (2015), no. 3, 36–49.
2.92. Charoensawan, Phakdi. Coupled coincidence point theorems for a $\alpha$-$\psi$-contractive mapping in partially metric spaces with $M$-invariant set. Thai J. Math. 13 (2015), no. 3, 687–702.
2.93. Gupta, Animesh; Yadava, R. N.; Shrivastava, Rajesh. Tripled coincidence point theorem in fuzzy metric spaces. Jordan J. Math. Stat. 8 (2015), no. 4, 309–325.
2.94. Soleimani Rad, Ghasem; Shukla, Satish; Rahimi, Hamidreza. Some relations between n-tuple fixed point and fixed point results. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 2, 471–481.
2.95. Imdad, Mohammad; Sharma, Anupam; Rao, K. P. R. Generalized $n$-tupled fixed point theorems for nonlinear contractions. Afr. Mat. 26 (2015), no. 3-4, 443–455.
2.96. Martínez-Moreno, J.; Roldán, A.; Roldán, C.; Cho, Yeol Je. Multi-dimensional coincidence point theorems for weakly compatible mappings with the $CLR_g$ -property in (fuzzy) metric spaces. Fixed Point Theory Appl. 2015, 2015:53, 12 pp.
2.97. Thangthong, Chaiporn; Charoensawan, Phakdi. Coupled coincidence point theorems for a $(\beta,g)$-$\psi$-contractive mapping in partially ordered $G$-metric spaces. Thai J. Math. 13 (2015), no. 1, 43–61.
2.98. Agarwal, Ravi; Karapinar, Erdal; Roldán-López-de-Hierro, Antonio-Francisco. Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on $G$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 9, 1787–1816.
2.99. Gupta, Animesh. $\alpha$-series for quadrupled fixed point. Facta Univ. Ser. Math. Inform. 30 (2015), no. 5, 663–678.
2.100. Tian, J.-F., Hu, X.-M., Zhao, H.-S., Common tripled fixed point theorem for $W$-compatible mappings in fuzzy metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 806–818.
2.101. S. Radenovic, K.P.R. Rao, K.V. Sivaparvathi, and T. Dosenovic, A Suzuki type common tripled fixed point theorem for a hybrid pair of mappings, Miskolc Mathematical Notes 17 (2016), No. 1, pp. 533–551
2.102. Yan, X. F., Zhu, C. X., Wu, Z. Q., Random quadruple coincidence points theorems for sequence of random mappings and application. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 977–988.
2.103. Alam, A.; Imdad, M.; Ali, J., Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, COGENT MATHEMATICS 3 (2016), Article Number: 1248270
2.104. Ilchev, A.; Zlatanov, B. Error estimates for approximation of coupled best proximity points for cyclic contractive maps. Appl. Math. Comput. 290 (2016), 412–425.
2.105. Khomdram, B.; Rohen, Y.; Singh, T. C., Coupled fixed point theorems in G(b)-metric space satisfying some rational contractive conditions, SPRINGERPLUS 5 (2016), Article Number: 1261
2.106. Sharma, A., C-class functions on shorter proofs of some even-tupled coincidence theorems in ordered metric spaces, International Journal of Analysis and Applications, 12 (2016), no. 2, 129-141
2.107. Mınak, G.; Altun, I., On the effect of $\alpha$-admissibility and $\theta$-contractivity to the existence of fixed points of multivalued mappings. Nonlinear Anal. Model. Control 21 (2016), no. 5, 673–686.
2.108. Martínez-Moreno, J.; Kumam, P., Tripled fixed point theorems for contractions in partially ordered $\Cal L$-fuzzy normed spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 3197–3202.
2.109. Yin, J., Yan, Q., Wang, T., Liu, L., Tripled coincidence points for mixed comparable mappings in partially ordered cone metric spaces over Banach algebras, Journal of Nonlinear Sciences and Applications, 9 (2016), No. 4, 1590-1599
2.110. Roldán-López-de-Hierro, A.-F.; Sintunavarat, W., Common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets and Systems 282 (2016), 131–142.
2.111. Afshari, Hojjat. Topological properties of tripled fixed points set of multifunctions. Mat. Vesnik 68 (2016), no. 4, 277–286.
2.112. Saadati, Reza. Random operator theory. Elsevier/Academic Press, London, 2016. xi + 69 pp. ISBN: 978-0-12-805346-1
2.113. Nashine, Hemant Kumar; Ibrahim, Rabha W. Monotone solutions of iterative fractional equations found by modified Darbo-type fixed-point theorems. J. Fixed Point Theory Appl. 19 (2017), no. 4, 3217–3229.
2.114. Grewal, Manju; Kumar Vats, Ramesh; Kumar, Amit. $n$-tupled common fixed point theorems via $\alpha$-series in ordered metric spaces. Eur. J. Pure Appl. Math. 10 (2017), no. 2, 295–311.
2.115. Dobrican, Melánia-Iulia. Coupled and tripled fixed point theorems on a metric space endowed with a binary relation. Miskolc Math. Notes 18 (2017), no. 1, 189–198.
2.116. Tian, Jingfeng; Hu, Ximei. Common fixed point results for probabilistic $\varphi$-contractions in generalized probabilistic metric spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3939–3962.
2.117. Akhadkulov, Habibulla; Saaban, Azizan; Akhatkulov, Sokhobiddin; et al., Multidimensional Fixed-Point Theorems and Applications, Book Series: AIP Conference Proceedings Volume: 1870 Article Number: UNSP 020002 Published: 2017
2.118. Akhadkulov, H.; Saaban, A. B.; Alipiah, F. M.; et al., Estimate for Picard Iterations of a Hermitian Matrix Operator, Book Series: AIP Conference Proceedings Volume: 1905 Article Number: UNSP 030004 Published: 2017
2.119. Akhadkulov, Habibulla; Noorani, Salmi M.; Saaban, Azizan B.; Alipiah, Fathilah M.; Alsamir, Habes. Notes on multidimensional fixed-point theorems. Demonstr. Math. 50 (2017), no. 1, 360—374
2.120. Akhadkulov, Habibulla; Zuhra, Rahma; bin Saaban, Azizan; et al., The Existence of gamma-fixed Point for the Multidimensional Nonlinear Mappings Satisfying (psi, theta, phi)-weak Contractive Conditions, SAINS MALAYSIANA Volume: 46 Issue: 8 Pages: 1341-1346 Published: AUG 2017
2.121. Bakhshi, Negar; Haghi, Robab Hamlbarani, ON MULTIDIMENSIONAL FIXED POINT OF NONLINEAR CONTRACTIONS WITHOUT MIXED MONOTONE PROPERTY, ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES Volume: 16 Issue: 11 Pages: 349-361 Published: SEP 2017
2.122. Nematizadeh, Asiyeh; Shayanpour, Hamid, Some fixed point and coupled fixed point theorems in partially ordered probabilistic like (quasi) menger spaces, INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS Volume: 8 Issue: 1 Pages: 133-157 Published: WIN-SPR 2017
2.123. Sawangsup, Kanokwan; Sintunavarat, Wutiphol. On modified $\Cal {Z}$-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 80, 19 pp.
2.124. Khan, Aziz; Khan, Hasib; Baleanu, Dumitru; et al., A fixed point theorem on multiplicative metric space with integral-type inequality, JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS Volume: 18 Issue: 1 Pages: 18-28 Published: 2018
2.125. Shoaib, Muhammad; Sarwar, Muhammad; Li, Yongjin, Multi-valued tripled fixed point results via CLR property in metric spaces with application, JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS Volume: 18 Issue: 2 Pages: 163-174 Published: 201
2.126. Hussain, Saddam; Sarwar, Muhammad; Li, Yongjin. $n$-tupled fixed point results with rational type contraction in $b$-metric spaces. Eur. J. Pure Appl. Math. 11 (2018), no. 1, 331–351.
2.127. Petruşel, Adrian; Soós, Anna. Coupled fractals in complete metric spaces. Nonlinear Anal. Model. Control 23 (2018), no. 2, 141–158.
2.128. Xu, Yongchun; Guan, Jinyu; Tang, Yanxia; Su, Yongfu. Multivariate systems of nonexpansive operator equations and iterative algorithms for solving them in uniformly convex and uniformly smooth Banach spaces with applications. J. Inequal. Appl. 2018, Paper No. 37, 20 pp
2.129. Charoensawan, Phakdi. Tripled coincidence point theorems with $M$-invariant set for a $\alpha$-$\psi$-contractive mapping in partially metric spaces. Thai J. Math. 16 (2018), no. 1, 121–138.
2.130. Tang, Yanxia; Guan, Jinyu; Mei, Rui; Xu, Yongchun; Su, Yongfu. System of multivariate pseudo-contractive operator equations and the existence of solutions. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 56
2.131. Deshpande, B.; Handa, A. Utilizing isotone mappings under Geraghty-type contraction to prove multidimensional fixed point theorems with application. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 25 (2018), no. 4, 279–295.
2.132. Dechboon, Premyuda; Ngiamsunthorn, Parinya Sa; Kumam, Poom; Chaipunya, Parin. Berinde-Borcut tripled best proximity points with generalized contraction pairs. Thai J. Math. 16 (2018), no. 2, 287–303.
2.133. Nasiri, Habibollah; Roshan, Jamal Rezaei. The solvability of a class of system of nonlinear integral equations via measure of noncompactness. Filomat 32 (2018), no. 17, 5969–5991.
2.134. Gandhi, Manjusha P.; Aserkar, Anushri A. Quadruple fixed point theorem for partially ordered metric space with application to integral equations. Mathematics and computing, 169–183, Springer Proc. Math. Stat., 253, Springer, Singapore, 2018.
2.135. Gupta, Vishal; Saini, R. K.; Deep, R. Some fixed point results in G-metric space involving generalised altering distances. International Journal Of Applied Nonlinear Science Volume: 3 Issue: 1 Pages: 66-76 Published: 2018
2.136. Karaaslan, Arife Aysun; Karakaya, Vatan. $n$-tuplet coincidence point theorems in partially ordered probabilistic metric spaces. J. Funct. Spaces 2018, Art. ID 6595408, 12 pp.
2.137. Karakaya, Vatan; Mursaleen, Mohammad; Bouzara, Nour El Houda; Sekman, Derya. Measure of noncompactness in the study of solutions for a system of integral equations. J. Indones. Math. Soc. 25 (2019), no. 1, 62–74.
2.138. Chaobankoh, Tanadon; Charoensawan, Phakdi. Common tripled fixed point theorems for $\psi$-Geraghty-type contraction mappings endowed with a directed graph. Thai J. Math. 17 (2019), no. 1, 11–30.
2.139. Kishore, G. N., V; Rao, B. Srinuvasa; Rao, R. Subba, Mixed monotone property and tripled fixed point theorems in partially ordered bipolar-metric spaces. Italian Journal Of Pure And Applied Mathematics Issue: 42 Pages: 598-615 Published: JUL 2019
2.140. Singh, D.; Chauhan, V.; Joshi, V.; et al. On n-Tupled Coincidence and FixedPoint Results in Partially Ordered G-Metric Spaces, Thai J. Math. 17 (2019), no. 2, 321-342
2.141. Norouzian, M.; Abkar, A. Tripartite coincidence-best proximity points and convexity in generalized metric spaces. Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 4, 999–1028.
2.142. Matani, B.; Roshan, J. R. An existence theorem of tripled fixed point for a class of operators on Banach space with applications. Matematicki Vesnik Volume: 72 Issue: 1 Pages: 17-29 Published: 2020
[3] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, 9 (2004), No. 1, 43-53
3.1. T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), no. 7, 2289-2296
3.2. Kiran, Q.; Kamran, T., Nadler’s type principle with high order of convergence, Nonlinear Anal. 69 (2008) No. 11 4106-4120 DOI: 10.1016/j.na.2007.10.041
3.3. G.V.R. Babu, M.L. Sandhya, M.V.R. Kameshwari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian J. Math., 24 (2008), No. 1, 8-12
3.4. Pacurar, Mădălina, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), no. 2, 101-109
3.5. Olatinwo, M. O., Some results on multi-valued weakly Jungck mappings in b-metric space, Central European J. Math. 6 (2008), No. 4, 610-621
3.6. Kamran, T.A., Cakic, N., Hybrid tangential property and coincidence point theorems, Fixed Point Theory 9 (2008), No. 2, 487-496
3.7. N. Hussain, Y.J. Cho, Weak contractions, common fixed points and invariant approximations, J. Ineq. Appl. Vol. 2009 (2009), Article ID 390634, 10 pages doi:10.1155/2009/390634
3.8. Madalina Pacurar, Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17 (2009), No. 1, 153–168
3.9. Petko D. Proinov, New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems, J. Complexity 26 (2010) 3-42
3.10. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
3.11. M. Abbas and D. Ilic, Common fixed points of generalized almost nonexpansive mappings, Filomat 24 (2010), No. 3, 11–18 DOI: 10.2298/FIL1003011A
3.12. Abbas M, Babu GVR, Alemayehu GN, On common fixed points of weakly compatible mappings satisfying ‘generalised condition (B)’, FILOMAT 25 (2011) No. 2 9-19
3.13. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
3.14. L. Ciric, M. Abbas, Saadati, R. et al., Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., 217 (2011), No. 12, 5784-5789
3.15. Pacurar, Madalina, Fixed points of almost Presic operators by a k-step iterative method, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (n.s.), Tomul LVII, 2011, Supliment DOI: 10.2478/v10157-011-0014-3
3.16. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
3.17. Morales, Jose R.; Rojas, Edixon M. Coincidence points for multivalued mappings. Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica Volume: 19 Issue: 3 Pages: 137-150 Published: 2011
3.18. Abbas, Mujahid; Hussain, Nawab; Rhoades, Billy E. Coincidence point theorems for multivalued $f$-weak contraction mappings and applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105 (2011), no. 2, 261–272.
3.19. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
3.20. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
3.21. W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl., 159 (2012), no. 1, 49–56.
3.22. Abbas, M., Coincidence points of multivalued f-almost nonexpansive mappings, Fixed Point Theory, 13 (2012), No. 1, 3-10
3.23. Bogale T. E., Vandendorpe L., Robust Sum MSE Optimization for Downlink Multiuser MIMO Systems With Arbitrary Power Constraint: Generalized Duality Approach, IEEE TRANS. ON SIGNAL PROCESSING 60 (2012). No. 4 1862-1875 DOI: 10.1109/TSP.2011.2180899
3.24. M. S. Khan; M. Berzig; B. Samet, Some convergence results for iterative sequences of Presic type and applications, Adv. Difference Equ. 2012, 2012:38 doi10.1186/1687-1847-2012-38
3.25. W. Shatanawi, Some fixed point results for a generalized w-weak contraction mappings in orbitally metric spaces, Chaos, Solitons & Fractals 45 (2012) 520–526
3.26. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
3.27. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
3.28. Jleli, M; Karapinar, E; Samet, B, Fixed Point Results for Almost Generalized Cyclic (psi, phi)-Weak Contractive Type Mappings with Applications, Abstr. Appl. Anal., 10.1155/2012/917831 2012
3.29. D. Turkoglu and V. Ozturk, Common Fixed Point Results for Four Mappings on Partial Metric Spaces, Abstr. Appl. Anal., Volume 2012 (2012), Article ID 190862, 11 pages doi:10.1155/2012/190862R
3.30. Shatanawi, W.; Al-Rawashdeh, A., Common fixed points of almost generalized $\psi$-contractive mappings in ordered metric spaces, Fixed Point Theory Appl., Article Number: 80 DOI: 10.1186/1687-1812-2012-80
3.31. E. Karapinar, Edelstein type fixed point theorems, Fixed Point Theory Appl. 2012, 2012:107
3.32. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263 doi:10.1186/1029-242X-2012-263
3.33. Rao, K. P. R.; Bindu, S. Hima; Ali, Md. Mustaq, Coupled fixed point theorems in d-complete topological spaces, J Nonlinear Sci Appl 5 (2012), No. 3, Special Issue: SI, 186-194
3.34. Ariza-Ruiz, David, Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings, J Nonlinear Sci Appl 5 (2012), No. 2 Special Issue: SI, 93-103
3.35. Saha, Mantu; Dey, Debashis. Some random fixed point theorems for $(\theta,L)$-weak contractions. Hacet. J. Math. Stat. 41 (2012), no. 6, 795–812.
3.36. Nashine, Hemant Kumar; Kadelburg, Zoran. Common fixed point theorems for a pair of multivalued mappings under weak contractive conditions in ordered metric spaces. Bull. Belg. Math. Soc. Simon Stevin 19 (2012), no. 4, 577–596.
3.37. Chifu, Cristian; Petruşel, Gabriela. Generalized contractions in metric spaces endowed with a graph. Fixed Point Theory Appl. 2012, 2012:161, 9 pp.
3.38. W. Shatanawi, Reza Saadati and Choonkil Park, Almost contractive coupled mapping in ordered complete metric spaces, J. Ineq. Appl. 2013, 2013:565 doi:10.1186/1029-242X-2013-565
3.39. E. Karapinar and W. Sintunavarat, The existence of optimal approximate solution theorems for generalized α-proximal contraction non-self mappings and applications, Fixed Point Theory Appl. 2013, 2013:323 doi:10.1186/1687-1812-2013-323
3.40. N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013, 2013:256 doi:10.1186/1687-1812-2013-256
3.41. Bogale, T. and Vandendorpe, L., Linear Transceiver Design for Downlink Multiuser MIMO Systems: Downlink-Interference Duality Approach, IEEE Transactions on Signal Processing, 61 (2013), No. 19, 4686-4700
3.42. H. Aydi, S. H. Amor, and E. Karapinar, Some Almost Generalized (\Phi, \Psi)-Contractions in G-Metric Spaces, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 165420, 11 pages
3.43. Popa, Valeriu, On some fixed point theorems for implicit almost contractive mappings, Carpathian J Math 29 (2013), No. 2, 223-229
3.44. H. Aydi, S. H. Amor and E. Karapinar, Berinde-Type Generalized Contractions on Partial Metric Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pages
3.45. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
3.46. Shaddad, Fawzia; Noorani, Mohd Salmi Md; Alsulami, Saud M., Some Fixed Point Results in Cone Metric Spaces, AIP Conference Proceedings Volume: 1571 Pages: 1035-1041 Published: 2013
3.47. Shaddad, Fawzia; Noorani, Mohd Salmi Md; Alsulami, Saud M., Some Fixed Point Results in Cone Metric Spaces, AIP Conference Proceedings Volume: 1571 Pages: 1035-1041 Published: 2013
3.48. S. Rathee, A. Kumar, Some common fixed-point and invariant approximation results with generalized almost contractions, Fixed Point Theory Appl. 2014, 2014:23
3.49. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
3.50. Zead Mustafa, Erdal Karapınar and Hassen Aydi, A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J Inequal Appl 2014, 2014:219 doi:10.1186/1029-242X-2014-219
3.51. Zuo, Chao; Chen, Qian; Huang, Lei; et al., Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity equation, OPTICS EXPRESS 22 (2014), No. 14, 17172-17186
3.52. Manuel De la Sen, Ravi P Agarwal and Asier Ibeas, Results on proximal and generalized weak proximal contractions including the case of iteration-dependent range sets, Fixed Point Theory Appl 2014, 2014:169 doi:10.1186/1687-1812-2014-169
3.53. M. A. Kutbi, M. Imdad, Sunny Chauhan, and Wutiphol Sintunavarat, Some Integral Type Fixed Point Theorems for Non-Self-Mappings Satisfying Generalized alpha-Weak Contractive Conditions in Symmetric Spaces, Abstr Appl Anal 2014 (2014), Article ID 519038, 11 pages
3.54. Zead Mustafa, Vahid Parvaneh, Jamal Rezaei Roshan and Zoran Kadelburg, b 2 -Metric spaces and some fixed point theorems, Fixed Point Theory Appl 2014, 2014:144 doi:10.1186/1687-1812-2014-144
3.55. Samet, B., Fixed points for $\alpha$-$\psi$ contractive mappings with an application to quadratic integral equations. Electron. J. Differential Equations 2014, No. 152, 18 pp.
3.56. Marwan Amin Kutbi and Wutiphol Sintunavarat, On Sufficient Conditions for the Existence of Past-Present-Future Dependent Fixed Point in the Razumikhin Class and Application, Abstr Appl Anal Volume 2014 (2014), Article ID 342687, 8 pages
3.57. Mınak, G., Helvacı, A., Altun, I., Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results. Filomat 28 (2014), no. 6, 1143–1151.
3.58. Mohamed Jleli, Bessem Samet and Calogero Vetro, Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces, J. Inequal. Appl. 2014, 2014:426 doi:10.1186/1029-242X-2014-426
3.59. F. Shaddad, M. Noorani, S. M Alsulami, Common fixed-point results for generalized Berinde-type contractions which involve altering distance functions, Fixed Point Theory Appl. 2014, 2014:24
3.60. Latif, A., Mongkolkeha, C., Sintunavarat, W., Fixed point theorems for generalized α-β-weakly contraction mappings in metric spaces and applications, Sci. World J. Volume 2014, 2014, Article number 784207
3.61. Gabeleh, M., Best proximity point theorems for single- and set-valued non-self mappings. Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 5, 1661–1669.
3.62. Savita Rathee, Anil Kumar, and Kenan Tas, Invariant Approximation Results via Common Fixed Point Theorems for Generalized Weak Contraction Maps, Abstr Appl Anal Volume 2014 (2014), Article ID 752107, 11 pages
3.63. Reza Allahyari, Reza Arab and Ali Shole Haghighi, A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations, J Inequal Appl 2014, 2014:355 doi:10.1186/1029-242X-2014-355
3.64. Xavier Udo-utun, On inclusion of F-contractions in (δ, k) -weak contractions, Fixed Point Theory Appl 2014, 2014:65 doi:10.1186/1687-1812-2014-65
3.65. Turinici, Mihai, Contractive Operators in Relational Metric Spaces, Handbook of Functional Equations: Functional Inequalities (Editor Rassias, TM) Book Series: Springer Optimization and Its Applications, Vol. 95, pp. 419-458 (2014)
3.66. Erduran, Ali; Kadelburg, Z.; Nashine, H. K.; Vetro, C. A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
3.67. Bessem Samet, The class of (α,ψ)-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:92
3.68. I. Altun, H. A. Hancer, and G. Minak, On a general class of weakly Picard operators, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 25–32
3.69. Xavier A Udo-utun, Zakawat U Siddiqui and Mohammed Y Balla, An extension of the contraction mapping principle to Lipschitzian mappings, Fixed Point Theory Appl. (2015) 2015:162
3.70. Suthep Suantai, Narin Petrot and Warut Saksirikun, Fuzzy fixed point theorems on the complete fuzzy spaces under supremum metric, Fixed Point Theory Appl. (2015) 2015:167
3.71. D. Paesano and P. Vetro, Fixed points and completeness on partial metric spaces, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 369–383
3.72. C. Klanarong, S. Suantai, Coincidence point theorems for some multi-valued mappings in complete metric spaces endowed with a graph, Fixed Point Theory Appl. 2015, 2015:129
3.73. M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f, L−almost F−contraction with applications, J. Nonlinear Sci. Appl. 8 (2015), 919–934
3.74. M. Cvetkovic and V. Rakocevic, Extensions of Perov theorem, Carpathian J. Math.31 (2015), No. 2, 181-188
3.75. F. Bojor and M. Tilca, Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph, Carpathian J. Math., 31 (2015), No. 3, 297-305
3.76. Petruşel, A.; Urs, C.; Mleşniţe, O., Vector-valued metrics in fixed point theory. Infinite products of operators and their applications, 149–165, Contemp. Math., 636, Amer. Math. Soc., Providence, RI, 2015.
3.77. Cvetković, M.; Rakočević, V.; Rhoades, B. E., Fixed point theorems for contractive mappings of Perov type. J. Nonlinear Convex Anal. 16 (2015), no. 10, 2117–2127.
3.78. Sarwar, M., Rahman, M. U., Fixed point theorems for Ciric’s and generalized contractions in b-metric spaces, International Journal of Analysis and Applications, 7 (2015), no. 1, 70-78
3.79. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Fixed points of multivalued nonself almost contractions in metric-like spaces. Math. Sci. (Springer) 9 (2015), no. 2, 103–108.
3.80. L. Maruster, St. Maruster, On the error estimation and T-stability of the Mann iteration, J Comput Appl Math Volume 276, 1 March 2015, Pages 110–116
3.81. Moosa Gabeleh, Best Proximity Point Theorems via Proximal Non-self Mappings, Journal of Optimization Theory and Applications February 2015, Volume 164, Issue 2, pp 565-576
3.82. Kikina, Luljeta; Kikina, Kristaq. Fixed point theorems on generalized metric spaces for mappings in a class of almost $\phi$-contractions. Demonstr. Math. 48 (2015), no. 3, 440–451.
3.83. Acar, Özlem; Altun, Ishak; Durmaz, Gonca. A fixed point theorem for new type contractions on weak partial metric spaces. Vietnam J. Math. 43 (2015), no. 3, 635–644.
3.84. Choudhury, Binayak S.; Metiya, Nikhilesh; Som, T.; Bandyopadhyay, C. Multivalued fixed point results and stability of fixed point sets in metric spaces. Facta Univ. Ser. Math. Inform. 30 (2015), no. 4, 501–512.
3.85. Khan, M. S.; Jhade, Pankaj K. On a Fixed Point Theorem with PPF Dependence in the Razumikhin Class. Gazi Univ. J. Science, 28 Issue: 2 Pages: 211-219 Published: 2015
3.86. Choudhury, Binayak S.; Bandyopadhyay, Chaitali. Stability of fixed point sets of a class of multivalued nonlinear contractions. J. Math. 2015, Art. ID 302012, 4 pp.
3.87. George, R.; Reshma, K. P.; Padmavati, A. Fixed point theorems for cyclic contractions in b-metric. Journal Of Nonlinear Functional Analysis Article Number: 5 Published: 2015
3.88. Hussain, N., Arshad, M., Abbas, M., Hussain, A., Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, Journal of Nonlinear Science and Applications, 9 (2016), No. 4, 1702-1715
3.89. M. Abbas, M. R. Alfuraidan and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math.32 (2016), No. 1, 1-12
3.90. Sanhan, S.; Mongkolkeha, C., Convergence and best proximity points for Berinde’s cyclic contraction with proximally complete property. Math. Methods Appl. Sci. 39 (2016), no. 16, 4866–4873.
3.91. P. Sumati Kumari and Muhammad Sarwar, Some fixed point theorems in generating space of b-quasi-metric family, SpringerPlus 2016 5:268 DOI: 10.1186/s40064-016-1867-4
3.92. Hussain, N.; Isik, Huseyin; Abbas, M., Common fixed point results of generalized almost rational contraction mappings with an application. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2273–2288.
3.93. Radenović, S., Došenović, T., Lampert, T. A.; Golubovíć, Z., A note on some recent fixed point results for cyclic contractions in $b$-metric spaces and an application to integral equations. Appl. Math. Comput. 273 (2016), 155–164.
3.94. Olgun, M.; Biçer, Ö.; Alyildiz, T., A new aspect to Picard operators with simulation functions. Turkish J. Math. 40 (2016), no. 4, 832–837.
3.95. Roshan, J. R.; Parvaneh, V.; Kadelburg, Z.; Hussain, N., New fixed point results in $b$-rectangular metric spaces. Nonlinear Anal. Model. Control 21 (2016), no. 5, 614–634.
3.96. Choudhury, B. S.; Metiya, N.; Debnath, P., End Point Results in Metric Spaces Endowed with a Graph. J. Math. 2016, Art. ID 9130107, 7 pp.
3.97. Boriwan, P.; Petrot, N.; Suantai, S., Fixed point theorems for Presic almost contraction mappings in orbitally complete metric spaces endowed with directed graphs, Carpathian Journal of Mathematics 32 (2016), no. 3, 303-313.
3.98. Samet, B., On the approximation of fixed points for a new class of generalized Berinde mappings, Carpathian Journal of Mathematics 32 (2016), no. 3, 363-374.
3.99. Dey, Debashis; Dan, Pritha; Saha, Mantu. Best proximity points for $\varphi$-contractions and weak $\varphi$-contractions. Southeast Asian Bull. Math. 40 (2016), no. 4, 467–477.
3.100. Sintunavarat, Wutiphol; Pitea, Ariana. On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2553–2562.
3.101. Saluja, A. S.; Rashwan, Rashwan A.; Magarde, Devkrishna; Jhade, Pankaj Kumar. Some result in ordered metric spaces for rational type expressions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 1, 125–138.
3.102. Dinarvand, M. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
3.103. Tiammee, Jukrapong; Cho, Yeol Je; Suantai, Suthep. Fixed point theorems for nonself $G$-almost contractive mappings in Banach spaces endowed with graphs. Carpathian J. Math. 32 (2016), no. 3, 375–382.
3.104. Ariza-Ruiz, David. An exhaustive study of some contractive type conditions. J. Nonlinear Convex Anal. 17 (2016), no. 10, 2013–2027.
3.105. Olatinwo, Memudu Olaposi. Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions. Georgian Math. J. 24 (2017), no. 3, 455–461.
3.106. Sarma, K. K. M.; Kumari, V. A. Fixed points of almost generalized $(\alpha,\psi)$-contractive type maps in $G$-metric spaces. Thai J. Math. 15 (2017), no. 2, 451–464.
3.107. Hussain, Aftab; Arshad, Muhammad; Abbas, Mujahid. New type of fixed point result of F-contraction with applications. J. Appl. Anal. Comput. 7 (2017), no. 3, 1112–1126.
3.108. Alsulami, Hamed H.; Karapinar, Erdal; Piri, Hossien; Rahrovi, Samira; Zarghami, Ramazan. Rational contractive mappings of integral type on $b$-metric spaces. J. Math. Anal. 8 (2017), no. 6, 90–112.
3.109. Fierro, Raúl. Fixed point theorems for set-valued mappings and variational principles in uniform spaces with $w$-distances. Fixed Point Theory 18 (2017), no. 2, 555—564.
3.110. Popa, Valeriu. Fixed point theorems for two pairs of mappings satisfying a new type of common limit range property. Filomat 31 (2017), no. 11, 3181–3192.
3.111. Zakany, Monika. Fixed point theorems for local almost contractions. Miskolc Math. Notes 18 (2017), no. 1, 499–506.
3.112. Mongkolkeha, Chirasak; Cho, Yeol Je; Kumam, Poom. Fixed point theorems for simulation functions in $b$-metric spaces via the $wt$-distance. Appl. Gen. Topol. 18 (2017), no. 1, 91–105.
3.113. Hussain, N.; Ahmad, J. New Suzuki-Berinde type fixed point results. Carpathian J. Math. 33 (2017), no. 1, 59—72
3.114. Sookprasert, P.; Kumam, P.; Thongtha, D.; Sintunavarat, W.. Extension of almost generalized weakly contractive mappings in rectangular $b$-metric spaces and fixed point results. Afr. Mat. 28 (2017), no. 1-2, 271–278.
3.115. Hussain, N.; Hezarjaribi, M.; Salimi, P. Global optimal solutions for hybrid Geraghty-Suzuki proximal contractions. J. Math. Anal. 9 (2018), no. 4, 10–27.
3.116. Ahmad, J.; Al-Mazrooei, A. E. Common fixed point theorems for multivalued mappings on metric spaces with a directed graph. Bull. Math. Anal. Appl. 10 (2018), no. 1, 26–37.
3.117. Al-Mazrooei, A. E.; Ahmad, J. Fuzzy fixed point results of generalized almost F-contraction, Journal Of Mathematics And Computer Science-JMCS, 18 (2018), no. 2, 206–215.
3.118. Ramesh K., D.; Pitchaimani, M. Approximation and stability of common fixed points of Prešić type mappings in ultrametric spaces. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 4, 21 pp.
3.119. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
3.120. Saipara, P.; Gopal, D.; Kumam, W. Random fixed point of random Hardy-Roger almost contraction for solving nonlinear stochastic integral equations. Thai J. Math. 16 (2018), Special issue, 379–395.
3.121. Zákány, M. New classes of local almost contractions. Acta Univ. Sapientiae Math. 10 (2018), no. 2, 378–394.
3.122. Isik, H.; Gungor, N. B.; Park, C.; et al., Fixed Point Theorems for Almost Z-Contractions with an Application. Mathematics 6 (2018), no. 3 Article Number: 37.
3.123. Beloul, S. A common fixed point theorem for generalized almost contractions in metric-like spaces. Appl. Math. E-Notes 18 (2018), 127–139.
3.124. Bunlue, N.; Suantai, S. Best proximity point for proximal Berinde nonexpansive mappings on starshaped sets. Arch. Math. (Brno) 54 (2018), no. 3, 165–176.
3.125. Altun, I.; Samet, B. Pseudo Picard operators on generalized metric spaces. Appl. Anal. Discrete Math. 12 (2018), no. 2, 389–400.
3.126. Ahmadi, Z.; Lashkaripour, R.; Baghani, H. A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces. Filomat 32 (2018), no. 9, 3365–3379.
3.127. Abbas, M.; Nazir, T.; Rakočević, V. Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 331–354.
3.128. Babu, G. V. R.; Dula, T. M. Fixed points of almost generalized $(\alpha,\beta)$-$(\psi,\varphi)$ -contractive mappings in $b$-metric spaces. Facta Univ. Ser. Math. Inform. 33 (2018), no. 2, 177–196.
3.129. Dey, D.; Fierro, R.; Saha, M. Well-posedness of fixed point problems. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 57, 12 pp.
3.130. Dinarvand, M. Fixed points for generalized contractions via rational expressions in partially ordered $b$-metric spaces and applications to integral equations. Afr. Mat. 29 (2018), no. 1-2, 175–193.
3.131. Zákány, M. New classes of local almost contractions. Acta Univ. Sapientiae Math. 10 (2018), no. 2, 378–394.
3.132. Bussaban, Limpapat; Kettapun, Atichart. Common fixed points of an iterative method for Berinde nonexpansive mappings. Thai J. Math. 16 (2018), no. 1, 49–60.
3.133. Darwish, M. A.; Jleli, M.; O’Regan, D.; et al. On the Study of Fixed Points for a New Class of alpha-Admissible Mappings. Mathematics 7 (2019), no. 12 Article Number: 1240
3.134. Shahkoohi, Rogheieh J.; Razani, Abdolrahman. Some fixed point theorems for rational Geraghty contractive mappings in ordered $b$-metric spaces. J. Inequal. Appl. 2014, 2014:373, 23 pp.
3.135. Mukheimer, A.; Vujaković, J.; Hussain, A.; Aydi, H.; Radenović, S.; Yaqoob, S. A new approach to multivalued nonlinear weakly Picard operators. J. Inequal. Appl. 2019, Paper No. 288, 11 pp.
3.136. Mohsenialhosseini, S. A. M.; Saheli, M. Diameter Approximate Best Proximity Pair in Fuzzy Normed Spaces. Sahand Commun. Math. Anal. 16 (2019), no. 1, 17-34
3.137. Al-Mezel, S. A.; Ahmad, J. Generalized Fixed-Point Results for Almost (alpha, F-sigma)-Contractions with Applications to Fredholm Integral Inclusions. Symmetry-Basel Volume: 11 Issue: 9 Article Number: 1068 Published: SEP 2019
3.138. Al-Sulami, H. H.; Ahmad, J.; Hussain, N.; et al. Solutions to Fredholm Integral Inclusions via Generalized Fuzzy Contractions. Mathematics 7 (2019), no. 9 Article Number: 808
3.139. Gursoy, F.; Eksteen, J. J. A.; Khan, A. R.; et al. An iterative method and its application to stable inversion. Soft Computing 23 (2019) Issue: 16 Pages: 7393-7406
3.140. Saipara, P.; Khammahawong, K.; Kumam, P. Fixed-point theorem for a generalized almost Hardy-Rogers-type $F$ contraction on metric-like spaces. Math. Methods Appl. Sci. 42 (2019), no. 17, 5898–5919.
3.141. Chauhan, S. S.; Imdad, M.; Kaur, G.; Sharma, A. Some fixed point theorems for $S_F$-contraction in complete fuzzy metric spaces. Afr. Mat. 30 (2019), no. 3-4, 651–662.
3.142. Karapinar, E.; Fulga, A.; Rashid, M.; et al. Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations. Mathematics Volume: 7 Issue: 5 Article Number: 444 Published: MAY 2019
3.143. Mitrovic, Zoran D.; Aydi, Hassen; Hussain, Nawab; et al. Reich, Jungck, and Berinde Common Fixed Point Results on F-Metric Spaces and an Application. Mathematics Volume: 7 Issue: 5 Article Number: 387 Published: MAY 2019
3.144. Bin J., Haifa; Mursaleen, M.; Ahasan, M. On the convergence of Lupaş $(p,q)$-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, Paper No. 34, 8 pp.
3.145. Imdad, Mohammad; Khan, Abdur Rauf; Saleh, Hayel N.; et al. Some phi-Fixed Point Results for (F,phi,alpha-psi)-Contractive Type Mappings with Applications. Mathematics Volume: 7 Issue: 2 Article Number: 122 Published: FEB 2019
3.146. Mebawondu, A. A.; Izuchukwu, C.; Aremu, K. O.; Mewomo, O. T. Some fixed point results for a generalized TAC-Suzuki-Berinde type $F$-contractions in $b$-metric spaces. Appl. Math. E-Notes 19 (2019), 629–653.
3.147. Mebawondu, Akindele A.; Mewomo, Oluwatosin T. Some fixed point results for TAC-Suzuki contractive mappings. Commun. Korean Math. Soc. 34 (2019), no. 4, 1201–1222.
3.148. Rashid, Maliha; Shahid, Lariab. Some generalized contractive mappings in generalized spaces. Punjab Univ. J. Math. (Lahore) 51 (2019), no. 8, 87–109.
3.149. Petrusel, Adrian; Rus, Ioan A. Fixed point theory in terms of a metric and of an order relation. Fixed Point Theory Volume: 20 Issue: 2 Pages: 601-622 Published: 2019
3.150. Puangpee, J.; Suantai, S. Fixed point theorems for multivalued nonself Kannan-Berinde contraction mappings in complete metric spaces. Fixed Point Theory 20 (2019), no. 2, 623-634
3.151. Iqbal, I.; Hussain, N. Ekeland-type variational principle with applications to nonconvex minimization and equilibrium problems. Nonlinear Anal. Model. Control 24 (2019), no. 3, 407–432.
3.152. Saleem, N.; Abbas, Mujahid; Ali, Basit; Raza, Zahid. Fixed points of Suzuki-type generalized multivalued $(f,\theta,L)$-almost contractions with applications. Filomat 33 (2019), no. 2, 499–518.
[4] Mădălina Berinde, V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), 772-782
4.1. T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), no. 7, 2289-2296
4.2. Olatinwo, M. O., Some results on multi-valued weakly Jungck mappings in b-metric space, Central European J. Math. 6 (2008), No. 4, 610-621
4.3. Kamran, T.A., Cakic, N., Hybrid tangential property and coincidence point theorems, Fixed Point Theory 9 (2008), No. 2, 487-496
4.4. Kiran, Q., Kamran, T., Nadler’s type principle with high order of convergence, Nonlinear Anal. 69 (11) 2008, 4106-4120
4.5. Du, W.-S., Some new results and generalizations in metric fixed point theory, Nonlinear Anal. 73 (2010), No. 5, 1439-1446
4.6. Hussain N., Amini-Harandi A, Cho YJ, A., Approximate endpoints for set-valued contractions in metric spaces, Fixed Point Theory Appl. 2010, art. no. 614867
4.7. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
4.8. A.-D. Filip and A. Petruşel, Fixed Point Theorems on Spaces Endowed with Vector-Valued Metrics, Fixed Point Theory Appl., Volume 2010 (2010), Article ID 281381, 15 pages, doi:10.1155/2010/281381
4.9. W.-S. Du, New cone fixed point theorems for nonlinear multivalued maps with their applications, Appl. Math. Lett. 24 (2011) 172–178
4.10. R.H. Haghi, Sh. Rezapour and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Anal. 74 (2011), No. 5, 1799-1803
4.11. Abbas, Mujahid; Hussain, Nawab; Rhoades, Billy E. Coincidence point theorems for multivalued $f$-weak contraction mappings and applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105 (2011), no. 2, 261–272.
4.12. He, Zhenhua; Du, Wei-Shih; Lin, Ing-Jer. The existence of fixed points for new nonlinear multivalued maps and their applications. Fixed Point Theory Appl. 2011, 2011:84, 13 pp.
4.13. Zhenhua He, W. S. Du and Ing-Jer Lin, The existence of fixed points for new nonlinear multivalued maps and their applications, Fixed Point Theory Appl. 2011, 2011:84, 13 pp.
4.14. Khandani, H. and Vaezpour, S.M. and Sims, Brailey, Fixed point and common fixed point theorems of contractive multivalued mappings on complete metric spaces, J. Comput. Anal. Appl., 13 (2011) No. 6, 1025-1039
4.15. M. Abbas, N. Hussain and B. E. Rhoades, Coincidence point theorems for multivalued f-weak contraction mappings and applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105 (2011), No. 2, 261-272, DOI: 10.1007/s13398-011-0036-4
4.16. W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl., 159 (2012), no. 1, 49–56.
4.17. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52–57
4.18. Du, W.-S., On generalized weakly directional contractions and approximate fixed point property with applications, Fixed Point Theory Appl. 2012, 2012:6, 22 pp.
4.19. Abbas, M., Coincidence points of multivalued f-almost nonexpansive mappings, Fixed Point Theory, 13 (2012), No. 1, 3-10
4.20. Nedal Tahat, H. Aydi, E. Karapinar and W. Shatanawi, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl. 2012, 2012:48 DOI: 10.1186/1687-1812-2012-48
4.21. Du, W.-S., On approximate coincidence point properties and their applications to fixed point theory, J. Appl. Math., Volume 2012, Article number 302830
4.22. Du, W.-S., Zheng, S.-X., Nonlinear conditions for coincidence point and fixed point theorems, Taiwanese J. Math., 16 (2012), No. 3, 857-868
4.23. Du, WS; He, ZH; Chen, YL, New existence theorems for approximate coincidence point property and approximate fixed point property with applications to metric fixed point theory, J. Nonlinear Convex Anal., 13 (2012), No. 3, 459-474
4.24. Du, Wei-Shih; Zheng, Shao-Xuan, New Nonlinear Conditions and Inequalities for the Existence of Coincidence Points and Fixed Points, J. Appl. Math., 2012 Article Number: 196759 DOI: 10.1155/2012/196759
4.25. Lin, I.-J.; Chen, T.-H., New existence theorems of coincidence points approach to generalizations of Mizoguchi-Takahashi’s fixed point theorem, Fixed Point Theory Appl. 2012, 1-10 Article Number: 156 DOI: 10.1186/1687-1812-2012-156
4.26. W. S. Du, New Existence Results and Generalizations for Coincidence Points and Fixed Points without Global Completeness, Abstr. Appl. Anal., Volume 2013 (2013), Article ID 214230, 12 pages http://dx.doi.org/10.1155/2013/214230
4.27. S. Shukla, R. Sen, Set-valued Prešić–Reich type mappings in metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 2012
4.28. G. Mınak, O. Acar, and Ishak Altun, Multivalued Pseudo-Picard Operators and Fixed Point Results, J. Funct. Spaces Appl. Volume 2013 (2013), Article ID 827458, 7 pages
4.29. A. Petruşel, G. Petruşel, C. Urs, Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators, Fixed Point Theory Appl. 2013, 2013:218
4.30. W.-S. Du, E. Karapinar, and N. Shahzad, The Study of Fixed Point Theory for Various Multivalued Non-Self-Maps, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 938724, 9 pages
4.31. G. Minak and I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Ineq. Appl. 2013, 2013:493 doi:10.1186/1029-242X-2013-493
4.32. W.-S. Du, F. Khojasteh, Y.-N. Chiu, Some generalizations of Mizoguchi-Takahashi’s fixed point theorem with new local constraints, Fixed Point Theory Appl. 2014, 2014:31
4.33. M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Ineq. Appl. 2014, 2014:38 doi:10.1186/1029-242X-2014-38
4.34. J. Tiammee and S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl. 2014, 2014:70
4.35. W.-S. Du and F. Khojasteh, New Results and Generalizations for Approximate Fixed Point Property and Their Applications, Abstr. Appl. Anal.Vol. 2014 (2014), Article ID 581267, 9 pages
4.36. A. R. Khan, M. Abbas, T. Nazir, and C. Ionescu, Fixed Points of Multivalued Contractive Mappings in Partial Metric Spaces, Abstr. Appl. Anal., Vol. 2014 (2014), Article ID 230708, 9 pages
4.37. Jleli, M., Karapınar, E., Samet, B., Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 2014:439, 9 pp.
4.38. Shukla, S., Sen, R., Set-valued Prešić-Reich type mappings in metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), no. 2, 431–440.
4.39. Du, W.-S., Khojasteh, F., Chiu, Y.-N., Some generalizations of Mizoguchi-Takahashi’s fixed point theorem with new local constraints. Fixed Point Theory Appl. 2014, 2014:31, 12 pp.
4.40. A. Phon-on, A. Sama-Ae, N. Makaje, P. Riyapan and S. Busaman, Coincidence point theorems for weak graph preserving multi-valued mapping, Fixed Point Theory Appl. 2014, 2014:248
4.41. Javahernia, M., Razani, A., Khojasteh, F., Common fixed point of the generalized Mizoguchi-Takahashi’s type contractions. Fixed Point Theory Appl. 2014, 2014:195, 12 pp.
4.42. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
4.43. Acar, Ozlem; Altun, Ishak, A Fixed Point Theorem for Multivalued Mappings with delta-Distance, Abstr. Appl. Anal. Article Number: 497092 Published: 2014
4.44. Petruşel, A.; Rus, I. A.; Şerban, M. A. Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator. J. Nonlinear Convex Anal. 15 (2014), no. 3, 493–513.
4.45. Hussain, N.; Yasmin, N.; Shafqat, N. Multi-valued Ćirić contractions on metric spaces with applications. Filomat 28 (2014), no. 9, 1953–1964.
4.47. Udo-utun, Xavier. On inclusion of $F$-contractions in $(\delta,k)$-weak contractions. Fixed Point Theory Appl. 2014, 2014:65, 6 pp.
4.48. Hemant Kumar Pathak, Ravi P. Agarwal, Yeol Je Cho, Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions, J Comput Appl Math 283 (2015), 201-217
4.49. Satish Shukla, Some stability results and Assad-Kirk type fixed point theorems for set-valued Prešiç type mappings, J Nonlinear Convex Anal 16 (2015), No. 3, 509-520
4.50. Tiammee, J., Suantai, S., Coincidence point theorems for multi-valued mappings of reich-type on metric spaces endowed with a graph, J. Nonlinear Convex Anal., 16 (2015), No. 2, 365-373
4.51. Minak, Gülhan; Altun, Ishak; Romaguera, Salvador. Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
4.52. C. Klanarong, S. Suantai, Coincidence point theorems for some multi-valued mappings in complete metric spaces endowed with a graph, Fixed Point Theory Appl. 2015, 2015:129
4.53. M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f, L−almost F−contraction with applications, J. Nonlinear Sci. Appl. 8 (2015), 919–934
4.54. Ishak Altun, Murat Olgun and Gulhan Mınak, On a new class of multivalued weakly Picard operators on complete metric spaces, Taiwanese J. Math. 19 (2015), No. 3, pp. 659-672
4.55. Xianjiu Huang, Yangyang Li, Chuanxi Zhu, Multivalued f-weakly Picard mappings on partial metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 1234-1244
4.56. Ioan-Radu Petre, Fixed point theorems in vector metric spaces for multivalued operators, Miskolc Math. Notes 16 (2015), No. 1, pp. 391–406
4.57. G. Minak, M. Olgun and I. Altun, A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math.31 (2015), No. 2, 241-248
4.58. F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math.31 (2015), No. 3, 403-410
4.59. A. Hanjing and S. Suantai, Coincidence point and fixed point theorems for a new type of G-contraction multivalued mappings on a metric space endowed with a graph, Fixed Point Theory Appl. (2015) 2015:171
4.60. Altun, Ishak; Minak, Gülhan. On fixed point theorems for multivalued mappings of Feng-Liu type. Bull. Korean Math. Soc. 52 (2015), no. 6, 1901–1910.
4.61. Mujahid Abbas, Monther Rashed Alfuraidan, Abdul Rahim Khan, Talat Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl, 2015:14
4.62. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah., Fixed points of multivalued nonself almost contractions in metric-like spaces. Math. Sci. (Springer) 9 (2015), no. 2, 103–108.
4.63. Petruşel, A.; Urs, C.; Mleşniţe, O., Vector-valued metrics in fixed point theory. Infinite products of operators and their applications, 149–165, Contemp. Math., 636, Amer. Math. Soc., Providence, RI, 2015.
4.64. Fierro, R., Fixed point theorems for set-valued mappings on TVS-cone metric spaces, Fixed Point Theory Appl. 2015, 2015:221, 7 pp.
4.65. Kongban, C.; Kumam, P. Optimal approximate solution of minimization problems for generalized multivalued (alpha, L)-weak contraction mappings. International Conference On Science And Technology (TICST) Pages: 418-421 Published: 2015
4.66. Erduran, Ali; Abbas, Mujahid. Fixed point theory for Suzuki type $(\theta,L)$-weak multivalued operators. Fixed Point Theory 16 (2015), no. 2, 303–312.
4.67. Hussain, N., Arshad, M., Abbas, M., Hussain, A., Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, Journal of Nonlinear Sciences and Applications, 9 (2016), No. 4, 1702-1715
4.68. Durmaz, G.; Altun, I., Fixed point results for $\alpha$-admissible multivalued $F$-contractions. Miskolc Math. Notes 17 (2016), no. 1, 187–199.
4.69. M. Abbas, M. R. Alfuraidan and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math.32 (2016), No. 1, 1-12
4.70. O. Acar and I. Altun, Multivalued F-contractive mappings with a graph and some fixed point results, Publ. Math. Debrecen In-print:: Ref. no.: 7308 (2016), 1–13
4.71. Altun, I., Minak, G., An extension of Assad-Kirk’s fixed point theorem for multivalued non self mappings, Carpathian J. Math 32 (2016), No. 2, 147–155
4.72. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441-448.
4.73. Altun, I.; Olgun, M.; Mınak, G., A new approach to the Assad-Kirk fixed point theorem. J. Fixed Point Theory Appl. 18 (2016), no. 1, 201–212.
4.74. Samet, B.; Vetro, C.; Vetro, F., Approximate fixed points of set-valued mapping in $b$-metric space. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3760–3772.
4.75. Altun, I.; Al Arifi, N.; Jleli, M.; Lashin, A.; Samet, B., Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3892–3897.
4.76. Alfuraidan, M. R.; Khamsi, M. A., A note on coincidence points of multivalued weak $G$-contraction mappings. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4098–4103.
4.77. Minak, G.; Altun, İ., Overall approach to Mizoguchi-Takahashi type fixed point results. Turkish J. Math. 40 (2016), no. 4, 895–904.
4.78. Olgun, M.; Minak, G.; Altun, I., A new approach to Mizoguchi-Takahashi type fixed point theorems, J. Nonlinear Convex Anal. 17 (2016), no. 3, 579–587.
4.79. Altun, I.; Minak, G.; Olgun, M., Fixed points of multivalued nonlinear F-contractions on complete metric spaces, Nonlinear Analysis-Modelling and Control, 21 (2016), no. 2, 201-210
4.80. Ali, Muhammad Usman; Kamran, Tayyab; Karapınar, Erdal. Discussion on $\alpha$-strictly contractive nonself multivalued maps. Vietnam J. Math. 44 (2016), no. 2, 441–447.
4.81. Kamran, T.; Postolache, M.; Ali, M. U.; Kiran, Q. Feng and Liu type $F$-contraction in $b$-metric spaces with an application to integral equations. J. Math. Anal. 7 (2016), no. 5, 18–27.
4.82. Ali, Muhammad Usman; Kamran, Tayyab. Multivalued $F$-contractions and related fixed point theorems with an application. Filomat 30 (2016), no. 14, 3779–3793.
4.83. Iqbal, Iram; Hussain, Nawab. Fixed point theorems for generalized multivalued nonlinear $\Cal F$-contractions. J. Nonlinear Sci. Appl. 9 (2016), no. 11, 5870–5893.
4.84. Nazir, T.; Silvestrov, S. Common Fixed Points of Weakly Commuting Multivalued Mappings on a Domain of Sets Endowed with Directed Graph. Book Series: Springer Proceedings in Mathematics & Statistics Volume: 179 Pages: 397-417 Published: 2016
4.85. Nazir, T.; Silvestrov, S. Common Fixed Point Results for Family of Generalized Multivalued F-Contraction Mappings in Ordered Metric Spaces. Book Series: Springer Proceedings in Mathematics & Statistics Volume: 179 Pages: 419-432 Published: 2016
4.86. Sumalai, P.; Kumam, P.; Panthong, C. Some coincidence points theorems for multi-valued $F$-weak contractions on complete metric space endowed with a graph. [Paging previously given as 51–66]. Thai J. Math. 14 (2016), Special issue, 61–76.
4.87. Abbas, M.; Nazir, T.; Aleksić L., Tatjana; Radenović, S. Common fixed points of set-valued $F$-contraction mappings on domain of sets endowed with directed graph. Comput. Appl. Math. 36 (2017), no. 4, 1607–1622.
4.88. Miculescu, Radu; Mihail, Alexandru. New fixed point theorems for set-valued contractions in $b$-metric spaces. J. Fixed Point Theory Appl. 19 (2017), no. 3, 2153–2163.
4.89. Kamran, Tayyab; Fahimuddin; Ali, Muhammad Usman. Common fixed point theorems for a family of multivalued $F$-contractions with an application to solve a system of integral equations. Glas. Mat. Ser. III 52(72) (2017), no. 1, 163–177.
4.90. Hussain, N.; Iqbal, I.; Alamri, Badriah A. S.; Kutbi, M. A. Fixed point theorems for manageable contractions with application to integral equations. J. Funct. Spaces 2017, Art. ID 7943896, 10 pp.
4.91. Altun, Ishak; Dağ, Hacer. Nonlinear proximinal multivalued contractions on quasi-metric spaces. J. Fixed Point Theory Appl. 19 (2017), no. 4, 2449–2460.
4.92. Durmaz, Gonca. Some theorems for a new type of multivalued contractive maps on metric space. Turkish J. Math. 41 (2017), no. 4, 1092–1100.
4.93. Kheawborisut, Araya; Suantai, Suthep; Kangtunyakarn, Atid. The existence theorem of a new multi-valued mapping in metric space endowed with graph. Carpathian J. Math. 33 (2017), no. 2, 191–198.
4.94. Durmaz, Gonca; Altun, Ishak. A new perspective for multivalued weakly Picard operators. Publ. Inst. Math. (Beograd) (N.S.) 101(115) (2017), 197–204.
4.95. Hussain, Nawab; Mitrović, Zoran D. On multi-valued weak quasi-contractions in b-metric spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 7, 3815–3823.
4.96. Acar, Özlem. A fixed point theorem for multivalued almost $F_\delta$-contraction. Results Math. 72 (2017), no. 3, 1545–1553.
4.97. Hussain, Aftab; Arshad, Muhammad; Abbas, Mujahid. New type of fixed point result of F-contraction with applications. J. Appl. Anal. Comput. 7 (2017), no. 3, 1112–1126.
4.98. Hançer, Hatice Aslan; Minak, Gülhan; Altun, Ishak. On a broad category of multivalued weakly Picard operators. Fixed Point Theory 18 (2017), no. 1, 229–236.
4.99. Ali, M. U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 22 (2017), no. 1, 17–30.
4.100. Tiammee, J.; Suantai, S.; Cho, Y. J. Existence theorems of a new set-valued MT-contraction in $b$-metric spaces endowed with graphs and applications. Fixed Point Theory 19 (2018), no. 2, 785–800.
4.101. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Variational analysis concepts in the theory of multi-valued coincidence problems. J. Nonlinear Convex Anal. 19 (2018), no. 6, 935–958.
4.102. Abbas, M.; Nazir, T.; Rakočević, V. Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 331–354.
4.103. Baghani, H. Generalized multivalued F-contractions on incomplete metric spaces. International J. Nonlinear Anal. Appl. Volume: 9 Issue: 2 Pages: 70-84 Published: SUM-FAL 2018
4.104. Acar, Özlem. Rational type multivalued $F_G$-contractive mappings with a graph. Results Math. 73 (2018), no. 2, Art. 52, 9 pp.
4.105. Mirdamadi, Fahimeh; Asadi, Mehdi; Abbasi, Somayeh. Approximate best proximity for set-valued contractions in metric spaces. J. Math. Anal. 9 (2018), no. 5, 98–105.
4.106. Alfuraidan, M. R.; Benchabane, S.; Djebali, S. Coincidence points for multivalued weak $\Gamma$-contraction mappings on metric spaces. Carpathian J. Math. 34 (2018), no. 3, 277–286.
4.107. Tiammee, Jukrapong. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
4.108. Mirdamadi, Fahimeh; Asadi, Mehdi; Abbasi, Somayeh. Approximate best proximity for set-valued contractions in metric spaces. J. Math. Anal. 9 (2018), no. 4, 53–60.
4.109. Sridarat, Phikul; Suantai, Suthep. Common fixed point theorems for multi-valued weak contractive mappings in metric spaces with graphs. Filomat 32 (2018), no. 2, 671–680.
4.110. Mukheimer, A.; Vujaković, J.; Hussain, A.; Aydi, H.; Radenović, S.; Yaqoob, S. A new approach to multivalued nonlinear weakly Picard operators. J. Inequal. Appl. 2019, Paper No. 288, 11 pp.
4.111. Turkoglu, Duran; Manav, N. Feng-Liu Type Fixed Point Results for Multivalued Mappings in GMMS. Mathematics vol. 7 Issue: 11 Article Number: 1031 Published: NOV 2019
4.112. Al-Mezel, S. A.; Ahmad, J. Generalized Fixed-Point Results for Almost (alpha, F-sigma)-Contractions with Applications to Fredholm Integral Inclusions. Symmetry-Basel Volume: 11 Issue: 9 Article Number: 1068 Published: SEP 2019
4.113. Debnath, P.; de La Sen, M. Set-Valued Interpolative Hardy-Rogers and Set-Valued Reich-Rus-Ciric-Type Contractions in b-Metric Spaces. Mathematics Volume: 7 Issue: 9 Article Number: 849 Published: SEP 2019
4.114. Klangpraphan, Chayanit; Panyanak, Bancha. Fixed point theorems for some generalized multi-valued nonexpansive mappings in Hadamard spaces. Thai J. Math. 17 (2019), no. 2, 543–555.
4.115. Neog, M.; Jaradat, M. M. M.; Debnath, P. Common Fixed Point Results of Set Valued Maps for A(phi)-Contraction and Generalized phi-Type Weak Contraction. Symmetry-Basel Volume: 11 Issue: 7 Article Number: 894 Published: JUL 2019
4.116. Bunlue, N.; Suantai, S. Existence and convergence theorems for Berinde nonexpansive multivalued mapping on Banach spaces. Afr. Mat. 30 (2019), no. 3-4, 483–494.
4.117. Mitrovic, Z. D.; Aydi, H.; Hussain, N.; et al. Reich, Jungck, and Berinde Common Fixed Point Results on F-Metric Spaces and an Application. Mathematics 7 (2019), no. 5 Article Number: 387
4.118. Baghani, H.; Agarwal, R. P.; Karapinar, E. On Coincidence Point and Fixed Point Theorems for a General Class of Multivalued Mappings in Incomplete Metric Spaces with an Application. Filomat 33 (2019), no. 14, 4493-4508.
4.119. Sekman, Derya; Karakaya, Vatan. On the $F$-contraction properties of multivalued integral type transformations. Methods Funct. Anal. Topology 25 (2019), no. 3, 282–288.
4.120. Sahin, H.; Aslantas, M.; Altun, I. Feng-Liu type approach to best proximity point results for multivalued mappings. J. Fixed Point Theory Appl. 22 (2020), no. 1, Art. 11, 13 pp.
4.121. Patel, Deepesh Kumar. Fixed points of multivalued contractions via generalized class of simulation functions. Bol. Soc. Parana. Mat. (3) 38 (2020), no. 3, 161–176.
[5] V. Berinde, Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 74 (2011), No. 18, 7347-7355
5.1. H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ, φ)-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl. 63 (2012) 298–309
5.2. H. K. Nashine, Z. Kadelburg, S. Radenovic, Coupled common fixed point theorems for w*-compatible mappings in ordered cone metric spaces, Appl. Math. Comput. 218 (2012) 5422-5432
5.3. H. Aydi, E. Karapinar, S. Radenović, Tripled coincidence fixed point results for Boyd–Wong and Matkowski type contractions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM July 2012
5.4. D. Doric, Z. Kadelburg, S. Radenovic, Coupled fixed point results for mappings without mixed monotone property, Appl. Math. Lett. doi:10.1016/j.aml.2012.02.022
5.5. V. Ghorbanian, Sh. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl. 63 (2012) 1361–1368
5.6. Z. Golubovic, Z. Kadelburg, and S. Radenovic, Coupled Coincidence Points of Mappings in Ordered Partial Metric Spaces, Abstr. Appl. Anal. Volume 2012, Article ID 192581, 18 pages doi:10.1155/2012/192581
5.7. M. Jain, K. Tas, S. Kumar and N. Gupta, Coupled common fixed point results involving a (\Phi,\Psi)-contractive condition for mixed g-monotone operators in partially ordered metric spaces, J. Ineq. Appl. 2012, 2012:285
5.8. Nguyen M. H.; Karapinar, E.; Nguyen Van Luong, Coupled Coincidence Point Theorem in Partially Ordered Metric Spaces via Implicit Relation, Abstract Appl. Anal. 2012 Article Number: 796964 DOI: 10.1155/2012/796964
5.9. Asl, J. Hasanzade; Rezapour, S.; Shahzad, N., On fixed points of alpha-psi-contractive multifunctions, Fixed Point Theory Appl. 2012, 2012:212, 6 pp.
5.10. Karapinar, E., Kaymakçalan, B., Taş, K., On coupled fixed point theorems on partially ordered G-metric spaces, J. Ineq. Appl. 2012, art. no. 200
5.11. Amini-Harandi, A., Coupled and tripled fixed point theory in partially ordered metric spaces with application to initial value problem, MATHEMATICAL AND COMPUTER MODELLING Volume: 57 Issue: 9-10 Pages: 2343-2348 Published: MAY 2013
5.12. R P Agarwal, E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013, 2013:2
5.13. Gulyaz, S; Karapinar, E; Yuce, IS, A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation, Fixed Point Theory Appl. 2013, DOI 10.1186/1687-1812-2013-38
5.14. Samet, B., Karapinar, E., Aydi, H., Rajić, V.C., Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013, art. no. 50
5.15. Dung, N.V., On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl. 2013:48
5.16. M. Ertürk and V. Karakaya, n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Ineq. Appl. 2013, 2013:196 doi:10.1186/1029-242X-2013-196
5.17. A. Petruşel, G. Petruşel, C. Urs, Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators, Fixed Point Theory Appl. 2013, 2013:218
5.18. B. S Choudhury, N. Metiya and M. Postolache, A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl. 2013, 2013:152 doi:10.1186/1687-1812-2013-152
5.19. R.P. Agarwal, Z. Kadelburg and S. Radenović, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013, 2013:528
5.20. M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Ineq. Appl. 2013, 2013:402
5.21. Xiao, Jian-Zhong; Zhu, Xing-Hua; Shen, Zhi-Mo. Common coupled fixed point results for hybrid nonlinear contractions in metric spaces. Fixed Point Theory 14 (2013), no. 1, 235-249
5.22. D. Turkoglu and M. Sangurlu, Coupled fixed point theorems for mixed g-monotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:348
5.23. C. Chen, C. Zhu, Fixed point theorems for weakly C-contractive mappings in partial metric spaces, Fixed Point Theory Appl. 2013, 2013:107
5.24. R. K. Vats, V. Sihag and Y. J. Cho, Coupled Fixed Point Theorems without Contiuity and Mixed Monotone Property, J. Ineq. Appl. 2013, 2013:217
5.25. C. Ionescu, S. Rezapour and M. E. Samei, Fixed points of some new contractions on intuitionistic fuzzy metric spaces, Fixed Point Theory Appl. 2013, 2013:168
5.26. E. Karapinar and R. P. Agarwal, Further fixed point results on G-metric spaces, Fixed Point Theory Appl. 2013, 2013:154
5.27. C. Klanarong and S. Suantai, Coupled Coincidence Point Theorems for New Types of Mixed Monotone Multivalued Mappings in Partially Ordered Metric Spaces, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 604578, 7 pages
5.28. B. S. Choudhury, N. Metiya and P. Das, A coupled common fixed point theorem for a family of mappings, Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 1, 14–26
5.29. van Luong, N., Thuan, N.X., Coupled points in ordered generalized metric spaces and application to integro-differential equations, An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 21 (2013), No. 3, 155-180
5.30. Rezapour, S., Ionescu, C., Samei, M.E., New fixed point results and the property (p) on ordered intuitionistic fuzzy metric spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 75 (2013), No. 4, 27-38
5.31. E. Karapinar and R. P Agarwal, A note on ‘Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:216
5.32. M. Kutbi, A. Roldán, W. Sintunavarat, J. Martínez-Moreno, C. Roldán, F-closed sets and coupled fixed point theorems without the mixed monotone property, Fixed Point Theory Appl. 2013, 2013:330
5.33. Gulyaz, Selma; Karapmar, Erdal, A coupled fixed point result in partially ordered partial metric spaces through implicit function, Hacettepe Journal of Mathematics and Statistics 42 (2013), No. 4, 347-357
5.34. Feng Gu, Some common tripled fixed point results in two quasi-partial metric spaces, Fixed Point Theory Appl. 2014, 2014:71 doi:10.1186/1687-1812-2014-71
5.35. Nawab Hussain, Mujahid Abbas, Akbar Azam, Jamshaid Ahmad, Coupled coincidence point results for a generalized compatible pair with applications, Fixed Point Theory Appl. 2014, 2014:62
5.36. Erturk, M., Karakaya, V., n-Tuplet Coincidence Point Theorems in Intuitionistic Fuzzy Normed Spaces, J. Function Spaces, 10.1155/2014/821342 2014
5.37. S. Radenović, A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., 236 (2014), 367-372
5.38. S. Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:137
5.39. Imdad, M., Sharma, A., Erduran, A., Generalized Meir-Keeler type $n$-tupled fixed point theorems in ordered partial metric spaces. Fixed Point Theory Appl. 2014, 2014:114, 24 pp.
5.40. Ahmad, J., Arshad, M., Vetro, P., Coupled coincidence point results for $(\phi,\psi)$-contractive mappings in partially ordered metric spaces. Georgian Math. J. 21 (2014), no. 2, 113–124.
5.41. Charoensawan, P., Thangthong, C., On coupled coincidence point theorems on partially ordered $G$-metric spaces without mixed $g$-monotone. J. Inequal. Appl. 2014, 2014:150, 17 pp.
5.42. Vats, R. K., Tas, K., Sihag, V., Kumar, A., Triple fixed point theorems via $\alpha$-series in partially ordered metric spaces. J. Inequal. Appl. 2014, 2014:176, 12 pp.
5.43. Na Nan, N., Charoensawan, P., Coupled $g$-coincidence point theorems for a generalized compatible pair in complete metric spaces. Fixed Point Theory Appl. 2014, 2014:201, 22 pp.
5.44. Ionescu, C., Rezapour, Sh.; Samei, M. E., Fixed points of a class of contractive-type multifunctions on fuzzy metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 76 (2014), no. 4, 3–12.
5.45. Na Nan, N., Charoensawan, P., $(H,F)$-closed set and coupled coincidence point theorems for a generalized compatible in partially $G$-metric spaces. J. Inequal. Appl. 2014, 2014:342, 21 pp.
5.46. An, T. V., Chi, K. P., Hung, L. K., Coupled fixed point theorems in uniform spaces and applications. J. Nonlinear Convex Anal. 15 (2014), no. 5, 953–966.
5.47. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
5.48. Rahimi, Hamidreza; Radenovic, Stojan; Rad, Ghasem Soleimani; et al., Quadrupled fixed point results in abstract metric spaces, COMPUTATIONAL & APPLIED MATHEMATICS 33 (2014), No. 3, 671-685
5.49. H. Olaoluwa and J. Olaleru, Multipled fixed point theorems in cone metric spaces, Fixed Point Theory Appl. 2014, 2014:43 doi:10.1186/1687-1812-2014-43
5.50. Turinici, Mihai, Contractive Operators in Relational Metric Spaces, Handbook of Functional Equations: Functional Inequalities (Editor Rassias, TM) Book Series: Springer Optimization and Its Applications, Vol. 95, pp. 419-458 (2014)
5.51. H. Rahimi, P. Vetro, G. Soleimani Rad, Coupled fixed-point results for T-contractions on cone metric spaces with applications, Mathematical Notes 98 (2015), No. 1, 158-167
5.52. A. Petruşel and G. Petruşel, Nonlinear Dynamics, Fixed Points and Coupled Fixed Points in Generalized Gauge Spaces with Applications to a System of Integral Equations, Discrete Dynamics in Nature and Society 2015, Article ID 143510, 10 pages
5.53. Agarwal, Ravi; Karapinar, Erdal; Roldán-López-de-Hierro, Antonio-Francisco. Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on $G$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 9, 1787–1816.
5.54. M. Abbas, B. Ali, Y. I Suleiman, Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory Appl. 2015, 2015:64
5.55. T. D. Thanh, A. Hobiny, E. Karapınar, A solution for the non-cooperative equilibrium problem of two person via fixed point theory, J. Inequal. Appl. 2015, 2015:158
5.56. W. Saksirikun and N. Petrot,Some fixed point theorems via partial order relations without the monotone property, Carpathian J. Math.31 (2015), No. 3, 389-394
5.57. Bota, Monica-Felicia; Petruşel, Adrian; Petruşel, Gabriela; Samet, Bessem. Coupled fixed point theorems for single-valued operators in $b$-metric spaces. Fixed Point Theory Appl. 2015, 2015:231, 15 pp.
5.58. Moradi, S.; Anjedani, M. Mohammadi; Analoei, E., On Existence and Uniqueness of Solutions of a Nonlinear Volterra-Fredholm Integral Equation, International Journal of Nonlinear Analysis and Applications 6 (2015), no. 1, 62-68
5.59. Wang, S.; Ansari, A. H.; Chandok, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. Fixed Point Theory Appl. 2015, 2015:209, 16 pp.
5.60. Petruşel, A.; Urs, C.; Mleşniţe, O., Vector-valued metrics in fixed point theory. Infinite products of operators and their applications, 149–165, Contemp. Math., 636, Amer. Math. Soc., Providence, RI, 2015.
5.61. Z. Kadelburg, P. Kumam, S. Radenović, W. Sintunavarat, Common coupled fixed point theorems for Geraghty-type contraction mappings using monotone property, Fixed Point Theory Appl. 2015, 2015:27
5.62. Gupta, Animesh. $\alpha$-series for quadrupled fixed point. Facta Univ. Ser. Math. Inform. 30 (2015), no. 5, 663–678.
5.63. Yildirim, I., A new type of coupled fixed point theorem in partially ordered complete metric space, J. Math. Anal. 7 (2016), no. 3, 58–65.
5.64. Petruşel, A.; Petruşel, G.; Samet, B.; Yao, J.-C., Coupled fixed point theorems for symmetric multi-valued contractions in $b$-metric space with applications to systems of integral inclusions. J. Nonlinear Convex Anal. 17 (2016), no. 7, 1265–1282.
5.65. Sridarat, P.; Suantai, S., Caristi fixed point theorem in metric spaces with a graph and its applications. J. Nonlinear Convex Anal. 17 (2016), no. 7, 1417–1428.
5.66. Ansari, A. H.; Sangurlu, M.; Turkoglu, D., Coupled Fixed Point Theorems For Mixed G-Monotone Mappings In Partially Ordered Metric Spaces Via New Functions, Gazi Univ. J. SCIENCE 29 (2016), no. 1, 149-158
5.67. Petrusel, A.; Petrusel, G.; Samet, B.; et al., Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), no. 2, 457-475
5.68. Agarwal, R. P.; Karapınar, E.; Roldán López de Hierro, A. F., Last remarks on $G$-metric spaces and related fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 433–456.
5.69. Alam, A.; Imdad, M.; Ali, J., Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, COGENT MATHEMATICS 3 (2016), Article Number: 1248270
5.70. Choudhury, Binayak S.; Bandyopadhyay, Chaitali. Coupled Meir-Keeler type contraction in metric spaces with an application to partial metric spaces. Vietnam J. Math. 44 (2016), no. 3, 623–636.
5.71. Agarwal, Ravi P.; Karapınar, Erdal; Roldán López de Hierro, Antonio Francisco. Last remarks on $G$-metric spaces and related fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 433–456.
5.72. Petruşel, A.; Petruşel, G.; Samet, B., A study of the coupled fixed point problem for operators satisfying a max-symmetric condition in $b$-metric spaces with applications to a boundary value problem. Miskolc Math. Notes 17 (2016), no. 1, 501–516.
5.73. Petruşel, Adrian; Petruşel, Gabriela; Samet, Bessem; Yao, Jen-Chih. Scalar and vectorial approaches for multi-valued fixed point and multi-valued coupled fixed point problems in $b$-metric spaces. J. Nonlinear Convex Anal. 17 (2016), no. 10, 2049–2061.
5.74. Petrusel, A.; Petrusel, G.; Yao, J.-C., A study of a system of operator inclusions via a fixed point approach and applications to functional-differential inclusions, Carpathian J. Math.32 (2016), no. 3, 349-361
5.75. Grewal, Manju; Kumar Vats, Ramesh; Kumar, Amit. $n$-tupled common fixed point theorems via $\alpha$-series in ordered metric spaces. Eur. J. Pure Appl. Math. 10 (2017), no. 2, 295–311.
5.76. Dobrican, Melánia-Iulia. Coupled and tripled fixed point theorems on a metric space endowed with a binary relation. Miskolc Math. Notes 18 (2017), no. 1, 189–198.
5.77. Dhage, B. C. Coupled hybrid fixed point theory in a partially ordered metric space and attractivity of nonlinear hybrid fractional integral equations. J. Fixed Point Theory Appl. 19 (2017), no. 4, 2541–2575.
5.78. Dhage, B. C. Coupled hybrid fixed point theory involving the sum and product of three coupled operators in a partially ordered Banach algebra with applications. J. Fixed Point Theory Appl. 19 (2017), no. 4, 3231–3264.
5.79. Dhage, B. C. A coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space with applications. Differ. Equ. Appl. 9 (2017), no. 4, 453–477.
5.80. Bose, S.; Hossein, Sk M.; Paul, K. Solution of a class of nonlinear matrix equations. Linear Algebra Appl. 530 (2017), 109–126.
5.81. Petrusel, A.; Petrusel, G. A study of a general system of operator equations in -metric spaces via the vector approach in fixed point theory. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1793-1814.
5.82. Kir, M.; Yolacan, E.; Kiziltunc, H. Coupled fixed point theorems in complete metric spaces endowed with a directed graph and application. Open Math. 15 (2017), no. 1, 734–744.
5.83. Shoaib, M.; Sarwar, M.; Tunc, C. Coupled fixed point theorem for multi-valued mapping via generalized contraction in partially ordered metric spaces with applications. J. Math. Anal. 8 (2017), no. 5, 27–39.
5.84. Tiammee, J.; Suantai, S. Endpoints of multi-valued weakly contraction in complete metric spaces endowed with graphs. Filomat 31 (2017), no. 14, 4319–4329.
5.85. Isik, H.; Radenović, S. A new version of coupled fixed point results in ordered metric spaces with applications. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 2, 131–138.
5.86. Jain, M.; Gupta, N.; Kumar, S. A discussion on some recent coupled fixed point results via new generalized nonlinear contractive conditions. TWMS J. Appl. Eng. Math. 7 (2017), no. 1, 110–130.
5.87. Choudhury, B. S.; Maity, P.; Konar, P. Fixed point results for couplings on metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 1, 77–88.
5.88. 5.74. Petrusel, Adrian; Petrusel, Gabriela, A study of a general system of operator equations in -metric spaces via the vector approach in fixed point theory, J. FIXED POINT THEORY AND APPLICATIONS Volume: 19 Issue: 3 Pages: 1793-1814 Published: SEP 2017
5.89. Petruşel, A. Fixed points vs. coupled fixed points. J. Fixed Point Theory Appl. 20 (2018), no. 4, Art. 150, 11 pp.
5.90. Shah N., Syed M. R.; Meng, J.; Kim, Hyun-Min. Iteration with stepsize parameter and condition numbers for a nonlinear matrix equation. Electron. J. Linear Algebra 34 (2018), 217–230.
5.91. Rashid, Tawseef; Khan, Qamrul Haq; Aydi, Hassen. On strong coupled coincidence points of $g$-couplings and an application. J. Funct. Spaces 2018, Art. ID 4034535, 10 pp.
5.92. Hossein, Sk Monowar; Bose, Snehasish; Paul, Kallol. Solution of a pair of nonlinear matrix equations. Fixed Point Theory 19 (2018), no. 1, 265–273.
5.93. Ansari, Arslan H.; Ozdemir, Murat; Khan, Mohammad S.; Yildirim, Isa. Coupled fixed point theorems with $C$-class functions. Facta Univ. Ser. Math. Inform. 33 (2018), no. 1, 109–124.
5.94. Petruşel, A.; Petruşel, G.; Xiao, Y.-B.; Yao, J.-C. Fixed point theorems for generalized contractions with applications to coupled fixed point theory. J. Nonlinear Convex Anal. 19 (2018), no. 1, 71–88.
5.95. Khan, Qamrul Haq; Rashid, Tawseef. Coupled coincidence point of $\phi$-contraction type $T$-coupling in partial metric spaces. J. Math. Anal. 9 (2018), no. 1, 136–149.
5.96. Petruşel, Adrian; Soós, Anna. Coupled fractals in complete metric spaces. Nonlinear Anal. Model. Control 23 (2018), no. 2, 141–158.
5.97. Kongban, C.; Kumam, P.; Martinez-Moreno, J. Coupled Random Fixed Point Theorems for Mixed Monotone Nonlinear Operators. Commun. Math. Appl. 10 (2019), no. 2, 215-229.
5.98. Senapati, T.; Dey, Lakshmi K. A new approach on coupled fixed point theory in JS-metric spaces. Fixed Point Theory 20 (2019), no. 1, 323–335.
5.99. Ramesh Kumar, D.; Pitchaimani, M. New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 409–419.
5.100. Ramesh Kumar, D.; Pitchaimani, M. New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process. Trans. A. Razmadze Math. Inst. 172 (2018), no. 3, part A, 409–419.
5.101. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Existence and stability results for a system of operator equations via fixed point theory for nonself orbital contractions. J. Fixed Point Theory Appl. 21 (2019), no. 3, Art. 73, 18 pp.
5.102. Aydi, H.; Rakic, D.; Aghajani, Asadolah; et al.On Fixed Point Results in G(b)-Metric Spaces. Mathematics Volume: 7 Issue: 7 Article Number: 617 Published: JUL 2019
5.103. Ansari, A. H.; Moeini, B.; Yildirim, I; et al. Coupled fixed point theorems for rational type contractions via C-class functions. International Journal Of Nonlinear Analysis And Applications Volume: 10 Issue: 1 Pages: 77-98 Published: SUM-FAL 2019
5.104. Samei, M. E. Convergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces. Sahand Commun. Math. Anal. 15 (2019) no. 1, 91-106.
5.105. Zlatanov, Boyan. A variational principle and coupled fixed points. J. Fixed Point Theory Appl. 21 (2019), no. 2, Art. 69, 13 pp.
5.106. Petruşel, Adrian; Petruşel, Gabriela. Coupled fractal dynamics via Meir-Keeler operators. Chaos Solitons Fractals 122 (2019), 206–212.
5.107. Aydi, H.; Rashid, T.; Khan, Q. H.; et al. Fixed Point Results Using F-t-Contractions in Ordered Metric Spaces Having t-Property. Symmetry-Basel 11 (2019), no. 3 Article Number: 313
5.108. Dhage, B. C. A coupled hybrid fixed point theorem involving the sum of two coupled operators in a partially ordered Banach space with applications. Tamkang J. Math. 50 (2019) no. 1 1-36
5.109. Hazarika, B.; Arab, R.; Kumam, P. Coupled fixed point theorems in partially ordered metric spaces via mixed $g$-monotone property. J. Fixed Point Theory Appl. 21 (2019), no. 1, Art. 1, 19 pp.
5.110. Dhage, B. C. Coupled and mixed coupled hybrid fixed point principles in a partially ordered Banach algebra and PBVPs of nonlinear coupled quadratic differential equations. Differ. Equ. Appl. 11 (2019), no. 1, 1–85.
5.111. Li, Jinlu; Petrusel, A. Extended coupled fixed point problems for set-valued mappings on partially ordered Banach spaces and their applications to systems of hammerstein integral equations. J. Nonlinear Convex Anal. 20 (2019), no. 11 SI, 2321-2333.
5.112. Petruşel, Adrian; Petruşel, Gabriela. Fixed points, coupled fixed points and best proximity points for cyclic operators. J. Nonlinear Convex Anal. 20 (2019), no. 8, 1637–1646.
5.113. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Coupled fixed point theorems in quasimetric spaces without mixed monotonicity. Carpathian J. Math. 35 (2019), no. 2, 185–192.
5.114. Samei, M. E. Some Fixed Point Results on Intuitionistic Fuzzy Metric Spaces with a Graph. Sahand Communications In Mathematical Analysis 13 (2019) no. 1, 141-152.
5.115. Kongban, C.; Kumam, P.; Martinez-Moreno, J. Coupled Random Fixed Point Theorems for Mixed Monotone Nonlinear Operators. Commun. Math. Appl. 10 (2019), no. 2, 215-229
5.116. Senapati, Tanusri; Dey, Lakshmi Kanta. A new approach on coupled fixed point theory in JS-metric spaces. Fixed Point Theory 20 (2019), no. 1, 323–335.
5.117. Oprea, A.; Petrusel, G. Coupled fixed point theorems for rational type contractions. Studia Universitatis Babes-Bolyai Mathematica 61 (2016), no. 4, 473-488.
[6] V. Berinde, General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces, Carpathian J. Mathematics 24 (2008), No. 2, 10-19
6.1. Abbas, M., Damjanović, B., Lazović, R., Fuzzy common fixed point theorems for generalized contractive mappings, Appl. Math. Lett. 23 (2010), No. 11, 1326-1330
6.2. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
6.3. M. Abbas and D. Ilic, Common fixed points of generalized almost nonexpansive mappings, Filomat 24 (2010), No. 3, 11–18 DOI: 10.2298/FIL1003011A
6.4. Abbas M, Babu GVR, Alemayehu GN, On common fixed points of weakly compatible mappings satisfying ‘generalized condition (B)’, Filomat 25 (2011), No. 2, 9-19
6.5. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
6.6. Bogale, TE; Vandendorpe, L, Sum MSE Optimization for Downlink Multiuser MIMO Systems with per Antenna Power Constraint: Downlink-Uplink Duality Approach, 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2035-2039; 2011
6.7. Ćirić, L., Abbas, M., Damjanović, B., Saadati, R., Common fuzzy fixed point theorems in ordered metric spaces, Math. Comput. Modelling 53 (2011), No. 9-10, 1737-1741
6.8. Shatanawi, Wasfi; Nashine, Hemant Kumar, A generalization of Banach’s contraction principle for nonlinear contraction in a partial metric space, J Nonlinear Sci Appl 5 (2012), No. 1 Special Issue, 37-43
6.9. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
6.10. Bogale Tadilo Endeshaw; Vandendorpe Luc, Robust Sum MSE Optimization for Downlink Multiuser MIMO Systems With Arbitrary Power Constraint: Generalized Duality Approach, IEEE Transactions on Signal Processing 60 (2012). No. 4 1862-1875 DOI: 10.1109/TSP.2011.2180899
6.11. W. Shatanawi, Some fixed point results for a generalized w-weak contraction mappings in orbitally metric spaces, Chaos, Solitons Fractals 45 (2012) 520–526
6.12. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012), no. 10-11, 2642–2648.
6.13. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
6.14. Jleli, M; Karapinar, E; Samet, B, Fixed Point Results for Almost Generalized Cyclic (psi, phi)-Weak Contractive Type Mappings with Applications, Abstr. Appl. Anal., 10.1155/2012/917831 2012
6.15. Duran Turkoglu and Vildan Ozturk, Common Fixed Point Results for Four Mappings on Partial Metric Spaces, Abstr. Appl. Anal., Volume 2012 (2012), Article ID 190862, 11 pages doi:10.1155/2012/190862R
6.16. Shatanawi, W., Postolache, M., Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012 , art. no. 815870
6.17. Shatanawi, W.; Al-Rawashdeh, A., Common fixed points of almost generalized (psi, I center dot)-contractive mappings in ordered metric spaces, Fixed Point Theory Appl., Article Number: 80 DOI: 10.1186/1687-1812-2012-80
6.18. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263 doi:10.1186/1029-242X-2012-263
6.19. Chifu, C.; Petrusel, G., Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl. 2012, 1-9 Article Number: 161 DOI: 10.1186/1687-1812-2012-161
6.20. Bogale, T. E.; Vandendorpe, Luc, Weighted Sum Rate Optimization for Downlink Multiuser MIMO Systems with per Antenna Power Constraint: Downlink-Uplink Duality Approach, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Pages: 3245-3248 Published: 2012
6.21. Saha, M., Dey, D., Some random fixed point theorems (theta, L)-weak contractions, Hacet. J. Math. Stat. 41 (2012), No. 6, 795-812
6.22. Hussain, N; Nashine, HK; Kadelburg, Z; Alsulami, SM, Weakly isotone increasing mappings and endpoints in partially ordered metric spaces, J. Ineq. Appl., 10.1186/1029-242X-2012-232 2012
6.23. W. Shatanawi and M. Postolache, Some Fixed-Point Results for a Weak Contraction in Metric Spaces, Abstr. Appl. Anal. 2012, Article ID 815870, 19 pages doi:10.1155/2012/815870
6.24. Hussain, N.; Pathak, H. K.; Tiwari, S., Application of fixed point theorems to best simultaneous approximation in ordered semi-convex structure, J Nonlinear Sci Appl 5 (2012), No. 4 Special Issue: SI, 294-306
6.25. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271 doi:10.1186/1687-1812-2013-271
6.26. H. Aydi, S. H. Amor and E. Karapinar, Berinde-Type Generalized Contractions on Partial Metric Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pages
6.19. E. Karapinar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013, 2013:94 doi:10.1186/1687-1812-2013-94
6.24. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
6.29. Popa, Valeriu, On some fixed point theorems for implicit almost contractive mappings, Carpathian J Math 29 (2013), No. 2, 223-229
6.30. G. Mınak, Ö. Acar, and I. Altun, Multivalued Pseudo-Picard Operators and Fixed Point Results, J. Funct. Spaces Appl. Volume 2013 (2013), Article ID 827458, 7 pages
6.31. W. Shatanawi, R. Saadati and C. Park, Almost contractive coupled mapping in ordered complete metric spaces, J. Ineq. Appl. 2013, 2013:565 doi:10.1186/1029-242X-2013-565
6.32. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized (ψ, φ) s-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159 doi:10.1186/1687-1812-2013-159
6.33. Bogale, T. and Vandendorpe, L., Linear Transceiver Design for Downlink Multiuser MIMO Systems: Downlink-Interference Duality Approach, IEEE Transactions on Signal Processing, 61 (2013), No. 19, 4686-4700
6.34. H. Aydi, S. H. Amor, and E. Karapinar, Some Almost Generalized (\Phi, \Psi)-Contractions in G-Metric Spaces, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 165420, 11 pages
6.35. F. Shaddad, M. Noorani, S. M Alsulami, Common fixed-point results for generalized Berinde-type contractions which involve altering distance functions, Fixed Point Theory Appl. 2014, 2014:24
6.36. S. Rathee, A. Kumar, Some common fixed-point and invariant approximation results with generalized almost contractions, Fixed Point Theory Appl. 2014, 2014:23
6.37. Zead Mustafa, Erdal Karapınar and Hassen Aydi, A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces, J Inequal Appl 2014, 2014:219 doi:10.1186/1029-242X-2014-219
6.38. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
6.39. Z. Mustafa, V. Parvaneh, J. R. Roshan and Zoran Kadelburg, b 2 -Metric spaces and some fixed point theorems, Fixed Point Theory Appl 2014, 2014:144 doi:10.1186/1687-1812-2014-144
6.40. Latif, A., Roshan, J. R., Parvaneh, V., Hussain, N., Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $b$-metric spaces. J. Inequal. Appl. 2014, 2014:345, 26 pp.
6.41. Gonca Durmaz, Gülhan Mınak, and Ishak Altun, Fixed Point Results for α-ψ-Contractive Mappings Including Almost Contractions and Applications, Abstr Appl Anal Volume 2014 (2014), Article ID 869123, 10 pages
6.42. Savita Rathee, Anil Kumar, and Kenan Tas, Invariant Approximation Results via Common Fixed Point Theorems for Generalized Weak Contraction Maps, Abstr Appl Anal Volume 2014 (2014), Article ID 752107, 11 pages
6.43. Abbas, M., Turkoglu, D., Fixed point theorem for a generalized contractive fuzzy mapping. J. Intell. Fuzzy Systems 26 (2014), no. 1, 33–36.
6.44. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
6.45. Durmaz, G.; Mınak, G.; Altun, I. Fixed point results for $\alpha$-$\psi$-contractive mappings including almost contractions and applications. Abstr. Appl. Anal. 2014, Art. ID 869123, 10 pp.
6.46. Minak, Gülhan; Altun, Ishak; Romaguera, Salvador. Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
6.47. Choudhury, Binayak S.; Metiya, Nikhilesh; Som, T.; Bandyopadhyay, C. Multivalued fixed point results and stability of fixed point sets in metric spaces. Facta Univ. Ser. Math. Inform. 30 (2015), no. 4, 501–512.
6.48. N. Hussain, P. Salimi, V. Parvaneh, Fixed point results for various contractions in parametric and fuzzy b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 719-739
6.49. Jianhua Chen, Xianjiu Huang, Fixed point theorems for fuzzy mappings in metric spaces with an application, J. Inequal. Appl. 2015, 2015:78
6.50. Poom Kumam, Nguyen Van Dung, Kanokwan Sitthithakerngkiet, A Generalization of Ciric Fixed Point Theorems, Filomat 29 (2015), no. 7, 1549–1556
6.51. Khan, M. S.; Berzig, M.; Chandok, S. Fixed point theorems in bimetric space endowed with binary relation and applications. Miskolc Math. Notes 16 (2015), no. 2, 939–951.
6.52. Choudhury, Binayak S.; Bandyopadhyay, Chaitali. Stability of fixed point sets of a class of multivalued nonlinear contractions. J. Math. 2015, Art. ID 302012, 4 pp.
6.53. Beloul, Said. Common fixed point theorems for multi-valued contractions satisfying generalized condition (B) on partial metric spaces. Facta Univ. Ser. Math. Inform. 30 (2015), no. 5, 555–566.
6.54. Khan, M. S.; Berzig, M.; Chandok, S. Fixed point theorems in bimetric space endowed with binary relation and applications. Miskolc Math. Notes 16 (2015), no. 2, 939–951.
6.55. Filip, A.D.; Petrusel, A., Fixed Point Theorems for Multivalued Zamfirescu Operators in Convex Kasahara Spaces, in CONVEXITY AND DISCRETE GEOMETRY INCLUDING GRAPH THEORY Book Series: Springer Proceedings in Mathematics & Statistics Pages: 167-179 DOI: 10.1007/978-3-319-28186-5_15 Published: 2016
6.56. Hussain, N.; Isik, Huseyin; Abbas, M., Common fixed point results of generalized almost rational contraction mappings with an application. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2273–2288.
6.57. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441–448.
6.58. M. Abbas, M. R. Alfuraidan and T. Nazir, Common fixed points of multivalued F-contractions on metric spaces with a directed graph, Carpathian J. Math.32 (2016), No. 1, 1-12
6.59. Roshan, J. R.; Parvaneh, V.; Kadelburg, Z.; Hussain, N., New fixed point results in $b$-rectangular metric spaces. Nonlinear Anal. Model. Control 21 (2016), no. 5, 614–634.
6.60. Dinarvand, M. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
6.61. Tomar, A.; Beloul, S.; Sharma, R.; Upadhyay, S. Common fixed point theorems via generalized condition $(B)$ in quasi-partial metric space and applications. Demonstr. Math. 50 (2017), no. 1, 278–298.
6.62. Sookprasert, P.; Kumam, P.; Thongtha, D.; Sintunavarat, W. Extension of almost generalized weakly contractive mappings in rectangular $b$-metric spaces and fixed point results. Afr. Mat. 28 (2017), no. 1-2, 271–278.
6.63. Hussain, N.; Ahmad, J. New Suzuki-Berinde type fixed point results. Carpathian J. Math. 33 (2017), no. 1, 59–72.
6.64. Shatanawi, W.; Postolache, M.; Ansari, A. H.; Kassab, W. Common fixed points of dominating and weak annihilators in ordered metric spaces via $C$-class functions. J. Math. Anal. 8 (2017), no. 3, 54–68.
6.65. Hussain, N.; Al-Mazrooei, A. E.; Ahmad, J. Fixed point results for generalized $(\alpha\text{-}\eta)\text{-}\Theta$ contractions with applications. J. Nonlinear Sci. Appl. 10 (2017), no. 8, 4197–4208.
6.66. Ahmad, J.; Al-Mazrooei, A. E.; Cho, Y. J.; Yang, Y.-O. Fixed point results for generalized $\Theta$-contractions. J. Nonlinear Sci. Appl. 10 (2017), no. 5, 2350–2358.
6.67. Aslam, Z.; Ahmad, J.; Sultana, N. New common fixed point theorems for cyclic compatible contractions. J. Math. Anal. 8 (2017), no. 3, 1–12.
6.64. Kutbi, Marwan Amin; Rathee, Savita; Kumar, Anil. Common fixed points for almost contractions with altering distance functions. J. Nonlinear Convex Anal. 18 (2017), no. 8, 1435–1457.
6.65. Abbas, M.; Nazir, T.; Rakočević, V. Common fixed points results of multivalued Perov type contractions on cone metric spaces with a directed graph. Bull. Belg. Math. Soc. Simon Stevin 25 (2018), no. 3, 331–354.
6.67. Isik, H.; Gungor, N. B.; Park, C.; et al. Fixed Point Theorems for Almost Z-Contractions with an Application. Mathematics 6 (2018), no. 3 Article Number: 37.
6.68. Saipara, P.; Gopal, D.; Kumam, W. Random fixed point of random Hardy-Roger almost contraction for solving nonlinear stochastic integral equations. Thai J. Math. 16 (2018), Special issue, 379–395.
6.69. Babu, G. V. R.; Dula, T. M. Fixed points of almost generalized $(\alpha,\beta)$-$(\psi,\varphi)$ -contractive mappings in $b$-metric spaces. Facta Univ. Ser. Math. Inform. 33 (2018), no. 2, 177–196.
6.70. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
6.71. Al-Mazrooei, A. E.; Ahmad, J. Fuzzy fixed point results of generalized almost F-contraction. Journal of Mathematics and Computer Science-JMCS 18 (2018), no. 2, 206-215.
6.72. Zákány, M. New classes of local almost contractions. Acta Univ. Sapientiae Math. 10 (2018), no. 2, 378–394.
6.73. Mukheimer, A.; Vujaković, J.; Hussain, A.; Aydi, H.; Radenović, S.; Yaqoob, S. A new approach to multivalued nonlinear weakly Picard operators. J. Inequal. Appl. 2019, Paper No. 288, 11 pp.
6.74. Isik, H.; Mohammadi, B.; Haddadi, M. R.; et al. On a New Generalization of Banach Contraction Principle with Application. Mathematics 7 (2019), no. 9 Article Number: 862.
6.75. Saipara, P.; Khammahawong, K.; Kumam, P. Fixed-point theorem for a generalized almost Hardy-Rogers-type $F$ contraction on metric-like spaces. Math. Methods Appl. Sci. 42 (2019), no. 17, 5898–5919.
6.76. Mebawondu, A. A.; Izuchukwu, C.; Aremu, K. O.; Mewomo, O. T. Some fixed point results for a generalized TAC-Suzuki-Berinde type $F$-contractions in $b$-metric spaces. Appl. Math. E-Notes 19 (2019), 629–653.
6.77. Mebawondu, A. A.; Mewomo, O. T. Some fixed point results for TAC-Suzuki contractive mappings. Commun. Korean Math. Soc. 34 (2019), no. 4, 1201–1222.
6.78. Hussain, N.; Kaseb, A.; Al-Sirehy, F. Common fixed point and approximation results for h-operator pair with (E.A) property. J.Math. Anal. 10 (2019), no. 4 Special Issue: SI Pages: 58-71.
6.79. Shahkoohi, R. J.; Bagheri, Z. Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered b(2)-metric Spaces. Sahand Communications in Mathematical Analysis 13 (2019), no. 1, 179-212.
6.80. Ahmad, J.; Al-Mazrooei, A. E.; Akca, H. Fixed Point Theorems for Generalized Contractions in Modular Metric Spaces with Applications. Int. J. Appl. Math. & Statistics 58 (2019), no. 2, 28-43.
[7] V. Berinde, Iterative approximation of fixed points, Editura EFEMERIDE, Baia Mare, 2002
7.1. G.V.R. Babu, K.N.V. Vara Prashad, Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces, Fixed Point Theory Appl. Volume 2006, Article ID 35704, Pages 1–12
7.2. N. Shahzad and H. Zegeye, On stability results for \phi-strongly pseudocontractive mappings, Nonlinear Anal. 64 (2006), 2619-2630
7.3. G.V.R. Babu, K.N.V. Vara Prashad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., Volume 2006, Article ID 49615, Pages 1–6
7.4. T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), no. 7, 2289-2296
7.5. H. Zegeye and N. Shahzad, Strong convergence theorems for a common zero of a finite family of m-accretive mappings, Nonlinear Anal. 66 (2007), 1161-1169
7.6. Z. Huang, Noor, M.A., Equivalency of convergence between one-step iteration algorithm and two-step iteration algorithm of variational inclusions for H-monotone mappings, Comput. Math. Appl., 53 (2007), 1567-1571
7.7. Shahzad, N., Zegeye, H., Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps, Appl. Math. Comput., 189 (2007). No. 2, 1058-1065
7.8. D. Mihet, The Hyers–Ulam stability for two functional equations in a single variable, Banach J. Math. Anal. 2 (2008), no. 1, 48–52
7.9. M.O. Olatinwo, Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach space using the Ishikawa iteration process, Carpathian J. Math.24 (2008), No. 1, 82-87
7.10. Shahzad, N., Zegeye, H., Strong convergence results for nonself multimaps in Banach spaces, Proc. Amer. Math. Soc. 138 (2008), No. 2, 539-548
7.11. M. O. Olatinwo, Some common fixed point theorems for selfmappings satisfying two contractive conditions of integral type in uniform space, Central European J. Math., 6 (2008), No. 2, 335-341
7.12. Păcurar, Mădălina, Viscosity approximation of fixed points with \phi-contractions, Carpathian J. Math., 24 (2008), No. 1, 88-93
7.13. Pacurar, Mădălina, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), no. 2, 101-109
7.14. Olatinwo, M. O., Some results on multi-valued weakly Jungck mappings in b-metric space, Central European J. Math. 6 (2008), No. 4, 610-621
7.15. Popescu, O., Strong convergence of some explicit iterative processes with mean errors for a class of quasicontractive operators, Fixed Point Theory 9 (2008), No. 1, 233-242
7.16. Singh, S.L., Prasad, B., Some coincidence theorems and stability of iterative procedures, Comput. Math. Appl., 55 (11), 2512-2520, June 2008
7.17. E. U. Ofoedu, Iterative Approximation of a Common Zero of a Countably Infinite Family of m-Accretive Operators in Banach Spaces, Fixed Point Theory Appl. Volume 2008, Article ID 325792, 13 pages doi:10.1155/2008/325792
7.18. Negi, A., Rani, M., Midgets of superior Mandelbrot set, Chaos, Solitons Fractals, 36 (2), 237-245, Apr. 2008
7.19. Zegeye, H., Shahzad, N., Viscosity methods of approximation for a common fixed point of a family of quasi-nonexpansive mappings, Nonlinear Analysis, 68 (2008), No. 7, 2005-2012
7.20. Zegeye, H.; Shahzad, N., Strong convergence theorems for a common zero point of a finite family of $\alpha$-inverse strongly accretive mappings. J. Nonlinear Convex Anal. 9 (2008), no. 1, 95–104.
7.21. Daruni Boonchari, Satit Saejung, Weak and strong convergence theorems of an implicit iteration for a countable family of continuous pseudocontractive mappings, J. Comput. Appl. Math. 233 (2009) 1108-1116
7.22. H. Zegeye, N. Shahzad, Strong convergence theorems for a common zero of a countably infinite family of α-inverse strongly accretive mappings, Nonlinear Anal. TMA, 71 (2009) 531-538
7.23. M.O. Olatinwo, Some results on the continuous dependence of the fixed points in normed linear space, Fixed Point Theory, 10 (2009), No. 1, 151-157
7.24. A.M. Saddeek, Coincidence points by generalized Mann iterates with applications in Hilbert spaces, Nonlinear Analysis Volume 72 (2010), Issue 5, Pages 2262-2270
7.25. H Zegeye, N Shahzad, Viscosity approximation methods for nonexpansive multimaps in Banach spaces, Acta Mathematica Sinica, English Series Jun., 2010, Vol. 26, No. 6, pp. 1165–1176
7.26. Ioan A. Rus, Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math.26 (2010), No. 2, 230–258
7.27. E.U. Ofoedu, H. Zegeye, Iterative algorithm for multi-valued pseudocontractive mappings in Banach spaces, J. Math. Anal. Appl. 372 (2010) 68-76
7.28. Yan Hao and Sun Young Cho, Convergence theorems of zeros of a finite family of m-accretive operators in Banach spaces, Glasnik Matematicki, Vol. 45, No. 2 (2010), 513-523
7.29. Kreinovich, Vladik; Nguyen, Hung T.; Sriboonchitta, S. Symmetries: A General Approach to Integrated Uncertainty Management. Book Series: Advances in Intelligent and Soft Computing Volume: 68 Pages: 141-+ Published: 2010
7.30. W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f , α, β)-weak contraction mappings, Appl. Math. Lett., 24 (2011), No. 4, 460-465
7.31. C. E. Chidume, E. U. Ofoedu, Solution of nonlinear integral equations of Hammerstein type. Nonlinear Analysis 74 (2011), No. 13, 4293-4299, doi:10.1016/j.na.2017.02.017
7.32. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52–57
7.33. C.E. Chidume, Y. Shehu, Approximation of solutions of generalized equations of Hammerstein type, Comput. Math. Appl. 63 (2012) 966–974
7.34. W. Sintunavarat, P. Kumam, Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012), No. 11, 1849-1855 doi:10.1016/j.aml.2012.02.045
7.35. Chidume, C.E. , Shehu, Y., Strong convergence theorem for approximation of solutions of equations of Hammerstein type, Nonlinear Anal. 75 (2012), No. 14, 5664-5671
7.36. Akbulut, S., Zdemir, M., Picard iteration converges faster than noor iteration for a class of Quasi-contractive operators, Chiang Mai J. Sci. 39 (2012), No. 4, 688-692
7.37. M. Abbas, F. Khojasteh, Common $f$-endpoint for hybrid generalized multi-valued contraction mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, November 2012 DOI 10.1007/s13398-012-0107-1
7.38. Gu, Feng. Strong convergence of parallel iterative algorithm with mean errors for two finite families of Ćirić quasi-contractive operators. Abstr. Appl. Anal. 2012, Art. ID 626547, 10 pp.
7.39. Karapınar, Erdal; Samet, Bessem. Generalized $\alpha$-$\psi$ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Art. ID 793486, 17 pp.
7.40. Alghamdi, M. A.; Karapınar, E., $G$-$\beta$-$\psi$ contractive-type mappings and related fixed point theorems. J. Inequal. Appl. 2013, 2013:70, 16 pp.
7.41. Chidume, C.E., Shehu, Y., Iterative approximation of solutions of equations of Hammerstein type in certain Banach spaces, Appl. Math. Comput., 219 (2013), No. 10, 5657-5667
7.42. Yekini Shehu, Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces, Appl. Math. Comput., 231 (2014), 140-147
7.43. Wei-Qi Deng, A modified Picard-Mann hybrid iterative algorithm for common fixed points of countable families of nonexpansive mappings, Fixed Point Theory Appl. 2014, 2014:58 doi:10.1186/1687-1812-2014-58
7.44. Supak Phiangsungnoen and Poom Kumam, Generalized Ulam-Hyers stability and well-posedness for fixed point equation via α-admissibility, J Inequal Appl 2014, 2014:418 doi:10.1186/1029-242X-2014-418
7.45. Dogan, Kadri; Karakaya, Vatan, On the Convergence and Stability Results for a New General Iterative Process, Sci. World J. Article Number: 852475 Published: 2014
7.46. Chidume, C. E.; Shehu, Y., Iterative approximation of solutions of generalized equations of hammerstein type, FIXED POINT THEORY 15 (2014), No. 2, 427-440
7.47. De la Sen, Manuel; Ibeas, Asier. Properties of convergence of a class of iterative processes generated by sequences of self-mappings with applications to switched dynamic systems. J. Inequal. Appl. 2014, 2014:498, 22 pp.
7.48. Phiangsungnoen, S.; Sintunavarat, W.; Kumam, P. Fixed point results, generalized Ulam-Hyers stability and well-posedness via $\alpha$-admissible mappings in $b$-metric spaces. Fixed Point Theory Appl. 2014, 2014:188, 17 pp.
7.49. Abbas, Mujahid; Khojasteh, Farshid. Common $f$-endpoint for hybrid generalized multi-valued contraction mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014), no. 2, 369–375.
7.50. Karapınar, Erdal; Shahi, Priya; Tas, Kenan. Generalized $\alpha$-$\psi$-contractive type mappings of integral type and related fixed point theorems. J. Inequal. Appl. 2014, 2014:160, 18 pp.
7.51. Akewe, Hudson; Okeke, Godwin Amechi; Olayiwola, Adekunle F. Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators. Fixed Point Theory Appl. 2014, 2014:45, 24 pp.
7.52. Mujahid Abbas, Farshid Khojasteh, Common f-endpoint for hybrid generalized multi-valued contraction mappings, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas September 2014, Volume 108, Issue 2, pp 369-375
7.53. Almeida, Ángel; Roldán-López-de-Hierro, Antonio-Francisco; Sadarangani, Kishin. On a fixed point theorem and its application in dynamic programming. Appl. Anal. Discrete Math. 9 (2015), no. 2, 221–244.
7.54. Shahi, P., Kaur, J., Bhatia, S.S., Fixed point theorems for α-ψ-contractive type mappings of integral type with applications, J. Nonlinear Convex Anal. 16 (2015), no. 4, 745-760
7.55. C. E. Chidume and Y. Shehu, Iterative approximation of solutions of generalized equations of Hammerstein type, Fixed Point Theory 16 (2015), no. 1, 91-102
7.56. Priya Shahi, Jatinderdeep Kaur, and S. S. Bhatia, Coincidence and Common Fixed Point Results for Generalized α-ψContractive Type Mappings with Applications, Bull. Belg. Math. Soc. Simon Stevin Volume 22, Number 2 (2015), 299-318.
7.57. Okeke, G. A., Kim, J. K., Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process. J. Inequal. Appl. 2015, 2015:290, 14 pp.
7.58. Redjel, Najeh; Dehici, Abdelkader; Karapınar, Erdal; Erhan, İnci M. Fixed point theorems for $(\alpha,\psi)$-Meir-Keeler-Khan mappings. J. Nonlinear Sci. Appl. 8 (2015), no. 6, 955–964.
7.59. Kang, S. M.; Ali, F.; Rafiq, A.; Kwun, Y. C.; Jabeen, S., On the convergence of Mann and Ishikawa type iterations in the class of quasi contractive operators. J. Comput. Anal. Appl. 21 (2016), no. 3, 451–459.
7.60. Redjel, Najeh; Dehici, Abdelkader; Erhan, İnci M. A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression. Fixed Point Theory Appl. 2015, 2015:115, 9 pp.
7.61. Ali, M. U.; Kamran, Tayyab; Khan, Liaqat Ali. A new type of multivalued contraction in partial Hausdorff metric spaces endowed with a graph. J. Inequal. Appl. 2015, 2015:205, 11 pp.
7.62. Akewe, H.; Okeke, Godwin A. Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. 2015, 2015:66, 8 pp.
7.63. Shobkolaei, Nabi; Sedghi, Shaban. Suzuki-type fixed point results for E-contractive maps in uniform spaces. Thai J. Math. 14 (2016), no. 3, 575–583.
7.64. Kang, S. M.; Ali, F.; Rafiq, A.; Kwun, Y. C.; Jabeen, S. On the convergence of Mann and Ishikawa type iterations in the class of quasi contractive operators. J. Comput. Anal. Appl. 21 (2016), no. 3, 451–459.
7.65. Olatinwo, Memudu Olaposi. Some non-unique fixed point theorems of Ćirić type using rational-type contractive conditions. Georgian Math. J. 24 (2017), no. 3, 455–461.
7.66. Okeke, Godwin Amechi; Abbas, Mujahid. A solution of delay differential equations via Picard-Krasnoselskii hybrid iterative process. Arab. J. Math. (Springer) 6 (2017), no. 1, 21–29.
7.67. Jacob, G. K.; Postolache, M.; Marudai, M.; Raja, V. Norm convergence iterations for best proximity points of non-self non-expansive mappings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 1, 49–56.
7.68. Karapınar, Erdal; Dehici, Abdelkader; Redjel, Nadjeh. On some fixed points of $\alpha$-$\psi$ contractive mappings with rational expressions. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1569–1581.
7.69. Beg, Ismat; Pathak, Hemant Kumar. Coincidence point with application to stability of iterative procedure in cone metric spaces. Appl. Appl. Math. 13 (2018), no. 2, 1018–1038.
7.70. Wattanataweekul, Manakorn. Approximating common fixed points for two $G$-asymptotically nonexpansive mappings with directed grahps. Thai J. Math. 16 (2018), no. 3, 817–830.
7.71. Shehu, Y.; Iyiola, Olaniyi. S. Convergence of hybrid viscosity and steepest-descent methods for pseudocontractive mappings and nonlinear Hammerstein equations. Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 2, 610–626.
7.72. Suparatulatorn, Raweerote; Cholamjiak, Watcharaporn; Suantai, Suthep. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 77 (2018), no. 2, 479–490.
7.73. Okeke, Godwin Amechi. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 30 (2019), no. 5-6, 817–835.
7.74. Sridarat, P.; Suparaturatorn, R.; Suantai, S.; Cho, Y. J. Convergence analysis of SP-iteration for $G$-nonexpansive mappings with directed graphs. Bull. Malays. Math. Sci. Soc. 42 (2019), no. 5, 2361–2380.
7.75. Thianwan, T.; Yambangwai, D. Convergence analysis for a new two-step iteration process for G-nonexpansive mappings with directed graphs. J. Fixed Point Theory Appl. 21 (2019), no. 2, Art. 44, 16 pp.
7.76. Sattari Shajari, P.; Shidfar, A. Application of weighted homotopy analysis method to solve an inverse source problem for wave equation. Inverse Probl. Sci. Eng. 27 (2019), no. 1, 61–88.
7.77. Okeke, Godwin Amechi. Random fixed point theorems in certain Banach spaces. J. Nonlinear Convex Anal. 20 (2019), no. 10, 2155–2170.
7.78. Kumar, Manoj; Araci, Serkan. Common fixed point theorems for generalized $G$-$\eta$-$\chi$-contractive type mappings with applications. Bol. Soc. Parana. Mat. (3) 37 (2019), no. 1, 9–20.
7.79. Goswami, N.; Haokip, N.; Mishra, V. N. An extended s-iteration scheme for g-contractive type mappings in b-metric spaces with graph. Int. J. Anal. Appl. 18 (2020), no. 1, 33-49
[8] Vasile Berinde, Coupled fixed point theorems for $\phi$-contractive mixed monotone mappings in partially ordered metric spaces, Nonlinear Anal. 75 (2012) 3218-3228
8.1. Nguyen Manh Hung; Karapınar, Erdal; Nguyen Van Luong. Coupled coincidence point theorem in partially ordered metric spaces via implicit relation. Abstr. Appl. Anal. 2012, Art. ID 796964, 14 pp.
8.2. Abdeljawad, T., Coupled fixed point theorems for partially contractive mappings, Fixed Point Theory Appl. 2012, 2012:148 doi:10.1186/1687-1812-2012-148
8.3. M. Jleli, V. Čojbašić Rajić, B. Samet, C. Vetro, Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations, J. Fixed Point Theory Appl. August 2012
8.4. M. Jain, K. Tas, S. Kumar and N. Gupta, Coupled common fixed point results involving a (\Phi,\Psi)-contractive condition for mixed g-monotone operators in partially ordered metric spaces, J. Ineq. Appl. 2012, 2012:285
8.5. Ravi P Agarwal, E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013, 2013:2
8.6. Abbas, M.; Nazir, Talat; Radenović, Stojan. Common coupled fixed points of generalized contractive mappings in partially ordered metric spaces. Positivity 17 (2013), no. 4, 1021–1041.
8.7. Gulyaz, S; Karapinar, E; Yuce, IS, A coupled coincidence point theorem in partially ordered metric spaces with an implicit relation, Fixed Point Theory Appl. 2013, DOI 10.1186/1687-1812-2013-38
8.8. Samet, B., Karapinar, E., Aydi, H., Rajić, V.C., Discussion on some coupled fixed point theorems, Fixed Point Theory Appl. 2013, art. no. 50
8.9. Phakdi Charoensawan, Tripled coincidence point theorems for a φ-contractive mapping in a complete metric space without the mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:252 doi:10.1186/1687-1812-2013-252
8.10. Z. Mustafa, J. R. Roshan and V. Parvaneh, Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations, J. Ineq. Appl. 2013, 2013:453 doi:10.1186/1029-242X-2013-453
8.11. B. S Choudhury, N. Metiya and M. Postolache, A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl. 2013, 2013:152 doi:10.1186/1687-1812-2013-152
8.12. R. P. Agarwal, Z. Kadelburg and S. Radenović, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013, 2013:528 doi:10.1186/1029-242X-2013-528
8.13. E. Karapinar and R. P. Agarwal, Further fixed point results on G-metric spaces, Fixed Point Theory Appl. 2013, 2013:154
8.14. Z. Mustafa, J. R. Roshan, V. Parvaneh, Coupled coincidence point results for (\Psi,\phi)-weakly contractive mappings in partially ordered Gb-metric spaces, Fixed Point Theory Appl. 2013, 2013:206
8.15. Gülyaz, Selma; Karapınar, Erdal. A coupled fixed point result in partially ordered partial metric spaces through implicit function. Hacet. J. Math. Stat. 42 (2013), no. 4, 347–357.
8.16. E. Karapınar and R. P Agarwal, A note on ‘Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:216
8.17. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
8.18. Bilgili, N.; Erhan, I. M.; Karapınar, E.; Turkoglu, D. A note on `Coupled fixed point theorems for mixed $g$-monotone mappings in partially ordered metric spaces’. Fixed Point Theory Appl. 2014, 2014:120, 6 pp.
8.19. Feng Gu, Some common tripled fixed point results in two quasi-partial metric spaces, Fixed Point Theory Appl. 2014, 2014:71 doi:10.1186/1687-1812-2014-71
8.20. M. A. Kutbi, Nawab Hussain, Jamal Rezaei Roshan, and Vahid Parvaneh, Coupled and Tripled Coincidence Point Results with Application to Fredholm Integral Equations, Abstr. Appl. Anal., Volume 2014, Article ID 568718, 18 pages
8.21. S. Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:137
8.22. Shatanawi, W., Postolache, M., Mustafa, Z., Tripled and coincidence fixed point theorems for contractive mappings satisfying $\Phi$-maps in partially ordered metric spaces. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 22 (2014), no. 3, 179–203.
8.23. Erhan, İ. M., Karapınar, E., Roldán-López-de-Hierro, A.-F., Shahzad, N., Remarks on `Coupled coincidence point results for a generalized compatible pair with applications’. Fixed Point Theory Appl. 2014, 2014:207, 10 pp.
8.24. S. A. Al-Mezel, H. H. Alsulami, E. Karapinar, and Antonio-Francisco Roldán López-de-Hierro, Discussion on „Multidimensional Coincidence Points” via Recent Publications, Abstr Appl Anal, Volume 2014, Article ID 287492, 13 pages
8.25. Imdad, M., Sharma, A., Erduran, A., Generalized Meir-Keeler type $n$-tupled fixed point theorems in ordered partial metric spaces. Fixed Point Theory Appl. 2014, 2014:114, 24 pp.
8.26. Karapınar, E., Roldán-López-de-Hierro, A.-F., A note on `$(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces’. J. Inequal. Appl. 2014, 2014:522, 12 pp.
8.27. Charoensawan, P., Thangthong, C., On coupled coincidence point theorems on partially ordered $G$-metric spaces without mixed $g$-monotone. J. Inequal. Appl. 2014, 2014:150, 17 pp.
8.28. Na Nan, N., Charoensawan, P., Coupled $g$-coincidence point theorems for a generalized compatible pair in complete metric spaces. Fixed Point Theory Appl. 2014, 2014:201, 22 pp.
8.29. Thangthong, C., Charoensawan, P., Coupled coincidence point theorems for a $\straightphi$-contractive mapping in partially ordered $G$-metric spaces without mixed $g$-monotone property. Fixed Point Theory Appl. 2014, 2014:128, 18 pp.
8.30. Na Nan, N., Charoensawan, P., $(H,F)$-closed set and coupled coincidence point theorems for a generalized compatible in partially $G$-metric spaces. J. Inequal. Appl. 2014, 2014:342, 21 pp.
8.31. Charoensawan, P., Thangthong, C., $(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces. J. Inequal. Appl. 2014, 2014:245, 24 pp.
8.32. Karapinar, E., A Discussion on „alpha-psi-Geraghty Contraction Type Mappings”, FILOMAT 28 (2014), no. 4, 761-766
8.33. An, T. V., Chi, K. P., Hung, L. K., Coupled fixed point theorems in uniform spaces and applications. J. Nonlinear Convex Anal. 15 (2014), no. 5, 953–966.
8.34. Suantai, S.; Charoensawan, P.; Aleksic Lampert, T., Common coupled fixed point theorems for $\theta$-$\psi$-contraction mappings endowed with a directed graph. Fixed Point Theory Appl. 2015, 2015:224, 11 pp.
8.35. Wang, S.; Ansari, A. H.; Chandok, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. Fixed Point Theory Appl. 2015, 2015:209, 16 pp.
8.36. Deshpande, B.; Handa, A., Quadruple fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction. Matematiche (Catania) 70 (2015), no. 1, 157–177.
8.37. Hussain, N., Parvaneh, V.; Golkarmanesh, F., Coupled and tripled coincidence point results under $(F, g)$-invariant sets in $G\sb b$-metric spaces and $G$-$\alpha$-admissible mappings. Math. Sci. (Springer) 9 (2015), no. 1, 11–26.
8.38. Yanbin Sang and Qian Meng, Fixed point theorems with generalized altering distance functions in partially ordered metric spaces via w-distances and applications, Fixed Point Theory Appl. (2015) 2015:168
8.39. Jianhua Chen, Xianjiu Huang, Quadruple fixed point theorems under (φ, ψ)-contractive conditions in partially ordered G-metric spaces with mixed g-monotone property, J. Nonlinear Sci. Appl. 8 (2015), 285–300
8.40. Deshpande, Bhavana; Handa, Amrish. Coincidence point results for weak $\psi-\varphi$ contraction on partially ordered metric spaces with application. Facta Univ. Ser. Math. Inform. 30 (2015), no. 5, 623–648.
8.41. Thangthong, C.; Charoensawan, P. Coupled coincidence point theorems for a $(\beta,g)$-$\psi$-contractive mapping in partially ordered $G$-metric spaces. Thai J. Math. 13 (2015), no. 1, 43–61.
8.42. Parvaneh, V.; Roshan, J. R. Coupled coincidence points for a class of nonlinear contractive mappings in partially ordered $G$-metric spaces. Afr. Mat. 26 (2015), no. 3-4, 369–383.
8.43. Deshpande, B.; Handa, A. Common coupled fixed point theorem under generalized Mizoguchi-Takahashi contraction for hybrid pair of mappings generalized Mizoguchi-Takahashi contraction. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 22 (2015), no. 3, 199–214.
8.44. Charoensawan, Phakdi. Coupled coincidence point theorems for a $\alpha$-$\psi$-contractive mapping in partially metric spaces with $M$-invariant set. Thai J. Math. 13 (2015), no. 3, 687–702.
8.45. Agarwal, R. P.; Karapınar, E.; Roldán López de Hierro, A. F., Last remarks on $G$-metric spaces and related fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 433–456.
8.46. Sarwar, M.; Hussain, S.; Kumari, Panda S., Common coupled fixed point theorems satisfying rational type contractive conditions in b-metric spaces, SPRINGERPLUS 5 (2016), Art. Number: 257
8.47. Petrusel, A.; Petrusel, G.; Samet, B.; et al., Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), no. 2, 457-475
8.48. Deshpande, B.; Handa, A.; Deepmala. Using implicit relation to prove common coupled fixed point theorems for two hybrid pairs of mappings. TWMS J. Appl. Eng. Math. 6 (2016), no. 1, 30–46.
8.49. Kir, Mehmet; Kiziltunc, Hukmi, An extended coupled coincidence point theorem and related results, SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI 34 (2016), no. 4, 517-525
8.50. Deshpande, B.; Handa, A. Huge coupled coincidence point theorem for generalized compatible pair of mappings with applications. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 23 (2016), no. 1, 73–96.
8.51. Deshpande, Bhavana; Handa, Amrish. Common coupled fixed point theorems for hybrid pair of mappings satisfying an implicit relation with application. Afr. Mat. 27 (2016), no. 1-2, 149–167.
8.52. Yang, He; Agarwal, Ravi P.; Nashine, Hemant K.; Liang, Yue. Fixed point theorems in partially ordered Banach spaces with applications to nonlinear fractional evolution equations. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1661–1678.
8.53. Kir, Mehmet; Yolacan, Esra; Kiziltunc, Hukmi. Coupled fixed point theorems in complete metric spaces endowed with a directed graph and application. Open Math. 15 (2017), no. 1, 734–744.
8.54. Deshpande, Bhavana; Handa, Amrish. Coupled coincidence point results for generalized symmetric Meir-Keeler contraction on partially ordered metric spaces with application. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 24 (2017), no. 2, 79–98.
8.55. Yolacan, E.; Kiziltunc, H. The New Approach for Some Coupled Fixed Point Results. Communications In Mathematics And Applications 8 (2017), no. 3, 253-270
8.56. Deshpande, B.; Handa, A. Common coupled fixed point theorems for two hybrid pairs of mappings under generalized Mizoguchi-Takahashi contraction. Southeast Asian Bull. Math. 41 (2017), no. 4, 501–523.
8.57. Sang, Yanbin. Fixed point results for generalized contractive mappings involving altering distance functions on complete quasi-metric spaces and applications. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1377–1398.
8.58. Sang, Yanbin; Zhao, Dongxia. Discussion on a coupled fixed point theorem for single-valued operators in $b$-metric spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 6, 3109–3114.
8.59. Deshpande, B.; Handa, A.; Mishra, L. N. Common coupled fixed point theorem under weak $\psi-\varphi$ contraction for hybrid pair of mappings with application. TWMS J. Appl. Eng. Math. 7 (2017), no. 1, 7–24.
8.60. Hussain, S.; Sarwar, Muhammad; Li, Yongjin. $n$-tupled fixed point results with rational type contraction in $b$-metric spaces. Eur. J. Pure Appl. Math. 11 (2018), no. 1, 331–351.
8.61. Charoensawan, P. Tripled coincidence point theorems with $M$-invariant set for a $\alpha$-$\psi$-contractive mapping in partially metric spaces. Thai J. Math. 16 (2018), no. 1, 121–138.
8.62. Tang, Yanxia; Guan, Jinyu; Mei, Rui; Xu, Yongchun; Su, Yongfu. System of multivariate pseudo-contractive operator equations and the existence of solutions. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 56, 26 pp.
8.63. Deshpande, B.; Handa, A. Employing $\alpha$-$\psi$-contraction to prove coupled coincidence point theorem for generalized compatible pair of mappings on partially ordered metric spaces. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 25 (2018), no. 2, 73–94.
8.64. Darwish, M. A.; Sadarangani, K. On generalized coupled fixed points with applications to the solvability of coupled systems of nonlinear quadratic integral equations. Fixed Point Theory 19 (2018), no. 2, 527–544.
8.65. Chaobankoh, T.; Charoensawan, P. Common tripled fixed point theorems for $\psi$-Geraghty-type contraction mappings endowed with a directed graph. Thai J. Math. 17 (2019), no. 1, 11–30.
8.66. Fan, Yifan; Shen, Youqing; Zhu, Chuanxi; Wu, Zhaoqi. Coupled coincidence point and fixed point results for mixed monotone mappings and an application to integro-differential equations. Mediterr. J. Math. 16 (2019), no. 2, Art. 50, 13 pp.
8.67. Watanabe, Toshikazu. Fixed point theorems in ordered metric spaces and applications to nonlinear boundary value problems. Fixed Point Theory 20 (2019), no. 1, 349–364.
[9] Berinde, V., Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math.25 (2009), No. 2, 157-162
9.1. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
9.2. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
9.3. Ćirić, L., Abbas, M., Saadati, R., Hussain, N., Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., 217 (2011), No. 12, 5784-5789
9.4. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2011), No. 2, 419-428 2011
9.5. Karapinar, E., A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, Vol. 12 (2011), No. 2, pp. 185–191.
9.6. Ćirić, L.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 218 (2011), no. 6, 2398–2406.
9.7. Ciric, L; Samet, B; Aydi, H; Vetro, C., Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2012), No. 6, 2398-2406 10.1016/j.amc.2012.07.005
9.8. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
9.9. Olatinwo, M.O., Postolache, M., Stability results for Jungck-type iterative processes in convex metric spaces, Appl. Math. Comput. 218 (2012), No. 12, 6727-6732
9.10. Abbas, M., Coincidence points of multivalued f-almost nonexpansive mappings, Fixed Point Theory, 13 (2012), No. 1, 3-10
9.11. W. Shatanawi, Some fixed point results for a generalized w-weak contraction mappings in orbitally metric spaces, Chaos, Solitons & Fractals 45 (2012) 520–526
9.12. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
9.13. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
9.14. F. Bojor, Fixed points of Bianchini mappings in metric spaces endowed with a graph, Carpathian J. Math.28 (2012), No. 2, 207-214
9.15. Shatanawi, W.; Al-Rawashdeh, A., Common fixed points of almost generalized (psi, I center dot)-contractive mappings in ordered metric spaces, Fixed Point Theory Appl. 2012 Article Number: 80 DOI: 10.1186/1687-1812-2012-80
9.16. Chifu, C.; Petrusel, G., Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl. 2012, 1-9 Article Number: 161 DOI: 10.1186/1687-1812-2012-161
9.17. Shatanawi, Wasfi; Kumar Nashine, Hemant. A generalization of Banach’s contraction principle for nonlinear contraction in a partial metric space. J. Nonlinear Sci. Appl. 5 (2012), no. 1, Special issue, 37–43.
9.18. H. Aydi, S. H. Amor and E. Karapinar, Berinde-Type Generalized Contractions on Partial Metric Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pages
9.19. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263 doi:10.1186/1029-242X-2012-263
9.20. Shatanawi, W. Nashine, H. K., A generalization of Banach’s contraction principle for nonlinear contraction in a partial metric space, J Nonlinear Sci Appl 5 (2012), No. 1 Special Issue, 37-43
9.21. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
9.22. Abbas, M., Altun, I., Romaguera, S., Common fixed points of Ćirić-type contractions on partial metric spaces, Publ. Math. Debrecen 82 (2013), No. 2, 425-438
9.23. W. Shatanawi, Reza Saadati and Choonkil Park, Almost contractive coupled mapping in ordered complete metric spaces, J. Ineq. Appl. 2013, 2013:565 doi:10.1186/1029-242X-2013-565
9.24. J. R. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei and W. Shatanawi, Common fixed points of almost generalized (ψ, φ) s-contractive mappings in ordered b-metric spaces, Fixed Point Theory Appl. 2013, 2013:159 doi:10.1186/1687-1812-2013-159
9.25. N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013, 2013:256 doi:10.1186/1687-1812-2013-256
9.26. H. Aydi, S. H. Amor, and E. Karapinar, Some Almost Generalized (\Phi, \Psi)-Contractions in G-Metric Spaces, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 165420, 11 pages
9.27. A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi and N. Hussain, Some new results on fixed and best proximity points in preordered metric spaces, Fixed Point Theory Appl. 2013, 2013:263
9.28. F. Shaddad, M. Noorani, S. M Alsulami, Common fixed-point results for generalized Berinde-type contractions which involve altering distance functions, Fixed Point Theory Appl. 2014, 2014:24
9.29. S. Rathee, A. Kumar, Some common fixed-point and invariant approximation results with generalized almost contractions, Fixed Point Theory Appl. 2014, 2014:23
9.30. N. Hussain,1 M. A. Kutbi, S. Khaleghizadeh, and P. Salimi, Discussions on Recent Results for \alpha-\phi-Contractive Mappings, Abstr. Appl. Anal., Vol. 2014 (2014), Article ID 456482, 13 pages
9.31. Marwan A. Kutbi, A. Amini-Harandi, and N. Hussain, A Generalization of a Greguš Fixed Point Theorem in Metric Spaces, Journal of Applied Mathematics, Volume 2014, Article ID 580297, 5 pages
9.32. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
9.33. Zead Mustafa, Vahid Parvaneh, Jamal Rezaei Roshan and Zoran Kadelburg, b 2 -Metric spaces and some fixed point theorems, Fixed Point Theory Appl 2014, 2014:144
9.34. Seong-Hoon Cho, Fixed Point Theorems for Ćirić-Berinde Type Contractive Multivalued Mappings, Abstr Appl Anal Article ID 768238 Accepted 28 October 2014
9.35. Latif, A., Roshan, J. R., Parvaneh, V., Hussain, N., Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $b$-metric spaces. J. Inequal. Appl. 2014, 2014:345, 26 pp.
9.36. Durmaz, G.; Mınak, G.; Altun, I. Fixed point results for $\alpha$-$\psi$-contractive mappings including almost contractions and applications. Abstr. Appl. Anal. 2014, Art. ID 869123, 10 pp.
9.37. Savita Rathee, Anil Kumar, and Kenan Tas, Invariant Approximation Results via Common Fixed Point Theorems for Generalized Weak Contraction Maps, Abstr Appl Anal Volume 2014 (2014), Article ID 752107, 11 pages
9.38. Reza Allahyari, Reza Arab and Ali Shole Haghighi, A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations, J Inequal Appl 2014, 2014:355 doi:10.1186/1029-242X-2014-355
9.39. Abbas, M., Jong Kyu Kim, and Talat N., Common Fixed Point of Mappings Satisfying Almost Generalized Contractive Condition in Partially Ordered G-Metric Spaces, J. Comput. Anal. Appl. 19 (2015), No. 1
9.40. D. Paesano and P. Vetro, Fixed points and completeness on partial metric spaces, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 369–383
9.41. M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f, L−almost F−contraction with applications, J. Nonlinear Sci. Appl. 8 (2015), 919-934
9.42. O. Popescu, A new type of contractions that characterizes metric completeness, Carpathian J. Math.31 (2015), No. 3, 381-387
9.43. Acar, Özlem; Altun, Ishak; Durmaz, Gonca. A fixed point theorem for new type contractions on weak partial metric spaces. Vietnam J. Math. 43 (2015), no. 3, 635–644.
9.44. Beloul, S. Common fixed point theorems for multi-valued contractions satisfying generalized condition (B) on partial metric spaces. Facta Univ. Ser. Math. Inform. 30 (2015), no. 5, 555–566.
9.45. George, R.; Reshma, K. P.; Padmavati, A. Fixed point theorems for cyclic contractions in b-metric. Journal Of Nonlinear Functional Analysis Article Number: 5 Published: 2015
9.46. Hussain, N., Arshad, M., Abbas, M., Hussain, A., Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, Journal of Nonlinear Science and Applications, 9 (2016), No. 4, 1702-1715
9.47. Boriwan, P.; Petrot, N.; Suantai, S. Fixed point theorems for Prešić almost contraction mappings in orbitally complete metric spaces endowed with directed graphs. Carpathian J. Math. 32 (2016), no. 3, 303–313.
9.48. Dinarvand, Mina. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
9.49. Hussain, Aftab; Arshad, Muhammad; Abbas, Mujahid. New type of fixed point result of F-contraction with applications. J. Appl. Anal. Comput. 7 (2017), no. 3, 1112–1126.
9.50. Kutbi, M. A.; Rathee, Savita; Kumar, Anil. Common fixed points for almost contractions with altering distance functions. J. Nonlinear Convex Anal. 18 (2017), no. 8, 1435–1457.
9.51. Hussain, N.; Hezarjaribi, M.; Salimi, P. Global optimal solutions for hybrid Geraghty-Suzuki proximal contractions. J. Math. Anal. 9 (2018), no. 4, 10–27.
9.52. Shahkoohi, R. J.; Bagheri, Z. Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered b(2)-metric Spaces. Sahand Commun. Math. Anal. 13 (2019), no. 1, 179-212
[10] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math.19 (2003), No. 1, 7-22
10.1. Pacurar, Mădălina, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), no. 2, 101-109
10.2. N. Hussain, Y.J. Cho, Weak contractions, common fixed points and invariant approxima-tions, J. Ineq. Appl. Vol. 2009 (2009), Article ID 390634, 10 pages doi:10.1155/2009/390634
10.3. Madalina Pacurar, Approximating common fixed points of Presic-Kannan type operators by a multi-step iterative method, An. St. Univ. Ovidius Constanta, 17 (2009), No. 1, 153–168
10.4. Petko D. Proinov, New general convergence theory for iterative processes and its applications to Newton–Kantorovich type theorems, J. Complexity 26 (2010) 3-42
10.5. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
10.6. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
10.7. Morales, J.R., Rojas, E.M., Coincidence points for multivalued mappings, An. Ştiinţ. Univ. “Ovidius’’ Constanţa Ser. Mat., 19 (2011), No. 3, 137-150
10.8. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
10.10. M. S. Khan; M. Berzig; B. Samet, Some convergence results for iterative sequences of Presic type and applications, Adv. Difference Equ. 2012, 2012:38 doi:10.1186/1687-1847-2012-38
10.11. W. Shatanawi, Some fixed point results for a generalized w-weak contraction mappings in orbitally metric spaces, Chaos, Solitons & Fractals 45 (2012) 520–526
10.12. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
10.13. F. Bojor, Fixed points of Bianchini mappings in metric spaces endowed with a graph, Carpathian J. Math.28 (2012), No. 2, 207-214
10.14. Shatanawi, W.; Al-Rawashdeh, A., Common fixed points of almost generalized (psi, I center dot)-contractive mappings in ordered metric spaces, Fixed Point Theory Appl. 2012 Article Number: 80
10.15. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
10.16. G. Minak, O. Acar, and Ishak Altun, Multivalued Pseudo-Picard Operators and Fixed Point Results, J. Funct. Spaces Appl. Volume 2013 (2013), Article ID 827458, 7 pages
10.17. W. Shatanawi, Reza Saadati and Choonkil Park, Almost contractive coupled mapping in ordered complete metric spaces, J. Ineq. Appl. 2013, 2013:565 doi:10.1186/1029-242X-2013-565
10.18. F. Gursoy, V. Karakaya, B. E. Rhoades, Data dependence results of a new multi-step and s-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013, 2013:76
10.19. Popa, Valeriu, On some fixed point theorems for implicit almost contractive mappings, Carpathian J Math 29 (2013), No. 2, 223-229.
10.20. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
10.21. Zead Mustafa, Vahid Parvaneh, Jamal Rezaei Roshan and Zoran Kadelburg, b 2 -Metric spaces and some fixed point theorems, Fixed Point Theory Appl 2014, 2014:144
10.22. Mınak, G., Helvacı, A., Altun, I., Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results. Filomat 28 (2014), no. 6, 1143–1151.
10.23. Gonca Durmaz, Gülhan Mınak, and Ishak Altun, Fixed Point Results for α-ψ-Contractive Mappings Including Almost Contractions and Applications, Abstr Appl Anal Volume 2014 (2014), Article ID 869123, 10 pages
10.24. Ö. Acar; G. Durmaz; G Minak, Generalized multivalued $F$-contractions on complete metric spaces, Bull. Iranian Math. Soc. 40 (2014), No. 6, 1469-1478
10.25. Xavier Udo-utun, On inclusion of F-contractions in (δ, k)-weak contractions, Fixed Point Theory Appl 2014, 2014:65 doi:10.1186/1687-1812-2014-65
10.26. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
10.27. F. Shaddad, M. Noorani, S. M. Alsulami, Common fixed-point results for generalized Berinde-type contractions which involve altering distance functions, Fixed Point Theory Appl. 2014, 2014:24
10.28. Minak, Gülhan; Altun, Ishak; Romaguera, Salvador. Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
10.29. I. Altun, H. A. Hancer, and G. Minak, On a general class of weakly picard operators, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 25–32
10.30. Udo-utun, Xavier A.; Siddiqui, Zakawat U.; Balla, Mohammed Y. An extension of the contraction mapping principle to Lipschitzian mappings. Fixed Point Theory Appl. 2015, 2015:162, 7 pp.
10.31. M. Cvetkovic and V. Rakocevic, Extensions of Perov theorem, Carpathian J. Math.31 (2015), No. 2, 181-188
10.32. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Fixed points of multivalued nonself almost contractions in metric-like spaces. Math. Sci. (Springer) 9 (2015), no. 2, 103–108.
10.33. F. Bojor and M. Tilca, Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph, Carpathian J. Math., 31 (2015), No. 3, 297-305
10.34. George, R.; Reshma, K. P.; Padmavati, A. Fixed point theorems for cyclic contractions in b-metric. Journal Of Nonlinear Functional Analysis Article Number: 5 Published: 2015
10.35. Altun, Ishak; Minak, Gülhan; Dağ, Hacer. Multivalued $F$-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 4, 659–666.
10.36. Cvetković, Marija; Rakočević, Vladimir; Rhoades, B. E. Fixed point theorems for contractive mappings of Perov type. J. Nonlinear Convex Anal. 16 (2015), no. 10, 2117–2127.
10.37. Piri, H.; Rahrovi, S. Generalized multivalued f-weak contractions on complete metric spaces. Sahand Commun. Math. Anal. Vol. 2 Issue: 2 Pages: 1-11 Published: SUM-FAL 2015
10.38. Acar, Özlem; Altun, Ishak; Durmaz, Gonca. A fixed point theorem for new type contractions on weak partial metric spaces. Vietnam J. Math. 43 (2015), no. 3, 635–644.
10.39. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
10.40. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441–448.
10.41. Alfuraidan, M. R.; Bachar, M.; Khamsi, M. A., Almost monotone contractions on weighted graphs, J. of Nonlinear Sciences and Applications, 9 (2016), no. 8, 5189-5195
10.42. Olgun, M.; Biçer, O.; Alyildiz, T., A new aspect to Picard operators with simulation functions. Turkish J. Math. 40 (2016), no. 4, 832–837.
10.43. Secelean, N.-A.; Wardowski, D. psi F-Contractions: Not Necessarily Nonexpansive Picard Operators. Results In Mathematics 70 (2016), no. 3-4, 415-431.
10.44. Ullah, K.; Arshad, M. On different results for new three step iteration process in Banach spaces. Springerplus Volume: 5 Article Number: UNSP 1616 Published: SEP 20 2016
10.45. Sumalai, Phumin; Kumam, Poom; Panthong, Chaowalit. Some coincidence points theorems for multi-valued $F$-weak contractions on complete metric space endowed with a graph. [Paging previously given as 51–66]. Thai J. Math. 14 (2016), Special issue, 61–76.
10.46. Kosol, S. Weak and strong convergence theorems of some iterative methods for common fixed points of Berinde nonexpansive mappings in Banach spaces. Thai J. Math. 15 (2017), no. 3, 629–639.
10.47. Acar, Özlem. A fixed point theorem for multivalued almost $F_\delta$-contraction. Results Math. 72 (2017), no. 3, 1545–1553.
10.48. Sawangsup, K.; Sintunavarat, W.; Roldán López de Hierro, A. F. Fixed point theorems for $F_{\germ R}$-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl. 19 (2017), no. 3, 1711–1725.
10.49. Joshi, Vishal; Singh, Deepak; Petruşel, Adrian. Existence results for integral equations and boundary value problems via fixed point theorems for generalized $F$-contractions in $b$-metric-like spaces. J. Funct. Spaces 2017, Art. ID 1649864, 14 pp.
10.50. Karakaya, V.; Atalan, Y.; Dogan, K. El Houda Bouzara, Nour. Some fixed point results for a new three steps iteration process in Banach spaces. Fixed Point Theory 18 (2017), no. 2, 625–640.
10.51. Mohsenialhosseini, S. A. M. Approximate fixed points of operators on $G$-metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), no. 3, 85–96.
10.52. Popa, Valeriu. Fixed point theorems for two pairs of mappings satisfying a new type of common limit range property. Filomat 31 (2017), no. 11, 3181–3192.
10.53. Zakany, Monika. Fixed point theorems for local almost contractions. Miskolc Math. Notes 18 (2017), no. 1, 499–506.
10.54. Atalan, Yunus; Karakaya, Vatan. Iterative solution of functional Volterra-Fredholm integral equation with deviating argument. J. Nonlinear Convex Anal. 18 (2017), no. 4, 675–684.
10.55. Sawangsup, Kanokwan; Sintunavarat, Wutiphol. On modified $\Cal {Z}$-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 80, 19 pp.
10.56, Zákány, Mónika. New classes of local almost contractions. Acta Univ. Sapientiae Math. 10 (2018), no. 2, 378–394.
10.57. Altun, Ishak; Samet, Bessem. Pseudo Picard operators on generalized metric spaces. Appl. Anal. Discrete Math. 12 (2018), no. 2, 389–400.
10.58. Sawangsup, K.; Sintunavarat, W. On modified $\Cal {Z}$-contractions and an iterative scheme for solving nonlinear matrix equations. J. Fixed Point Theory Appl. 20 (2018), no. 2, Art. 80, 19 pp.
10.59. Bussaban, Limpapat; Kettapun, Atichart. Common fixed points of an iterative method for Berinde nonexpansive mappings. Thai J. Math. 16 (2018), no. 1, 49–60.
10.60. Ahmadi, Z.; Lashkaripour, R.; Baghani, H. A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces. Filomat 32 (2018), no. 9, 3365–3379.
10.61. Ullah, A.; Khan, I. A.; Mehmood, N. Fixed Point and Common Fixed Point Results of D-F-Contractions via Measure of Non-compactness with Applications. Communications In Mathematics And Applications Volume: 9 Issue: 1 Special Issue: SI Pages: 53-62
10.62. Petruşel, Adrian; Petruşel, Gabriela; Xiao, Yi-Bin; Yao, Jen-Chih. Fixed point theorems for generalized contractions with applications to coupled fixed point theory. J. Nonlinear Convex Anal. 19 (2018), no. 1, 71–88.
10.63. Mebawondu, A. A.; Mewomo, O. T. Fixed point results for a new three steps iteration process. Annals Univ. Craiova-Math. Comp. Sc. 46 (2019), no. 2, 298-319
10.64. Shahkoohi, Roghaye Jalal; Bagheri, Z. Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered b(2)-metric Spaces. Sahand Communications In Mathematical Analysis Volume: 13 Issue: 1 Pages: 179-212 Published: WIN 2019
10.65. Khan, Mohammad Saeed; Singh, Yumnam Mahendra; Abbas, Mujahid; et al. On non-unique fixed point of Ciric type operators in extended b-metric spaces and applications. Rendiconti Del Circolo Matematico Di Palermo Early Access: NOV 2019
10.66. Mohsenialhosseini, Seyed Ali Mohammad; Saheli, M. Diameter Approximate Best Proximity Pair in Fuzzy Normed Spaces. Sahand Communications In Mathematical Analysis Volume: 16 Issue: 1 Pages: 17-34 Published: FAL 2019
10.67. Kumam, W.; Khammahawong, K.; Kumam, P. Error estimate of data dependence for discontinuous operators by new iteration process with convergence analysis. Numer. Funct. Anal. Optim. 40 (2019), no. 14, 1644–1677.
10.68. Chauhan, Surjeet Singh; Imdad, Mohammad; Kaur, Gurjeet; Sharma, Anupam. Some fixed point theorems for $S_F$-contraction in complete fuzzy metric spaces. Afr. Mat. 30 (2019), no. 3-4, 651–662.
10.69. Mitrovic, Z. D.; Aydi, H.; Hussain, N.; et al. Reich, Jungck, and Berinde Common Fixed Point Results on F-Metric Spaces and an Application. Mathematics 7 (2019), no. 5, Article Number: 387
10.70. Maniu, G. On a Three-Step Iteration Process for Suzuki Mappings with Qualitative Study. Numerical Functional Analysis And Optimization Early Access: JAN 2020
[11] M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput. 218 (2012) 5929-5936
11.1. V. Ghorbanian, Sh. Rezapour, N. Shahzad, Some ordered fixed point results and the property (P), Comput. Math. Appl. 63 (2012) 1361-1368
11.2. Aydi H.; Karapinar E.; Shatanawi W., Tripled Fixed Point Results in Generalized Metric Spaces, J. APPL. MATH. 2012 Article Number: 314279 DOI: 10.1155/2012/314279
11.3. Asl, J. Hasanzade; Rezapour, S.; Shahzad, N., On fixed points of alpha-psi-contractive multifunctions, Fixed Point Theory Appl. 2012, 2012:212, 6 pp.
11.4. Doric, D., Nonlinear coupled coincidence and coupled fixed point theorems for not necessary commutative contractive mappings in partially ordered probabilistic metric spaces, Appl. Math. Comput. 219 (2013) 5926–5935
11.5. Phakdi Charoensawan, Tripled coincidence point theorems for a φ-contractive mapping in a complete metric space without the mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:252 doi:10.1186/1687-1812-2013-252
11.6. A. Roldán, J. Martínez-Moreno, C. Roldán, and E. Karapinar, Multidimensional Fixed-Point Theorems in Partially Ordered Complete Partial Metric Spaces under (\Psi, \Phi)-Contractivity Conditions, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 634371, 12 pages
11.7. A. Roldan, J. Martinez-Moreno, C. Roldan, Tripled fixed point theorem in fuzzy metric spaces and applications, Fixed Point Theory Appl. 2013, 2013:29 doi:10.1186/1687-1812-2013-29
11.8. Z. Mustafa, J. R. Roshan and V. Parvaneh, Existence of a tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations, J. Ineq. Appl. 2013, 2013:453 doi:10.1186/1029-242X-2013-453
11.9. Shuang Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:96
11.10. M. Paknazar, M. E. Gordji, M. De La Sen and S. M. Vaezpour, N-fixed point theorems for nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:111 doi:10.1186/1687-1812-2013-111
11.11. V. Parvaneh, J. R. Roshan, S. Radenović, Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl. 2013, 2013:130
11.12. Thangthong, C., Charoensawan, P., Coupled coincidence point theorems for a $\straightphi$-contractive mapping in partially ordered $G$-metric spaces without mixed $g$-monotone property. Fixed Point Theory Appl. 2014, 2014:128, 18 pp.
11.13. Kumam, Poom, et al., Berinde-Borcut tripled fixed point theorem in partially ordered (intuitionistic) fuzzy normed spaces. J. Ineq. Appl. 2014.1 (2014): 47.
11.14. Berzig, M., E. Karapinar and A. Roldán, Discussion on generalized-(αψ, βϕ)-contractive mappings via generalized altering distance function and related fixed point theorems. Abstr. Appl. Anal., Article Number: 259768 Published: 2014
11.15. Li Zhu, C.-X. Zhu, C.-F. Chen and Ž. Stojanović, Multidimensional fixed points for generalized ψ-quasi-contractions in quasi-metric-like spaces, J. Ineq. Appl. 2014, 2014:27
11.16. P. Kumam and A. F. Roldán López de Hierro, On Existence and Uniqueness of -Best Proximity Points under -Contractivity Conditions and Consequences, Abstr. Appl. Anal. Volume 2014 (2014), Article ID 234027, 14 pages
11.17. S. Radenović, A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., 236 (2014), 367-372
11.18. S. A. Al-Mezel, H. H. Alsulami, E. Karapinar, and Antonio-Francisco Roldán López-de-Hierro, Discussion on „Multidimensional Coincidence Points” via Recent Publications, Abstr. Appl. Anal., Volume 2014, Article ID 287492, 13 pages
11.19. Marwan Amin Kutbi, Nawab Hussain, Jamal Rezaei Roshan, and Vahid Parvaneh, Coupled and Tripled Coincidence Point Results with Application to Fredholm Integral Equations, Abstr. Appl. Anal., Volume 2014, Article ID 568718, 18 pages
11.20. S. Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:137
11.21. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
11.22. Marwan Amin Kutbi, Jamshaid Ahmad, Mujahid Abbas, and Muhammad Arshad, Tripled Coincidence and Common Fixed Point Results for Two Pairs of Hybrid Mappings, Abstr Appl Anal Volume 2014 (2014), Article ID 803729, 11 pages
11.23 Vats, R. K., Tas, K., Sihag, V., Kumar, A., Triple fixed point theorems via $\alpha$-series in partially ordered metric spaces. J. Inequal. Appl. 2014, 2014:176, 12 pp.
11.24. Antonio-Francisco Roldán-López-de-Hierro, Naseer Shahzad, Some fixed/coincidence point theorems under (ψ,φ)-contractivity conditions without an underlying metric structure, Fixed Point Theory Appl 2014, 2014:218
11.25. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Cho, Y. J. Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets and Systems 251 (2014), 71–82.
11.26. Charoensawan, P., Thangthong, C., $(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces. J. Inequal. Appl. 2014, 2014:245, 24 pp.
11.27. Yin, J.; Yan, Q.; Wang, T.; Liu, L. Tripled coincidence points for mixed comparable mappings in partially ordered cone metric spaces over Banach algebras. J. Nonlinear Sci. Appl. 9 (2016), no. 4, 1590–1599.
11.28. Alsulami, Hamed H.; Roldán-López-de-Hierro, Antonio-Francisco; Karapınar, Erdal; Radenović, Stojan. Some inevitable remarks on „Tripled fixed point theorems for mixed monotone Kannan type contractive mappings”. J. Appl. Math. 2014, Art. ID 392301, 7 pp.
11.29. Shatanawi, W.; Postolache, M.; Mustafa, Z. Tripled and coincidence fixed point theorems for contractive mappings satisfying $\Phi$-maps in partially ordered metric spaces. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 22 (2014), no. 3, 179–203.
11.30. A. Roldán, J. Martínez-Moreno C. Roldán, Y.J. Cho, Multidimensional fixed point theorems under (ψ,φ)-contractive conditions in partially ordered complete metric spaces, J Comput Appl Math Volume 273, 1 January 2015, Pages 76–87
11.31. J Martínez-Moreno, A Roldán, C Roldán, Yeol Je Cho, Multi-dimensional coincidence point theorems for weakly compatible mappings with the CLRg-property in (fuzzy) metric spaces, Fixed Point Theory Appl. 2015, 2015:53
11.32. Sahar Mohammad Abusalim, Mohd Salmi Md Noorani, Tripled fixed point theorems in cone metric spaces under F-invariant set and c-distance, J. Nonlinear Sci. Appl. 8 (2015), 750–762
11.33. Yanbin Sang and Qian Meng, Fixed point theorems with generalized altering distance functions in partially ordered metric spaces via w-distances and applications, Fixed Point Theory Appl. (2015) 2015:168
11.34. Wang, S.; Ansari, A. H.; Chandok, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. Fixed Point Theory Appl. 2015, 2015:209, 16 pp.
11.35. Hussain, N., Parvaneh, V.; Golkarmanesh, F., Coupled and tripled coincidence point results under $(F, g)$-invariant sets in $G\sb b$-metric spaces and $G$-$\alpha$-admissible mappings. Math. Sci. (Springer) 9 (2015), no. 1, 11–26.
11.36. Deshpande, B.; Handa, A., Quadruple fixed point theorem for hybrid pair of mappings under generalized nonlinear contraction. Matematiche (Catania) 70 (2015), no. 1, 157–177.
11.37. Afshari, H.; Kalantari, S.; Karapinar, E., Solution of fractional differential equations via coupled fixed point. Electron. J. Differential Equations 2015, No. 286, 12 pp.
11.38. Roldán-López-de-Hierro, A.-F.; Karapınar, E.; Alsulami, H. H., A short-note on `Common fixed point theorems for non-compatible self-maps in generalized metric spaces’. J. Inequal. Appl. 2015, 2015:55, 14 pp.
11.39. Ughade, M.; Daheriya, R. D. Tripled Fixed Point Results in Generalized Metric Spaces Under Nonlinear Type Contractions Depended on Another Function. Gazi University Journal Of Science Volume: 28 Issue: 1 Pages: 75-86 Published: 2015
11.40. Agarwal, Ravi; Karapinar, Erdal; Roldán-López-de-Hierro, Antonio-Francisco. Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on $G$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 9, 1787–1816.
11.41. Sang, Yanbin; Meng, Qian. Fixed point theorems with generalized altering distance functions in partially ordered metric spaces via $w$-distances and applications. Fixed Point Theory Appl. 2015, 2015:168, 25 pp.
11.42. Alam, A.; Imdad, M.; Ali, J., Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, COGENT MATHEMATICS 3 (2016), Article Number: 1248270
11.43. Martínez-Moreno, J.; Kumam, P., Tripled fixed point theorems for contractions in partially ordered $\Cal L$-fuzzy normed spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 3197–3202.
11.44. Roldán-López-de-Hierro, A.-F.; Sintunavarat, W., Common fixed point theorems in fuzzy metric spaces using the CLRg property. Fuzzy Sets and Systems 282 (2016), 131–142.
11.45. S. Radenovic, K.P.R. Rao, K.V. Sivaparvathi, and T. Dosenovic, A Suzuki type common tripled fixed point theorem for a hybrid pair of mappings, Miskolc Mathematical Notes 17 (2016), No. 1, pp. 533–551
11.46. Tian, Jing-Feng; Hu, Xi-Mei; Zhao, Hong-Shan. Common tripled fixed point theorem for $W$-compatible mappings in fuzzy metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 806–818.
11.47. Afshari, H.; Kheiryan, A. Existence and uniqueness of tripled fixed points for mixed monotone operators with perturbations and application. TWMS J. Appl. Eng. Math. 6 (2016), no. 2, 213–223.
11.48. Khaofong, C.; Thounthong, P.; Kumam, P., Coincidence point theorems of multidimensional for (phi)-weak contraction in fuzzy metric spaces, ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES 16 (2016), no. 1, 35-49
11.49. Akhadkulov, Habibulla; Saaban, Azizan; Akhatkulov, Sokhobiddin; et al., Multidimensional Fixed-Point Theorems and Applications, Book Series: AIP Conference Proceedings Volume: 1870 Article Number: UNSP 020002 Published: 2017
11.50. Akhadkulov, Habibulla; Noorani, Salmi M.; Saaban, Azizan B.; Alipiah, Fathilah M.; Alsamir, Habes. Notes on multidimensional fixed-point theorems. Demonstr. Math. 50 (2017), no. 1, 360—374
11.51. Afshari, Hojjat; Kheiryan, Alireza. Tripled fixed point theorems and applications to a fractional differential equation boundary value problem. Asian-Eur. J. Math. 10 (2017), no. 3, 1750056, 11 pp.
11.52. Sang, Yanbin. Fixed point results for generalized contractive mappings involving altering distance functions on complete quasi-metric spaces and applications. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1377–1398.
11.53. Grewal, M.; Vats, R. K.; Kumar, A. n-tupled common fixed point theorems via alpha-series in ordered metric spaces. European J. Pure Appl. Math. 10 (2017), no. 2, 295-311.
11.54. Charoensawan, P. Tripled coincidence point theorems with $M$-invariant set for a $\alpha$-$\psi$-contractive mapping in partially metric spaces. Thai J. Math. 16 (2018), no. 1, 121–138.
11.55. Deshpande, Bhavana; Handa, Amrish. Utilizing isotone mappings under Geraghty-type contraction to prove multidimensional fixed point theorems with application. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 25 (2018), no. 4, 279–295.
11.56. Chaobankoh, Tanadon; Charoensawan, Phakdi. Common tripled fixed point theorems for $\psi$-Geraghty-type contraction mappings endowed with a directed graph. Thai J. Math. 17 (2019), no. 1, 11–30.
[12] V. Berinde, Contractii generalizate si aplicatii, Editura CUB PRESS 22, Baia Mare, 1997
12.1. T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), no. 7, 2289-2296
12.2. Pacurar, Mădălina, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), no. 2, 101-109
12.3. Serban, M.A., Fixed point theorems on Cartesian products, Fixed Point Theory 9 (2008), No. 1, 331-350
12.4. Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevances, Fixed Point Theory 9 (2008), No. 2, 541-559
12.5. Rus IA, Petrusel A, Serban MA, Fibre Picard Operators on Gauge Spaces and Applications, Z. Anal. Anwend. 27 (2008) No. 4, 407-423
12.6. Păcurar, Mădălina; Rus, Ioan A. Fixed point theory for cyclic $\phi$-contractions. Nonlinear Anal. 72 (2010), no. 3-4, 1181–1187.
12.7. N. A. Secelean,The Existence of the Attractor of Countable Iterated Function Systems, Mediterr. J. Math. 9 (2012) No. 1, 61–79 DOI 10.1007/s00009-011-0116-x
12.8. E. Karapinar, Fixed point theory for cyclic weak φ-contraction Appl. Math. Lett. 24 (2011) 822–825
12.9. W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f, α, β)-weak contraction mappings, Appl. Math. Lett., 24 (2011), No. 4, 460-465
12.10. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
12.11. Pacurar, Madalina, Fixed points of almost Presic operators by a k-step iterative method, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), Tomul LVII, 2011, Supliment DOI: 10.2478/v10157-011-0014-3
12.12. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52–57
12.13. W. Sintunavarat, P. Kumam, Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Appl. Math. Lett. doi:10.1016/j.aml.2012.02.045
12.14. Karapinar, E., Yuce, I.S., Fixed point theory for cyclic generalized weak φ-contraction on partial metric spaces, Abstr. Appl. Anal., Volume 2012, 2012, Article number491542
12.15. Gül, U., Karapinar, E., On almost contractions in partially ordered metric spaces via implicit relations, J. Ineq. Appl. 2012, art. no. 217
12.16. M. Abbas, F. Khojasteh, Common $f$-endpoint for hybrid generalized multi-valued contraction mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, November 2012 DOI 10.1007/s13398-012-0107-1
12.17. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
12.18. Hussain, Nawab; Rafiq, Arif; Ciric, Ljubomir B. Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces. Fixed Point Theory Appl. 2012, 2012:160, 14 pp.
12.19. Bota, M.-F., Karapinar, E., Mleşniţe, O., Ulam-hyers stability results for fixed point problems via α – ψ -contractive mapping in (b)-metric space, Abstr. Appl. Anal. 2013, 2013: 825293
12.20. A. Razani and M. Bagherboum, Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory Appl. 2013, 2013:331
12.21. Samreen, M., Kamran, T., Shahzad, N., Some fixed point theorems in b -metric space endowed with graph, Abstr. Appl. Anal. 2013, 2013: 967132
12.22. Razani, A.; Karamikabir, N. Set contractions and KKM mappings in Banach spaces. Abstr. Appl. Anal. 2013, Art. ID 346094, 4 pp.
12.23. Rus, Ioan A.; Serban, M.-A. Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem. Carpathian J. Math. 29 (2013), no. 2, 239-258
12.24. Secelean, N.-A., Generalized iterated function systems on the space l∞(X), J. Math. Anal. Appl. 410 (2), pp. 847-858, 2014
12.25. Abbas, M., Khojasteh, F., Common $f$-endpoint for hybrid generalized multi-valued contraction mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), no. 2, 369–375.
12.26. Dobriţoiu, M., Some results of differentiability for the solution of an integral equations system. Carpathian J. Math.30 (2014), no. 2, 147–159.
12.27. Zabihi, F., Razani, A., PPF dependent fixed point theorems for $\alpha\sb c$-admissible rational type contractive mappings in Banach spaces. Fixed Point Theory Appl. 2014, 2014:197, 29 pp.
12.28. Supak Phiangsungnoen, Wutiphol Sintunavarat and Poom Kumam, Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces, Fixed Point Theory Appl 2014, 2014:188 doi:10.1186/1687-1812-2014-188
12.29. Farzaneh Zabihi and Abdolrahman Razani, Fixed Point Theorems for Hybrid Rational Geraghty Contractive Mappings in Ordered b-Metric Spaces, Journal of Applied Mathematics Volume 2014 (2014), Article ID 929821, 9 pages
12.30. Hussain, N.; Karapınar, E.; Sedghi, S.; Shobkolaei, N.; Firouzian, S. Cyclic $(\phi)-contractions in uniform spaces and related fixed point results. Abstr. Appl. Anal. 2014, Art. ID 976859, 7 pp.
12.31. Latif, A., Roshan, J. R., Parvaneh, V., Hussain, N., Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $b$-metric spaces. J. Inequal. Appl. 2014, 2014:345, 26 pp.
12.32. Supak Phiangsungnoen and Poom Kumam, Generalized Ulam-Hyers stability and well-posedness for fixed point equation via α-admissibility, J Inequal Appl 2014, 2014:418 doi:10.1186/1029-242X-2014-418
12.33. Kirk, W.; Shahzad, N., Fixed Point Theory in Distance Spaces, FIXED POINT THEORY IN DISTANCE SPACES Pages: 1-173 Published: 2014 Publisher: Springer Int Publishing AG, Gewerbestrasse 11, cham, ch-6330, Switzerland
12.34. Bessem Samet, The class of (α,ψ)-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:92
12.35. Almeida, Á. Roldán-López-de-Hierro, A.-F. Sadarangani, K., On a fixed point theorem and its application in dynamic programming. Appl. Anal. Discrete Math. 9 (2015), no. 2, 221–244.
12.36. A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 363–377
12.37. Sedghi, S.; Shobkolaei, N.; Firouzian, S.; Altun, I., Cyclic $\phi$-contractions on S-complete Hausdorff uniform spaces. Kuwait J. Sci. 42 (2015), no. 1, 55—63.
12.38. Ozturk, V.; Turkoglu, D., Fixed points for generalized $\alpha$-$\psi$-contractions in $b$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 10, 2059–2066.
12.39. Magdaş, A., Fixed point theorems for Ćirić type generalized contractions defined on cyclic representations. J. Nonlinear Sci. Appl. 8 (2015), no. 6, 1257–1264.
12.40. Bota, M.-F., Chifu, C., Karapinar, E., Fixed point theorems for generalized $(\alpha\sb \ast -\Psi)$-Ćirić-type contractive multivalued operators in $b$-metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 1165-1177.
12.41. Karapınar, E.; O’Regan, D.; Roldán López de Hierro, A. F.; Shahzad, N., Fixed point theorems in new generalized metric spaces. J. Fixed Point Theory Appl. 18 (2016), no. 3, 645–671.
12.42. Phiangsungnoen, Supak, Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems for Contractive Multi-valued Operator in b-metric Spaces, Commun. Math. Appl. 7 (2016), no. 3, 241-262
12.43. Liu, X.-D.; Chang, S.-S.; Xiao, Y.; Zhao, L.-C., Some fixed point theorems concerning $(\psi,\phi)$-type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4127–4136.
2.44. Aksoy, U.; Karapinar, E.; Erhan, İ. M., Fixed points of generalized $\alpha$-admissible contractions on $b$-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 17 (2016), no. 6, 1095–1108.
12.45. Alsulami, Hamed H.; Gülyaz, Selma; Karapınar, Erdal; Erhan, İnci M. An Ulam stability result on quasi-$b$-metric-like spaces. Open Math. 14 (2016), 1087–1103.
12.46. Karapınar, Erdal. A note on Meir-Keeler contractions on dislocated quasi-$b$-metric. Filomat 31 (2017), no. 13, 4305–4318.
12.47. Chifu, Cristian; Petruşel, Gabriela. Coupled fixed point results for $(\varphi,\rm G)$-contractions of type (b) in $b$-metric spaces endowed with a graph. J. Nonlinear Sci. Appl. 10 (2017), no. 2, 671—683.
12.48. Phiangsungnoen, S. Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems for Contractive Multi-valued Operator in b-metric Spaces. Communications In Mathematics And Applications Volume: 7 Issue: 3 Special Issue: SI Pages: 241-262 Published: 2016
12.49. Karapınar, Erdal; O’Regan, Donal; Roldán López de Hierro, Antonio Francisco; Shahzad, Naseer. Fixed point theorems in new generalized metric spaces. J. Fixed Point Theory Appl. 18 (2016), no. 3, 645–671.
12.50. Guran, Liliana; Bucur, Amelia. Fixed point problems for $\alpha$-$\psi$-weakly contractive operators on KST spaces. Filomat 31 (2017), no. 14, 4441–4454.
12.51. Chifu, C.; Petrusel, G. Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph, Int. J. Nonlinear Anal. Appl. Volume: 8 Issue: 2 Pages: 263-276 Published: SUM-FAL 2017
12.52. Alsulami, Hamed H.; Karapınar, Erdal; Rakočević, Vladimir. Ćirić type nonunique fixed point theorems on $b$-metric spaces. Filomat 31 (2017), no. 11, 3147–3156.
12.53. Ioana, Loredana; Mihail, Alexandru. Iterated function systems consisting of $\varphi$-contractions. Results Math. 72 (2017), no. 4, 2203–2225.
12.54. Ali, Basit; Abbas, Mujahid. Existence and Ulam-Hyers stability of fixed point problem of generalized Suzuki type $(\alpha_*,\psi_\varphi)$-contractive multivalued operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1129–1146.
12.55. Li, Biwen; Huang, Huaping. Fixed point results for weak $\phi $-contractions in cone metric spaces over Banach algebras and applications. J. Funct. Spaces 2017, Art. ID 5054603, 6 pp.
12.56. Karapınar, Erdal. A note on Meir-Keeler contractions on dislocated quasi-$b$-metric. Filomat 31 (2017), no. 13, 4305–4318.
12.57. Roldán López de Hierro, Antonio Francisco; Shahzad, Naseer. From graphical metric spaces to fixed point theory in binary related distance spaces. Filomat 31 (2017), no. 11, 3209–3231.
12.58. Abbas, M.; Rakočević, V.; Tsegaye Leyew, B. Common fixed points of $(\alpha-\psi)$-generalized rational multivalued contractions in dislocated quasi b-metric spaces and applications. Filomat 31 (2017), no. 11, 3263–3284.
12.59. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Related fixed point results for cyclic contractions on $G$-metric spaces and application. Filomat 31 (2017), no. 3, 853–869.
12.60. Karapınar, Erdal; Dehici, Abdelkader; Redjel, Nadjeh. On some fixed points of $\alpha$-$\psi$ contractive mappings with rational expressions. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1569–1581.
12.61. Chifu, C.; Petrusel, G. Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph. Int. Journal Of Nonlinear Analysis And Applications Volume: 8 Issue: 2 Pages: 263-276 Published: SUM-FAL 2017
12.62. Samreen, M.; Kamran, T. Nonlinear $\alpha$-type contractions on a space endowed with graph. J. Math. Anal. 9 (2018), no. 1, 105–115.
12.63. Ozturk, V.; Turkoglu, D.; Ansari, A. H. Fixed points for generalized $(\Cal F,h,\alpha,\mu)$-$\psi$-contractions in $b$-metric spaces. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67 (2018), no. 2, 306–316.
12.64. Karapınar, E. On Jaggi type contraction mappings. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 4, 49–62.
12.65. Alqahtani, B.; Karapınar, E.; Öztürk, A. On $(\alpha,\psi)$-$K$-contractions in the extended $b$-metric space. Filomat 32 (2018), no. 15, 5337–5345.
12.66. Samreen, M.; Kamran, T.; Postolache, M. Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 4, 21–28.
12.67. Ansari, A. H.; Guran, L.; Latif, A. Fixed point problems concerning contractive type operators on KST-spaces. Carpathian J. Math. 34 (2018), no. 3, 287–294.
12.68. Chifu, C.; Karapınar, E.; Petrusel, G. Qualitative properties of the solution of a system of operator inclusions in $b$-metric spaces endowed with a graph. Bull. Iranian Math. Soc. 44 (2018), no. 5, 1267–1281.
12.69. Fulga, A.; Karapınar, E. Revisiting of some outstanding metric fixed point theorems via $E$-contraction. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 26 (2018), no. 3, 73–97.
12.70. Ansari, A. H.; Kadwin Jacob, G.; Samet, B. An optimization problem under partial order constraints on a metric space. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 26, 11 pp.
12.71. Ameer, E.; Arshad, M.; Hussain, N. On new common fixed points of multivalued $(Y,\Lambda)$-contractions in complete $b$-metric spaces and related application. Math. Sci. (Springer) 13 (2019), no. 4, 307–316.
12.72. Saleem, N.; Vujakovic, J.; Baloch, W. U.; et al. Coincidence Point Results for Multivalued Suzuki Type Mappings Using theta-Contraction in b-Metric Spaces. Mathematics Volume: 7 Issue: 11 Article Number: 1017 Published: NOV 2019
12.73. Aydi, H.; Karapinar, E.; Rakočcević, V. Nonunique fixed point theorems on $b$-metric spaces via simulation functions. Jordan J. Math. Stat. 12 (2019), no. 3, 265–288.
12.74. Malhotra, S. K.; Bhargava, P. K.; Shukla, S. Some coincidence and common fixed point results in cone metric spaces over Banach algebras via weak $g$-$\varphi$-contractions. Trans. A. Razmadze Math. Inst. 173 (2019), no. 2, 55–63.
12.75. Karapinar, Erdal; Fulga, A, New Hybrid Contractions on b-Metric Spaces. Mathematics Volume: 7 Issue: 7 Article Number: 578 Published: JUL 2019
12.76. Karapinar, E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms Volume: 8 Issue: 2 Article Number: 72 Published: JUN 2019
12.77. Ameer, E.; Nazam, M.; Aydi, H.; et al. On (,?,R)-Contractions and Applications to Nonlinear Matrix Equations. Mathematics v. 7 Issue: 5 Article Number: 443 Published: MAY 2019
12.78. Qawasmeh, T.; Shatanawi, W.; Bataihah, A.; et al. Common Fixed Point Results for Rational (,)(phi)-m Contractions in Complete Quasi Metric Spaces. Mathematics Volume: 7 Issue: 5 Article Number: 392 Published: MAY 2019
12.79. Karapinar, E.; Fulga, A.; Alghamdi, M. A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. Symmetry-Basel 11 (2019), no. 4 Article Number: 470
12.80. Alqahtani, B.; Fulga, A.; Karapinar, E.; et al. Sehgal Type Contractions on Dislocated Spaces. Mathematics Volume: 7 Issue: 2 Article Number: 153 Published: FEB 2019
12.81. Ameer, E.; Arshad, M.; Shin, Dong Yun; et al. Common Fixed Point Theorems of Generalized Multivalued (psi, phi)-Contractions in Complete Metric Spaces with Application. Mathematics Volume: 7 Issue: 2 Article Number: 194 Published: FEB 2019
12.82. Sahmim, Slah; Felhi, Abdelbasset; Aydi, H. Convergence and Best Proximity Points for Generalized Contraction Pairs. Mathematics 7 ()2019, no. 2 Article Number: 176
12.83. Sevinik-Adiguzel, Rezan; Karapinar, Erdal; Erhan, Inci M. A Solution to Nonlinear Volterra Integro-Dynamic Equations via Fixed Point Theory. FILOMAT 33 (2019), no. 16, 5331-5343
12.84. Ma, Zhenhua; Li, Xiangling; Ameer, Eskandar; et al. Fixed points of (gamma,lambda)-graph contractive mappings in metric spaces endowed with a directed graph. Journal Of Nonlinear Functional Analysis Article Number: 20 Published: 2019
12.85. Karapinar, Erdal. Ćirić type nonunique fixed points results: a review. Appl. Comput. Math. 18 (2019), no. 1, 3–21.
12.86. Ameer, E.; Aydi, H.; Arshad, M.; et al. Hybrid Multivalued Type Contraction Mappings in alpha(K)-Complete Partial b-Metric Spaces and Applications. Symmetry-Basel Volume: 11 Issue: 1 Article Number: 86 Published: JAN 2019
12.87. Alqahtani, B.; Fulga, A.; Karapinar, E.; et al. Fisher-Type Fixed Point Results in b-Metric Spaces. Mathematics Volume: 7 Issue: 1 Article Number: 102 Published: JAN 2019
12.88. Bota, M.-F.; Karapinar, E. Fixed Point Problem Under a Finite Number of Equality Constraints on b-Banach spaces. FILOMAT Volume: 33 Issue: 18 Pages: 5837-5849 Published: 2019
12.89. Karapinar, E.; Fulga, A.; Rashid, M.; et al. Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations. Mathematics Volume: 7 Issue: 5 Article Number: 444 Published: MAY 2019
[13] V. Berinde, On the convergence of the Ishikawa iteration in the class of quasi contractive operators, Acta Math. Univ. Comen., 73 (2004), No. 1, 119-126
13.1. G.V.R. Babu, K.N.V. Vara Prashad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2006, Article ID 49615, Pages 1–6
13.2. Olaleru, J. O., A comparison of Picard and Mann iterations for quasi-contraction maps, Fixed Point Theory 8 (2007), No. 1, 87-95
13.3. J.O. Olaleru, H. Akewe, An extension of Gregus fixed point theorem, Fixed Point Theory Appl., Volume 2007, Art. No. 78628, 8 pages
13.4. Rafiq, A., Common fixed points through implicit iteration process with errors, Fixed Point Theory 8 (2007), No. 1, 105-113
13.5. Olaleru, Johnson O., A comparison of Mann and Ishikawa iterations of quasi-contraction operators, World Congress on Engineering 2007, Vols 1 and 2 Book Series: Lecture Notes in Engineering and Computer Science Pages: 872-875 Published: 2007
13.6. Z. Xue, The comparison of the convergence speed between Picard, Mann, Krasnoselskij and Ishikawa iterations in Banach spaces, Fixed Point Theory Appl., Volume 2008 art. no. 387056
13.6. Şoltuz, Ş.M., Grosan, T., Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl. 2008, art. no. 242916
13.7. Popescu, O., Strong convergence of some explicit iterative processes with mean errors for a class of quasicontractive operators, Fixed Point Theory 9 (2008), No. 1, 233-242
13.8. Gu, Z., Li, Y., Approximation methods for common fixed points of mean nonexpansive mapping in Banach spaces, Fixed Point Theory Appl. 2008, art. no. 471532
13.9. N. Hussain, A. Rafiq, B. Damjanović and R. Lazović, On rate of convergence of various iterative schemes, Fixed Point Theory Appl. 2011, 2011:45 doi:10.1186/1687-1812-2011-45
13.10. Wang, C.; Zhang, H.-E.; Wang, Z.-M., The Generalized Mann Iterative Process with Errors for Strongly Pseudocontractive Mappings in Arbitrary Banach Spaces, Lecture Notes in Computer Science Vol. 7030 (2011), pp: 184-191
13.11. Zhang, S.-S., Wang, X.-R., Liu, M., Zhu, J.-H., Almost sure $T$-stability and convergence for random iterative algorithms. Appl. Math. Mech. (English Ed.) 32 (2011), no. 6, 805–810.
13.12. Khan, Safeer H. Fixed Points of Quasi-Contractive Type Operators in Normed Spaces by a Three-step Iteration Process. World Congress On Engineering, WCE 2011, VOL I Book Series: Lecture Notes in Engineering and Computer Science Pages: 144-147 Published: 2011
13.13. Hussain, N., Chugh, R., Kumar, V., Rafiq, A., On the rate of convergence of Kirk-type iterative schemes, J. Appl. Math., Volume 2012, 2012, Article number526503
13.14. Akbulut, S., Zdemir, M., Picard iteration converges faster than noor iteration for a class of Quasi-contractive operators, Chiang Mai J. Sci. 39 (2012), No. 4, 688-692
13.15. Dejan Ilić, V. Pavlović , V. Rakočević, Extensions of the Zamfirescu theorem to partial metric spaces, Math. Comput. Modelling 55 (2012) 801–809
13.16. S. Moradi, Ali Farajzadeh, On Olaleru’s open problem on Gregus fixed point theorem, J. Global Optim., August 2013
13.17. F. Gursoy, V. Karakaya, B. E. Rhoades, Data dependence results of a new multi-step and s-iterative schemes for contractive-like operators, Fixed Point Theory Appl. 2013, 2013:76 doi:10.1186/1687-1812-2013-76
13.18. V. Karakaya, F. Gürsoy, Kadri Doğan, and Müzeyyen Ertürk, Data Dependence Results for Multistep and CR Iterative Schemes in the Class of Contractive-Like Operators, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 381980, 7 pages
13.19. H. Fukhar-ud-din, Strong convergence of an Ishikawa-type algorithm in CAT(0) spaces, Fixed Point Theory Appl. 2013, 2013:207 doi:10.1186/1687-1812-2013-207
13.20. N. Hussain, V. Kumar and M. A. Kutbi, On Rate of Convergence of Jungck-Type Iterative Schemes, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 132626, 15 pages
13.21. V. Kumar, A. Latif, A. Rafiq, N. Hussain, S-iteration process for quasi-contractive mappings, J. Ineq. Appl. 2013, 2013:206
13.22. Başarır, M., and Aynur Ş., On the strong and Δ-convergence of new multi-step and S-iteration processes in a CAT (0) space. J. Ineq. Appl. 2013 (2013): 482
13.23. V. Karakaya, K. Doğan, F. Gürsoy, and M. Ertürk, Fixed Point of a New Three-Step Iteration Algorithm under Contractive-Like Operators over Normed Spaces, Abstr. Appl. Anal., Vol. 2013 (2013), Article ID 560258, 9 pages
13.24. Kang, Shin Min; Ćirić, Ljubomir B.; Rafiq, Arif; Ali, Faisal; Kwun, Young Chel. Faster multistep iterations for the approximation of fixed points applied to Zamfirescu operators. Abstr. Appl. Anal. 2013, Art. ID 464593, 4 pp.
13.25. Gürsoy, Faik; Karakaya, Vatan; Rhoades, B. E. Some convergence and stability results for the Kirk multistep and Kirk-SP fixed point iterative algorithms. Abstr. Appl. Anal. 2014, Art. ID 806537, 12 pp.
13.26. H. Akewe, G. Amechi Okeke and A. F Olayi, Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators, Fixed Point Theory Appl. 2014, 2014:45 doi:10.1186/1687-1812-2014-45
13.27. F. Gürsoy and V. Karakaya, Some Convergence and Stability Results for Two New Kirk Type Hybrid Fixed Point Iterative Algorithms, J. Function Spaces, Vol. 2014 (2014), Article ID 684191, 8 pages
13.28. Dutta, H., Some iterated convergence and fixed point theorems in real linear n-normed spaces, Miskolc Math Notes 15 (2014), No. 2, 423-437
13.29. Fukhar-Ud-Din, Hafiz, Existence and approximation of fixed points in convex metric spaces, Carpathian J Math 30 (2014), No. 2, 175-185
13.30. Dogan, Kadri; Karakaya, Vatan, On the Convergence and Stability Results for a New General Iterative Process, Sci. World J. Article Number: 852475 Published: 2014
13.31. G. A. Okeke and M. Abbas, Convergence and almost sure T-stability for a random iterative sequence generated by a generalized random operator, J. Ineq. Appl. 2015, 2015:146
13.32. Okeke, G. A., Kim, J. K., Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process. J. Inequal. Appl. 2015, 2015:290, 14 pp.
13.33. Kang, S. M.; Ali, F.; Rafiq, A.; Kwun, Y. C.; Jabeen, S., On the convergence of Mann and Ishikawa type iterations in the class of quasi contractive operators. J. Comput. Anal. Appl. 21 (2016), no. 3, 451–459.
13.34. Yildirim, I.; Abbas, M.; Karaca, N., On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3773–3786.
13.35. Wahab, O. T.; Olawuyi, R. O.; Rauf, K.; Usamot, I. F. Convergence Rate of Some Two-Step Iterative Schemes in Banach Spaces. J. Math. 2016, Art. ID 9641706, 8 pp.
13.36. Wahab, O. T.; Rauf, K. On faster implicit hybrid Kirk-multistep schemes for contractive-type operators. Int. J. Anal. 2016, Art. ID 3791506, 10 pp.
13.37. Ardelean, G.; Cosma, O.; Balog, L., A comparison of some fixed point iteration procedures by using the basins of attraction, Carpathian J. Math.32 (2016), no. 3, 277-284.
13.38. Şahin, A.; Başarır, M., Convergence and data dependence results of an iteration process in a hyperbolic space. Filomat 30 (2016), no. 3, 569–582.
13.39. Chauhan, S. S.; Utreja, K.; Imdad, M.; Ahmadullah, Md. Strong convergence theorems for a quasi contractive type mapping employing a new iterative scheme with an application. Honam Math. J. 39 (2017), no. 1, 1–25.
13.40. Hussain, N.; Kumar, V.; Malik, P.; Chugh, R. Jungck-type implicit iterative algorithms with numerical examples. Filomat 31 (2017), no. 8, 2303–2320.
13.41. Khuri, S. A.; Louhichi, I. A novel Ishikawa-Green’s fixed point scheme for the solution of BVPs. Appl. Math. Lett. 82 (2018), 50–57.
13.42. Pansuwan, A.; Sintunavarat, W. The modified Picard-FB iterative algorithm for approximating the fixed points of conditional quasi-contractive mappings in convex metric spaces and its rate of convergence. J. Math. Anal. 9 (2018), no. 5, 55–66.
13.43. Wahab, O. T.; Rauf, Kamilu. Some results on implicit multistep fixed point iterative schemes for contractive-like operators in convex metric spaces. Bull. Math. Anal. Appl. 10 (2018), no. 3, 36–52.
13.44. De la Sen, M. On some convergence properties of the modified Ishikawa scheme for asymptotic demicontractive self-mappings with matricial parameterizing sequences. J. Math. 2018, Art. ID 3840784, 13 pp.
13.45. Yildirim, Isa; Abbas, Mujahid. Convergence rate of implicit iteration process and a data dependence result. Eur. J. Pure Appl. Math. 11 (2018), no. 1, 189–201.
13.46. Okeke, Godwin Amechi. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 30 (2019), no. 5-6, 817–835.
13.47. Atalan, Y.; Karakaya, V. Investigation of some fixed point theorems in hyperbolic spaces for a three step iteration process. Korean J. Math. 27 (2019), no. 4, 929-947.
13.48. Gursoy, F.; Erturk, M.; Dikmen, M. Some fixed point results for quasi-strictly contractive operators in hyperbolic spaces. J. Nonlinear Convex Anal. 20 (2019), no. 11, 2281-2295.
13.49. Okeke, G. A. Random fixed point theorems in certain banach spaces. J. Nonlinear And Convex Analysis Volume: 20 Issue: 10 Special Issue: SI Pages: 2155-2170 Published: 2019
13.50. Brault, Antoine; Lejay, Antoine. The non-linear sewing lemma I: weak formulation. Electron. J. Probab. 24 (2019), Paper No. 59, 24 pp.
13.51. Akhtar, Z.; Khan, M. A. A. Rates of convergence for a class of generalized quasi contractive mappings in Kohlenbach hyperbolic spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 1, 173–182.
[14] V. Berinde, Approximating fixed points of $\phi$-weak contractions using the Picard iteration, Fixed Point Theory, 4 (2003), No. 2, 131-142
14.1. T. Kamran, Multivalued f-weakly Picard mappings, Nonlinear Anal. 67 (2007), no. 7, 2289-2296
14.2. Olatinwo, M. O., Some results on multi-valued weakly Jungck mappings in b-metric space, Central European J. of Math. 6 (2008), No. 4, 610-621
14.3. D. Đorić, Common fixed point for generalized (ψ,φ)-weak contractions, Appl. Math. Lett. 22 (2009) 1896-1900
14.4. S. Radenović, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl., Volume 60, Issue 6, September 2010, Pages 1776-1783
14.5. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
14.6. W. Sintunavarat, P. Kumam, Weak condition for generalized multi-valued (f , α, β)-weak contraction mappings, Appl. Math. Lett., 24 (2011), No. 4, 460-465
14.7. Hussain N, Shah MH, Radenovic S, Fixed points of weakly contractions through occasionally weak compatibility, J. Comput. Anal. Appl. 13 (2011), No. 3 532-543 2010
14.9. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
14.8. W. Sintunavarat, P. Kumam, Common fixed point theorem for hybrid generalized multi-valued contraction mappings, Appl. Math. Lett. 25 (2012) 52–57
14.10. Z. Golubovic; Z. Kadelburg; S. Radenovic, Common fixed points of ordered g-quasi contractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:20 doi:10.1186/1687-1812-2012-20
14.11. W. Sintunavarat, P. Kumam, Common fixed point theorem for cyclic generalized multi-valued contraction mappings, Appl. Math. Lett. doi:10.1016/j.aml.2012.02.045
14.12. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
14.13. M. Gordji, H. Baghani, G. Kim, Common fixed point theorems for (ψ, φ)-weak nonlinear contraction in partially ordered sets, Fixed Point Theory Appl. 2012, 2012:62
14.14. Radenović, S., Kadelburg, Z., Jandrlić, D., Jandrlić, A., Some results on weakly contractive maps, Bull. Iran. Math. Soc. 38 (2012), No. 3, 625-645
14.15. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
14.16. G. Mınak, O. Acar, and Ishak Altun, Multivalued Pseudo-Picard Operators and Fixed Point Results, J. Funct. Spaces Appl. Volume 2013 (2013), Article ID 827458, 7 pages
14.17. Harjani, J., López, B., Sadarangani, K., Fixed point theorems for cyclic φ-contractions in ordered metric spaces, Fixed Point Theory 14 (2013), No. 2, 359-368
14.18. F. Shaddad, M. Noorani, S. M Alsulami, Common fixed-point results for generalized Berinde-type contractions which involve altering distance functions, Fixed Point Theory Appl. 2014, 2014:24
14.19. Mınak, G., Helvacı, A., Altun, I., Ćirić type generalized $F$-contractions on complete metric spaces and fixed point results. Filomat 28 (2014), no. 6, 1143–1151.
14.20. Abbas, Mujahid; Khojasteh, Farshid. Common $f$-endpoint for hybrid generalized multi-valued contraction mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 108 (2014), no. 2, 369–375.
14.21. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
14.22. Gonca Durmaz, Gülhan Mınak, and Ishak Altun, Fixed Point Results for α-ψ-Contractive Mappings Including Almost Contractions and Applications, Abstr Appl Anal Volume 2014 (2014), Article ID 869123, 10 pages
14.23. Turinici, Mihai, Contractive Operators in Relational Metric Spaces, Handbook of Functional Equations: Functional Inequalities (Editor Rassias, TM) Book Series: Springer Optimization and Its Applications, Vol. 95, pp. 419-458 (2014)
14.24. Durmaz, Gonca; Mınak, Gülhan; Altun, Ishak. Fixed point results for $\alpha$-$\psi$-contractive mappings including almost contractions and applications. Abstr. Appl. Anal. 2014, Art. ID 869123, 10 pp.
14.25. Minak, Gülhan; Altun, Ishak; Romaguera, Salvador. Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
14.26. I. Altun, H. A. Hancer, and G. Minak, On a general class of weakly picard operators, Miskolc Math. Notes Vol. 16 (2015), No. 1, pp. 25–32
14.27. Wasfi Shatanawi, Ariana Pitea, Best Proximity Point and Best Proximity Coupled Point in a Complete Metric Space with (P)-Property, Filomat 29:1 (2015), 63–74
14.28. F. Bojor and M. Tilca, Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph, Carpathian J. Math., 31 (2015), No. 3, 297-305
14.29. Vetro, C., Chauhan, S., Karapınar, E., Shatanawi, W., Fixed Points of Weakly Compatible Mappings Satisfying Generalized φ-Weak Contractions, Bull. Malaysian Math. Sci. Soc. 38 (2015), no. 3, 1085-1105
4.30. Acar, Özlem; Altun, Ishak; Durmaz, Gonca. A fixed point theorem for new type contractions on weak partial metric spaces. Vietnam J. Math. 43 (2015), no. 3, 635–644.
4.31. Murthy, P. Pa.; Devi Patel, U. Common fixed point theorems using $(\psi_1,\psi_2,\phi)$- weak contraction in partial ordered metric spaces. Facta Univ. Ser. Math. Inform. 30 (2015), no. 4, 445–464.
14.32. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
14.33. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441–448.
14.34. Olgun, M.; Biçer, Ö.; Alyildiz, T., A new aspect to Picard operators with simulation functions. Turkish J. Math. 40 (2016), no. 4, 832–837.
14.35. Samet, B., On the approximation of fixed points for a new class of generalized Berinde mappings, Carpathian Journal of Mathematics 32 (2016), no. 3, 363-374.
14.36. Baghani, H.; Eshaghi Gordji, M.; Ramezani, M., Orthogonal sets: the axiom of choice and proof of a fixed point theorem. J. Fixed Point Theory Appl. 18 (2016), no. 3, 465–477.
14.37. Monfared, Hossein; Azhini, Mahdi; Asadi, Mehdi. Fixed point results on $M$-metric spaces. J. Math. Anal. 7 (2016), no. 5, 85–101.
14.38. Ansari, A. H.; Shatanawi, W.; Kurdi, A.; Maniu, G. Best proximity points in complete metric spaces with $(P)$-property via $C$-class functions. J. Math. Anal. 7 (2016), no. 6, 54–67.
14.39. Dey, Debashis; Dan, Pritha; Saha, Mantu. Best proximity points for $\varphi$-contractions and weak $\varphi$-contractions. Southeast Asian Bull. Math. 40 (2016), no. 4, 467–477.
14.40. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$ -pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
14.41. Joshi, Vishal; Singh, Deepak; Petruşel, Adrian. Existence results for integral equations and boundary value problems via fixed point theorems for generalized $F$-contractions in $b$-metric-like spaces. J. Funct. Spaces 2017, Art. ID 1649864, 14 pp.
14.42. Popa, Valeriu. Fixed point theorems for two pairs of mappings satisfying a new type of common limit range property. Filomat 31 (2017), no. 11, 3181–3192.
14.43. Beloul, S. A common fixed point theorem for generalized almost contractions in metric-like spaces. Appl. Math. E-Notes 18 (2018), 127–139.
14.44. Ahmadi, Z.; Lashkaripour, R.; Baghani, H. A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces. Filomat 32 (2018), no. 9, 3365—3379
14.45. Altun, I.; Samet, B. Pseudo Picard operators on generalized metric spaces. Appl. Anal. Discrete Math. 12 (2018), no. 2, 389–400.
14.46. Bussaban, L.; Kettapun, A. Common fixed points of an iterative method for Berinde nonexpansive mappings. Thai J. Math. 16 (2018), no. 1, 49–60.
14.47. Popa, V.; Patriciu, A.-M. A general fixed point theorem for two pairs of mappings satisfying a mixed implicit relation. Math. Slovaca 68 (2018), no. 3, 655–666.
14.48. Sumalail, P.; Kumam, P.; Khaofong, C.; et al. New Common Coupled Coincidence Point Theorems for Generalized Weakly Contraction Mappings with Applications to Dynamic Programming, Communications In Mathematics And Applications 9 (2018), no. 1, 1-14
14.49. Sarnmeta, P.; Suantai, S. Global minimization of best proximity points for semi-cyclic Berinde contractions. Carpathian J. Math. 34 (2018), no. 3, 411–416.
14.50. Joonaghany, G. H.; Farajzadeh, A.; Azhini, M.; et al. A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized Psi-simulation Functions. Sahand Communications In Mathematical Analysis Volume: 16 Issue: 1 Pages: 129-148 Published: FAL 2019
14.51. Pitea, A. Best Proximity Results on Dualistic Partial Metric Spaces. Symmetry-Basel Volume: 11 Issue: 3 Article Number: 306 Published: MAR 1 2019
14.52. Tabassum, R.; Azam, A.; Shagari, M. S. Existence results of delay and fractional differential equations via fuzzy weakly contraction mapping principle. Appl. Gen. Topol. 20 (2019), no. 2, 449–469.
[15] V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl. 2012, 2012:105 doi:10.1186/1687-1812-2012-105
15.1. Nashine, H.K., Samet, B., Vetro, C., Fixed point theorems in partially ordered metric spaces and existence results for integral equations, Numerical Functional Analysis and Optimization 33 (2012), No. 11, 1304-1320
15.2. Aydi, H.; Karapinar, E.; Samet, B., Fixed Point Theorems for Various Classes of Cyclic Mappings, J. Aappl. Math. 2012 Article Number: 867216 DOI: 10.1155/2012/867216
15.3. Asl, J. Hasanzade; Rezapour, S.; Shahzad, N., On fixed points of alpha-psi-contractive multifunctions, Fixed Point Theory Appl. 2012, 2012:212, 6 pp.
15.4. Samet, B., Vetro, C., Vetro, F., From metric spaces to partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 5
15.5. W. S. Du, New Existence Results and Generalizations for Coincidence Points and Fixed Points without Global Completeness, Abstr. Appl. Anal., Volume 2013 (2013), Article ID 214230, 12 pages http://dx.doi.org/10.1155/2013/214230
15.6. Dung, N.V., On coupled common fixed points for mixed weakly monotone maps in partially ordered S-metric spaces, Fixed Point Theory Appl. 2013, art. no. 48
15.7. P. Salimi, C. Vetro, P. Vetro, Fixed point theorems for twisted (α,β)-ψ-contractive type mappings and applications, Filomat 27 (2013), No. 3, 605–615
15.8. N. Hussain, E. Karapinar, P. Salimi, P. Vetro, Fixed point results for G^m-Meir-Keeler contractive and (\alpha, \Psi)-Meir-Keeler contractive mappings, Fixed Point Theory Appl. 2013, 2013:34
15.9. F. Moradlou, P. Salimi and P. Vetro, Fixed point results for r-(η,ξ,ψ)-contractive mappings of type (I), (II) and (III), Filomat 27 (2013), No. 2, 403–410
15.10. Sgroi M., Vetro C., Multi-valued F-contractions and the solutions of certain functional and integral equations, Filomat 27 (2013), No. 7, 1259-1268
15.11. M.-L. Song and X.-J. Zhu, Common Fixed Point for Self-Mappings Satisfying an Implicit Lipschitz-Type Condition in Kaleva-Seikkala’s Type Fuzzy Metric Spaces, Abstr. Appl. Anal. 2013, 2013: 278340, 10 pages
15.12. Salimi, P., Vetro, C., Vetro, P., Fixed point theorems for twisted $(\alpha,\beta)$-$\psi$-contractive type mappings and applications. Filomat 27 (2013), no. 4, 605–615.
15.13. Vetro, C., Vetro, F., Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152–161.
15.14. Long, Wei; Khaleghizadeh, Soomieh; Salimi, Peyman; et al., Some new fixed point results in partial ordered metric spaces via admissible mappings, Fixed Point Theory Appl 2014: 117
15.15. Kumam et al., Best proximity point results for modified α-proximal C-contraction mappings. Fixed Point Theory Appl. 2014, 2014:99
15.16. Ćojbašić R. V., Radenović, S., Chauhan, S., Common fixed point of generalized weakly contractive maps in partial metric spaces. Acta Math. Sci. Ser. B Engl. Ed. 34 (2014), no. 4, 1345–1356.
15.17. Alizadeh, S., Moradlou, F., Salimi, P., Some fixed point results for $(\alpha,\beta)$-$(\psi,\phi)$-contractive mappings. Filomat 28 (2014), no. 3, 635–647.
15.18. Cosentino, M., Vetro, P., Fixed point results for $F$-contractive mappings of Hardy-Rogers-type. Filomat 28 (2014), no. 4, 715–722.
15.19. Jleli, M., Samet, B., Vetro, C., Vetro, F., From Caristi’s theorem to Ekeland’s variational principle in $0\sb \sigma$-complete metric-like spaces. Abstr. Appl. Anal. 2014, Art. ID 319619, 7 pp.
15.20. La Rosa, V., Vetro, P., Fixed points for Geraghty-contractions in partial metric spaces. J. Nonlinear Sci. Appl. 7 (2014), no. 1, 1–10.
15.21. Parvaneh, V., Salimi, P., Vetro, P., Dehghan Nezhad, A., Radenović, S., Fixed point results for $GP\sb {(\Lambda,\Theta)}$-contractive mappings. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 150–159.
15.22. Hussain, N.; Salimi, P.; Vetro, P. Fixed points for $\alpha$-$\psi$-Suzuki contractions with applications to integral equations. Carpathian J. Math.30 (2014), no. 2, 197–207.
15.23. M. S. Asgari, Z. Badehian, Fixed point theorems for α-β-ψ-contractive mappings in partially ordered sets, J. Nonlinear Sci. Appl. 8 (2015), 518–528
15.24. Adamo, M.S., Vetro, C., Fixed point and homotopy results for mixed multi-valued mappings in 0-complete partial metric spaces, Nonlinear Analysis: Modelling and Control Volume 20, Issue 2, 2015, Pages 159-174
15.25. M. Abbas, B. Ali, Y. I Suleiman, Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory Appl. 2015, 2015:64
15.26. Asgari, M. S.; Badehian, Z. Fixed point theorems for $\alpha$-$\psi$-contractive mappings in partially ordered sets and application to ordinary differential equations. Bull. Iranian Math. Soc. 41 (2015), no. 6, 1375–1386.
15.27. Liu, X.-L., Ansari, A.H., Chandok, S., Park, C., Some new fixed point results in partial ordered metric spaces via admissible mappings and two new functions, Journal of Nonlinear Sciences and Applications, 9 (2016), No. 4, 1564-1580
15.28. Chuensupantharat, N.; Kumam, P., Some Common Fixed Point on Generalized Cyclic Contraction Mappings with Implicit Relation and Its Applications, Communications in Mathematics and Applications 7 (2016), no. 3, 199-206
15.29. Hussain, N.; Vetro, C.; Vetro, F., Fixed point results for alpha-implicit contractions with application to integral equations, Nonlinear Analysis-Modelling and Control 21 (2016), no. 3, 362-378
15.30. Vetro, F., F-contractions of Hardy-Rogers type and application to multistage decision processes, Nonlinear Analysis-Modelling and Control 21 (2016), no. 4, 531-546
15.31. Chandok, S.; Tas, K.; Ansari, A. H., Some fixed point results for $TAC$-type contractive mappings. J. Funct. Spaces 2016, Art. ID 1907676, 6 pp.
15.32. Aydi, H.; Jellali, M.; Karapinar, E., On fixed point results for alpha-implicit contractions in quasi-metric spaces and consequences, Nonlinear Analysis-Modelling and Control 21 (2016), no. 1, 40-56
15.33. Aydi, H., $\alpha$-implicit contractive pair of mappings on quasi $b$-metric spaces and an application to integral equations. J. Nonlinear Convex Anal. 17 (2016), no. 12, 2417–2433.
15.34. Deshpande, B.; Handa, Amrish; D., Using implicit relation to prove common coupled fixed point theorems for two hybrid pairs of mappings, TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS 6 (2016), no. 1, 30-46
15.35. Deshpande, B.; Handa, A. Common coupled fixed point theorems for hybrid pair of mappings satisfying an implicit relation with application. Afr. Mat. 27 (2016), no. 1-2, 149–167.
15.36. Aydi, H.; Felhi, A.; Sahmim, S. Common fixed points via implicit contractions on $b$-metric-like spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1524–1537.
15.37. Ansari, A. H.; Vetro, P.; Radenović, S. Existence of fixed point for $GP_{(\Lambda, \Theta)}$-contractive mappings in $GP$-metric spaces. Filomat 31 (2017), no. 8, 2211–2218.
15.38. Ali, Muhammad Usman; Vetro, Calogero. Fixed point theorems for multivalued maps via new auxiliary function. Nonlinear Anal. Model. Control 22 (2017), no. 1, 84–98.
15.39. Butt, A. R.; Beg, I.; Iftikhar, A. Fixed points on ordered metric spaces with applications in homotopy theory. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 21, 15 pp.
15.40. Chuensupantharat, N.; Kumam, P. Some results on implicit contractive conditions in metric spaces endowed with arbitrary binary relations. Math. Methods Appl. Sci. 41 (2018), no. 17, 7384–7398.
15.41. Eke, K. S.; Davvaz, B.; Oghonyon, J. G. Relation-Theoretic Common Fixed Point Theorems for a Pair of Implicit Contractive Maps in Metric Spaces. Communications In Mathematics And Applications Volume: 10 Issue: 1 Pages: 159-168 Published: 2019
15.42. Nazam, M.; Aydi, H.; Noorani, M. S.; Qawaqneh, H. Existence of fixed points of four maps for a new generalized $F$-contraction and an application. J. Funct. Spaces 2019, Art. ID 5980312, 8 pp.
[16] Berinde V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9
16.1. M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric spaces, Central European J. Math., Volume 8, Number 2, 367-377, DOI: 10.2478/s11533-010-0009-4
16.2. Bota M, Molnar A, Varga C, On Ekeland’s variational principle in b-metric spaces, Fixed Point Theory 12 (2011) No. 1 21-28
16.3. Kadelburg, Z., Radenovic, S., Meir–Keeler-type conditions in abstract metric spaces, Appl. Math. Lett. 24 (2011), No. 8, 1411-1414
16.4. Aydi, H., Bota, M.-F., Karapinar, E., Moradi, S., A common fixed point for weak \Phi contractions on b-metric spaces, Fixed Point Theory 13 (2012), No. 2, 337-346
16.5. Ciric, L., Abbas, M., Rajovic, M., Ali, B., Suzuki type fixed point theorems for generalized multi-valued mappings on a set endowed with two b-metrics, Appl. Math. Comput. 219 (2012), No. 4, 1712-1723
16.6. Hussain, N., Rafiq, A., Ciric, L.B., Stability of the Ishikawa iteration scheme with errors for two strictly hemicontractive operators in Banach spaces, Fixed Point Theory Appl. 2012, art. no. 160
16.7. N. Hussain, P. Salimi and S. Al-Mezel, Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations, Fixed Point Theory Appl. 2013, 2013:261 doi:10.1186/1687-1812-2013-261
16.8. Salimi, P. , Vetro, P., Common fixed point results on quasi-Banach spaces and integral equations, Georgian Math. J. 20 (2013), No. 4, 789-804
16.9. Samreen, M., Kamran, T., Shahzad, N., Some fixed point theorems in b -metric space endowed with graph, Abstr. Appl. Anal. 2013, 2013: 967132
16.10. Bota, M.-F., Karapinar, E., Mleşniţe, O., Ulam-hyers stability results for fixed point problems via α – ψ -contractive mapping in (b)-metric space, Abstr. Appl. Anal. 2013, 2013: 825293
16.11. Wasfi Shatanawi, Ariana Pitea, Rade Lazović, Contraction conditions using comparison functions on b-metric spaces, Fixed Point Theory Appl. 2014, 2014:135
16.12. Plebaniak, R., On best proximity points for set-valued contractions of Nadler type with respect to $b$-generalized pseudodistances in $b$-metric spaces. Fixed Point Theory Appl. 2014, 2014:39, 13 pp.
16.13. Kumam, P., Sintunavarat, W., The existence of fixed point theorems for partial $q$-set-valued quasi-contractions in $b$-metric spaces and related results. Fixed Point Theory Appl. 2014, 2014:226, 20 pp.
16.14. Supak Phiangsungnoen, Wutiphol Sintunavarat and Poom Kumam, Fixed point results, generalized Ulam-Hyers stability and well-posedness via α-admissible mappings in b-metric spaces, Fixed Point Theory Appl 2014, 2014:188 doi:10.1186/1687-1812-2014-188
16.15. Latif, A., Roshan, J. R., Parvaneh, V., Hussain, N., Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $b$-metric spaces. J. Inequal. Appl. 2014, 2014:345, 26 pp.
16.16. Maria Samreen, Quanita Kiran and Tayyab Kamran, Fixed point theorems for φ-contractions, J Inequal Appl 2014, 2014:266 doi:10.1186/1029-242X-2014-266
16.17. Supak Phiangsungnoen and Poom Kumam, Generalized Ulam-Hyers stability and well-posedness for fixed point equation via α-admissibility, J Inequal Appl 2014, 2014:418 doi:10.1186/1029-242X-2014-418
16.18. Hussain, N., Parvaneh, V. , Roshan, J.R., Fixed point results for G-α-contractive maps with application to boundary value problems, Sci. World J. Volume 2014, 2014, Article number 585964
16.19. Phiangsungnoen, Supak; Kumam, Poom, Fuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces, J Nonlinear Sci Appl 8 (2015), No. 1, 55-63
16.20. Petre, Ioan-Radu; Bota, Monica, Fixed point theorems on generalized b-metric spaces, PUBL. MATHEMATICAE-DEBRECEN 83 (2013), No. 1-2, 139-159
16.21. M. Cosentino, M. Jleli, B. Samet and C. Vetro, Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory Appl. (2015) 2015:70
16.22. A. Nastasi, P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl. 8 (2015), 1059–1069
16.23. M. Demma and P. Vetro, Picard Sequence and Fixed Point Results on b-Metric Spaces, Journal of Function Spaces 2015 (2015), Article ID 189861, 6 pages
16.24. Phiangsungnoen, Supak, and Poom Kumam, Fuzzy fixed point theorems for multivalued fuzzy contractions in b-metric spaces, Journal of Nonlinear Sciences & its Applications 8.1 (2015)
16.25. A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 363–377
16.26. Amini-Harandi, A., Petrusel, A., An endpoint theorem in generalized L-spaces with applications, J. Nonlinear Convex Anal. 16 (2015), no. 2, 265-271
16.27. Bota, M.-F., Chifu, C., Karapinar, E., Fixed point theorems for generalized $(\alpha\sb \ast -\Psi)$-Ćirić-type contractive multivalued operators in $b$-metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 1165–1177.
16.28. Klin-eam, C., Kaskasem, P., Fixed Point Theorems for Cyclic Contractions in C*-Algebra-Valued b-Metric Spaces, J. Funct. Spaces, Article Number: 7827040 Published: 2016
16.29. Bota, Monica-Felicia; Petruşel, Adrian; Petruşel, Gabriela; Samet, Bessem. Coupled fixed point theorems for single-valued operators in $b$-metric spaces. Fixed Point Theory Appl. 2015, 2015:231, 15 pp.
16.30. Petrusel, A.; Petrusel, G.; Yao, J.-C., A study of a system of operator inclusions via a fixed point approach and applications to functional-differential inclusions, Carpathian J. Math.32 (2016), no. 3, 349-361
16.31. Petruşel, A.; Petruşel, G.; Samet, B.; Yao, J.-C., Coupled fixed point theorems for symmetric multi-valued contractions in $b$-metric space with applications to systems of integral inclusions. J. Nonlinear Convex Anal. 17 (2016), no. 7, 1265–1282.
16.32. Petrusel, A.; Petrusel, G.; Samet, B.; et al., Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equation systems, Fixed Point Theory 17 (2016), no. 2, 457-475
16.33. Aksoy, U.; Karapinar, E.; Erhan, İ. M., Fixed points of generalized $\alpha$-admissible contractions on $b$-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 17 (2016), no. 6, 1095–1108.
16.34. Ozturk, V.; Turkoglu, D., Fixed points for generalized $\alpha$-$\psi$-contractions in $b$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 10, 2059–2066.
16.35. Phiangsungnoen, Supak, Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems for Contractive Multi-valued Operator in b-metric Spaces, Commun. Math. Appl. 7 (2016), no. 3, 241-262
16.36. Kirk, W.; Shahzad, N., Fixed Point Theory in Distance Spaces, FIXED POINT THEORY IN DISTANCE SPACES Pages: 1-173 Published: 2014 Publisher: SPRINGER INT PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
16.37. Cvetković, M.; Karapınar, E.; Rakocević, V., Some fixed point results on quasi-$b$-metric-like spaces. J. Inequal. Appl. 2015, 2015:374, 17 pp.
16.38. Arab, R.; Zare, K., New fixed point results for rational type contractions in partially ordered b-metric spaces, International Journal of Analysis and Applications 10 (2016), no. 2, 64-70
16.39. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
16.40. Vetro, F., Fixed point results for nonexpansive mappings on metric spaces. Filomat 29 (2015), no. 9, 2011–2020.
16.41. Bota, M.-F., Ilea, V., Fixed point theorems for nonself operators in $b$-metric spaces. Fixed Point Theory 16 (2015), no. 2, 225-232.
16.42. Petruşel, A.; Petruşel, G.; Samet, B.; Yao, J.-C. Scalar and vectorial approaches for multi-valued fixed point and multi-valued coupled fixed point problems in $b$-metric spaces. J. Nonlinear Convex Anal. 17 (2016), no. 10, 2049–2061.
16.43. Alsulami, Hamed H.; Gülyaz, Selma; Karapınar, Erdal; Erhan, İnci M. An Ulam stability result on quasi-$b$-metric-like spaces. Open Math. 14 (2016), 1087–1103.
16.44. Chifu, Cristian; Petruşel, Gabriela. Coupled fixed point results for $(\varphi,\rm G)$-contractions of type (b) in $b$-metric spaces endowed with a graph. J. Nonlinear Sci. Appl. 10 (2017), no. 2, 671-683
16.45. Kamran, Tayyab; Samreen, Maria; Ain, Qurat U. L.A Generalization of b-Metric Space and Some Fixed Point Theorems, MATHEMATICS Volume: 5 Issue: 2 Article Number: 19 Published: 2017
16.46. Bota, Monica; Ilea, Veronica-Ana; Petruşel, Adrian. Krasnoselskii’s theorem in generalized $b$-Banach spaces and applications. J. Nonlinear Convex Anal. 18 (2017), no. 4, 575—587
16.47. Alharbi, Areej S. S.; Alsulami, Hamed H.; Karapinar, Erdal. On the power of simulation and admissible functions in metric fixed point theory. J. Funct. Spaces 2017, Art. ID 2068163, 7 pp.
16.48. Guran, Liliana; Bucur, Amelia. Fixed point problems for $\alpha$-$\psi$-weakly contractive operators on KST spaces. Filomat 31 (2017), no. 14, 4441–4454.
16.49. Miculescu, Radu; Mihail, Alexandru. Caristi-Kirk type and Boyd & Wong- Browder -Matkowski-Rus type fixed point results in $b$-metric spaces. Filomat 31 (2017), no. 14, 4331–4340.
16.50. Vetro, Francesca; Vetro, Calogero. On an idea of Bakhtin and Czerwik for solving a first-order periodic problem. J. Nonlinear Convex Anal. 18 (2017), no. 12, 2123–2134.
16.51. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Fixed point and coincidence point theorems in $b$-metric spaces with applications. Appl. Anal. Discrete Math. 11 (2017), no. 1, 199–215.
16.52. Chifu, C.; Petrusel, G., Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph, INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS Volume: 8 Issue: 2 Pages: 263-276 Published: SUM-FAL 2017
16.53. Petrusel, Adrian; Petrusel, Gabriela, A study of a general system of operator equations in -metric spaces via the vector approach in fixed point theory, JOURNAL OF FIXED POINT THEORY AND APPLICATIONS Volume: 19 Issue: 3 Pages: 1793-1814 Published: SEP 2017
16.54. Miculescu, Radu; Mihail, Alexandru. New fixed point theorems for set-valued contractions in $b$-metric spaces. J. Fixed Point Theory Appl. 19 (2017), no. 3, 2153–2163.
16.55. Alsulami, H. H.; Karapınar, E.; Rakočević, V. Ćirić type nonunique fixed point theorems on $b$-metric spaces. Filomat 31 (2017), no. 11, 3147–3156.
16.56. Hammache, K.; Karapinar, E.; Ould-Hammouda, A. On admissible weak contractions in $b$-metric-like space. J. Math. Anal. 8 (2017), no. 3, 167–180.
16.57. Petruşel, A.; Petruşel, G.; Yao, J.-C. Contributions to the coupled coincidence point problem in $b$-metric spaces with applications. Filomat 31 (2017), no. 11, 3173–3180.
16.58. Khan, M. S.; Singh, Y. Mahendra; Maniu, G.; Postolache, M. On generalized convex contractions of type-2 in $b$-metric and 2-metric spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 6, 2902–2913.
16.59. Ali, B.; Abbas, M. Existence and Ulam-Hyers stability of fixed point problem of generalized Suzuki type $(\alpha*,\psi_\varphi)$-contractive multivalued operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1129–1146.
16.60. Karapinar, Erdal; Czerwik, Stefan; Aydi, Hassen. $(\alpha,\psi)$-Meir-Keeler contraction mappings in generalized $b$-metric spaces. J. Funct. Spaces 2018, Art. ID 3264620, 4 pp.
16.61. Chen, Chi-Ming; Karapınar, Erdal; O’Regan, Donal. On $(\alpha-\phi)$-Meir-Keeler contractions on partial Hausdorff metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 101–110.
16.62. Samreen, M.; Kamran, T. Nonlinear $\alpha$-type contractions on a space endowed with graph. J. Math. Anal. 9 (2018), no. 1, 105–115.
16.63. Ozturk, V.; Turkoglu, D.; Ansari, A. H Fixed points for generalized $(\Cal F,h,\alpha,\mu)$-$\psi$-contractions in $b$-metric spaces. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67 (2018), no. 2, 306–316.
16.64. Petruşel, A.; Petruşel, G.; Yao, J.-C. Variational analysis concepts in the theory of multi-valued coincidence problems. J. Nonlinear Convex Anal. 19 (2018), no. 6, 935–958.
16.65. Tiammee, J.; Suantai, S.; Cho, Y. J. Existence theorems of a new set-valued MT-contraction in $b$-metric spaces endowed with graphs and applications. Fixed Point Theory 19 (2018), no. 2, 785–800.
16.66. Samreen, M.; Kamran, T.; Postolache, M. Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 4, 21–28.
16.67. Petruşel, A.; Petruşel, G.; Yao, J.-C. Pseudo-contractivity and metric regularity in fixed point theory. J. Optim. Theory Appl. 180 (2019), no. 1, 5–18.
16.68. Alqahtani, B.; Fulga, A.; Karapinar, E.; et al. Fisher-Type Fixed Point Results in b-Metric Spaces. MATHEMATICS 7 (2019), no. 1 Article Number: 102
16.69. Petruşel, A.; Petruşel, G.; Yao, J.-C. Coupled fixed point theorems in quasimetric spaces without mixed monotonicity. Carpathian J. Math. 35 (2019), no. 2, 185–192.
16.70. Bota, M.-F.; Karapinar, E. Fixed Point Problem Under a Finite Number of Equality Constraints on b-Banach spaces. FILOMAT 33 (2019), no. 18, 5837-5849.
16.71. Karapinar, E.; Fulga, A.; Alghamdi, M. A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. SYMMETRY-BASEL 11 (2019), no. 4 Article Number: 470.
16.72. Karapinar, E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. AXIOMS 8 (2019), no. 2 Article Number: 72.
16.73. Aydi, H.; Karapinar, E.; Rakočcević, V. Nonunique fixed point theorems on $b$-metric spaces via simulation functions. Jordan J. Math. Stat. 12 (2019), no. 3, 265–288.
16.74. Kumari, S.; Chugh, R.; Cao, J.; et al. Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications. MATHEMATICS 7 (2019), no. 10 Article Number: 967.
16.75. Khan, M. S.; Singh, Y. M.; Abbas, M.; et al. On non-unique fixed point of Ciric type operators in extended b-metric spaces and applications. Rendiconti Del Circolo Matematico Di Palermo Early Access: NOV 2019
16.76. Demma, Marta; Saadati, Reza; Vetro, Pasquale. Fixed point results on $b$-metric space via Picard sequences and $b$-simulation functions. Iran. J. Math. Sci. Inform. 11 (2016), no. 1, 123–136, 156.
16.77. Oprea, A.; Petrusel, G. Coupled fixed point theorems for rational type contractions. Studia Universitatis Babes-Bolyai Mathematica 61 (2016), no. 4, 473-488.
16.78. Bazine, S.; Aliouche, A.; Ellaggoune, F. Common fixed point theorems on spaces with vector-valued $b$-metrics. Miskolc Math. Notes 18 (2017), no. 1, 103–115.
[17] Vasile Berinde, Coupled coincidence point theorems for mixed monotone nonlinear operators, Comput. Math. Appl. 64 (2012), No. 6, 1770-1777
17.1. Abdeljawad, T., Coupled fixed point theorems for partially contractive mappings, Fixed Point Theory Appl. 2012, 2012:148 doi:10.1186/1687-1812-2012-148
17.2. Wangkeeree, R., Bantaojai, T., Coupled fixed point theorems for generalized contractive mappings in partially ordered G-metric spaces, Fixed Point Theory Appl., Article Number: 172 DOI: 10.1186/1687-1812-2012-172
17.3. Karapinar, E., Kaymakçalan, B., Taş, K., On coupled fixed point theorems on partially ordered G-metric spaces, J. Ineq. Appl. 2012, art. no. 200
17.4. E. Karapinar, P. Kumam, I. M Erhan, Coupled fixed point theorems on partially ordered G-metric spaces, Fixed Point Theory Appl. 2012, 2012:174
17.5. Ravi P Agarwal, E. Karapinar, Remarks on some coupled fixed point theorems in G-metric spaces, Fixed Point Theory Appl. 2013, 2013:2
17.6. Phakdi Charoensawan, Tripled coincidence point theorems for a φ-contractive mapping in a complete metric space without the mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:252 doi:10.1186/1687-1812-2013-252
17.7. Shuang Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:96
17.8. M. Ertürk and V. Karakaya, n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Ineq. Appl. 2013, 2013:196 doi:10.1186/1029-242X-2013-196
17.9. B. S Choudhury, N. Metiya and M. Postolache, A generalized weak contraction principle with applications to coupled coincidence point problems, Fixed Point Theory Appl. 2013, 2013:152 doi:10.1186/1687-1812-2013-152
17.10. R. P Agarwal, Z. Kadelburg and S. Radenović, On coupled fixed point results in asymmetric G-metric spaces, J. Ineq. Appl. 2013, 2013:528 doi:10.1186/1029-242X-2013-528
17.11. E. Karapinar and R. P. Agarwal, Further fixed point results on G-metric spaces, Fixed Point Theory Appl. 2013, 2013:154
17.12. E. Karapınar and R. P Agarwal, A note on ‘Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:216
17.13. Wangkeeree, R.; Wangkeeree, R,; Sisarat, N., Coupled fixed points for generalized weakly contractive mappings in partial metric spaces, J. Comput. Anal. Appl. 16 (2014), No. 1, 974-988
17.14. Feng Gu, Some common tripled fixed point results in two quasi-partial metric spaces, Fixed Point Theory Appl. 2014, 2014:71 doi:10.1186/1687-1812-2014-71
17.15. Erturk, M., Karakaya, V., n-Tuplet Coincidence Point Theorems in Intuitionistic Fuzzy Normed Spaces, J. Function Spaces, 10.1155/2014/821342 2014
17.16. S. Wang, Multidimensional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:137
17.17. Shatanawi, W., Postolache, M., Mustafa, Z., Tripled and coincidence fixed point theorems for contractive mappings satisfying $\Phi$-maps in partially ordered metric spaces. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 22 (2014), no. 3, 179–203.
17.18. Charoensawan, P., Thangthong, C., On coupled coincidence point theorems on partially ordered $G$-metric spaces without mixed $g$-monotone. J. Inequal. Appl. 2014, 2014:150, 17 pp.
17.19. Na Nan, N., Charoensawan, P., Coupled $g$-coincidence point theorems for a generalized compatible pair in complete metric spaces. Fixed Point Theory Appl. 2014, 2014:201, 22 pp.
17.20. Thangthong, C., Charoensawan, P., Coupled coincidence point theorems for a $\straightphi$-contractive mapping in partially ordered $G$-metric spaces without mixed $g$-monotone property. Fixed Point Theory Appl. 2014, 2014:128, 18 pp.
17.21. Na Nan, N., Charoensawan, P., $(H,F)$-closed set and coupled coincidence point theorems for a generalized compatible in partially $G$-metric spaces. J. Inequal. Appl. 2014, 2014:342, 21 pp.
17.22. Charoensawan, P., Thangthong, C., $(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces. J. Inequal. Appl. 2014, 2014:245, 24 pp.
17.23. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
17.24. Suantai, S.; Charoensawan, P.; Aleksic Lampert, T., Common coupled fixed point theorems for $\theta$-$\psi$-contraction mappings endowed with a directed graph. Fixed Point Theory Appl. 2015, 2015:224, 11 pp.
17.25. H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082–1094
17.26. Wang, S.; Ansari, A. H.; Chandok, S. Some fixed point results for non-decreasing and mixed monotone mappings with auxiliary functions. Fixed Point Theory Appl. 2015, 2015:209, 16 pp.
17.27. Agarwal, R. P.; Karapınar, E.; Roldán López de Hierro, A. F., Last remarks on $G$-metric spaces and related fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 433–456.
17.28. Alam, A.; Imdad, M.; Ali, J., Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces, COGENT MATHEMATICS 3 (2016), Article Number: 1248270
17.29. Agarwal, Ravi P.; Karapınar, Erdal; Roldán López de Hierro, Antonio Francisco. Last remarks on $G$-metric spaces and related fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), no. 2, 433–456.
17.30. Petruşel, A.; Petruşel, G.; Yao, J.-C. Contributions to the coupled coincidence point problem in $b$-metric spaces with applications. Filomat 31 (2017), no. 11, 3173–3180.
17.31. Nastasi, A.; Vetro, P. Existence and uniqueness for a first-order periodic differential problem via fixed point results. Results Math. 71 (2017), no. 3-4, 889–909.
17.32. Charoensawan, P. Tripled coincidence point theorems with $M$-invariant set for a $\alpha$-$\psi$-contractive mapping in partially metric spaces. Thai J. Math. 16 (2018), no. 1, 121–138.
17.33. Fan, Y.; Shen, Y.; Zhu, C.; Wu, Z. Coupled coincidence point and fixed point results for mixed monotone mappings and an application to integro-differential equations. Mediterr. J. Math. 16 (2019), no. 2, Art. 50, 13 pp.
17.34. Chaobankoh, T; Charoensawan, P. Common Tripled Fixed point Theorems for psi-Geraghty-Type Contraction Mappings Endowed with a Directed Graph. Thai Journal Of Mathematics 17 (2019), no. 1, 11-30.
[18] Berinde V., Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point Theory 11 (2010) 179-188
18.1. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
18.2. J.O. Olaleru, Approximation of common fixed points of weakly compatible pairs using the Jungck iteration, Appl. Math. Comput. 217 (2011), No. 21, 8425-8431
18.3. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
18.4. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
18.5. Karapinar, E., A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, Vol. 12 (2011), No. 2, pp. 185–191
18.6. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
18.7. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
18.8. Shatanawi, W., Postolache, M., Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012 , art. no. 815870
18.9. H. Aydi, S. H. Amor and E. Karapinar, Berinde-Type Generalized Contractions on Partial Metric Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pages http://dx.doi.org/10.1155/2013/312479
18.10. W. Shatanawi and M. Postolache, Some Fixed-Point Results for a Weak Contraction in Metric Spaces, Abstr. Appl. Anal. 2012, Article ID 815870, 19 pages doi:10.1155/2012/815870
18.11. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263 doi: 10.1186/1029-242X-2012-263
18.12. Saha, M., Dey, D., Some random fixed point theorems (theta, L)-weak contractions, HACET. J. MATH. STAT. 41 (2012), No. 6, 795-812
18.13. Karapinar, E., Roldan, A., Martinez-Moreno, J., Roldan, C., Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, art. no. 406026
18.14. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
18.15. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271 doi:10.1186/1687-1812-2013-271
18.16. N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013, 2013:256 doi:10.1186/1687-1812-2013-256
18.17. A. Roldán, J. Martínez-Moreno, C. Roldán, and E. Karapinar, Multidimensional Fixed-Point Theorems in Partially Ordered Complete Partial Metric Spaces under (\Psi, \Phi)-Contractivity Conditions, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 634371, 12 pages
18.18. N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Ineq. Appl. 2013, 2013:114
18.19. Reza Allahyari, Reza Arab and Ali Shole Haghighi, A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations, J Inequal Appl 2014, 2014:355 doi:10.1186/1029-242X-2014-355
18.20. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Cho, Y. J. Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets and Systems 251 (2014), 71–82.
18.21. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
18.22. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
18.23. A. Roldán, J. Martínez-Moreno C. Roldán, Y.J. Cho, Multidimensional fixed point theorems under (ψ,φ)-contractive conditions in partially ordered complete metric spaces, J Comput Appl Math Volume 273, 1 January 2015, Pages 76–87
18.24. Popa, Valeriu, On some fixed point theorems for implicit almost contractive mappings, Carpathian J Math 29 (2013), No. 2, 223-229.
18.25. J Martínez-Moreno, A Roldán, C Roldán, Yeol Je Cho, Multi-dimensional coincidence point theorems for weakly compatible mappings with the CLRg-property in (fuzzy) metric spaces, Fixed Point Theory Appl. 2015, 2015:53
18.26. Ariza-Ruiz, D., Garcia-Falset, J., Iterative approximation to a coincidence point of two mappings, Appl. Math. Comput. 259 (2015), 762-776
18.27. Dinarvand, M. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
18.28. Popa, V. Fixed point theorems for two pairs of mappings satisfying a new type of common limit range property. Filomat 31 (2017), no. 11, 3181–3192.
18.29. Shatanawi, W.; Postolache, M.; Ansari, A. H.; Kassab, W. Common fixed points of dominating and weak annihilators in ordered metric spaces via $C$-class functions. J. Math. Anal. 8 (2017), no. 3, 54–68.
18.30. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
18.31. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
18.32. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
18.33. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
[19] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators, Fixed Point Theory Appl. 2004, no. 2, 97-105
19.1. G.V.R. Babu, K.N.V. Vara Prashad, Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces, Fixed Point Theory Appl. Volume 2006, Article ID 35704, Pages 1–12
19.2. G.V.R. Babu, K.N.V. V. Prashad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2006, Article ID 49615, Pages 1–6
19.3. Olaleru, J. O., A comparison of Picard and Mann iterations for quasi-contraction maps, Fixed Point Theory 8 (2007), No. 1, 87-95
19.4. Z. Huang, Noor, M.A., Equivalency of convergence between one-step iteration algorithm and two-step iteration algorithm of variational inclusions for H-monotone mappings, Comput. Math. Appl., 53 (2007), 1567-1571
19.5. Z. Xue, The comparison of the convergence speed between Picard, Mann, Krasnoselskij and Ishikawa iterations in Banach spaces, Fixed Point Theory Appl., Volume 2008 art. no. 387056
19.6. Xue, Z., Rhoades, B.E., Comparison of the rate of convergence among Picard, Mann, Ishikawa, and noor iterations applied to quasicontractive maps, Fixed Point Theory Appl. 2010, art. no. 169062
19.7. Sahu, D.R., Applications of the s-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), No. 1, 187-204 2010
19.8. N. Hussain, A. Rafiq, B. Damjanović and R. Lazović, On rate of convergence of various iterative schemes, Fixed Point Theory Appl. 2011, 2011:45 doi:10.1186/1687-1812-2011-45
19.12. Hussain, N., Chugh, R., Kumar, V., Rafiq, A., On the rate of convergence of Kirk-type iterative schemes, J. Appl. Math., Volume 2012, 2012, Article number526503
19.10. W. Phuengrattana, S. Suantai, Strong convergence theorems and rate of convergence of multi-step iterative methods for continuous mappings on an arbitrary interval, Fixed Point Theory Appl. 2012, 2012:9
19.11. Akbulut, S., Zdemir, M., Picard iteration converges faster than Noor iteration for a class of Quasi-contractive operators, Chiang Mai J. Sci. 39 (2012), No. 4, 688-692
19.12. A. Alotaibi, V. Kumar and N. Hussain, Convergence Comparison and Stability of Jungck-Kirk Type Algorithms for Common Fixed Point Problems, Fixed Point Theory Appl. 2013, 2013:173 doi:10.1186/1687-1812-2013-173
19.13. Kang, S. M., Ćirić, L. B., Rafiq, A., Ali, F., and Kwun, Y. C., Faster Multistep Iterations for the Approximation of Fixed Points Applied to Zamfirescu Operators, Abstr. Appl. Anal. Vol. 2013
19.14. N. Hussain, V. Kumar and M. A. Kutbi, On Rate of Convergence of Jungck-Type Iterative Schemes, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 132626, 15 pages
19.15. V. Kumar, A. Latif, A. Rafiq, N. Hussain, S-iteration process for quasi-contractive mappings, J. Ineq. Appl. 2013, 2013:206
19.16. A. R. Khan, V. Kumar, N. Hussain, Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput. 231 (2014) 521–535
19.17. H. Akewe, G. Amechi Okeke and A. F Olayi, Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators, Fixed Point Theory Appl. 2014, 2014:45 doi:10.1186/1687-1812-2014-45
19.18. V. Karakaya, K. Doğan, F. Gürsoy, and M. Ertürk, Fixed Point of a New Three-Step Iteration Algorithm under Contractive-Like Operators over Normed Spaces, Abstr. Appl. Anal., Vol. 2013 (2013), Article ID 560258, 9 pages
19.19. Thakur, D., Thakur, B. S., Postolache, M., New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014:328, 15 pp.
19.20. Renu Chugh, Preety Malik, and Vivek Kumar, On a New Faster Implicit Fixed Point Iterative Scheme in Convex Metric Spaces, Journal of Function Spaces Volume 2015 (2015), Article ID 905834, 11 pages
19.21. Dogan, Kadri; Karakaya, Vatan, On the Convergence and Stability Results for a New General Iterative Process, Sci. World J. Article Number: 852475 Published: 2014
19.22. Öztürk Çeliker, F., Convergence analysis for a modified sp iterative method, Sci. World J. Volume 2014, 2014, Article number 840504
19.23. Gürsoy, F., Applications of normal s-iterative method to a nonlinear integral equation, Sci. World J. Volume 2014, 2014, Article number 943127
19.24. Olaleru, Johnson O., A comparison of Mann and Ishikawa iterations of quasi-contraction operators, World Congress on Engineering 2007, Vols 1 and 2 Book Series: Lecture Notes in Engineering and Computer Science Pages: 872-875 Published: 2007
19.25. A. R. Khana, F. Gürsoy, V. Karakaya, Jungck-Khan iterative scheme and higher convergence rate, Int. J. Comput. Math. Volume 93, 2016, Issue 12 DOI:10.1080/00207160.2015.1085030
19.26. Wahab, O. T.; Rauf, K. On faster implicit hybrid Kirk-multistep schemes for contractive-type operators. Int. J. Anal. 2016, Art. ID 3791506, 10 pp.
19.27. Ardelean, G.; Cosma, O.; Balog, L., A comparison of some fixed point iteration procedures by using the basins of attraction, Carpathian J. Math.32 (2016), no. 3, 277-284.
19.28. Sintunavarat, W.; Pitea, A., On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2553–2562.
19.29. Fathollahi, S.; Ghiura, A.; Postolache, M.; Rezapour, S., A comparative study on the convergence rate of some iteration methods involving contractive mappings. Fixed Point Theory Appl. 2015, 2015:234, 24 pp.
19.30. Gursoy, F.; Sahu, D. R.; Ansari, Q. H., S-iteration process for variational inclusions and its rate of convergence, Journal of Nonlinear and Convex Analysis 17 (2016), no. 9, 1753-1767
19.31. Karakaya, V.; Gürsoy, F.; Ertürk, M., Some convergence and data dependence results for various fixed point iterative methods. Kuwait J. Sci. 43 (2016), no. 1, 112–128.
19.32. Sharma, A.; Imdad, M., Fixed point approximation of generalized nonexpansive multi-valued mappings in Banach spaces via new iterative algorithms. Dynamic Systems And Applications 26 (2017), no. 3-4, 395–409.
19.33. Suparatulatorn, R.; Suantai, S.; Cholamjiak, W. Hybrid methods for a finite family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. AKCE Int. J. Graphs Comb. 14 (2017), no. 2, 101–111.
19.34. Chauhan, S. S.; Utreja, K,; Imdad, M.; Ahmadullah, Md. Strong convergence theorems for a quasi contractive type mapping employing a new iterative scheme with an application. Honam Math. J. 39 (2017), no. 1, 1–25.
19.35. Alecsa, C. D., On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces. International Journal Of Nonlinear Analysis And Applications. 8 (2017), no. 1, 353-388.
19.36. Okeke, G. A.; Abbas, M. A solution of delay differential equations via Picard-Krasnoselskii hybrid iterative process. Arab. J. Math. (Springer) 6 (2017), no. 1, 21–29.
19.37. Wang, HanYi; Yi, ShiTing; Sharma, Mukul M. A computationally efficient approach to modeling contact problems and fracture closure using superposition method. Theoretical And Applied Fracture Mechanics 93 (2018), 276-287.
19.38. Fathollahi, S.; Rezapour, S. Efficacy of coefficients on rate of convergence of some iteration methods for quasi-contractions. Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 3, 1517–1523.
19.39. Saddeek, A. M.; Hussain, N. Duality fixed points for multivalued generalized $K_1J$-pseudocontractive Lipschitzian mappings. Acta Math. Univ. Comenian. (N.S.) 88 (2019), no. 1, 101–112.
19.40. Akhtar, Z.; Khan, M. A. Ahmad. Rates of convergence for a class of generalized quasi contractive mappings in Kohlenbach hyperbolic spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 1, 173–182.
19.41. Gursoy, F.; Erturk, M.; Dikmen, M. Some fixed point results for quasi-strictly contractive operators in hyperbolic spaces. Journal Of Nonlinear And Convex Analysis. 20 (2019), no. 11, 2281-2295.
19.42. Qing, L.; Li, Y.; Tang, W.; et al. Dynamic Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density Functional Theory Study. LANGMUIR 35 (2019), no. 12, 4254-4262.
19.43. Okeke, G. A. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 30 (2019), no. 5-6, 817–835.
[20] E. Karapinar, Vasile Berinde, Quadruple fixed point theorems for nonlinear contractions in partially ordered metric spaces, Banach J. Math. Anal. 6 (2012), No. 1, 74-89
20.1. Z. Golubovic; Z. Kadelburg; S. Radenovic, Common fixed points of ordered g-quasi contractions and weak contractions in ordered metric spaces, Fixed Point Theory Appl. 2012, 2012:20 doi:10.1186/1687-1812-2012-20
20.2. E. Karapinar, Nguyen Van Luong, Quadruple fixed point theorems for nonlinear contractions, Comput. Math. Appl. doi:10.1016/j.camwa.2012.02.061
20.3. Mustafa Z.; Aydi H.; Karapinar E., Mixed g-monotone property and quadruple fixed point theorems in partially ordered metric spaces, Fixed Point Theory Appl. 2012 Pages: 1-19 Article Number: 71 DOI: 10.1186/1687-1812-2012-71
20.4. Karapinar, E., Shatanawi, W., Mustafa, Z., Quadruple fixed point theorems under nonlinear contractive conditions in partially ordered metric spaces, J. Appl. Math. 2012, Article number 951912
20.5. A. Roldán, J. Martínez-Moreno, C. Roldán, and E. Karapinar, Multidimensional Fixed-Point Theorems in Partially Ordered Complete Partial Metric Spaces under (\Psi, \Phi)-Contractivity Conditions, Abstr. Appl. Anal. Volume 2013 (2013), Article ID 634371, 12 pages
20.6. Karapinar, E., Roldán, A., Martínez-Moreno, J., Roldán, C., Meir-Keeler type multidimensional fixed point theorems in partially ordered metric spaces, Abstr. Appl. Anal. 2013, 2013, Article number 406026
20.7. Shuang Wang, Coincidence point theorems for G-isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:96
20.8. Xiao-lan Liu, Quadruple fixed point theorems in partially ordered metric spaces with mixed g-monotone property, Fixed Point Theory Appl. 2013, 2013:147 doi:10.1186/1687-1812-2013-147
20.9. E. Karapinar and A. Roldán, A note on ‘n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces’, J. Ineq. Appl. 2013, 2013:567 doi:10.1186/1029-242X-2013-567
20.10. Jun Wu and Yicheng Liu, Fixed point theorems for monotone operators and applications to nonlinear elliptic problems, Fixed Point Theory Appl. 2013, 2013:134 doi:10.1186/1687-1812-2013-134
20.11. Jun Wu and Yicheng Liu, Note for the tripled and quadruple fixed points of the mixed monotone mappings, Bull. Korean Math. Soc. 50 (2013), No. 3, pp. 993–1005
20.12. M. Ertürk and V. Karakaya, n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces, J. Ineq. Appl. 2013, 2013:196 doi:10.1186/1029-242X-2013-196
20.13. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
20.14. Berzig, M., E. Karapinar and A. Roldán, Discussion on generalized-(αψ, βϕ)-contractive mappings via generalized altering distance function and related fixed point theorems. Abstr. Appl. Anal., Article Number: 259768 Published: 2014
20.15. Kumam, Poom, et al., Berinde-Borcut tripled fixed point theorem in partially ordered (intuitionistic) fuzzy normed spaces. J. Ineq. Appl. 2014.1 (2014): 47.
20.16. X.-L. Liu, Common fixed points of ordered g-contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2014, 2014:28
20.17. E. Karapınar, A. Roldán, N. Shahzad, W. Sintunavarat, Discussion of coupled and tripled coincidence point theorems for φ-contractive mappings without the mixed g-monotone property, Fixed Point Theory Appl. 2014, 2014:92
20.18. P. Kumam and A. F. Roldán López de Hierro, On Existence and Uniqueness of -Best Proximity Points under (phi,theta,alpha,g)-Contractivity Conditions and Consequences, Abstr. Appl. Anal. Volume 2014 (2014), Article ID 234027, 14 pages
20.19. S. A. Al-Mezel, H. H. Alsulami, E. Karapinar, and Antonio-Francisco Roldán López-de-Hierro, Discussion on „Multidimensional Coincidence Points” via Recent Publications, Abstr. Appl. Anal., Volume 2014, Article ID 287492, 13 pages
20.20. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Cho, Y. J. Multidimensional coincidence point results for compatible mappings in partially ordered fuzzy metric spaces. Fuzzy Sets and Systems 251 (2014), 71–82.
20.21. Karapınar, E., Roldán-López-de-Hierro, A.-F., A note on `$(G,F)$-closed set and tripled point of coincidence theorems for generalized compatibility in partially metric spaces’. J. Inequal. Appl. 2014, 2014:522, 12 pp.
20.22. Erturk, M., Karakaya, V., n-Tuplet Coincidence Point Theorems in Intuitionistic Fuzzy Normed Spaces, J. Function Spaces, 10.1155/2014/821342 2014
20.23. Batra, Rakesh; Vashistha, Sachin, coupled coincidence point theorems for nonlinear contractions under c-distance in cone metric spaces, Annals of Functional Analysis 4 (2013), No. 1, 138-148
20.24. Jianhua Chen, Xianjiu Huang, Quadruple fixed point theorems under (φ, ψ)-contractive conditions in partially ordered G-metric spaces with mixed g-monotone property, J. Nonlinear Sci. Appl. 8 (2015), 285–300
20.25. De la Sen, M., On weak contractive cyclic maps in generalized metric spaces and some related results on best proximity points and fixed points. Discrete Dyn. Nat. Soc. 2016, Art. ID 4186960, 14 pp.
20.26. Alam, Aftab; Imdad, Mohammad; Ali, Javid. Unified multi-tupled fixed point theorems involving mixed monotone property in ordered metric spaces. Cogent Math. 3 (2016), Art. ID 1248270, 50 pp.
20.27. Akhadkulov, H.; Noorani, S. M.; Saaban, A. B.; Alipiah, F. M.; Alsamir, H. Notes on multidimensional fixed-point theorems. Demonstr. Math. 50 (2017), no. 1, 360–374.
20.28. Akhadkulov, H.; Saaban, A. B.; Alipiah, F. M.; et al., Estimate for Picard Iterations of a Hermitian Matrix Operator, Book Series: AIP Conference Proceedings Volume: 1905 Article Number: UNSP 030004 Published: 2017
20.29. Akhadkulov, H.; Saaban, A.; Akhatkulov, S.; et al. Multidimensional Fixed-Point Theorems and Applications. Book Series: AIP Conference Proceedings Volume: 1870 Article Number: UNSP 020002 Published: 2017
20.30. Mustafa, Z.; Jaradat, M. M. M.; Karapınar, E. A new fixed point result via property $P$ with an application. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 2066–2078.
[21] V. Berinde and M. Pacurar, Fixed points and continuity of almost contractions, Fixed Point Theory, 9 (2008), No. 1, 23-34
21.1. Petrusel, A; Petrusel, G., Multivalued contractions of Feng-Liu type in complete gauge spaces, Carpathian J. Math.24 (2008), No. 3, 392-396
21.2. M.O. Olatinwo, Some results on the continuous dependence of the fixed points in normed linear space, Fixed Point Theory, 10 (2009), No. 1, 151-157
21.3. Feng, Y., Mao, W., The equivalence of cone metric spaces and metric spaces, Fixed Point Theory 11 (2010), Issue 2, 259-264
21.4. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
21.5. A.-D. Filip and A. Petruşel, Fixed Point Theorems on Spaces Endowed with Vector-Valued Metrics, Fixed Point Theory Appl., Volume 2010 (2010), Article ID 281381, 15 pages, doi:10.1155/2010/281381
21.6. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
21.7. W. S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl., 159 (2012), no. 1, 49–56.
21.8. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
21.9. Hussain N.; Cho Y. J., Weak Contractions, Common Fixed Points, and Invariant Approximations, J. INEQ. APPL. Article Number: 390634 DOI: 10.1155/2009/390634
21.10. Du, W.-S., On generalized weakly directional contractions and approximate fixed point property with applications, Fixed Point Theory Appl. 2012, Article Number: 6 DOI: 10.1186/1687-1812-2012-6
21.11. Abbas, M., Coincidence points of multivalued f-almost nonexpansive mappings, Fixed Point Theory, 13 (2012), No. 1, 3-10
21.12. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
21.13. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
21.14. Jleli, M; Karapinar, E; Samet, B, Fixed Point Results for Almost Generalized Cyclic (psi, phi)-Weak Contractive Type Mappings with Applications, Abstr. Appl. Anal., 10.1155/2012/917831 2012
21.15. D. Turkoglu and V. Ozturk, Common Fixed Point Results for Four Mappings on Partial Metric Spaces, Abstr. Appl. Anal., Volume 2012 (2012), Article ID 190862, 11 pages doi:10.1155/2012/190862R
21.16. Shatanawi, W., Postolache, M., Some fixed-point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., 2012, art. no. 815870
21.17. W. Shatanawi and M. Postolache, Some Fixed-Point Results for a Weak Contraction in Metric Spaces, Abstr. Appl. Anal. 2012, Article ID 815870, 19 pages doi:10.1155/2012/815870
21.18. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271 doi:10.1186/1687-1812-2013-271
21.19. A. Amini-Harandi, M. Fakhar, H. R. Hajisharifi and N. Hussain, Some new results on fixed and best proximity points in preordered metric spaces, Fixed Point Theory Appl. 2013, 2013:263
21.20. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
21.21. Abbas, M., Jong Kyu Kim, and Talat Nazir, Common Fixed Point of Mappings Satisfying Almost Generalized Contractive Condition in Partially Ordered G-Metric Spaces, J. Comput. Anal. Appl. 19 (2015), No. 1
21.22. M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f, L−almost F−contraction with applications, J. Nonlinear Sci. Appl. 8 (2015), 919–934
21.23. Hussain, N., Arshad, M., Abbas, M., Hussain, A., Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, Journal of Nonlinear Science and Applications, 9 (2016), No. 4, 1702-1715
21.24. Alfuraidan, M. R.; Bachar, M.; Khamsi, M. A., Almost monotone contractions on weighted graphs, J. of Nonlinear Sciences and Applications, 9 (2016), no. 8, 5189-5195
21.25. Choudhury, B. S.; Metiya, N.; Debnath, P., End Point Results in Metric Spaces Endowed with a Graph. J. Math. 2016, Art. ID 9130107, 7 pp.
21.26. Olatinwo, M. O., The continuous dependence of the fixed points for nonexpansive and quasi-nonexpansive mappings in uniformly convex Banach space. Fixed Point Theory 17 (2016), no. 2, 427-434.
21.27. Hussain, A.; Arshad, M.; Abbas, M. New type of fixed point result of F-contraction with applications. J. Appl. Anal. Comput. 7 (2017), no. 3, 1112–1126.
21.28. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
21.29. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
21.30. Ansari, A. H.; Guran, L.; Latif, A. Fixed point problems concerning contractive type operators on KST-spaces. Carpathian J. Math. 34 (2018), no. 3, 287–294.
21.31. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
21.32. Petruşel, A. Fixed points vs. coupled fixed points. J. Fixed Point Theory Appl. 20 (2018), no. 4, Art. 150, 11 pp.
[22] Berinde V., Common fixed points of noncommuting almost contractions in cone metric spaces. Math. Commun. 15 (2010) 229-242
22.1. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
22.2. Abbas M.; Jovanovic Mirko; Radenovic S.; et al., Abstract metric spaces and approximating fixed points of a pair of contractive type mappings, J. Comput. Anal. Appl. 13 (2011) No. 2 243-253
22.3. J.O. Olaleru, Approximation of common fixed points of weakly compatible pairs using the Jungck iteration, Appl. Math. Comput. 217 (2011), No. 21, 8425-8431
22.4. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
22.5. Ciric L.; Abbas M.; Saadati Reza; et al., Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011) No. 12 5784-5789
22.6. Karapinar, E., A note on common fixed point theorems in partial metric spaces, Miskolc Math. Notes, Vol. 12 (2011), No. 2, pp. 185–191
22.7. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
22.8. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
22.9. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
22.10. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
22.11. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263
22.12. H. Aydi, S. H. Amor and E. Karapinar, Berinde-Type Generalized Contractions on Partial Metric Spaces, Abstr. Appl. Anal. 2013 (2013), Article ID 312479, 10 pages
22.13. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
22.14. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271
22.15. N. Hussain, V. Parvaneh, J. R. Roshan and Z. Kadelburg, Fixed points of cyclic weakly (ψ,φ,L,A,B)-contractive mappings in ordered b-metric spaces with applications, Fixed Point Theory Appl. 2013, 2013:256 doi:10.1186/1687-1812-2013-256
22.16. N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Ineq. Appl. 2013, 2013:114
22.17. Sastry, K. P. R.; Rao, Ch. Srinivasa; Sekhar, A. Chandra; Balaiah, M. A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces. J. Nonlinear Sci. Appl. 6 (2013), no. 4, 285–292.
22.18. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
22.19. Reza Allahyari, Reza Arab and Ali Shole Haghighi, A generalization on weak contractions in partially ordered b-metric spaces and its application to quadratic integral equations, J Inequal Appl 2014, 2014:355 doi:10.1186/1029-242X-2014-355
22.20. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
22.21. Dinarvand, M. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
22.22. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
22.23. Fomenko, T. N. Fixed points and coincidences of families of mappings between ordered sets and some metrical consequences. Izvestiya Mathematics Volume: 83 Issue: 1 Pages: 151-172 Published: FEB 2019
[23] V. Berinde, M. Pacurar, The role of the Pompeiu-Hausdorff metric in fixed point theory, Creat. Math. Inform. 22 (2013) 143-150.
23.1. X.B. Li, S.J. Li, Hölder continuity of perturbed solution set for convex optimization problems, Appl. Math. Comput. 232 (2014) 908–918
23.2. J. Tiammee and S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl. 2014, 2014:70
23.3. Acar, Ozlem; Altun, Ishak, A Fixed Point Theorem for Multivalued Mappings with delta-Distance, Abstr. Appl. Anal. Article Number: 497092 Published: 2014
23.4. Ghorbanian, R.; Hedayati, Vahid; Postolache, Mihai; et al., On a fractional differential inclusion via a new integral boundary condition, J Inequal Appl 2014: 319 Published: AUG 21 2014
23.5. Alleche, Boualem, On hemicontinuity of bifunctions for solving equilibrium problems, Adv. Nonlinear Anal. 3 (2014), No. 2, 69-80
23.6. Minak, G.; Altun, I.; Romaguera, S., Recent developments about multivalued weakly Picard operators. Bull. Belg. Math. Soc. Simon Stevin 22 (2015), no. 3, 411–422.
23.7. Ishak Altun, Murat Olgun and Gulhan Mınak, On a new class of multivalued weakly Picard operators on complete metric spaces, Taiwanese J. Math. 19 (2015), No. 3, pp. 659-672
23.8. G. Minak, M. Olgun and I. Altun, A new approach to fixed point theorems for multivalued contractive maps, Carpathian J. Math.31 (2015), No. 2, 241-248
23.9. Alfuraidan, M.R., Remarks on monotone multivalued mappings on a metric space with a graph, J. Inequal. Appl. 2015, 2015:202, 7p
23.10. F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math.31 (2015), No. 3, 403-410
23.11. Manuel De la Sen, Antonio F Roldán, Ravi P Agarwal, On contractive cyclic fuzzy maps in metric spaces and some related results on fuzzy best proximity points and fuzzy fixed points, Fixed Point Theory Appl. 2015, 2015:103
23.12. A. Hanjing and S. Suantai, Coincidence point and fixed point theorems for a new type of G-contraction multivalued mappings on a metric space endowed with a graph, Fixed Point Theory Appl. (2015) 2015:171
23.13. Choudhury, Binayak S.; Bandyopadhyay, Chaitali. Stability of fixed point sets of a class of multivalued nonlinear contractions. J. Math. 2015, Art. ID 302012, 4 pp.
23.14. Alleche, B., Nachi, K., More on the behaviors of fixed points sets of multifunctions and applications. Opuscula Math. 35 (2015), no. 4, 427–443.
23.15. Altun, Ishak; Minak, Gülhan. On fixed point theorems for multivalued mappings of Feng-Liu type. Bull. Korean Math. Soc. 52 (2015), no. 6, 1901–1910.
23.16. De la Sen, M. On probabilistic alpha-fuzzy fixed points and related convergence results in probabilistic metric and Menger spaces under some Pompeiu-Hausdorff-like probabilistic contractive conditions. J. Funct. Spaces 2015, Art. ID 213174, 12 pp.
23.17. O. Acar and I. Altun, Multivalued F-contractive mappings with a graph and some fixed point results, Publ. Math. Debrecen In-print: Ref. no.: 7308 (2016), 1–13
23.18. Altun, I.; Durmaz, G.; Mınak, G.; Romaguera, S., Multivalued almost $F$-contractions on complete metric spaces. Filomat 30 (2016), no. 2, 441–448.
23.19. Altun, I.; Olgun, M.; Mınak, G., A new approach to the Assad-Kirk fixed point theorem. J. Fixed Point Theory Appl. 18 (2016), no. 1, 201–212.
23.20. Altun, I.; Al Arifi, N.; Jleli, M.; Lashin, A.; Samet, B., Feng-Liu type fixed point results for multivalued mappings on JS-metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 3892–3897.
23.21. Olgun, M.; Minak, G.; Altun, I., A new approach to Mizoguchi-Takahashi type fixed point theorems, J. Nonlinear Convex Anal. 17 (2016), no. 3, 579–587.
23.22. Altun, I.; Minak, G.; Olgun, M., Fixed points of multivalued nonlinear F-contractions on complete metric spaces, Nonlinear Analysis-Modelling and Control, 21 (2016), no. 2, 201-210
23.23. Mınak, G.; Altun, I., On the effect of $\alpha$-admissibility and $\theta$-contractivity to the existence of fixed points of multivalued mappings. Nonlinear Anal. Model. Control 21 (2016), no. 5, 673–686.
23.24. Baleanu, D.; Hedayati, V.; Rezapour, S.; et al., On two fractional differential inclusions, SPRINGERPLUS 5 (2016), Article Number: 882
23.25. Hedayati, V.; Rezapour, S., The existence of solution for a $k$-dimensional system of fractional differential inclusions with anti-periodic boundary value conditions. Filomat 30 (2016), no. 6, 1601–1613.
23.26. Durmaz, G.; Altun, I. Fixed point results for $\alpha$-admissible multivalued $F$-contractions. Miskolc Math. Notes 17 (2016), no. 1, 187–199.
23.27. Harmati, Istvan A.; Koczy, Laszlo T. On the Sensitivity of Type-2 Fuzzy Signatures and the Generalizations of the Extension Principle Book Series: IEEE International Fuzzy Systems Conference Proceedings Pages: 1301-1307 Published: 2016
23.28. Javahernia, M.; Razani, A.; Khojasteh, F. Fixed point of multi-valued contractions via manageable functions and Liu’s generalization. Cogent Math. 3 (2016), Art. ID 1276818, 13 pp.
23.29. Alfuraidan, Monther Rashed. Metric fixed point theory in spaces with a graph. Fixed point theory and graph theory, 287–363, Elsevier/Academic Press, Amsterdam, 2016. Pages: 287-363
23.30. Minak, G.; Altun, I. A stationary point theorem for multivalued theta-contractions. Journal Of Nonlinear Functional Analysis Article Number: 12 Published: 2016
23.27. Hancer, H. A.; Minak, G.; Altun, I., On a broad category of multivalued weakly Picard operators, Fixed Point Theory 18 (2017), no. 1, 229-236
23.28. Acar, Özlem. A fixed point theorem for multivalued almost $F_\delta$-contraction. Results Math. 72 (2017), no. 3, 1545–1553.
23.29. Ghorbanian, Vahid; Rezapour, Shahram. On a system of fractional finite difference inclusions. Adv. Difference Equ. 2017, Paper No. 325, 14 pp.
23.30. Iqbal, I.; Hussain, N.; Sultana, N. Fixed points of multivalued non-linear $\Cal F$ -contractions with application to solution of matrix equations. Filomat 31 (2017), no. 11, 3319–3333.
23.31. Tiammee, Jukrapong; Suantai, Suthep. Endpoints of multi-valued weakly contraction in complete metric spaces endowed with graphs. Filomat 31 (2017), no. 14, 4319–4329.
23.32. Rezapour, Sh.; Hedayati, V. On a Caputo fractional differential inclusion with integral boundary condition for comvex-compact and nonconvex-compact valued multifunctions. Kragujevac J. Math. 41 (2017), no. 1, 143–158.
23.33. Minak, G.; Altun, I.; Olgun, M. Fixed points of F-contractive type fuzzy mappings. Journal Of Intelligent & Fuzzy Systems Volume: 33 Issue: 3 Pages: 1435-1439 Published: 2017
23.34. Tiammee, J.; Suantai, S.; Cho, Y. J. Existence theorems of a new set-valued MT-contraction in $b$-metric spaces endowed with graphs and applications. Fixed Point Theory 19 (2018), no. 2, 785–800.
23.35. Işik, H.; Ionescu, Cristiana. New type of multivalued contractions with related results and applications. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 2, 13–22.
23.36. Şahin, Hakan; Altun, Ishak; Türkoğlu, Duran. Fixed point results for mixed multivalued mappings of Feng-Liu type on $M_b$-metric spaces. Mathematical methods in engineering, 67–80, Nonlinear Syst. Complex., 23, Springer, Cham, 2019.
23.37. Farajzadeh, Ali; Chuasuk, Preeyanuch; Kaewcharoen, Anchalee; Mursaleen, Mohammad. An iterative process for a hybrid pair of generalized $I$-asymptotically nonexpansive single-valued mappings and generalized nonexpansive multi-valued mappings in Banach spaces. Carpathian J. Math. 34 (2018), no. 1, 31–45.
23.38. Tiammee, Jukrapong. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
23.39. Marošević, Tomislav. The Hausdorff distance between some sets of points. Math. Commun. 23 (2018), no. 2, 247–257.
23.40. Acar, Özlem. Rational type multivalued $F_G$-contractive mappings with a graph. Results Math. 73 (2018), no. 2, Art. 52, 9 pp.
23.41. Baghani, H. Generalized multivalued F-contractions on incomplete metric spaces. Int. J, Nonlinear Anal. Appl. Volume: 9 Issue: 2 Pages: 70-84 Published: SUM-FAL 2018
23.42. Roldan Lopez de Hierro, Antonio Francisco; Khojasteh, Farhsid; Moradi, Sirous. On quasi-contractive multivalued mappings’ open problem in complete metric spaces. Math. Methods Appl. Sci. 41 (2018), no. 17, 7147–7157.
23.43. Chistyakov, Vyacheslav V. Asymmetric variations of multifunctions with application to functional inclusions. J. Math. Anal. Appl. 478 (2019), no. 2, 421–444.
23.44. Bunlue, Nuttawut; Suantai, Suthep. Existence and convergence theorems for Berinde nonexpansive multivalued mapping on Banach spaces. Afr. Mat. 30 (2019), no. 3-4, 483–494.
23.45. Patle, P.; Vujakovic, J.; Patel, D.; et al. Caristi, Nadler and H+-Type Contractive Mappings and Their Fixed Points in theta-Metric Spaces. Symmetry-Basel Volume: 11 Issue: 4 Article Number: 504 Published: APR 2019
23.46. Qawaqneh, H,; Noorani, M. S. Md; Shatanawi, W.; et al. Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application. Mathematics Volume: 7 Issue: 2 Article Number: 132 Published: FEB 2019
23.47. Pourrazi, Sanaz; Khojasteh, Farshid; Javahernia, Mojgan; Khandani, Hassan. An affirmative answer to quasi-contractions’ open problem under some local constraints in $JS$-metric spaces. Math. Model. Anal. 24 (2019), no. 3, 445–456.
23.48. Lashkaripour, R.; Baghani, H.; Ahmadi, Z. A new approach to some fixed point theorems for multivalued nonlinear F-contractive maps. Mat. Vesnik 71 (2019), no. 4, 368–377.
23.49. Dhawan, P.; Jain, K.; Kaur, J. alpha(H)-psi(H)-Multivalued Contractive Mappings and Related Results in Complete Metric Spaces with an Application. Mathematics v. 7 Issue: 1 Article Number: 68 Published: JAN 2019
23.50. Sahin, Hakan; Aslantas, Mustafa; Altun, Ishak. Feng-Liu type approach to best proximity point results for multivalued mappings. J. Fixed Point Theory Appl. 22 (2020), no. 1, Art. 11, 13 pp.
23.51. Samei, M. E.; Hedayati, V.; Ranjbar, G. K. The existence of solution for $k$-dimensional system of Langevin Hadamard-type fractional differential inclusions with $2k$ different fractional orders. Mediterr. J. Math. 17 (2020), no. 1, Art. 37, 23 pp.
[24] Berinde, V., A common fixed point theorem for compatible quasi contractive self mappings in metric spaces, Appl. Math. Comput., 213 (2009), No. 2, 348-354
24.1. Abbas, M., Rhoades, B.E., Nazir, T., Common fixed points for four maps in cone metric spaces, Appl. Math. Comput., 216 (2010), No. 1, 80–86
24.2. Choudhury, B.S., Kundu, A., Coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Anal. 73 (2010), No. 8, 2524-2531
24.3. Liu, Jianzhou; Zhang, Juan, The existence uniqueness and the fixed iterative algorithm of the solution for the discrete coupled algebraic Riccati equation, Int. J. Control 84 (8): 1430-1441 10.1080/00207179.2012.604794 2011
24.4. J.O. Olaleru, Approximation of common fixed points of weakly compatible pairs using the Jungck iteration, Appl. Math. Comput. 217 (2011), No. 21, 8425-8431
24.5. Karapinar, Erdal. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 12 (2011), no. 2, 185–191.
24.6. Păcurar, Mădălina. Fixed point theory for cyclic Berinde operators. Fixed Point Theory 12 (2011), no. 2, 419–428.
24.7. Abbas, M.; Jovanović, Mirko; Radenović, S.; Sretenović, Aleksandra; Simić, Suzana. Abstract metric spaces and approximating fixed points of a pair of contractive type mappings. J. Comput. Anal. Appl. 13 (2011), no. 2, 243–253.
24.8. Ćirić, Ljubomir; Abbas, Mujahid; Saadati, Reza; Hussain, Nawab. Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 217 (2011), no. 12, 5784–5789.
24.9. Olaleru, J. O. Approximation of common fixed points of weakly compatible pairs using the Jungck iteration. Appl. Math. Comput. 217 (2011), no. 21, 8425–8431.
24.10. Samet, Bessem; Vetro, Calogero. Berinde mappings in orbitally complete metric spaces. Chaos Solitons Fractals 44 (2011), no. 12, 1075–1079.
24.11. Ahmad, A. G. B.; Fadail, Z. M.; Nashine, H. K.; Kadelburg, Z.; Radenović, S. Some new common fixed point results through generalized altering distances on partial metric spaces. Fixed Point Theory Appl. 2012, 2012:120, 15 pp.
24.12. Zhang, Juan; Liu, Jianzhou. New matrix bounds, an existence uniqueness and a fixed-point iterative algorithm for the solution of the unified coupled algebraic Riccati equation. Int. J. Comput. Math. 89 (2012), no. 4, 527–542.
24.13. Erhan, İnci M.; Karapınar, Erdal; Sekulić, Tanja. Fixed points of $(\psi,\phi)$ contractions on rectangular metric spaces. Fixed Point Theory Appl. 2012, 2012:138, 12 pp.
24.14. Timiş, I. Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations. Miskolc Math. Notes 13 (2012), no. 2, 555–567.
24.15. Timis, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations, Miskolc Math. Notes, 13 (2012), No. 2, 555–567
24.16. Bin A., Abd G.; Fadail, Z. M.; Nashine, H. K.; et al., Some new common fixed point results through generalized altering distances on partial metric spaces, Fixed Point Theory Appl. 2012:120 DOI: 10.1186/1687-1812-2012-120
24.17. Erhan, I. M.; Karapinar, E.; Sekulic, T., Fixed points of (psi, phi) contractions on rectangular metric spaces, Fixed Point Theory Appl. 2012, 2012:138 DOI: 10.1186/1687-1812-2012-138
24.18. Sintunavarat, Wutiphol; Kim, Jong Kyu; Kumam, Poom. Fixed point theorems for a generalized almost $(\straightphi,\varphi)$-contraction with respect to $S$ in ordered metric spaces. J. Inequal. Appl. 2012, 2012:263, 11 pp.
24.19. Aghajani, Asadollah; Radenović, Stojan; Roshan, Jamal Rezaei. Common fixed point results for four mappings satisfying almost generalized $(S,T)$-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 218 (2012), no. 9, 5665–5670.
24.20. Păcurar, Mădălina. Common fixed points for almost Presić type operators. Carpathian J. Math. 28 (2012), no. 1, 117–126.
24.21. Altun, Ishak; Acar, Özlem. Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topology Appl. 159 (2012), no. 10-11, 2642–2648.
24.22. Shobkolaei, N.; Sedghi, S.; Roshan, J. R.; Altun, I. Common fixed point of mappings satisfying almost generalized $(S,T)$-contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 219 (2012), no. 2, 443–452.
24.23. Dorić, D, Nonlinear coupled coincidence and coupled fixed point theorems for not necessary commutative contractive mappings in partially ordered probabilistic metric spaces, Appl. Math. Comput. 219 (2013), No. 11, 5926-5935
24.24. Haghi, R.H., Rezapour, Sh. and Shahzad, N., Be careful on partial metric fixed point results, Topology Appl. 160 (2013) 450-454
24.25. Jiang, S.; Li, Z., Generalized Contractions of Rational Type in Ordered Partial Metric Spaces, Abstr. Appl. Anal. 2013 Article Number: 928017 DOI: 10.1155/2013/928017
24.26. Hussain, Nawab; Karapınar, Erdal; Salimi, Peyman; Akbar, Farhana. $\alpha$-admissible mappings and related fixed point theorems. J. Inequal. Appl. 2013, 2013:114, 11 pp.
24.27. Shatanawi, Wasfi; Postolache, Mihai. Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 2013:54, 17 pp.
24.28. Aydi, Hassen; Hadj Amor, Sana; Karapınar, Erdal. Berinde-type generalized contractions on partial metric spaces. Abstr. Appl. Anal. 2013, Art. ID 312479, 10 pp.
24.29. Sastry, K. P. R.; Rao, Ch. Srinivasa; Sekhar, A. Chandra; Balaiah, M. A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces. J. Nonlinear Sci. Appl. 6 (2013), no. 4, 285–292.
24.30. Hussain, Nawab; Parvaneh, Vahid; Roshan, Jamal Rezaei; Kadelburg, Zoran. Fixed points of cyclic weakly $(\psi,\varphi,L,A,B)$-contractive mappings in ordered $b$-metric spaces with applications. Fixed Point Theory Appl. 2013, 2013:256, 18 pp.
24.31. Shatanawi, Wasfi; Postolache, Mihai. Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013, 2013:271, 16 pp.
24.32. Cho, Seong-Hoon. A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces. Carpathian J. Math. 30 (2014), no. 1, 63–70.
24.33. Erduran, Ali; Kadelburg, Z.; Nashine, H. K.; Vetro, C. A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
24.34. Allahyari, Reza; Arab, Reza; Shole Haghighi, Ali. A generalization on weak contractions in partially ordered $b$-metric spaces and its application to quadratic integral equations. J. Inequal. Appl. 2014, 2014:355, 15 pp.
24.35. Ljubomir Ćirić, Narin Petrot and Pornthip Promsinchai, Some fixed point theorems for a pair type of Bogin-Popescu mappings in complete metric spaces, J Nonlinear Convex Anal 16 (2015), No. 3, 551-562
24.36. Almeida, Á. Roldán-López-de-Hierro, A.-F. Sadarangani, K., On a fixed point theorem and its application in dynamic programming. Appl. Anal. Discrete Math. 9 (2015), no. 2, 221–244.
24.37. Xin, Q., Jiang, L., Common fixed point theorems for generalized k-ordered contractions and B-contractions on noncommutative Banach spaces, Fixed Point Theory Appl. 2015, 2015:77, 11p
24.38. Proinov, P.D., Nikolova, I.A., Approximation of point of coincidence and common fixed points of quasi-contraction mappings using the Jungck iteration scheme, Appl. Math. Comput., 264 (2015), 359-365
24.39. Zhang, Juan; Liu, Jianzhou. New upper and lower bounds, the iteration algorithm for the solution of the discrete algebraic Riccati equation. Adv. Difference Equ. 2015, 2015:313, 17 pp.
24.40. Van An, Tran; Van Dung, Nguyen; Kadelburg, Zoran; Radenović, Stojan. Various generalizations of metric spaces and fixed point theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 1, 175–198.
24.41. Xin, Qiaoling; Jiang, Lining; Ma, Zhenhua. Common fixed point theorems in $C^*$-algebra-valued metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4617–4627.
24.42. Dinarvand, M. Fixed points for generalized Geraghty contractions of Berinde type on partial metric spaces. Appl. Math. E-Notes 16 (2016), 176–190.
24.43. Liu, Jianzhou; Wang, Li; Zhang, Juan. The solution bounds and fixed point iterative algorithm for the discrete coupled algebraic Riccati equation applied to automatic control. IMA J. Math. Control Inform. 34 (2017), no. 4, 1135–1156.
24.44. Liu, Jianzhou; Wang, Li; Zhang, Juan. New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation. Internat. J. Control 90 (2017), no. 11, 2326–2337.
24.45. Abtahi, Mortaza. Common fixed point theorems of Meir-Keeler type in metric spaces. Fixed Point Theory 18 (2017), no. 1, 17–26.
24.46. Shatanawi, Wasfi. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
24.47. Zhang, Juan; Liu, Jianzhou. The matrix bounds and fixed-point iteration for the solution of the discrete algebraic Riccati equation. IMA J. Math. Control Inform. 36 (2019), no. 2, 681–699.
24.48. Razavi, S. S.; Masiha, H. P. Common fixed point theorems in c*-algebra-valued b-metric spaces with applications to integral equations. Fixed Point Theory 20 (2019), no. 2, 649-662.
24.49. Nazam, Muhammad; Aydi, Hassen; Noorani, Mohd Salmi; Qawaqneh, Haitham. Existence of fixed points of four maps for a new generalized $F$-contraction and an application. J. Funct. Spaces 2019, Art. ID 5980312, 8 pp.
24.50. Fomenko, T. N. Fixed points and coincidences of families of mappings between ordered sets and some metrical consequences. Izvestiya Mathematics 83 (2019), no. 1, 151-172.
[25] V. Berinde, On the stability of some fixed point procedures, Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica-Informatica, 18 (2002), No. 1, 7-14
25.1. M.O. Olatinwo, Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach space using the Ishikawa iteration process, Carpathian J. Math.24 (2008), No. 1, 82-87
25.2. Zhang, Shi-sheng; Wang, Xiong-rui; Liu, Min; Zhu, Jin-hua. Almost sure $T$-stability and convergence for random iterative algorithms. Appl. Math. Mech. (English Ed.) 32 (2011), no. 6, 805–810.
25.3. Olatinwo, M.O., Postolache, M., Stability results for Jungck-type iterative processes in convex metric spaces, Appl. Math. Comput. 218 (2012), No. 12, 6727-6732
25.4. Timis, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations, Miskolc Math. Notes, 13 (2012), No. 2, 555–567
25.5. C. Ionescu, S. Rezapour and M. E. Samei, Fixed points of some new contractions on intuitionistic fuzzy metric spaces, Fixed Point Theory Appl. 2013, 2013:168
25.6. Başarır, M., and Aynur Ş. On the strong and Δ-convergence of new multi-step and S-iteration processes in a CAT (0) space. J. Ineq. Appl. 2013 (2013): 482
25.7. A. Razani and M. Bagherboum, Convergence and stability of Jungck-type iterative procedures in convex b-metric spaces, Fixed Point Theory Appl. 2013, 2013:331
25.8. H. Akewe, G. Amechi Okeke and A. F Olayi, Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators, Fixed Point Theory Appl. 2014, 2014:45 doi:10.1186/1687-1812-2014-45
25.9. Faik Gürsoy, Vatan Karakaya, and B. E. Rhoades, Some Convergence and Stability Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms, Abstr Appl Anal Volume 2014 (2014), Article ID 806537, 12 pages
25.10. Chidume, C. E., Strong convergence and stability of Picard iteration sequences for a general class of contractive-type mappings. Fixed Point Theory Appl. 2014, 2014:233, 10 pp.
25.12. H. Akewe and G. A. Okeke, Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators, Fixed Point Theory Appl. (2015) 2015:66
25.13. G. A. Okeke and M. Abbas, Convergence and almost sure T-stability for a random iterative sequence generated by a generalized random operator, J. Ineq. Appl. 2015, 2015:146
25.14. Okeke, G. A., Kim, J. K., Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process. J. Inequal. Appl. 2015, 2015:290, 14 pp.
25.15. Wahab, O. T.; Rauf, K. On faster implicit hybrid Kirk-multistep schemes for contractive-type operators. Int. J. Anal. 2016, Art. ID 3791506, 10 pp.
25.16. Şahin, A.; Başarır, M., Convergence and data dependence results of an iteration process in a hyperbolic space. Filomat 30 (2016), no. 3, 569–582.
25.17. Afshari, H.; Aydi, H., Some results about Krasnosel’skiĭ-Mann iteration process. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4852–4859.
25.18. Başarir, Metin; Şahin, Aynur. Some results of the new iterative scheme in hyperbolic space. Commun. Korean Math. Soc. 32 (2017), no. 4, 1009–1024.
25.19. Verma, Mridula; Shukla, K. K. A new accelerated proximal gradient technique for regularized multitask learning framework. Pattern Recognition Letters 95 (2017), 98-103.
25.20. Wahab, Olalekan Taofeek; Rauf, Kamilu. Some results on implicit multistep fixed point iterative schemes for contractive-like operators in convex metric spaces. Bull. Math. Anal. Appl. 10 (2018), no. 3, 36–52.
25.21. Gürsoy, Faik; Khan, Abdul Rahim; Ertürk, Müzeyyen; Karakaya, Vatan. Weak $w^2$-stability and data dependence of Mann iteration method in Hilbert spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 11–20.
25.22. Atalan, Y.; Karakaya, V. Investigation of some fixed point theorems in hyperbolic spaces for a three step iteration process. Korean Journal Of Mathematics 27 (2019), no. 4, 929-947.
[26] Berinde, V., Approximating common fixed points of noncommuting discontinuous weakly contractive mappings in metric spaces, Carpathian J. Math.25 (2009), No. 1, 13-22
26.1. M. Abbas, P. Vetro and S. H. Khan, On fixed points of Berinde’s contractive mappings in cone metric spaces, Carpathian J. Math.26 (2010), No. 2, 121–133
26.2. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
26.3. Ćirić, L., Abbas, M., Saadati, R., Hussain, N., Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., 217 (2011), No. 12, 5784-5789
26.4. J.O. Olaleru, Approximation of common fixed points of weakly compatible pairs using the Jungck iteration, Appl. Math. Comput. 217 (2011), No. 21, 8425-8431
26.5. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
26.6. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
26.7. Pacurar, M., Common fixed points for almost Presic type operators, Carpathian J. Math., 28 (2012), No. 1, 117-126
26.8. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
26.9. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
26.10. W. Sintunavarat, J. K. Kim and P. Kumam, Fixed point theorems for a generalized almost (\Phi,\varphi)-contraction with respect to $S$ in ordered metric spaces, J. Ineq. Appl. 2012, 2012:263 doi:10.1186/1029-242X-2012-263
26.11. Shatanawi, W., Postolache, M., Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces, Fixed Point Theory Appl. 2013, art. no. 54
26.12. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
26.13. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
26.14. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188.
26.15. Chaira, K.; Kabil, M.; Kamouss, A. Common fixed points in generalized metric spaces with a graph. J. Math. 2019, Art. ID 2846315, 8 pp.
[27] Berinde V. Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. Taiwanese J Math 14 (2010) 1763-1776.
27.1. Samet, B., Vetro, C., Berinde mappings in orbitally complete metric spaces, Chaos, Solitons Fractals, 44 (2011), No. 12, 1075-1079
27.2. Pacurar, Madalina, Fixed point theory for cyclic Berinde operators, Fixed Point Theory 12 (2): 419-428 2011
27.3. Karapinar, Erdal. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 12 (2011), no. 2, 185–191.
27.4. A. Aghajani, S. Radenovic, J. R. Roshan, Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces, Appl. Math. Comput., 218 (2012) 5665–5670
27.5. I. Altun, O. Acar, Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces, Topology Appl. 159 (2012) No. 10-11, 2642-2648
27.6. N. Shobkolaei, S. Sedghi, J.R. Roshan, I. Altun, Common fixed point of mappings satisfying almost generalized (S,T)-contractive condition in partially ordered partial metric spaces, Appl. Math. Comput. 219 (2012) 443–452
27.7. W. Shatanawi and M. Postolache, Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces, Fixed Point Theory Appl. 2013, 2013:271 doi:10.1186/1687-1812-2013-271
27.8. N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Ineq. Appl. 2013, 2013:114
27.9. X. Huang, C. Zhu, X. Wen and L. Lalović, Some common fixed point theorems for a family of non-self mappings in cone metric spaces, Fixed Point Theory Appl. 2013, 2013:144
27.10. Erduran, A., Kadelburg, Z.; Nashine, H. K.; Vetro, C., A fixed point theorem for $(\phi,L)$-weak contraction mappings on a partial metric space. J. Nonlinear Sci. Appl. 7 (2014), no. 3, 196–204.
27.11. Cho, S.-H., A fixed point theorem for a Ćirić-Berinde type mapping in orbitally complete metric spaces, Carpathian J Math 30 (2014), No. 1, 63-64
27.12. Proinov, P.D., Nikolova, I.A., Approximation of point of coincidence and common fixed points of quasi-contraction mappings using the Jungck iteration scheme, Appl. Math. Comput., 264 (2015), 359-365
27.13. Ariza-Ruiz, D., Garcia-Falset, J., Iterative approximation to a coincidence point of two mappings, Appl. Math. Comput. 259 (2015), 762-776
27.14. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
27.15. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
27.16. Sarnmeta, P.; Suantai, S. Global minimization of best proximity points for semi-cyclic Berinde contractions. Carpathian J. Math. 34 (2018), no. 3, 411–416.
27.17. Shatanawi, W. Fixed and common fixed point theorems in frame of quasi metric spaces under contraction condition based on ultra distance functions. Nonlinear Anal. Model. Control 23 (2018), no. 5, 724–748.
27.18. García, G. Approximating coincidence points by $\alpha$-dense curves. Fixed Point Theory 20 (2019), no. 1, 185–193.
27.19. Chaira, Karim; Kabil, Mustapha; Kamouss, Abdessamad. Common fixed points in generalized metric spaces with a graph. J. Math. 2019, Art. ID 2846315, 8 pp.
[28] Berinde V., Sequences of operators and fixed points in quasimetric spaces, Studia Univ. Babeș-Bolyai, Math., 1996, 16, 23-27
28.1. M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2010), no. 2, 367–377
28.2. Z. Kadelburg, Stojan Radenovic, Meir–Keeler-type conditions in abstract metric spaces, Appl. Math. Lett. 24 (2011), No. 8, 1411-1414
28.3. Samreen, M., Kamran, T., Shahzad, N., Some fixed point theorems in b-metric space endowed with graph, Abstr. Appl. Anal. 2013, 2013: 967132
28.4. Bota, M.-F., Karapinar, E., Mleşniţe, O., Ulam-hyers stability results for fixed point problems via α-ψ-contractive mapping in (b)-metric space, Abstr. Appl. Anal. 2013, 2013: 825293
28.5. Razani, Abdolrahman; Bagherboum, Mozhgan. Convergence and stability of Jungck-type iterative procedures in convex $b$-metric spaces. Fixed Point Theory Appl. 2013, 2013:331, 17 pp.
28.6. Supak Phiangsungnoen and Poom Kumam, Generalized Ulam-Hyers stability and well-posedness for fixed point equation via α-admissibility, J Inequal Appl 2014, 2014:418 doi:10.1186/1029-242X-2014-418
28.7. Hussain, N., Parvaneh, V. , Roshan, J.R., Fixed point results for G-α-contractive maps with application to boundary value problems, Sci. World J. Volume 2014, 2014, Article number 585964
28.8. Latif, A., Roshan, J. R., Parvaneh, V., Hussain, N., Fixed point results via $\alpha$-admissible mappings and cyclic contractive mappings in partial $b$-metric spaces. J. Inequal. Appl. 2014, 2014:345, 26 pp.
28.9. Phiangsungnoen, Supak; Sintunavarat, Wutiphol; Kumam, Poom. Fixed point results, generalized Ulam-Hyers stability and well-posedness via $\alpha$-admissible mappings in $b$-metric spaces. Fixed Point Theory Appl. 2014, 2014:188, 17 pp.
28.10. Bessem Samet, The class of (α,ψ)-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:92
28.11. Jleli, M., Samet, B., A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. Volume 2015, Issue 1, 1 December 2015, 14p
28.12. A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 363–377
28.13. Ozturk, V.; Turkoglu, D., Fixed points for generalized $\alpha$-$\psi$-contractions in $b$-metric spaces. J. Nonlinear Convex Anal. 16 (2015), no. 10, 2059-2066.
28.14. Cvetković, M.; Karapınar, E.; Rakocević, V., Some fixed point results on quasi-$b$-metric-like spaces. J. Inequal. Appl. 2015, 2015:374, 17 pp.
28.15. Bota, M.-F., Ilea, V., Fixed point theorems for nonself operators in $b$-metric spaces. Fixed Point Theory 16 (2015), no. 2, 225-232.
28.16. Bota, M.-F., Chifu, C., Karapinar, E., Fixed point theorems for generalized $(\alpha\sb \ast -\Psi)$-Ćirić-type contractive multivalued operators in $b$-metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 1165–1177.
28.17. Aksoy, U.; Karapinar, E.; Erhan, İ. M., Fixed points of generalized $\alpha$-admissible contractions on $b$-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 17 (2016), no. 6, 1095–1108.
28.18. Karapınar, E.; O’Regan, D.; Roldán López de Hierro, A. F.; Shahzad, N., Fixed point theorems in new generalized metric spaces. J. Fixed Point Theory Appl. 18 (2016), no. 3, 645–671.
28.19. Phiangsungnoen, Supak, Ulam-Hyers Stability and Well-Posedness of the Fixed Point Problems for Contractive Multi-valued Operator in b-metric Spaces, Commun. Math. Appl. 7 (2016), no. 3, 241-262
28.20. Alsulami, Hamed H.; Gülyaz, Selma; Karapınar, Erdal; Erhan, İnci M. An Ulam stability result on quasi-$b$-metric-like spaces. Open Math. 14 (2016), 1087–1103.
28.21. Hammache, K.; Karapinar, E.; Ould-Hammouda, A. On admissible weak contractions in $b$-metric-like space. J. Math. Anal. 8 (2017), no. 3, 167–180.
28.22. Alsulami, Hamed H.; Karapınar, Erdal; Rakočević, Vladimir. Ćirić type nonunique fixed point theorems on $b$-metric spaces. Filomat 31 (2017), no. 11, 3147–3156.
28.23. Alharbi, Areej S. S.; Alsulami, Hamed H.; Karapinar, Erdal. On the power of simulation and admissible functions in metric fixed point theory. J. Funct. Spaces 2017, Art. ID 2068163, 7 pp.
28.24. Miculescu, Radu; Mihail, Alexandru. Caristi-Kirk type and Boyd & Wong – Browder – Matkowski-Rus type fixed point results in $b$-metric spaces. Filomat 31 (2017), no. 14, 4331–4340.
28.25. Chifu, Cristian; Petrusel, Gabriela, Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph, INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS Volume: 8 Issue: 2 Pages: 263-276 Published: SUM-FAL 2017
28.26. Abbas, Mujahid; Rakočević, Vladimir; Tsegaye Leyew, Bahru. Common fixed points of $(\alpha-\psi)$-generalized rational multivalued contractions in dislocated quasi b-metric spaces and applications. Filomat 31 (2017), no. 11, 3263–3284.
28.27. Chifu, C.; Petrusel, G. Existence and uniqueness of the solution for a general system of operator equations in b-metric spaces endowed with a graph. Int. J. Nonlinear Anal. Appl. 8 (2017), no. 2, 263-276
28.28. Ali, Basit; Abbas, Mujahid. Existence and Ulam-Hyers stability of fixed point problem of generalized Suzuki type $(\alpha_*,\psi_\varphi)$-contractive multivalued operators. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 4, 1129–1146.
28.29. Karapinar, Erdal; Czerwik, Stefan; Aydi, Hassen. $(\alpha,\psi)$-Meir-Keeler contraction mappings in generalized $b$-metric spaces. J. Funct. Spaces 2018, Art. ID 3264620, 4 pp.
28.30. Chen, Chi-Ming; Karapınar, Erdal; O’Regan, Donal. On $(\alpha-\phi)$-Meir-Keeler contractions on partial Hausdorff metric spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 1, 101–110.
28.31. Ozturk, Vildan; Turkoglu, Duran; Ansari, Arslan Hojat. Fixed points for generalized $(\Cal F,h,\alpha,\mu)$-$\psi$-contractions in $b$-metric spaces. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67 (2018), no. 2, 306–316.
28.32. Samreen, Maria; Kamran, Tayyab; Postolache, Mihai. Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 80 (2018), no. 4, 21–28.
28.33. Alqahtani, Badr; Karapınar, Erdal; Öztürk, Ali. On $(\alpha,\psi)$-$K$-contractions in the extended $b$-metric space. Filomat 32 (2018), no. 15, 5337–5345.
28.34. Fulga, Andreea; Taş, Ayşegül. Fixed point results via simulation functions in the context of quasi-metric space. Filomat 32 (2018), no. 13, 4711–4729.
28.35. Chifu, Cristian; Karapınar, Erdal; Petrusel, Gabriela. Qualitative properties of the solution of a system of operator inclusions in $b$-metric spaces endowed with a graph. Bull. Iranian Math. Soc. 44 (2018), no. 5, 1267–1281.
28.36. Karapinar, Erdal. Ćirić type nonunique fixed points results: a review. Appl. Comput. Math. 18 (2019), no. 1, 3–21.
28.37. Gupta, Anuradha; Rohilla, M. Coincidence point results in b-metric spaces via c-f-s-simulation function. Miskolc Mathematical Notes 20 (2019), no. 2, 911-924.
28.38. Bota, M.-F.; Karapinar, E. Fixed Point Problem Under a Finite Number of Equality Constraints on b-Banach spaces. Filomat 33 (2019), no. 18, 5837-5849.
28.39. Karapinar, E.; Fulga, A.; Alghamdi, M. A Common Fixed-Point Theorem for Iterative Contraction of Seghal Type. Symmetry-Basel 11 (2019), no. 4, Article Number: 470.
28.40. Karapinar, E. Recent Advances on the Results for Nonunique Fixed in Various Spaces. Axioms 8 (2019), no. 2 Article Number: 72.
28.41. Saleem, Naeem; Vujakovic, Jelena; Baloch, Wali Ullah; et al. Coincidence Point Results for Multivalued Suzuki Type Mappings Using theta-Contraction in b-Metric Spaces. Mathematics 7 (2019), no. 11 Article Number: 1017.
28.42. Khan, M. S.; Singh, Y. M.; Abbas, M.; et al.On non-unique fixed point of Ciric type operators in extended b-metric spaces and applications. Rendiconti Del Circolo Matematico Di Palermo Early Access: NOV 2019
[29] Alghamdi, MA, Berinde, V, Shahzad, N: Fixed points of multivalued nonself almost contractions. J. Appl. Math. 2013, 2013: 621614
29.1. W.-S. Du, A note on approximate fixed point property and Du-Karapinar-Shahzad’s intersection theorems, J. Ineq. Appl. 2013, 2013:506
29.2. Heng, W.-S., Du, W.-S., Yen, C.-L., New existence results for fixed point problem and minimization problem in compact metric spaces. Abstr. Appl. Anal. 2014, Art. ID 635903, 7 pp.
29.3. Ali, M. U., Kiran, Q., Shahzad, N., Fixed point theorems for multivalued mappings involving $\alpha$-function. Abstr. Appl. Anal. 2014, Art. ID 409467, 6 pp.
29.4. Petruşel, A., Rus, I.A., Serban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal. 15 (2014), no. 3, 493-513
29.5. J. Tiammee and S. Suantai, Coincidence point theorems for graph-preserving multi-valued mappings, Fixed Point Theory Appl 2014, 2014:70
29.6. Kumar, A., Rathee, S., Fixed point and common fixed point results in cone metric space and application to invariant approximation, Fixed Point Theory Appl. 2015, 2015:45, 17p
29.7. F. Vetro, A generalization of Nadler fixed point theorem, Carpathian J. Math.31 (2015), No. 3, 403-410
29.8. A. Hanjing and S. Suantai, Coincidence point and fixed point theorems for a new type of G-contraction multivalued mappings on a metric space endowed with a graph, Fixed Point Theory Appl. (2015) 2015:171
29.9. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Fixed points of multivalued nonself almost contractions in metric-like spaces. Math. Sci. (Springer) 9 (2015), no. 2, 103–108.
29.10. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
29.11. Hançer, Hatice Aslan; Olgun, Murat; Altun, Ishak. Some new types multivalued $F$-contractions on quasi metric spaces and their fixed points. Carpathian J. Math. 35 (2019), no. 1, 41–50.
29.12. Puangpee, J.; Suantai, S. Fixed point theorems for multivalued nonself Kannan-Berinde contraction mappings in complete metric spaces. Fixed Point Theory 20 (2019), no. 2, 623-634.
29.13. Bunlue, Nuttawut; Suantai, Suthep. Existence and convergence theorems for Berinde nonexpansive multivalued mapping on Banach spaces. Afr. Mat. 30 (2019), no. 3-4, 483–494.
[30] Berinde, V.; Pacurar, M., Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces, Fixed Point Theory Appl. 2012, 1-11 Article Number: 115
30.1. Abdeljawad, T.; Aydi, H.; Karapinar, E., Coupled Fixed Points for Meir-Keeler Contractions in Ordered Partial Metric Spaces, Math. Probl. Eng. Article Number: 327273 DOI: 10.1155/2012/327273
30.2. Aydi, H., Karapinar, E., Erhan, I.M., Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions, Abstr. Appl. Anal., Volume 2012, 2012, Article number781563
30.3. E. Karapinar and R. P Agarwal, A note on ‘Coupled fixed point theorems for α-ψ-contractive-type mappings in partially ordered metric spaces’, Fixed Point Theory Appl. 2013, 2013:216
30.4. Chandok, S., Karapinar, E., Saeed Khan, M., Existence and uniqueness of common coupled fixed point results via auxiliary functions, Bull. Iranian Math. Soc. 40 (2014), no. 1, 199-215
30.5. Feng Gu, Some common tripled fixed point results in two quasi-partial metric spaces, Fixed Point Theory Appl. 2014, 2014:71 doi:10.1186/1687-1812-2014-71
30.6. Jain, M., Tas, K., Rhoades, B. E., Gupta, N., Coupled Fixed Point Theorems for Generalized Symmetric Contractions in Partially Ordered Metric Spaces and applications, J. Comput. Anal. Appl. 16 (2014), No. 3, 438-454
30.7. Erdal Karapınar, Priya Shahi and Kenan Tas, Generalized α-ψ-contractive type mappings of integral type and related fixed point theorems, J Inequal Appl 2014, 2014:160
30.8. Imdad, M., Sharma, A., Erduran, A., Generalized Meir-Keeler type $n$-tupled fixed point theorems in ordered partial metric spaces. Fixed Point Theory Appl. 2014, 2014:114, 24 pp.
30.9. Roldán, A.; Martínez-Moreno, J.; Roldán, C.; Karapinar, E. Some remarks on multidimensional fixed point theorems. Fixed Point Theory 15 (2014), no. 2, 545–558.
30.10. Shahi, P., Kaur, J., Bhatia, S.S., Fixed point theorems for α-ψ-contractive type mappings of integral type with applications, J. Nonlinear Convex Anal. 16 (2015), no. 4, 745-760
30.11. Choudhury, Binayak S.; Bandyopadhyay, Chaitali. Coupled Meir-Keeler type contraction in metric spaces with an application to partial metric spaces. Vietnam J. Math. 44 (2016), no. 3, 623–636.
30.12. Deshpande, Bhavana; Handa, Amrish. Coupled coincidence point results for generalized symmetric Meir-Keeler contraction on partially ordered metric spaces with application. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 24 (2017), no. 2, 79–98.
30.13. Deshpande, B.; Handa, A. Employing $\alpha$-$\psi$-contraction to prove coupled coincidence point theorem for generalized compatible pair of mappings on partially ordered metric spaces. J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 25 (2018), no. 2, 73–94.
30.14. Abtahi, M.; Kadelburg, Z.; Radenović, S. Fixed points and coupled fixed points in partially ordered $\nu$-generalized metric spaces. Appl. Gen. Topol. 19 (2018), no. 2, 189–201.
30.15. Petruşel, A.; Petruşel, G. Coupled fractal dynamics via Meir-Keeler operators. Chaos Solitons Fractals 122 (2019), 206–212.
[31] N. Hussain, V. Berinde and N. Shafqat, Common fixed point and approximation results for generalized f-contractions, Fixed Point Theory, 10 (2009), 111-124
31.1. L. Ćirić, N. Hussain, F. Akbar, and J. S. Ume, Common fixed points for Banach operator pairs from the set of best approximations, Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 2 (2009), 319-336
31.2. Saadati R, Vaezpour, SM, Monotone generalized weak contractions in partially ordered metric spaces, Fixed Point Theory 11 (2010), No. 2, 375-382
31.3. Hussain, N., Shah, M.H., Kutbi, M.A., Coupled coincidence point theorems for nonlinear contractions in partially ordered quasi-metric spaces with a Q-function, Fixed Point Theory Appl. 2011, art. no. 703938
31.4. Hussain, N., Abbas, M., Common fixed point results for two new classes of hybrid pairs in symmetric spaces, Appl. Math. Comput., 218 (2011), no. 2, 542-547
31.5. N. Hussain, E. Karapinar, P. Salimi, F. Akbar, α-admissible mappings and related fixed point theorems, J. Ineq. Appl. 2013, 2013:114
31.6. N. Hussain, P. Salimi, A. Latif, Fixed point results for single and set-valued α-η-ψ-contractive mappings, Fixed Point Theory Appl. 2013, 2013:212
31.7. P. Salimi, A. Latif, N. Hussain, Modified α-ψ-contractive mappings with applications, Fixed Point Theory Appl. 2013, 2013:151
31.8. Hussain, N.; Salimi, P.; Vetro, P. Fixed points for $\alpha$-$\psi$-Suzuki contractions with applications to integral equations. Carpathian J. Math.30 (2014), no. 2, 197–207.
31.9. Akbar, F., Kutbi, M. A., Shah, M. H., Shafqat, N., Random coupled and tripled best proximity results with cyclic contraction in metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 940–956.
31.10. Liu, Z.; Zhu, C., Fixed point theorems of binary contraction comparable operators and an application. Discrete Dyn. Nat. Soc. 2015, Art. ID 314749, 7 pp.
31.11. Hussain, N.; Salimi, P., Fixed points for generalized $\psi$-contractions with application to integral equations. J. Nonlinear Convex Anal. 16 (2015), no. 4, 711–729.
31.12. Akbar, Farhana; Kutbi, Marwan Amin; Shah, Masood Hussain; Shafqat, Naeem. Random coupled and tripled best proximity results with cyclic contraction in metric spaces. J. Nonlinear Sci. Appl. 9 (2016), no. 3, 940–956.
[32] V. Berinde, A new generalization of Euler’s constant, Creat. Math. Inform. 18 (2) (2009) 123–128
32.1. C. Mortici, The asymptotic series of the generalized Stirling formula, Comput. Math. Appl., Volume 60, Issue 3, August 2010, Pages 786-791
32.2. C. Mortici, A quicker convergence toward the γ constant with the logarithm term involving the constant e, Carpathian J. Math., 26 (2010), No. 1, 86-91
32.3. Mortici, C., Ramanujan’s estimate for the gamma function via monotonicity arguments, Ramanujan J. 25 (2011), No. 2, 149-154
32.4. C.-P. Chen, C. Mortici, New sequence converging towards the Euler-Mascheroni constant, Comput. Math. Appl., 64 (2012), 391-398
32.5. Chen, Chao-Ping. Inequalities and asymptotic expansions for the psi function and the Euler–Mascheroni constant. J. Number Theory 163 (2016), 596–607.
[33] Berinde,V., Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes,Vol. 11 (2010), No. 1, pp. 13-26
33.1. Lauran M, Existence results for some differential equations with deviating argument, FILOMAT 25 (2011) No. 2 21-31
33.2. Ronto, A., Ronto, M., Periodic successive approximations and interval halving, Miskolc Math. Notes 13 (2012), No. 2, 459-482
33.3. Lauran, Monica. Existence results for some nonlinear integral equations. Miskolc Math. Notes 13 (2012), no. 1, 67–74.
33.4. J. H. Deng, J. R. Wang, Existence and approximation of solutions of fractional order iterative differential equations, Central Eur. J. Physics 11 (2013), No. 10, 1377-1386
33.5. Zhang, PP, Gong, XB, Existence of solutions for iterative differential equations, Electronic J. Diff. Eq., Article Number: 07, Published: JAN 7 2014
33.6. Ibrahim, R.W., Darus, M., Infective disease processes based on fractional differential equation, AIP Conference Proceedings Volume 1602, 2014, Pages 696-703
33.7. Liu, B., Tunç, C., Pseudo almost periodic solutions for a class of first order differential iterative equations, Applied Mathematics Letters 40 (2015), pp. 29-34
33.8. Wang, W., Positive pseudo almost periodic solutions for a class of differential iterative equations with biological background, Appl. Math. Lett. 46 (2015), 106-110
33.9. Kendre, S. D.; Kharat, V. V.; Narute, Ramdas, On existence of solution for mixed iterative integrodifferential equations, Advances in Differential Equations and Control Processes 15 (2015), No. 1, 53-66
33.10. Damag, Faten H. M.; Kılıçman, Adem. Sufficient conditions on existence of solution for nonlinear fractional iterative integral equation. J. Nonlinear Sci. Appl. 10 (2017), no. 2, 368–376.
33.11. Damag, Faten H.; Kilicman, Adem, On Simple Iterative Fractional Order Differential Equations, 2ND INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS 2016 (ICWOMA2016) Book Series: AIP Conference Proceedings Volume: 1795 Article Number: UNSP 020008-1 Published: 2017
33.12. Brestovanská, Eva; Jaroš, František; Medveď, Milan. Existence results for systems of iterative differential equations. Miskolc Math. Notes 18 (2017), no. 2, 655–664.
33.13. Kaufmann, Eric R. Existence and uniqueness of solutions for a second-order iterative boundary-value problem. Electron. J. Differential Equations 2018, Paper No. 150, 6 pp.
33.14. Hussain, N.; Al-Mazrooei, A. E.; Khan, A. R.; Ahmad, J. Solution of Volterra integral equation in metric spaces via new fixed point theorem. Filomat 32 (2018), no. 12, 4341–4350.
33.15. Damag, F. H.; Kilicman, A. Biological Experiments Based on Fractional Integral Equations. Book Series: J. Physics Conference Series v. 1132 Article Number: UNSP 012023 Published: 2018
33.16. Khemis, Rabah; Ardjouni, Abdelouaheb; Bouakkaz, Ahlème; Djoudi, Ahcene. Periodic solutions of a class of third-order differential equations with two delays depending on time and state. Comment. Math. Univ. Carolin. 60 (2019), no. 3, 379–399.
33.17. Unhale, S. I.; Kendre, S. D. On Existence And Uniqueness Results For Iterative Fractional Integrodierential Equation With Deviating Arguments. Applied Mathematics E-Notes 19 (2019), 116-127.
[34] Berinde, Vasile. Iterative approximation of fixed points for pseudo-contractive operators, Semin. Fixed Point Theory Cluj-Napoca 3 (2002), 209–215.
34.1. Mohamed A. El-Beltagy and Noha A. Al-Mulla, Solution of the Stochastic Heat Equation with Nonlinear Losses Using Wiener-Hermite Expansion, Journal of Applied Mathematics Volume 2014 (2014), Article ID 843714, 9 pages
[35] V. Berinde, A priori and a posteriori error estimates for a class of \phi-contractions, Bul. Appl.& Comput. Math. (1999), 183-192
35.1. M.O. Olatinwo, Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach space using the Ishikawa iteration process, Carpathian J. Math.24 (2008), No. 1, 82-87
35.2. M. O. Olatinwo, Some common fixed point theorems for selfmappings satisfying two contractive conditions of integral type in uniform space, Central European Math. J., 6 (2008), No. 2, 335-341
35.3. M.O. Olatinwo, Some results on the continuous dependence of the fixed points in normed linear space, Fixed Point Theory, 10 (2009), No. 1, 151-157
35.4. M. O. Olatinwo, Some results on multi-valued weakly Jungck mappings in b−metric space Cent. Eur. J. Math. 6 (2008), No. 4, 610-621 DOI: 10.2478/s11533-008-0047-3
35.5. Olatinwo, M. O., The continuous dependence of the fixed points for nonexpansive and quasi-nonexpansive mappings in uniformly convex Banach space. Fixed Point Theory 17 (2016), no. 2, 427-434.
[36] V. Berinde, A common fixed point theorem for quasi-contractive type mappings, Ann. Univ. Sci. Budapest. 46 (2003) 81-90
36.1. N. Hussain, Common fixed points in best approximation for Banach operator pairs with Ćirić type I-contractions, J. Math. Anal. Appl., 338 (2008), No. 2, 1351-1363
36.2. L. Ćirić, N. Hussain, F. Akbar, and J. S. Ume, Common fixed points for Banach operator pairs from the set of best approximations, Bull. Belg. Math. Soc. Simon Stevin, Volume 16, Number 2 (2009), 319-336
36.3. Ćirić, L., Hussain, N., Cakić, N., Common fixed points for Ćirić type f-weak contraction with applications,Publicationes Mathematicae, Volume 76, Issue 1-2, 2010, Pages 31-49
36.4. Liu, X., Jesic, S., Common fixed points of a generalized ordered g-quasicontraction in partially ordered metric spaces, Fixed Point Theory Appl. 2013, art. no. 53
36.5. S.-H. Cho and J.-S. Bae, Fixed point theorems for α-ψ-quasi contractive mappings in metric spaces, Fixed Point Theory Appl. 2013, 2013:268
36.6. S. Radenović, A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., 236 (2014), 367-372
[37] V. Berinde, Approximating fixed points of Lipschitzian generalized pseudo-contractions, Mathematics & Mathematics Education (Bethlehem, 2000), World Scientific, New Jersey, 2002, pp. 73–81
37.1. G.V.R. Babu, K.N.V. Vara Prashad, Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces, Fixed Point Theory Appl. Volume 2006, Article ID 35704, Pages 1–12
37.2. Olaleru, J. O., A comparison of Picard and Mann iterations for quasi-contraction maps, Fixed Point Theory 8 (2007), No. 1, 87-95
37.3. M. Abbas, S. H. Khan, B.E. Rhoades, Simpler is also better in approximating fixed points, Appl. Math. Comput. 205 (2008) 428–431
[38] V. Berinde, Comparing Krasnoselskij and Mann iterative methods for Lipschitzian generalized pseudocontractions, Proceedings of International Conference on Fixed Point Theory Appl.. Valencia(Spain), 2003, Yokohama Publishers, Yokohama, 2004, pp. 15–26
38.1. G.V.R. Babu, K.N.V. Vara Prashad, Comparison of fastness of the convergence among Krasnoselskij, Mann, and Ishikawa iterations in arbitrary real Banach spaces, Fixed Point Theory Appl. Volume 2006, Article ID 35704, Pages 1–12
38.2. Z. Huang, Noor, M.A., Equivalency of convergence between one-step iteration algorithm and two-step iteration algorithm of variational inclusions for H-monotone mappings, Comput. Math. Appl., 53 (2007), 1567-1571
38.3. Saddeek, A. M.; Hussain, N. Duality fixed points for multivalued generalized k(1)j-pseudocontractive lipschitzian mappings. Acta Mathematica Universitatis Comenianae 88 (2019), no. 1, 101-112.
[39] Vasile Berinde, Error estimates in the approximation of the fixed points for a class of ϕ -contractions, Studia Univ. ”Babeş-Bolyai”, 35 (1990), 2, 86-89
39.1. Serban, M.A., Fixed point theorems for triangular operators, Carpathian J. Math. 24 (2008), No. 3, 409-416
39.2. Rus IA, Petrusel A, Serban MA, Fibre Picard Operators on Gauge Spaces and Applications, Z. Anal. Anwend. 27 (2008) No. 4 407-423
39.3. Şerban, Marcel-Adrian. Saturated fibre contraction principle. Fixed Point Theory 18 (2017), no. 2, 729–740.
[40] V. Berinde, Approximation of fixed points of some nonself generalized $\phi$-contractions, Math. Balkanica (N.S.) 18 (2004), no. 1-2, 85-93.
40.1. L. Gajic, Vl. Rakocevic, Pair of non-self-mappings and common fixed points, Appl. Math. Comput. 187 (2007), 999-1006
40.2. Rus, Ioan A. The generalized retraction methods in fixed point theory for nonself operators. Fixed Point Theory 15 (2014), no. 2, 559–578.
[41] Berinde, Vasile; and Pacurar, Madalina, The measure of a great idea: 50 years on from the creation of the International Mathematical Olympiad. European Mathematical Society Newsletter 74 (2009), 15–18
41.1. Duncan J. Melville, Laura Martini and Kim Plofker, Abstracts, Historia Mathematica 38 (2011) 136–159
41.2. Vlada, Marin, 2010: Year of Mathematics in Romania and Centenary of Romanian Mathematical Society. An unique Journal in the world: Mathematical Gazette at 115 anniversary. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, ICVL 2010 Book Series: Proceedings of the International Conference on Virtual learning Pages: 27-37 Published: 2010
[42] V. Berinde, On the convergence of Mann iteration for a class of quasi-contractive operators (Preprint)
42.1. G.V.R. Babu, K.N.V. Vara Prashad, Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators, Fixed Point Theory Appl., 2006, Article ID 49615, Pages 1–6
[43] N. Hussain, V. Berinde, Common fixed point and invariant approximation results in certain metrizable topological vector spaces, Fixed Point Theory Appl. 2006, Art. ID 23582, 13 pages
43.1. N. Hussain, Common fixed points in best approximation for Banach operator pairs with ´Ciri´c type I-contractions, J. Math. Anal. Appl. 338 (2008) 1351–1363
43.2. Hussain, Nawab; Abbas, Mujahid; Kim, Jong Kyu. Common fixed point and invariant approximation in Menger convex metric spaces. Bull. Korean Math. Soc. 45 (2008), no. 4, 671–680.
43.3. A. R. Khan, F. Akbar and N. Sultana, Random coincidence points of subcompatible multivalued maps with applications, Carpathian J. Math.24 (2008), No. 2, 63-71
43.4. F. Akbar and A. R. Khan, Common Fixed Point and Approximation Results for Noncommuting Maps on Locally Convex Spaces, Fixed Point Theory Appl. Volume 2009, Article ID 207503, 14 pages, doi:10.1155/2009/207503
43.5. Hussain, N.; Pathak, H. K., Common fixed point and approximation results for H-operator pair with applications, Appl. Math. Comput. 218 (2012), No. 22, 11217-11225 DOI: 10.1016/j.amc.2012.05.013
43.6. M. A Kutbi, Common fixed point and invariant approximation results, Fixed Point Theory Appl. 2013, 2013:135
[44] V. Berinde, M. Berinde, On Zamfirescu’s fixed point theorem, Rev. Roumaine Math. Pures Appl. 50 (2005) 443–453.
44.1. D. Ilić, V. Pavlović , V. Rakočević, Extensions of the Zamfirescu theorem to partial metric spaces, Math.Comput. Modelling 55 (2012) 801–809
44.2. Akbar Azam, Nayyar Mehmood, Multivalued fixed point theorems in tvs-cone metric spaces, Fixed Point Theory Appl. 2013, 2013:184
44.3. F. Bojor and M. Tilca, Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph, Carpathian J. Math., 31 (2015), No. 3, 297-305
[45] V. Berinde, A convergence theorem for some mean value fixed point iterations in the class of quasi contractive operators, Demonstr. Math., 38 (2005), No. 1, 177-184
45.1. Rafiq, A., Common fixed points through implicit iteration process with errors, Fixed Point Theory 8 (2007), No. 1, 105-113
45.2. N. Hussain, A. Rafiq, B. Damjanović and R. Lazović, On rate of convergence of various iterative schemes, Fixed Point Theory Appl. 2011, 2011:45 doi:10.1186/1687-1812-2011-45
45.3. Khan, S. H. Fixed Points of Quasi-Contractive Type Operators in Normed Spaces by a Three-step Iteration Process. Book Series: Lecture Notes in Engineering and Computer Science 144-147 2011
45.4. V. Kumar, A. Latif, A. Rafiq, N. Hussain, S-iteration process for quasi-contractive mappings, J. Ineq. Appl. 2013, 2013:206
45.5. Kang, S. M., Ćirić, L. B., Rafiq, A., Ali, F., and Kwun, Y. C., Faster Multistep Iterations for the Approximation of Fixed Points Applied to Zamfirescu Operators, Abstr. Appl. Anal. Vol. 2013
45.6. Sintunavarat, W.; Pitea, A., On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 9 (2016), no. 5, 2553–2562.
45.7. Mogbademu, Adesanmi Alao. New iteration process for a general class of contractive mappings. Acta Comment. Univ. Tartu. Math. 20 (2016), no. 2, 117–122.
45.8. Başarir, Metin; Şahin, Aynur. Some results of the new iterative scheme in hyperbolic space. Commun. Korean Math. Soc. 32 (2017), no. 4, 1009–1024.
45.9. Zákány, Mónika. New classes of local almost contractions. Acta Univ. Sapientiae Math. 10 (2018), no. 2, 378–394.
45.10. Pansuwan, A.; Sintunavarat, W. The modified Picard-FB iterative algorithm for approximating the fixed points of conditional quasi-contractive mappings in convex metric spaces and its rate of convergence. J. Math. Anal. 9 (2018), no. 5, 55–66.
45.11. Khan, A. R.; Fukhar-Ud-Din, H.; Gürsoy, F. Rate of convergence and data dependency of almost Prešić contractive operators. J. Nonlinear Convex Anal. 19 (2018), no. 6, 1069–1081.
45.12. Gursoy, Faik; Eksteen, Johannes Jacobus Arnoldi; Khan, Abdul Rahim; et al. An iterative method and its application to stable inversion. Soft Computing 23 (2019), no. 16, 7393-7406.
45.13. Chen, Lili; Zou, Jie; Zhao, Yanfeng; Zhang, Mingguang. Iterative approximation of common attractive points of $(\alpha,\beta)$-generalized hybrid set-valued mappings. J. Fixed Point Theory Appl. 21 (2019), no. 2, Art. 58, 17 pp.
[46] V. Berinde, A fixed point theorem of Maia type in K-metric spaces, „Babes-Bolyai” Univ., Semin. on Fixed Point Theory (1991), No. 3, 7-14
46.1. Rus, I. A., Data dependence of the fixed points in a set with two metrics, Fixed Point Theory 8 (2007), No. 1, 115-123
46.2. H.K. Pathak, N. Shahzad, Fixed point results for generalized quasicontraction mappings in abstract metric spaces, Nonlinear Analysis 71 (2009) 6068-6076
46.3. Kadelburg, Z., Radenovic, S., Generalized quasicontractions in orbitally complete abstract metric spaces, Fixed Point Theory 13 (2012), No. 2, 527-536
[47] V. Berinde, Mădălina Păcurar, Iterative approximation of fixed points of almost contractions, Proceed. of Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (2007), IEEE Computer Society, 2007, pp. 387-394
47.1. Pacurar, Mădălina, Sequences of almost contractions and fixed points, Carpathian J. Math., 24 (2008), no. 2, 101-109
[48] Berinde, V., Error estimates for a class of (\delta, \varphi)-contractions. Babes-Bolyai Univ., Fac. Math. Comput. Sci., Res. Semin., Preprint no. 3 (1994), 3–9
48.1. Rus IA, Petrusel A, Serban MA, Fibre Picard Operators on Gauge Spaces and Applications, Z. Anal. Anwend. 27 (2008) No. 4 407-423
48.2. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
[49] V. Berinde and Mădălina Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math., 21 (2005), No. 1-2, 13-20
49.1. Z. Huang, Noor, M.A., Equivalency of convergence between one-step iteration algorithm and two-step iteration algorithm of variational inclusions for H-monotone mappings, Comput. Math. Appl., 53 (2007), 1567-1571
49.2. Pop, N., An algorithm for solving nonsmooth variational inequalities arising in frictional quasistatic contact problems, Carpathian J. Math., 24 (2008), no. 2, 101-109
49.3. M. Abbas, S. H. Khan, B.E. Rhoades, Simpler is also better in approximating fixed points, Appl. Math. Comput. 205 (2008) 428–431
49.5. Tembine, H.; Tempone, R.; Vilanova, P., Mean-field learning for satisfactory solutions, 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) Book Series: IEEE Conference on Decision and Control Pages: 4865-4870 Published: 2013
49.6. Fathollahi, S.; Ghiura, A.; Postolache, M.; Rezapour, S., A comparative study on the convergence rate of some iteration methods involving contractive mappings. Fixed Point Theory Appl. 2015, 2015:234, 24 pp.
49.7. Afshari, H.; Aydi, H., Some results about Krasnosel’skiĭ-Mann iteration process. J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4852–4859.
49.8. Okeke, Godwin Amechi; Abbas, Mujahid. A solution of delay differential equations via Picard-Krasnoselskii hybrid iterative process. Arab. J. Math. (Springer) 6 (2017), no. 1, 21–29.
49.9. Ertürk, Müzeyyen; Khan, Abdul Rahim; Karakaya, Vatan; Gürsoy, Faik. Convergence and data dependence results for hemicontractive operators. J. Nonlinear Convex Anal. 18 (2017), no. 4, 697–708.
49.10. Okeke, Godwin Amechi. Convergence analysis of the Picard-Ishikawa hybrid iterative process with applications. Afr. Mat. 30 (2019), no. 5-6, 817–835.
49.11. Akhtar, Z.; Khan, Muhammad A. A. Rates of convergence for a class of generalized quasi contractive mappings in Kohlenbach hyperbolic spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 1, 173–182.
49.12. Gürsoy, Faik; Ertürk, Müzeyyen; Abbas, Mujahid. A Picard-type iterative algorithm for general variational inequalities and nonexpansive mappings. Numer. Algorithms 83 (2020), no. 3, 867–883.
[50] V. Berinde, A convergence theorem for Mann iteration in the class of Zamfirescu operators, An. Univ. Vest Timi. Ser. Mat.-Inform. 45 (2007) 33–41.
50.1. D. Ilić, V. Pavlović , V. Rakočević, Extensions of the Zamfirescu theorem to partial metric spaces, Math.Comput. Modelling 55 (2012) 801–809
50.2. M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Applied Math. Comput. 218 (2012) No. 14, 7339–7346
50.3. H. Fukhar-ud-din, Strong convergence of an Ishikawa-type algorithm in CAT(0) spaces, Fixed Point Theory Appl. 2013, 2013:207 doi:10.1186/1687-1812-2013-207
50.4. Dutta, H., Some iterated convergence and fixed point theorems in real linear n-normed spaces, Miskolc Math Notes 15 (2014), No. 2, 423-437
50.5. Fathollahi, S.; Ghiura, A.; Postolache, M.; Rezapour, S., A comparative study on the convergence rate of some iteration methods involving contractive mappings. Fixed Point Theory Appl. 2015, 2015:234, 24 pp.
[51] Vasile Berinde, Mădălina Pacurar, A note on the paper „Remarks on fixed point theorems of Berinde”,Nonlinear Analysis Forum, 14 (2009) 119-124
51.1. Abbas, M., Coincidence points of multivalued f-almost nonexpansive mappings, Fixed Point Theory, 13 (2012), No. 1, 3-10
51.2. M. Abbas, B. Ali, S. Romaguera, Coincidence points of generalized multivalued (f, L−almost F−contraction with applications, J. Nonlinear Sci. Appl. 8 (2015), 919–934
51.3. Hussain, N., Arshad, M., Abbas, M., Hussain, A., Generalized dynamic process for generalized (f, L)-almost F-contraction with applications, Journal of Nonlinear Science and Applications, 9 (2016), No. 4, 1702-1715
51.4. Hussain, Aftab; Arshad, Muhammad; Abbas, Mujahid. New type of fixed point result of F-contraction with applications. J. Appl. Anal. Comput. 7 (2017), no. 3, 1112–1126.
[52] Vasile Berinde, Approximating fixed points of implicit almost contractions, Hacet. J. Math. Stat. 40 (2012) No. 1 93-102
52.1. Hung, N.M., Karapinar, E., Van Luong, N., Coupled coincidence point theorem in partially ordered metric spaces via implicit relation, Abstr. Appl. Anal., Volume 2012, 2012, Article number796964
52.2. Gül, U., Karapinar, E., On almost contractions in partially ordered metric spaces via implicit relations, J. Ineq. Appl. 2012, art. no. 217
52.3. Timis, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations, Miskolc Math. Notes, 13 (2012), No. 2, 555–567
52.4. Vetro, C., Vetro, F., Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152–161.
52.5. Aydi, Hassen; Jellali, Manel; Karapınar, Erdal. Common fixed points for generalized $\alpha$-implicit contractions in partial metric spaces: consequences and application. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 109 (2015), no. 2, 367–384.
52.6. Chuensupantharat, N.; Kumam, P., Some Common Fixed Point on Generalized Cyclic Contraction Mappings with Implicit Relation and Its Applications, Commun. Mathematics and Applications 7 (2016), no. 3, 199-206
52.7. Aydi, H.; Jellali, M.; Karapinar, E., On fixed point results for alpha-implicit contractions in quasi-metric spaces and consequences, Nonlinear Analysis-Modelling and Control 21 (2016), no. 1, 40-56
52.8. Hajimojtahed, M.; Mirmostafaee, A. K. Implicit contractive mappings in spherically complete ultrametric spaces. Bull. Math. Anal. Appl. 8 (2016), no. 4, 72–77.
52.9. Aydi, Hassen. $\alpha$-implicit contractive pair of mappings on quasi $b$-metric spaces and an application to integral equations. J. Nonlinear Convex Anal. 17 (2016), no. 12, 2417–2433.
52.10. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Common fixed points via implicit contractions on $b$-metric-like spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1524–1537.
52.11. Beloul, S. A common fixed point theorem for generalized almost contractions in metric-like spaces. Appl. Math. E-Notes 18 (2018), 127–139.
52.12. Chuensupantharat, N.; Kumam, P. Some results on implicit contractive conditions in metric spaces endowed with arbitrary binary relations. Math. Methods Appl. Sci. 41 (2018), no. 17, 7384–7398.
52.13. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
[53] V. Berinde, O. Bumbariu, Empirical study of a Padé type accelerating method of Picard iteration, Creative Math. Inform., 19 (2010), No. 2 149-159
53.1. O. Bumbariu, A new Aitken type method for accelerating iterative sequences, Appl. Math. Comput. 219 (2012) 78–82
53.2. O. Bumbariu, An acceleration technique for slowly convergent fixed point iterative methods, Miskolc Math. Notes 13 (2012), No. 2, 271–281
[54] Berinde, V: Generalized contractions in σ-complete vector lattices. Univ u Novom Sadu Zb Rad Prirod-Mat Fak Ser Mat. 24 (1994), No. 2, 31–38
54.1. M. Abbas, A. R. Khan, SZ Németh, Complementarity problems via common fixed points in vector lattices, Fixed Point Theory Appl. 2012, 2012:60
54.2. M. M. Choban, Fixed points for mappings defined on generalized gauge spaces, Carpathian J. Math., 31 (2015), No. 3, 313-324
54.3. H. Rahimi, M. Abbas, G. S. Rad, Common Fixed Point Results for Four Mappings on Ordered Vector Metric Spaces, Filomat 29:4 (2015), 865–878
54.4. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
[55] Berinde, Vasile; Mortici, C., New sharp estimates of the generalized Euler-Mascheroni constant. Math. Inequal. Appl. 16 (2013), no. 1, 279–288.
55.1. Xu, H.M.,You, Xu, Continued fraction inequalities for the Euler-Mascheroni constant, J Ineq Appl 2014, 2014: 343
55.2. You, Xu. On new sequences converging towards the Ioachimescu’s constant. Results Math. 71 (2017), no. 3-4, 1491–1498.
55.3. Huang, Ti-Ren; Han, Bo-Wen; Ma, Xiao-Yan; Chu, Yu-Ming. Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl. 2018, Paper No. 118, 9 pp.
[56] Borcut, Marin; Păcurar, Mădălina; Berinde, Vasile. Tripled fixed point theorems for mixed monotone Kannan type contractive mappings. J. Appl. Math. 2014, Art. ID 120203, 8 pp.
56.1. Alsulami, H. H., Roldán-López-de-Hierro, A.-F., Karapınar, E., Radenović, S., Some inevitable remarks on „Tripled fixed point theorems for mixed monotone Kannan type contractive mappings”. J. Appl. Math. 2014, Art. ID 392301, 7 pp.
56.2. Abusalim, S. M., Noorani, M. S. Md., Tripled fixed point theorems in cone metric spaces under $F$-invariant set and $c$-distance. J. Nonlinear Sci. Appl. 8 (2015), no. 5, 750–762.
56.3. Dobrican, Melánia-Iulia. Coupled and tripled fixed point theorems on a metric space endowed with a binary relation. Miskolc Math. Notes 18 (2017), no. 1, 189–198.
[57] Berinde, Vasile; Vetro, Francesca. Fixed point for cyclic weak $(\psi,C)$-contractions in 0-complete partial metric spaces. Filomat 27 (2013), no. 8, 1405–1413.
57.1. Cosentino, M., Vetro, P., Fixed point results for $F$-contractive mappings of Hardy-Rogers-type. Filomat 28 (2014), no. 4, 715–722.
57.2. Jleli, M.; Samet, B., An improvement result concerning fixed point theory for cyclic contractions, Carpathian Journal of Mathematics 32 (2016), no. 3, 339-347
[58] Berinde, V., Exploring Investigating And Discovering In Mathematics, Birkhauser Verlag, 2000
58.1. Kovič, J., Permutation inequalities, Mathematical Inequalities and Applications Volume 17, Issue 2, April 2014, Pages 419-429
[59] Berinde, M.; Berinde, V., The Romanian Mathematical Society, European Mathematical Society Newsletter Volume: 40 Pages: 20-22 Published: 2001 URL: http://www.ems-ph.org/journals/newsletter/pdf/2001-06-40.pdf
59.1. Vlada, Marin, 2010: Year of Mathematics in Romania and Centenary of Romanian Mathematical Society. An unique Journal in the world: Mathematical Gazette at 115 anniversary. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, ICVL 2010 Book Series: Proceedings of the International Conference on Virtual learning Pages: 27-37 Published: 2010
[60] Berinde, V., The Centenary of the Romanian Mathematical Society, European Mathematical Society Newsletter Newsletter Issue: 77 Published: September 2010 URL: http://www.ems-ph.org/journals/newsletter/pdf/2010-09-77.pdf
60.1. Vlada, Marin, Year of Mathematics in Romania and Centenary of Romanian Mathematical Society. An unique Journal in the world: Mathematical Gazette at 115 anniversary, in PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, ICVL 2010 Book Series: Proceedings of the International Conference on Virtual learning Edited by: Vlada, M; Albeanu, G; Popovici, DM Pages: 27-37 Published: 2010
[61] Berinde, Vasile; Păcurar, Mădălina. Fixed point theorems for nonself single-valued almost contractions. Fixed Point Theory 14 (2013), no. 2, 301-311.
61.1. Rus, Ioan A., The generalized retraction methods in fixed point theory for nonself operators Fixed Point Theory 15 (2014), No. 2, 559-578
61.2. O. Popescu, A new type of contractions that characterizes metric completeness, Carpathian J. Math.31 (2015), No. 3, 381-387
61.3. Bota, M.-F., Ilea, V., Fixed point theorems for nonself operators in $b$-metric spaces. Fixed Point Theory 16 (2015), no. 2, 225-232.
61.4. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
61.5. Altun, I., Minak, G., An extension of Assad-Kirk’s fixed point theorem for multivalued non self mappings, Carpathian J. Math 32 (2016), No. 2, 147–155
61.6. Rus, Ioan A.; Şerban, Marcel-Adrian. Some fixed point theorems for nonself generalized contraction. Miskolc Math. Notes 17 (2016), no. 2, 1021–1031.
61.7. Tiammee, J.; Charoensawan, P.; Suantai, S. Fixed point theorems for multivalued nonself $G$-almost contractions in Banach spaces endowed with graphs. J. Funct. Spaces 2017, Art. ID 7053849, 5 pp.
61.8. Klanarong, C.; Suantai, S. Best proximity point theorems for $G$-proximal weak contractions in complete metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 1, 65–75.
61.9. Puangpee, J.; Suantai, S. Fixed point theorems for multivalued nonself Kannan-Berinde contraction mappings in complete metric spaces. Fixed Point Theory 20 (2019), no. 2, 623-634.
[62] Berinde, V., Romania-the native country of IMOs. A Brief History of Romanian Mathematical Society, Editura CUB PRESS 22, Baia Mare, 2004
62.1. 2010: Vlada, Marin, Year of Mathematics in Romania and Centenary of Romanian Mathematical Society. An unique Journal in the world: Mathematical Gazette at 115 anniversary, in PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON VIRTUAL LEARNING, ICVL 2010 Book Series: Proceedings of the International Conference on Virtual learning Edited by: Vlada, M; Albeanu, G; Popovici, DM Pages: 27-37 Published: 2010
[63] Vasile Berinde, Asupra unei probleme a lui A.G. Ioachimescu, Gazeta Matematică, vol. 99 (1994), 7, 310-313
63.1. Sintamarian, Alina, Some inequalities regarding a generalization of Ioachimescu’s constant, J. Inequal. Appl. 4 (2010), No. 3, 413-421
[64] Berinde, V.; Măruşter, Şt.; Rus, I. A. An abstract point of view on iterative approximation of fixed points of nonself operators. J. Nonlinear Convex Anal. 15 (2014), no. 5, 851–865.
64.1. Diop, C.; Sow, T. M. M.; Djitte, N.; et al., Constructive techniques for zeros of monotone mappings in certain Banach spaces, SpringerPlus, Vol. 4 (2015), Article Number: 383
64.2. Chidume, C. E.; Chidume, C. O.; Bello, A. U. An algorithm for computing zeros of generalized phi-strongly monotone and bounded maps in classical Banach spaces. Optimization 65 (2016), no. 4, 827–839.
64.3. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
64.4. Chidume, C. E.; Bello, A. U. An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces. Appl. Math. Comput. 313 (2017), 408–417.
64.5. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.
64.6. Chidume, C. E.; Bello, A. U. An Iterative Algorithm for Approximating Solutions of Hammerstein Equations with Bounded Generalized Phi-Monotone Mappings. Numer. Funct. Anal. Optim. 41 (2020), no. 4, 442–461.
[65] Berinde,V., Une généralisation de critère du d’Alembert pour les séries positives. Bul. Stiint. Univ. Baia Mare, 7 (1991), 21-26
65.1. Bessem Samet, The class of (α,ψ)-type contractions in b-metric spaces and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:92
65.2. Cvetković, M.; Karapınar, E.; Rakocević, V., Some fixed point results on quasi-$b$-metric-like spaces. J. Inequal. Appl. 2015, 2015:374, 17 pp.
[66] O. Acar, V. Berinde, I. Altun, Fixed point theorems for Ciric strong almost contractions in partial metric spaces, J. Fixed Point Theory Appl., 12 (2012), 247-259
66.1. Xianjiu Huang, Yangyang Li, Chuanxi Zhu, Multivalued f-weakly Picard mappings on partial metric spaces, J. Nonlinear Sci. Appl. 8 (2015), 1234-1244
66.2. Chandok, Sumit; Kumar, Deepak; Khan, Mohammad Saeed. Some results in partial metric space using auxiliary functions. Appl. Math. E-Notes 15 (2015), 233–242.
66.3. Saluja, Amarjeet Singh; Khan, Mohammad Saeed; Jhade, Pankaj Kumar; Fisher, Brian. Some fixed point theorems for mappings involving rational type expressions in partial metric spaces. Appl. Math. E-Notes 15 (2015), 147–161.
66.4. Du, Xinchen; Huang, Xianjiu; Chen, Chunfang. Weak condition for generalized $f$-weakly Picard mappings on partial metric spaces. J. Nonlinear Sci. Appl. 10 (2017), no. 5, 2501–2509.
[67] Berinde, V. and Choban, M., Remarks on some completeness conditions involved in several common fixed point theorems, Creat. Math. Inform., 19 (2010), No. 1, 1–10
67.1. M. M. Choban, Fixed points for mappings defined on generalized gauge spaces, Carpathian J. Math., 31 (2015), No. 3, 313-324
67.2. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
[68] Berinde, V. and Choban, M., Generalized distances and their associate metrics. Impact on fixed point theory, Creat. Math. Inform., 22 (2013), No. 1, 23–32
68.1. M. M. Choban, Fixed points for mappings defined on generalized gauge spaces, Carpathian J. Math., 31 (2015), No. 3, 313-324
68.2. Abeljawad, T., Abodayeh, K., Mlaiki, N. M., On fixed point generalizations to partial $b$-metric spaces. J. Comput. Anal. Appl. 19 (2015), no. 5, 883–891.
68.3. Chaipunya, P., Kumam, P., Common fixed points for an uncountable family of weakly contractive operators, Carpathian J. Math.31 (2015), No. 3, 307-312.
68.4. Altun, I., Minak, G., An extension of Assad-Kirk’s fixed point theorem for multivalued non self mappings, Carpathian J. Math 32 (2016), No. 2, 147–155
68.5. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
68.6. Rus, Ioan A. Some variants of contraction principle, generalizations and applications. Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 3, 343–358.
68.7. Iqbal, Iram; Hussain, Nawab. Fixed point theorems for generalized multivalued nonlinear $\Cal F$-contractions. J. Nonlinear Sci. Appl. 9 (2016), no. 11, 5870–5893.
68.8. Dung, Nguyen Van; Hang, Vo Thi Le. On the completion of $b$-metric spaces. Bull. Aust. Math. Soc. 98 (2018), no. 2, 298–304.
68.9. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Pseudo-contractivity and metric regularity in fixed point theory. J. Optim. Theory Appl. 180 (2019), no. 1, 5–18.
68.10. Dung, Nguyen Van; An, Tran Van; Hang, Vo Thi Le. Remarks on Frink’s metrization technique and applications. Fixed Point Theory 20 (2019), no. 1, 157–175.
68.11. Dung, Nguyen Van. The metrization of rectangular $b$-metric spaces. Topology Appl. 261 (2019), 22–28.
[69] M. A. Alghamdi, V. Berinde, N. Shahzad, Fixed points of non-self almost contractions, Carpathian J. Math., 30 (2014), no. 1, 7-14.
69.1. H. K. Nashine and B. Fisher, Common fixed point theorems for generalized contraction involving rational expressions in complex valued metric spaces, An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 23 (2015), no. 2, 179–185.
69.2. Aydi, Hassen; Felhi, Abdelbasset; Sahmim, Slah. Fixed points of multivalued nonself almost contractions in metric-like spaces. Math. Sci. (Springer) 9 (2015), no. 2, 103–108.
69.3. Filip, A.D.; Petrusel, A., Fixed Point Theorems for Multivalued Zamfirescu Operators in Convex Kasahara Spaces, in CONVEXITY AND DISCRETE GEOMETRY INCLUDING GRAPH THEORY Book Series: Springer Proceedings in Mathematics & Statistics Pages: 167-179 DOI: 10.1007/978-3-319-28186-5_15 Published: 2016
69.4. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
69.5. Tiammee, J.; Charoensawan, P.; Suantai, S. Fixed point theorems for multivalued nonself $G$-almost contractions in Banach spaces endowed with graphs. J. Funct. Spaces 2017, Art. ID 7053849, 5 pp.
69.6. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Existence and stability results for a system of operator equations via fixed point theory for nonself orbital contractions. J. Fixed Point Theory Appl. 21 (2019), no. 3, Art. 73, 18 pp.
[70] V. Berinde, Stability of Picard iteration for contractive mappings satisfying an implicit relation, Carpathian J. Math., 27 (2011), no. 1, 13-23
70.1. Timis, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations, Miskolc Math. Notes, 13 (2012), No. 2, 555–567
70.2. Vetro, C., Vetro, F., Common fixed points of mappings satisfying implicit relations in partial metric spaces. J. Nonlinear Sci. Appl. 6 (2013), no. 3, 152–161.
70.3. Rus, Ioan A.; Şerban, Marcel-Adrian. Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem. Carpathian J. Math. 29 (2013), no. 2, 239–258.
70.4. B. Samet, Fixed point results for implicit contractions on spaces with two metrics. J Inequal Appl 2014, 2014:84
70.5. Chugh, R.; Malik, P.; Kumar, V., On a new faster implicit fixed point iterative scheme in convex metric spaces. J. Funct. Spaces 2015, Art. ID 905834, 11 pp.
70.6. Chugh, Renu; Malik, Preety; Kumar, Vivek. On analytical and numerical study of implicit fixed point iterations. Cogent Math. 2 (2015), Art. ID 1021623, 14 pp.
70.7. Kikina, Luljeta; Kikina, Kristaq. Fixed point theorems on generalized metric spaces for mappings in a class of almost $\phi$-contractions. Demonstr. Math. 48 (2015), no. 3, 440–451.
70.8. Wahab, O. T.; Rauf, K. On faster implicit hybrid Kirk-multistep schemes for contractive-type operators. Int. J. Anal. 2016, Art. ID 3791506, 10 pp.
70.9. Samet, B., On the approximation of fixed points for a new class of generalized Berinde mappings, Carpathian J. Math. 32 (2016), no. 3, 363-374.
70.10. Butt, Asma Rashid; Beg, Ismat; Iftikhar, Aqsa. Fixed points on ordered metric spaces with applications in homotopy theory. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 21, 15 pp.
[71] Berinde, Vasile. Summable almost stability of fixed point iteration procedures. Carpathian J. Math.19 (2003), no. 2, 81–88.
71.1. Faik Gürsoy, Vatan Karakaya, and B. E. Rhoades, Some Convergence and Stability Results for the Kirk Multistep and Kirk-SP Fixed Point Iterative Algorithms, Abstr Appl Anal Volume 2014 (2014), Article ID 806537, 12 pages
71.2. Okeke, Godwin Amechi; Kim, Jong Kyu. Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process. J. Inequal. Appl. 2015, 2015:290, 14 pp.
71.3. Gürsoy, Faik; Khan, Abdul Rahim; Ertürk, Müzeyyen; Karakaya, Vatan. Weak $w^2$-stability and data dependence of Mann iteration method in Hilbert spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), no. 1, 11–20.
71.4. Okeke, Godwin Amechi. Random fixed point theorems in certain Banach spaces. J. Nonlinear Convex Anal. 20 (2019), no. 10, 2155–2170.
[72] Berinde, V., Pacurar, M, Two elementary applications of some Prešic type fixed point theorems. Creat. Math. Inform. 20 (2011), 32-42
72.1. N. Shahzad and S. Shukla, Set-valued G-Prešic operators on metric spaces endowed with a graph and fixed point theorems, Fixed Point Theory Appl. (2015) 2015:24
72.2. Ilić, D. Abbas, M., Nazir, T., Iterative approximation of fixed points of Prešić operators on partial metric spaces. Math. Nachr. 288 (2015), no. 14-15, 1634–1646.
72.3. Abbas, M., Ilić, D., Nazir, T., Iterative approximation of fixed points of generalized weak Presic type $k$-step iterative method for a class of operators. Filomat 29 (2015), no. 4, 713–724.
72.4. Boriwan, P.; Petrot, N.; Suantai, S., Fixed point theorems for Presic almost contraction mappings in orbitally complete metric spaces endowed with directed graphs, Carpathian Journal of Mathematics 32 (2016), no. 3, 303-313
72.5. Abbas, M.; Berzig, M.; Nazir, T.; Karapınar, E. Iterative approximation of fixed points for Prešić type $F$-contraction operators. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78 (2016), no. 2, 147–160.
72.6. Shehzad, Muhammad Imran; Al-Mazrooei, Abdullah Eqal; Ahmad, Jamshaid. Set-valued $G$-Prešić type $F$-contractions and fixed point theorems. J. Math. Anal. 10 (2019), no. 4, 26–38.
72.7. Shukla, S.; Mlaiki, N.; Aydi, H. On (G, G)-Prei-Ciri Operators in Graphical Metric Spaces. Mathematics 7 (2019), no. 5 Article Number: 445.
72.8. Latif, A.; Nazir, T.; Abbas, M. Fixed Point Results for Multivalued Presic Type Weakly Contractive Mappings. Mathematics 7 (2019), no. 7 Article Number: 601.
72.9. Isik, H.; Mohammadi, B.; Haddadi, M. R.; et al.On a New Generalization of Banach Contraction Principle with Application. Mathematics 7 (2019), no. 9 Article Number: 862.
[73] Berinde, V., Păcurar, M., An iterative method for approximating fixed points of Presić nonexpansive mappings. Rev. Anal. Numér. Théor. Approx. 38 (2009), no. 2, 144-153.
73.1. Ilić, D. Abbas, M., Nazir, T., Iterative approximation of fixed points of Prešić operators on partial metric spaces. Math. Nachr. 288 (2015), no. 14-15, 1634–1646.
73.2. Abbas, M., Ilić, D., Nazir, T., Iterative approximation of fixed points of generalized weak Presic type $k$-step iterative method for a class of operators. Filomat 29 (2015), no. 4, 713–724.
73.3. Boriwan, P.; Petrot, N.; Suantai, S., Fixed point theorems for Presic almost contraction mappings in orbitally complete metric spaces endowed with directed graphs, Carpathian Journal of Mathematics 32 (2016), no. 3, 303-313.
73.4. Abbas, M.; Berzig, M.; Nazir, T.; Karapınar, E. Iterative approximation of fixed points for Prešić type $F$-contraction operators. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 78 (2016), no. 2, 147–160.
73.5. Shehzad, Muhammad Imran; Al-Mazrooei, Abdullah Eqal; Ahmad, Jamshaid. Set-valued $G$-Prešić type $F$-contractions and fixed point theorems. J. Math. Anal. 10 (2019), no. 4, 26–38.
73.6. Latif, A.; Nazir, T.; Abbas, M. Fixed Point Results for Multivalued Presic Type Weakly Contractive Mappings. Mathematics 7 (2019), no. 7, Article Number: 601.
73.7. Isik, H.; Mohammadi, B.; Haddadi, M. R.; et al. On a New Generalization of Banach Contraction Principle with Application. Mathematics 7 (2019), no. 9 Article Number: 862.
[74] Timiş, I., Berinde, V., Weak stability of iterative procedures for some coincidence theorems. Creat. Math. Inform. 19 (2010), no. 1, 85-95.
74.1. Timiş, I., Stability of Jungck-type iterative procedure for some contractive type mappings via implicit relations. Miskolc Math. Notes 13 (2012), no. 2, 555–567.
74.2. Khan, A. R.; Gürsoy, F.; Kumar, V., Stability and data dependence results for the Jungck-Khan iterative scheme. Turkish J. Math. 40 (2016), no. 3, 631–640.
[75] Berinde, V.; Păcurar, M., The contraction principle for nonself mappings on Banach spaces endowed with a graph. J. Nonlinear Convex Anal. 16 (2015), no. 9, 1925–1936.
75.1. Tiammee, J., Cho, Y. J., Suantai, S., Fixed point theorems for nonself G-almost contractive mappings in Banach spaces endowed with graphs, Carpathian J. Math.32 (2016), No. 3, 375-382
[76] Berinde, V.; Khan, A. R.; Păcurar, M., Analytic and empirical study of the rate of convergence of some iterative methods. J. Numer. Anal. Approx. Theory 44 (2015), no. 1, 25–37.
76.1. Ardelean, G.; Cosma, O.; Balog, L., A comparison of some fixed point iteration procedures by using the basins of attraction, Carpathian J. Math.32 (2016), no. 3, 277-284.
[77] Berinde, V.; Pacurar, M., Iterative approximation of fixed points of single-valued almost contractions, in Fixed Point Theory and Graph Theory: Foundations and Integrative Approaches (Alfuraidan, M.; Ansari, Q. Eds.), Academic Press, 2016
77.1. Samet, Bessem. On the approximation of fixed points for a new class of generalized Berinde mappings. Carpathian J. Math. 32 (2016), no. 3, 363–374.
[78] Berinde, V.; Păcurar, M.; Rus, Ioan A. From a Dieudonné theorem concerning the Cauchy problem to an open problem in the theory of weakly Picard operators. Carpathian J. Math. 30 (2014), no. 3, 283–292.
78.1. Rus, Ioan A., Remarks on a LaSalle conjecture on global asymptotic stability. Fixed Point Theory 17 (2016), no. 1, 159–172.
78.2. Şerban, Marcel-Adrian. Saturated fibre contraction principle. Fixed Point Theory 18 (2017), no. 2, 729–740.
78.3. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.. Carpathian J. Math. 32 (2016), no. 3, 363–374.
[79] Berinde, V.; Păcurar, M., Stability of $k$-step fixed point iterative methods for some Prešić type contractive mappings. J. Inequal. Appl. 2014, 2014:149, 12 pp.
79.1. Rus, Ioan A., Remarks on a LaSalle conjecture on global asymptotic stability. Fixed Point Theory 17 (2016), no. 1, 159–172.
79.2. Garcia, G., Coupled fixed points and alpha-dense curves, Carpathian J. Math. 32 (2016), no. 3, 323-330
79.3. Ali, Muhammad Usman; Kamran, Tayyab; Karapinar, Erdal. Existence of fixed points for new Prešić type multivalued operators. J. Nonlinear Convex Anal. 18 (2017), no. 11, 2047–2057.
79.4. Alecsa, Cristian Daniel. Fixed point theorems for generalized contraction mappings on b-rectangular metric spaces. Stud. Univ. Babeş-Bolyai Math. 62 (2017), no. 4, 495–520.
79.5. Alecsa, Cristian Daniel. Some fixed point results regarding convex contractions of Presić type. J. Fixed Point Theory Appl. 20 (2018), no. 1, Art. 7, 19 pp.
79.6. Ali, Muhammad Usman; Fahimuddin; Postolache, Mihai. Generalized Prešić type mappings in order-$b$-metric spaces. J. Math. Anal. 10 (2019), no. 3, 1–13.
79.7. Ali, M. U.; Farheen, M.; Kamran, T.; et al. Preisic Type Nonself Operators and Related Best Proximity Results. Mathematics 7 (2019), no. 5 Article Number: 394.
[80] Berinde, V., On some exit criteria for the Newton method. Novi Sad J. Math. 27 (1997), no. 1, 19–26.
80.1. Semenov, K. K., Metrological aspects of stopping iterative procedures in inverse problems for static-mode measurements, ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING X Book Series: Series on Advances in Mathematics for Applied Sciences Volume: 86 Pages: 320-329 Published: 2015
[81] Berinde, V., Problem 1 (Private communication) Published: 06 January 2015
81.1. Choban, Mitrofan M., Fixed points of mappings defined on spaces with distance, Carpathian J. Math. 32 (2016), no. 2, 173-188
[82] Berinde, V., Iterative approximation of fixed points and Mann iteration for a general class of functions, J. Adv. Math. Stud 3 (2016), no. 2, 1-3
82.1. Chidume, C. E., Strong convergence and stability of Picard iteration sequences for a general class of contractive-type mappings. Fixed Point Theory Appl. 2014, 2014:233, 10 pp.
[83] Berinde, V., On the solution of Steinhaus functional equation using weakly Picard operators. Filomat 25 (2011), no. 1, 69–79.
83.1. Park, C., Additive rho-Functional Inequalities in beta-Homogeneous Normed Spaces, FILOMAT 30 (2016), no. 7, 1651-1658
83.2. Park, Choonkil; Shin, Dong Yun; Saadati, Reza; et al., A Fixed Point Approach to the Fuzzy Stability of an AQCQ-Functional Equation, FILOMAT 30 (2016), no. 7, 1833-1851
[84] Berinde, V.; Petric, M. A., Fixed point theorems for cyclic non-self single-valued almost contractions, Carpathian Journal of Mathematics, 31 (2015), no. 3, 289-296
84.1. Jleli, M.; Samet, B., An improvement result concerning fixed point theory for cyclic contractions, Carpathian Journal of Mathematics 32 (2016), no. 3, 339-347
84.2. Puangpee, J.; Suantai, S. Fixed point theorems for multivalued nonself Kannan-Berinde contraction mappings in complete metric spaces. Fixed Point Theory 20 (2019), no. 2, 623-634.
[85] Berinde, V.; Khan, A. R.; Păcurar, M., Coupled solutions for a bivariate weakly nonexpansive operator by iterations. Fixed Point Theory Appl. 2014, 2014:149, 12 pp.
85.1. Khan, A. R.; Shukri, S. A., Best proximity points in the Hilbert ball. J. Nonlinear Convex Anal. 17 (2016), no. 6, 1083–1094.
85.2. Suparatulatorn, Raweerote; Suantai, Suthep. A new hybrid algorithm for global minimization of best proximity points in Hilbert spaces. Carpathian J. Math. 35 (2019), no. 1, 95–102.
[86] Berinde, V.; Pacurar, M., A constructive approach to coupled fixed point theorems in metric spaces, Carpathian J. Math. 31 (2015), no. 3, 277-287
86.1. Garcia, G., Coupled fixed points and alpha-dense curves, Carpathian J. Math. 32 (2016), no. 3, 323-330
[87] Berinde, Vasile; Kovács, Gabriella. Stabilizing discrete dynamical systems by monotone Krasnoselskij type iterative schemes. Creat. Math. Inform. 17 (2008), no. 3, 298–307 (2009).
87.1. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$-pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
87.2. Toscano, Elena; Vetro, Calogero. Fixed point iterative schemes for variational inequality problems. J. Convex Anal. 25 (2018), no. 2, 701–715.
[88] Berinde, Vasile. Convergence theorems for fixed point iterative methods defined as admissible perturbations of a nonlinear operator. Carpathian J. Math. 29 (2013), no. 1, 9–18.
88.1. Bunlue, Nuttawut; Suantai, Suthep. Convergence theorems of fixed point iterative methods defined by admissible functions. Thai J. Math. 13 (2015), no. 3, 527–537.
88.2. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
88.3. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$-pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
88.4. Toscano, Elena; Vetro, Calogero. Fixed point iterative schemes for variational inequality problems. J. Convex Anal. 25 (2018), no. 2, 701–715.
88.5. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.
[89] Berinde, Vasile; Khan, Abdul Rahim; Fukhar-ud-din, Hafiz. Fixed point iterative methods defined as admissible perturbations of generalized pseudocontractive operators. J. Nonlinear Convex Anal. 16 (2015), no. 3, 563–572.
89.1. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$-pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
89.2. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
[90] Berinde, Vasile; Khan, Abdul Rahim; Păcurar, Mădălina. Convergence theorems for admissible perturbations of $\phi$-pseudocontractive operators. Miskolc Math. Notes 15 (2014), no. 1, 27–37.
90.1. Bunlue, Nuttawut; Suantai, Suthep. Convergence theorems of fixed point iterative methods defined by admissible functions. Thai J. Math. 13 (2015), no. 3, 527–537.
90.2. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
90.3. Toscano, Elena; Vetro, Calogero. Admissible perturbations of $\alpha$-$\psi$-pseudocontractive operators: convergence theorems. Math. Methods Appl. Sci. 40 (2017), no. 5, 1438–1447.
90.4. Toscano, Elena; Vetro, Calogero. Fixed point iterative schemes for variational inequality problems. J. Convex Anal. 25 (2018), no. 2, 701–715.
90.5. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.
[91] Berinde, V.; Petrusel, A.; Rus, I. A.; Şerban, M. A. The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm. Mathematical analysis, approximation theory and their applications, 75–106, Springer Optim. Appl., 111, Springer, [Cham], 2016.
91.1. Rus, Ioan A. Some variants of contraction principle, generalizations and applications. Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 3, 343–358.
91.2. Şerban, Marcel-Adrian. Saturated fibre contraction principle. Fixed Point Theory 18 (2017), no. 2, 729–740.
91.3. Ţicală, Cristina. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 33 (2017), no. 3, 381–388.
91.4. Rus, Ioan A. Convergence results for fixed point iterative algorithms in metric spaces. Carpathian J. Math. 35 (2019), no. 2, 209–220.
91.5. Petrusel, A. Local fixed point results for graphic contractions. Journal Of Nonlinear And Variational Analysis 3 (2019), no. 2 Special Issue: SI Pages: 141-148.
91.6. Petrusel, Adrian; Rus, Ioan A. Fixed point theory in terms of a metric and of an order relation. Fixed Point Theory 20 (2019), no. 2, 601-622.
91.7. Petrusel, Adrian; Petrusel, G. Fixed points, coupled fixed points and best proximity points for cyclic operators. Journal Of Nonlinear And Convex Analysis 20 (2019), no. 8 Special Issue: SI Pages: 1637-1646.
91.8. Petruşel, A.; Petruşel, G.; Yao, Jen-Chih. Existence and stability results for a system of operator equations via fixed point theory for nonself orbital contractions. J. Fixed Point Theory Appl. 21 (2019), no. 3, Art. 73, 18 pp.
91.9. Petrusel, A.; Petrusel, G.; Yao, J.-C. Graph contractions in vector-valued metric spaces and applications. Optimization Early Access: JAN 2020
[92] Choban, M. M.; Berinde, V. A general concept of multiple fixed point for mappings defined on spaces with a distance. Carpathian J. Math. 33 (2017), no. 3, 275–286.
92.1. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
92.2. Charoensawan, P. Common fixed point theorems for Geraghty’s type contraction mapping with two generalized metrics endowed with a directed graph in JS-metric spaces. Carpathian J. Math. 34 (2018), no. 3, 305–312.
92.3. Ansari, A. H.; Guran, L.; Latif, A. Fixed point problems concerning contractive type operators on KST-spaces. Carpathian J. Math. 34 (2018), no. 3, 287–294.
92.4. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Coupled fixed point theorems in quasimetric spaces without mixed monotonicity. Carpathian J. Math. 35 (2019), no. 2, 185–192.
[93] Balog, L.; Berinde, V.; Păcurar, M. Approximating fixed points of nonself contractive type mappings in Banach spaces endowed with a graph. An. Ştiinţ. Univ. „Ovidius” Constanţa Ser. Mat. 24 (2016), no. 2, 27–43.
93.1. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
[94] Berinde, V.; Păcurar, M. Coupled and triple fixed point theorems for mixed monotone almost contractive mappings in partially ordered metric spaces. J. Nonlinear Convex Anal. 18 (2017), no. 4, 651–659.
94.1. Alfuraidan, M. R.; Benchabane, S.; Djebali, S. Coincidence points for multivalued weak $\Gamma$-contraction mappings on metric spaces. Carpathian J. Math. 34 (2018), no. 3, 277–286.
94.2. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
94.3. Charoensawan, P. Common fixed point theorems for Geraghty’s type contraction mapping with two generalized metrics endowed with a directed graph in JS-metric spaces. Carpathian J. Math. 34 (2018), no. 3, 305–312.
94.4. Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih. Coupled fixed point theorems in quasimetric spaces without mixed monotonicity. Carpathian J. Math. 35 (2019), no. 2, 185–192.
[95] Fukhar-ud-din, H.; Berinde, V. Fixed point iterations for Prešić-Kannan nonexpansive mappings in product convex metric spaces. Acta Univ. Sapientiae Math. 10 (2018), no. 1, 56–69.
95.1. Ansari, A. H.; Guran, L.; Latif, A. Fixed point problems concerning contractive type operators on KST-spaces. Carpathian J. Math. 34 (2018), no. 3, 287–294.
95.2. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
95.3. Charoensawan, P. Common fixed point theorems for Geraghty’s type contraction mapping with two generalized metrics endowed with a directed graph in JS-metric spaces. Carpathian J. Math. 34 (2018), no. 3, 305–312.
95.4. Alfuraidan, M. R.; Benchabane, S.; Djebali, S. Coincidence points for multivalued weak $\Gamma$-contraction mappings on metric spaces. Carpathian J. Math. 34 (2018), no. 3, 277–286.
[96] Balog, L.; Berinde, V. Fixed point theorems for nonself Kannan type contractions in Banach spaces endowed with a graph. Carpathian J. Math. 32 (2016), no. 3, 293–302.
96.1. Tiammee, J. Fixed point results of generalized almost $G$-contractions in metric spaces endowed with graphs. Carpathian J. Math. 34 (2018), no. 3, 433–439.
96.2. Puangpee, J.; Suantai, S. Fixed point theorems for multivalued nonself kannan-berinde contraction mappings in complete metric spaces. Fixed Point Theory 20 (2019), no. 2, 623-634.
[97] Berinde, V. Generalized contractions and higher order hyperbolic partial differential equations. Bul. Ştiinţ. Univ. Baia Mare Ser. B 11 (1995), no. 1-2, 39–54.
97.1. Hussain, N.; Al-Mazrooei, A. E.; Khan, A. R.; Ahmad, J. Solution of Volterra integral equation in metric spaces via new fixed point theorem. Filomat 32 (2018), no. 12, 4341–4350.
[98] Berinde, Vasile. Conditions for the convergence of the Newton method. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 3 (1995), no. 1, 22–28.
98.1. Quinn, Daniel B.; van Halder, Yous; Lentink, D. Adaptive control of turbulence intensity is accelerated by frugal flow sampling. Journal Of The Royal Society Interface 14 (2017), no. 136 Article Number: 20170621
[99] V.Berinde, On an integral equation of Volterra type using a generalized Lipschitz condition, Bul. Stiint.Univ. Baia Mare, Fasc.Mat.-Inf., 9 (1993), 1–8
99.1. Hussain, Nawab; Al-Mazrooei, Abdullah Eqal; Khan, Abdul Rahim; Ahmad, Jamshaid. Solution of Volterra integral equation in metric spaces via new fixed point theorem. Filomat 32 (2018), no. 12, 4341–4350.
[100] Berinde, V. On the convergence of the Newton method. Trans Univ Kosice Volume: 1 Pages: 68-77 Published: 1997
100.1. Lee, Seunghyung; Sonmez, Ozan; Hung, Silas S. O.; et al. Development of growth rate, body lipid, moisture, and energy models for white sturgeon (Acipenser transmontanus) fed at various feeding rates. Animal Nutrition Volume: 3 Issue: 1 Pages: 46-60 Published: MAR 2017
[101] Berinde, V. Fixed point theorems for nonexpansive operators on non convex sets, Bul. Stiint. Univ. Baia Mare, Ser. B 15 (1999), no. 1-2, 27-31.
101.1. Hussain, Nawab; Kutbi, Marwan Amine; Berinde, Vasile. Dotson’s convexity, Banach operator pair and best simultaneous approximations. Math. Commun. 15 (2010), no. 2, 377–386.
Total citations WoS (ISI) (2006-2020): 2419
Last updated: 1 March 2020